
Computing the cutwidth of bipartite permutation graphs
in linear time?

Pinar Heggernes1, Pim van ’t Hof1, Daniel Lokshtanov2, and Jesper Nederlof1

1 Department of Informatics, University of Bergen,
P.O. Box 7803, N-5020 Bergen, Norway.

{pinar.heggernes,pim.vanthof,jesper.nederlof}@ii.uib.no
2 Dept. of Computer Science and Engineering, University of California, San Diego,

9500 Gilman Drive, La Jolla, CA 92093-0404, USA.
dlokshtanov@cs.ucsd.edu

Abstract. The problem of determining the cutwidth of a graph is a notoriously hard
problem which remains NP-complete under severe restrictions on input graphs. Until
recently, non-trivial polynomial-time cutwidth algorithms were known only for subclasses
of graphs of bounded treewidth. Very recently, Heggernes et al. (SIAM J. Discrete Math.,
25 (2011), pp. 1418–1437) initiated the study of cutwidth on graph classes containing
graphs of unbounded treewidth, and showed that a greedy algorithm computes the
cutwidth of threshold graphs. We continue this line of research and present the first
polynomial-time algorithm for computing the cutwidth of bipartite permutation graphs.
Our algorithm runs in linear time. We stress that the cutwidth problem is NP-complete
on bipartite graphs and its computational complexity is open even on small subclasses
of permutation graphs, such as trivially perfect graphs.

1 Introduction

A large variety of problems in many different domains can be formulated as graph layout
problems [9]. A well known problem of this type is cutwidth. Given a graph G and a positive
integer k, the cutwidth problem is to decide whether there is an ordering of the vertices of
G such that any line inserted between two consecutive vertices in the ordering cuts at most
k edges of the graph. The cutwidth of the input graph is the smallest integer for which the
question can be answered positively. This problem was first proposed as a model to minimize
the number of channels in a circuit [1, 16], and later it has found applications in areas like
protein engineering [3], network reliability [14], automatic graph drawing [18], information
retrieval [4], and as a subroutine in the cutting plane algorithm for TSP [13].

Just like numerous other graph problems of practical interest, cutwidth is NP-complete [10],
even when input graphs are restricted to planar graphs of maximum degree 3 [17], split
graphs [12], unit disk graphs, partial grids [8], and consequently bipartite graphs. There is a
polynomial-time O(log2 n)-approximation algorithm for general graphs [15], and a polynomial-
time constant factor approximation algorithm for dense graphs [2].

The knowledge on polynomial-time algorithms for the exact computation of cutwidth on re-
stricted inputs is very limited. Cutwidth of certain trivial graph classes, like meshes or complete
p-partite graphs, can be computed easily as there exist closed formulas for their cutwidth [9].
Cutwidth of proper interval graphs has a trivial solution following an interval ordering of the

? This work is supported by the Research Council of Norway and by EPSRC UK grant EP/D053633/1.
An extended abstract of this paper has been presented at the 36th International Workshop on Graph
Theoretic Concepts in Computer Science (WG 2010) [11].

vertices [23]. However, there are very few graph classes whose cutwidth is non-trivially com-
putable in polynomial time. Until recently, polynomial-time cutwidth algorithms were known
only for subclasses of graphs of bounded treewidth. In particular, Yannakakis [22] gave a so-
phisticated and technical algorithm for trees (see also [7]). Furthermore, Thilikos et al. gave
an algorithm for computing the cutwidth of bounded cutwidth graphs [20], and extended this
result to graphs of bounded treewidth and maximum degree [21]. The study of cutwidth on
graph classes containing graphs of unbounded treewidth was initiated in [12], resulting in a
linear-time algorithm for computing the cutwidth of threshold graphs. This is a simple greedy
algorithm that can be applied on arbitrary graphs; it outputs the correct cutwidth if the input
graph is threshold. However, even on chain graphs, which are bipartite graphs very closely
related to threshold graphs, the algorithm does not compute the cutwidth.

In this paper, we show that the cutwidth of a bipartite permutation graph can be computed
in linear time. As mentioned above, the cutwidth problem is NP-complete on bipartite graphs,
and its computational complexity is open on permutation graphs. Thus bipartite permuta-
tion graphs are natural candidates for studying the computational complexity of the cutwidth
problem. In contrast to the threshold algorithm [12] mentioned above, our algorithm cannot
be applied on arbitrary graphs; it is specifically tailored to deal with bipartite permutation
input graphs, and can only be run on such graphs. The correctness of our algorithm relies
heavily on a characterization of bipartite permutation graphs by strong orderings [19]. Bipar-
tite permutation graphs and threshold graphs are two unrelated subclasses of permutation
graphs; the intersection of these two graph classes is restricted to stars. The class of bipartite
permutation graphs properly contains the class of chain graphs mentioned above; prior to our
result, no polynomial-time algorithm was known for computing the cutwidth even for chain
graphs. Due to our result, bipartite permutation graphs form the first graph class of unbounded
clique-width [6] whose cutwidth can be computed in polynomial time.

2 Preliminaries and notation

We consider undirected finite graphs with no loops or multiple edges. For a graph G = (V,E),
with vertex set V and edge set E, we define n = |V | and m = |E|. Let S ⊆ V . The subgraph
of G induced by S is denoted by G[S]. We write G−S to denote the graph G[V \ S], and we
simply write G−v instead of G−{v} in case S = {v}. For two vertices u, v ∈ V with uv /∈ E,
we write G+uv to denote the graph (V,E∪{uv}). The set of neighbors (or the neighborhood) of
a vertex x of G is N(x) = {v | xv ∈ E}. The degree of x is d(x) = |N(x)|. A graph is connected
if there is a path between any pair of its vertices. A connected component of a disconnected
graph is a maximal connected subgraph of it.

A graph G with vertex set {1, . . . , n} is a permutation graph if there exists a permutation
π of {1, . . . , n} such that any two vertices i and j with i < j are adjacent in G if and only
if π(i) > π(j). A bipartite graph is a graph whose vertex set can be partitioned into two
independent sets, called color classes. We write G = (A,B,E) to denote a bipartite graph with
color classes A and B. The partition of the vertex set into color classes of a connected bipartite
graph is unique, up to symmetry. Vertices of A and of B are called A-vertices and B-vertices,
respectively. We say that a vertex is bipartite universal if it is adjacent to all the vertices of
the opposite color class.

An ordering of a set A is a one-to-one mapping σ : A ↔ {1, . . . , |A|}. We also use the
notation σ = 〈a1, a2, . . . , a|A|〉, meaning that σ(ai) < σ(aj) when i < j, where each ai is a
distinct element of A, for 1 ≤ i ≤ |A|. Integers 1, 2, . . . , |A| are called the positions of σ, and
σ(a) is the position of a in σ. Intuitively, we will refer to the end of the ordering with a1 as the
left and the end of the ordering with a|A| as the right. For two elements a and a′ of A, we say

2

that a appears before (or to the left of) a′ in σ, denoted a ≺σ a′, if σ(a) < σ(a′). If σ(a) > σ(a′),
then we say that a appears after (or to the right of) a′ in σ and write a �σ a′. We will also use
the notion of a leftmost, rightmost, and middle vertex or neighbor, analogously and intuitively.
We say that k elements of A are consecutive in σ if they occupy positions i+ 1, . . . , i+ k, for
some i ∈ {0, . . . , |A| − k}. When we say that we delete an element a of A from σ, we get a new
ordering in which all elements before a in σ keep their original positions, and the position of
each element after a decreases by 1. We denote the new ordering by σ−a. For any subset of
A′ ⊆ A, we write σ−A′ to denote the ordering obtained from σ by consecutively deleting all
the elements of A′ from σ.

A layout of a graph G = (V,E) is an ordering of V . We write Φ(G) to denote the set of
all layouts of G. The rank of a vertex v with respect to a layout ϕ, denoted rankϕ(v), is the
number of neighbors of v appearing after v in ϕ minus the number of neighbors of v appearing
before v in ϕ, i.e., rankϕ(v) = |{w ∈ N(v) | v ≺ϕ w}| − |{w ∈ N(v) | w ≺ϕ v}|. Note that
the rank of a vertex can be negative. Given layout ϕ of a graph G and an integer 1 ≤ i ≤ n,
we define L(i, ϕ,G) = {u ∈ V | ϕ(u) ≤ i} and R(i, ϕ,G) = {u ∈ V | ϕ(u) > i}. The ith gap
of ϕ is between L(i, ϕ,G) and R(i, ϕ,G), or equivalently, between positions i and i + 1 of ϕ.
For any set S ⊆ V , we define the cut of S to be θ(S,G) = {uv ∈ E | u ∈ S ∧ v /∈ S}. The cut
of G at the ith gap of ϕ is defined as θ(i, ϕ,G) = {uv ∈ E | u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G)}.
Note that by definition θ(i, ϕ,G) = θ(L(i, ϕ,G), G). We call an edge set θ ⊆ E a cut of ϕ
if θ = θ(i, ϕ,G) for some i ∈ {1, 2, . . . n − 1}. The size of a cut θ is |θ|. The cutwidth of a
layout ϕ of G is cwϕ(G) = max1≤i≤n |θ(i, ϕ,G)|. A cut θ(i, ϕ,G) with |θ(i, ϕ,G)| = cwϕ(G) is
called a worst cut of ϕ. The cutwidth of G is the minimum cutwidth over all layouts of G, i.e.,
cw(G) = minϕ∈Φ(G) cwϕ(G). An optimal layout of G is a layout ϕ such that cw(G) = cwϕ(G).
The cutwidth of a graph G equals the maximum cutwidth over all connected components of
G.

As the name already indicates, bipartite permutation graphs are permutation graphs that
are bipartite. The study of bipartite permutation graphs was initiated by Spinrad et al. in [19].
They present two characterizations of bipartite permutation graphs, leading to a linear-time
recognition algorithm for this class as well as polynomial-time algorithms for some NP-complete
problems restricted to bipartite permutation input graphs. A strong ordering (σA, σB) of a
bipartite graph G = (A,B,E) consists of an ordering σA of A and an ordering σB of B such
that for all ab, a′b′ ∈ E, where a, a′ ∈ A and b, b′ ∈ B, a ≺σA

a′ and b′ ≺σB
b implies that

ab′ ∈ E and a′b ∈ E. An ordering σA of A has the adjacency property if, for every b ∈ B, N(b)
consists of vertices that are consecutive in σA. The ordering σA has the enclosure property if,
for every pair b, b′ of vertices of B with N(b) ⊆ N(b′), the vertices of N(b′) \ N(b) appear
consecutively in σA, implying that b is adjacent to the leftmost or the rightmost neighbor of
b′ in σA.

Theorem 1 ([19]). The following statements are equivalent for any bipartite graph G =
(A,B,E).

1. G is a bipartite permutation graph.
2. G has a strong ordering.
3. There exists an ordering of A which has the adjacency property and the enclosure property.

A strong ordering of a bipartite permutation graph can be computed in linear time [19]. If
the graph G in Theorem 1 is connected, then it follows from the proof of Theorem 1 in [19]
that we can combine statements 2 and 3 in Theorem 1 as follows.

Lemma 1 ([19]). Let (σA, σB) be a strong ordering of a connected bipartite permutation graph
G = (A,B,E). Then both σA and σB have the adjacency property and the enclosure property.

3

3 Cutwidth of Bipartite Permutation Graphs

In this section we prove that the cutwidth of bipartite permutation graphs can be computed in
linear time. The complete algorithm is given in the proof of Theorem 2. The main ingredient
is an algorithm that we call MinCutBPG. This algorithm takes as input a connected bipartite
permutation graph G and a strong ordering of G, and it outputs an optimal layout of G. We will
spend most of this section describing and proving the correctness of Algorithm MinCutBPG.
Before we give the algorithm, we define an operation to modify a given layout in an intuitive
way. Given a layout ϕ of a graph, when we move a vertex v from position i to position j, with
i < j, only vertices in positions from i to j are affected. We get a new layout ϕ′ in which v gets
position ϕ′(v) = j, the vertex x with ϕ(x) = j gets position ϕ′(x) = j − 1, and the position of
each of the other affected vertices decreases by 1, similarly. All other vertices have the same
position in ϕ′ as they had in ϕ. What we described is a move toward the right. A move toward
the left is defined symmetrically.

3.1 Description of Algorithm MinCutBPG

We now give an outline of Algorithm MinCutBPG, which takes as input a connected bipartite
permutation graph G = (A,B,E) and a strong ordering (σA, σB) of G. It outputs an optimal
layout ϕ of G. After the description of the algorithm, we present its pseudocode. The three
pictures in Figure 1 illustrate how the algorithm works, and we will refer to that figure in the
description below.

Let A = {a1, . . . , as} where a1 ≺σA
· · · ≺σA

as, and let B = {b1, . . . , bt} where b1 ≺σB

· · · ≺σB
bt. The vertices of A will appear in the final layout ϕ in the same order as they appear

in σA. Similarly, the order in which the vertices of B appear in ϕ corresponds to the order in
which they appear in σB . Before deciding where the vertices of A will appear in ϕ with respect
to the vertices of B, the algorithm first assigns the vertices of B to boxes. There are two types
of boxes: a box Xi for every vertex ai ∈ A, and a box Xi,i+1 for every pair of consecutive
vertices ai, ai+1 ∈ A. Recall that the neighbors of any vertex b ∈ B appear consecutively in
σA by Lemma 1. If b has even degree and its two middle neighbors are ai and ai+1, then b is
assigned to box Xi,i+1. If b has odd degree and its middle neighbor is ai, then b is assigned to
box Xi. In the top picture of Figure 1, the vertices of B have been assigned to the appropriate
boxes. Observe that some boxes might be empty and that the collection of non-empty boxes
is a partition of B. For convenience, we also define the boxes X0,1 = ∅ and Xs,s+1 = ∅.

The following observation is a direct consequence of Lemma 1, the properties of a strong
ordering, and the definition of boxes.

Observation 1 Given a connected bipartite permutation graph G = (A,B,E) with |A| = s and
a strong ordering (σA, σB), where σA = 〈a1, a2, . . . , as〉, let boxes X0,1, X1, X1,2, . . . , Xs, Xs,s+1

be defined as above. Then we have the following:

1. every vertex of Xi appears before every vertex of Xi,i+1 in σB, and every vertex of Xi,i+1

appears before every vertex of Xi+1 in σB, for 1 ≤ i ≤ s;
2. N(b) = N(b′) for any two vertices b and b′ appearing in the same box.

The algorithm now generates a layout ϕ′ of G in which a1 is placed first, vertices of X1 are
placed in the immediately following positions, vertices of X1,2 are placed in the next positions,
then a2 is placed, followed by vertices of X2, X2,3, {a3}, X3, . . ., {as−1}, Xs−1, Xs−1,s, {as},
and Xs. Within each box, the vertices of B belonging to that box are ordered according to σB .
For 1 ≤ i ≤ s, ai appears just before the vertices of box Xi. The layout ϕ′ of the graph in the
middle picture of Figure 1 is obtained this way, using the boxes drawn in the top picture.

4

To define and obtain the final layout ϕ, we just need to move each ai to its final position.
This will be one of the positions of {ai} ∪Xi in ϕ′. As a consequence, we can observe already
now that, for every b ∈ B, rankϕ(b) ∈ {−1, 0, 1}. The ranks of the A-vertices might have a
larger range of values. Let i be any index satisfying 1 ≤ i ≤ s. Recall that rankϕ(ai) depends
on the position where ai is placed: the further to the left ai appears, the higher its rank. The
algorithm moves ai in such a way that rankϕ(ai) is as close to 0 as possible, i.e., the value of
|rankϕ(ai)| is as small as possible, subject to the condition that the position of ai is one of the
initial positions of {ai}∪Xi. This is done in the following way. Note first that the set of possible
positions for ai does not intersect with the set of possible positions for any other A-vertex aj
with i 6= j. Furthermore, rankϕ(ai) is only dependent on the neighbors of ai and no two A-
vertices are adjacent. Therefore, the placement of each ai among the positions of {ai}∪Xi can
be decided independently of the placements of the other A-vertices. By Lemma 1, the neighbors
of ai appear consecutively in σB . If ai has odd degree, then let b be the middle neighbor of ai
in σB . If ai has even degree, then let b be the right one of the two middle neighbors of ai. If
b ∈ Xi, then we move ai to the position just before the position of b. If b appears in a box to
the left of Xi, then we do not move ai. If b appears in a box to the right of Xi, then we move
ai to the last position among the positions of Xi. Thus, if ai is placed between two vertices of
Xi, then its rank is 0 or 1. If ai is placed before or after all vertices of Xi, then its rank can be
higher or lower. This completes the definition and computation of ϕ.

a1 a2 a3 a4

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

X1 X1,2 X2 X2,3 X3 X3,4 X4

a1 a2 a3 a4b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11
+5 +4 +4 −4−1 −1 −1 0 −1 −1 −1 −1 −1 0 −1

a1 a2 a3 a4b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11
+1 +2 0 −4+1 +1 −1 0 +1 +1 +1 −1 −1 0 −1

(1)

(2)

(3)

Fig. 1. An illustration of the way algorithm MinCutBPG computes an optimal layout when given as
input a connected bipartite permutation graph G = (A,B,E) and a strong ordering (σA, σB). (1)
The vertices of B are assigned to boxes. (2) A layout ϕ′ of G is generated by placing each vertex ai

immediately to the left of box Xi. The integer below each vertex indicates its rank with respect to ϕ′.
(3) The optimal layout ϕ is obtained by placing the vertex ai in one of the initial positions of {ai}∪Xi

such that its rank is as close to 0 as possible.

We make the following observation about the layout ϕ generated by Algorithm MinCutBPG,
which is a direct consequence of Lemma 1.

5

Observation 2 Let G = (A,B,E) be a connected bipartite permutation graph and let (σA, σB)
be a strong ordering of G, where σA = 〈a1, a2, . . . , as〉. Let ϕ be the layout of G generated by
Algorithm MinCutBPG on input G and (σA, σB). Then, for every 1 ≤ i ≤ s, we have the
following:

1. for any b ∈ Xi,i+1, rankϕ(b) = 0;
2. for any b ∈ Xi, rankϕ(b) = 1 if b ≺ϕ ai and rankϕ(b) = −1 if ai ≺ϕ b;
3. every b ∈ Xi−1,i ∪Xi ∪Xi,i+1 is adjacent to ai.

To conclude this section, we give pseudocode for the algorithm MinCutBPG.

Algorithm MinCutBPG

input: a connected bipartite permutation graph G = (A,B,E) and a strong ordering (σA, σB) of G;
output: an optimal layout ϕ of G;

let σA = 〈a1, a2, . . . , as〉;
let σB = 〈b1, b1, . . . , bt〉;
initialize X0,1, X1, X1,2, . . . , Xs, Xs,s+1 to be empty;

for i = 1 to t do
if |N(bi)| is even with middle neighbors aj , aj+1 then

Xj,j+1 = Xj,j+1 ∪ {bi};
else

let aj be the unique middle neighbor of bi;
Xj = Xj ∪ {bi};

k = 1;
for i = 1 to s do

ϕ(ai) = k;
k = k + 1;
place the vertices of Xi in positions k, . . . , k + |Xi| − 1 of ϕ in the order they appear

in σB ;
k = k + |Xi|;
place the vertices of Xi,i+1 in positions k, . . . , k + |Xi,i+1| − 1 of ϕ in the order they

appear in σB ;
k = k + |Xi,i+1|;

for i = 1 to s do

q = |N(ai) ∩ L(ϕ(ai), ϕ,G)|;
p = bd(ai)/2c;
if p > q + |Xi| then

move ai to the position of the rightmost vertex of Xi in ϕ;

else if q < p ≤ q + |Xi| then

move ai to the (p− q)th position among the positions of Xi in ϕ;

3.2 Correctness of Algorithm MinCutBPG

We show that Algorithm MinCutBPG produces an optimal layout when the input is a connected
bipartite permutation graph and a strong ordering of that graph. We assume for contradiction
that there is a connected bipartite permutation graph G for which the algorithm outputs a
layout ϕ such that cwϕ(G) > cw(G). Such a graph is called a counterexample, and we write
G to denote the set of all counterexamples. Let G′ ⊆ G be the set of counterexamples having

6

the minimum number of vertices among all counterexamples, and let G′′ ⊆ G′ be the set of
graphs in G′ having the maximum number of edges among all graphs in G′. A graph in G′′ is
called a tight counterexample. If there exists a counterexample, then there also exists a tight
counterexample.

For the statements and the proofs of the following lemmas, let G = (A,B,E) with E 6= ∅
be a connected bipartite permutation graph that is a tight counterexample, and let (σA, σB)
be a strong ordering of G such that σA = 〈a1, . . . , as〉 and σB = 〈b1, . . . , bt〉. Furthermore,
let ϕ = 〈v1, . . . , vn〉 be the layout of G generated by Algorithm MinCutBPG on input G and
(σA, σB).

Lemma 2. Let θ(j, ϕ,G) be a worst cut of ϕ. Then we have the following:

1. a1 is adjacent to the rightmost B-vertex of L(j, ϕ,G);
2. b1 is adjacent to the rightmost A-vertex of L(j, ϕ,G);
3. as is adjacent to the leftmost B-vertex of R(j, ϕ,G);
4. bt is adjacent to the leftmost A-vertex of R(j, ϕ,G).

Proof. We first prove claim 1. Let θ = θ(j, ϕ,G) and let b be the rightmost B-vertex of
L = L(j, ϕ,G). If b ≺ϕ a1, then all B-vertices in L appear before a1 in ϕ, and b is the vertex just
before a1 in ϕ, implying that ϕ(b) = ϕ(a1)− 1. Hence b ∈ X1, and by Observation 2, a1b ∈ E.
Now assume that a1 ≺ϕ b, and suppose for contradiction that a1 is not adjacent to b. Note
that this means that b /∈ X1, since every vertex in box X1 is adjacent to a1 by Observation 2.
We claim that G′ = G−({a1} ∪ X1) is a counterexample, contradicting the assumption that
G is a tight counterexample. Observe that G′ is a connected bipartite permutation graph and
(σA−a1, σB−X1) is a strong ordering of G′. We will prove the claim by showing that θ is a cut
of the layout ϕ′ returned by Algorithm MinCutBPG on input G′ and (σA−a1, σB−X1). Since
a1b /∈ E and G is connected, b has a neighbor ai for some i ≥ 2. Then a1 has no neighbors
in R = R(j, ϕ,G) as a result of the properties of a strong ordering. None of the vertices in
X1 has a neighbor in R either, because they are adjacent to a1 only. Therefore, θ is a cut of
ϕ−({a1} ∪X1). We will show that all vertices of L \ ({a1} ∪X1) that appear to the left of b in
ϕ−({a1} ∪X1) also appear to the left of b in ϕ′.

Clearly, the relative orderings of the A-vertices and of the B-vertices are the same in ϕ′ as
in ϕ. Let us analyze how the deletion of the vertices in {a1}∪X1 can affect the ranks of vertices
and the boxes that they belong to. Deleting {a1} ∪X1 does not change the rank of b, or any
A-vertex, or any B-vertex in R(j, ϕ,G), since none of these vertices is adjacent to any of the
vertices in {a1} ∪X1. Consequently, b appears in the same box after the deletion of {a1} ∪X1

as it did before, and so do all the B-vertices to the right of b. Let a 6= a1 be the rightmost
A-vertex of L; note that a might not be defined in case a1 is the only A-vertex of L. Either a
or b is the rightmost vertex of L in ϕ. In either case, since the ranks of a and b did not change,
a and b have the same relative order to each other in ϕ′ as in ϕ. The only vertices whose ranks
might change by the deletion of {a1} ∪ X1 are the B-vertices of L that were adjacent to a1.
However, these vertices cannot appear to the right of b in ϕ′, as the algorithm respects the
strong ordering (σA−a1, σB−X1). As a result, the set of vertices that appear to the left of b
is the same in ϕ′ as in ϕ. Since all the vertices to the right of b appear in exactly the same
positions as before, θ is a cut of ϕ′. Since cw(G′) ≤ cw(G) and the size of the cut did not
change, we conclude that G′ is a counterexample with at least one fewer vertex than G, giving
us the desired contradiction. This completes the proof of claim 1.

The proof of claim 2 strongly resembles the proof of claim 1, but is slightly easier. If a1 is
the rightmost A-vertex of L, then claim 2 holds, as b1 is adjacent to a1 due to the assumption
that G is connected. Let a be the rightmost A-vertex of L, and assume that a 6= a1. Suppose
for contradiction that b1 is not adjacent to a. We claim that G′ = G−{b1} is a counterexample,

7

contradicting the assumption that G is a tight counterexample. Note that G′ is connected, and
that (σA, σB − {b1}) is a strong ordering of G′. Since b1 is not adjacent to a, vertex b1 is not
adjacent to any A-vertex in R. Clearly, b1 is not adjacent to any B-vertex either. Hence, the
only vertices whose ranks might be affected by the deletion of b1 are the A-vertices in L that
are adjacent to b1. Just like in the proof of claim 1, we can show that θ = θ(j, ϕ,G) is a cut
of the layout ϕ′ returned by Algorithm MinCutBPG on input G′ and (σA, σB − {b1}), yielding
the desired contradiction. Since this time graph G′ is obtained from G by deleting a single
vertex (b1) from G rather than a set of vertices ({a1}∪X1), the details are easier and therefore
omitted.

By symmetry, the correctness of claims 3 and 4 immediately follows from the correctness
of claims 1 and 2, respectively.

Lemma 3. Let θ(j, ϕ,G) be a worst cut of ϕ. Then both G[L(j, ϕ,G)] and G[R(j, ϕ,G)] are
complete bipartite graphs.

Proof. Let a and b be the rightmost A-vertex and B-vertex of L = L(j, ϕ,G), respectively. By
Lemma 2, a1 is adjacent to b and b1 is adjacent to a. By the definition of a strong ordering,
a1 is adjacent to b1 and a is adjacent to b. Since G is connected, and σA and σB have the
adjacency property by Lemma 1, a and a1 are adjacent to all B-vertices in L, and b and b1 are
adjacent to all A-vertices in L. As a result, every vertex of A∩L is adjacent to every vertex of
B ∩ L. This means that G[L(j, ϕ,G)] is complete bipartite. By symmetry the same holds for
G[R(j, ϕ,G)].

Lemma 4. There is a worst cut θ(j, ϕ,G) of ϕ such that vj and vj+1 belong to different color
classes.

Proof. Let L = L(j, ϕ,G) and let R = R(j, ϕ,G). Assume that either L or R, say L, contains
vertices of only one color class. Since G is connected and E 6= ∅, G contains vertices from both
color classes. Let us consider the smallest index k ≥ j such that there is a vertex of the other
color class in position k + 1. Then |θ(k, ϕ,G)| ≥ |θ(j, ϕ,G)| because L ⊆ L(k, ϕ,G), there are
no edges between the vertices of L(k, ϕ,G), and each vertex of L(k, ϕ,G) has a neighbor in
R(k, ϕ,G). Hence we can conclude that there is a worst cut at the gap between two vertices
of opposite color. The case where R contains only vertices of one color class is completely
symmetric. For the rest of the proof, assume that both L and R contain vertices of both color
classes.

Assume first that both vj and vj+1 are B-vertices. Let ai be the rightmost A-vertex in L,
which means that ai+1 is the leftmost A-vertex in R. Both b = vj and b′ = vj+1 are between
ai and ai+1; more precisely, ai ≺ϕ b ≺ϕ b′ ≺ϕ ai+1. If rankϕ(b) = 1, then b ∈ Xi+1 by
Observation 2. Then by Observation 1, b′ ∈ Xi+1 as well, and consequently rankϕ(b′) = 1.
Thus we can conclude that b and b′ have the same neighborhood and they have one more
neighbor in R than in L. In this case θ(j, ϕ,G) cannot be a worst cut, because the cut just
to the right of b′ has larger size. Therefore, rankϕ(b) ≤ 0, which means that b has at least as
many neighbors to the left as it has to the right. Since b has no neighbors appearing between
ai and b, the cut just to the right of ai is of size at least |θ(j, ϕ,G)|. Hence we can take that
cut as the worst cut. Consequently there is a worst cut at the gap between an A-vertex and a
B-vertex.

Assume now that both vj and vj+1 are A-vertices, say ai and ai+1. First we show that
in this case both ai and ai+1 are bipartite universal. Assume for contradiction that this is
not true, and let b be the leftmost B-vertex in R which is not a neighbor of ai. We claim
that G′ = G+aib is also a counterexample, contradicting the assumption that G is a tight
counterexample. Recall that G[L] and G[R] are complete bipartite graphs due to Lemma 3.

8

Now observe that G′ is a bipartite permutation graph and (σA, σB) is a strong ordering of G′.
Let ϕ′ be the layout computed by Algorithm MinCutBPG on input G′ and (σA, σB). Let us
analyze how the layout ϕ can change to ϕ′ due to the addition of edge aib. Observe that Xi,i+1

is empty before the addition of edge aib, since ai and ai+1 are consecutive in ϕ. When we add
edge aib, vertex b gets one more neighbor to the left, and thus might appear in a box further
to the left than the box it was in before. By Observation 1 we know that b was not in Xi or
Xi,i+1 before the addition of edge aib. Now it can enter Xi,i+1 but it cannot enter Xi, since it
only gained one neighbor. This means that it can move past ai+1 toward the left, but it cannot
move past ai. Thus L(j, ϕ′, G′) = L and R(j, ϕ′, G′) = R, although some vertices in R might
have changed positions. Consequently, θ(j, ϕ′, G′) = θ(j, ϕ,G) ∪ {aib} is a cut of ϕ′, which
means that ϕ′ has a cut whose size is 1 larger than a worst cut of ϕ. Since cw(G′) ≤ cw(G)+1,
G′ is a counterexample, contradicting the assumption that G is a tight counterexample. Thus
there cannot be a B-vertex in R that ai is not adjacent to. By Lemma 3 we know that ai
is adjacent to all B-vertices in L, and hence ai is bipartite universal. By symmetry and with
similar arguments, ai+1 is also bipartite universal. This means that rankϕ(ai) = rankϕ(ai+1).
If this rank is negative, then the cut at the (j − 1)th gap is a larger cut than θ(j, ϕ,G), since
ai and ai+1 have more neighbors in L than in R. Symmetrically, if this rank is positive, then
the cut at the (j + 1)th gap is a larger cut. Therefore rankϕ(ai) = rankϕ(ai+1) = 0, because
otherwise we get a contradiction to the assumption that θ(j, ϕ,G) is a worst cut. This means
that ai and ai+1 have as many neighbors in L as they have in R. Since ai and ai+1 are both
bipartite universal and they are not adjacent to each other, the cut at the (j − 1)th gap and
the cut at the (j + 1)th gap have the same size as θ(j, ϕ,G). Hence we can take one of these
cuts as a worst cut. We can repeat this argument until we reach a B-vertex on the other side
of a worst cut.

Lemma 5. There is a worst cut θ(j, ϕ,G) of ϕ such that both vj and vj+1 are bipartite uni-
versal.

Proof. By Lemma 4, we know that there is a worst cut θ = θ(j, ϕ,G) such that vj and vj+1

belong to different color classes. Let us now show that both vj and vj+1 are bipartite universal.
Let a = vj ∈ A and let b = vj+1 ∈ B. By Lemma 3 we know that a is adjacent to every
B-vertex in L and b is adjacent to every A-vertex in R. If abt ∈ E, then a is bipartite universal
as a result of the properties of a strong ordering. If abt /∈ E, then we claim that G′ = G−bt
is also a counterexample, contradicting the assumption that G is a tight counterexample. We
observe that G′ is a bipartite permutation graph with strong ordering (σA, σB−bt). Since bt
has no neighbors in L as a result of the properties of a strong ordering, θ is a cut of ϕ−bt. Let
ϕ′ be the layout computed by MinCutBPG on input G′ and (σA, σB−bt). Since no B-vertex
was adjacent to bt, every remaining B-vertex appears in the same box after the deletion of bt
as it did before. However, an A-vertex ai that was adjacent to bt might move one position to
the left inside the box Xi. Hence ai can move past b toward the left, but it cannot move past
a, since the algorithm respects the ordering σA. Consequently, all vertices of L to the left of a
in ϕ also appear to the left of a in ϕ′. Thus θ is a cut of ϕ′. Since cw(G′) ≤ cw(G) and the
size of the cut did not change, G′ is a counterexample, contradicting the assumption that G
is a tight counterexample. Hence a is bipartite universal. To show that b is bipartite universal
we use similar arguments: by symmetry, if a1b /∈ E, then G′ = G−a1 is a counterexample as
well. Finally, the case where vj ∈ B and vj+1 ∈ A is completely symmetric.

Corollary 1. There is a worst cut θ(j, ϕ,G) of ϕ such that vj and vj+1 belong to different
color classes and they are both bipartite universal.

9

Proof. The proof of Lemma 5 takes a cut as mentioned in Lemma 4, and shows the claim of
Lemma 5 using the same cut. Hence, there is a cut that satisfies both lemmas at the same
time, and the corollary follows.

Lemma 6. There is a worst cut θ(j, ϕ,G) such that there are
⌊
|A|/2

⌋
A-vertices and

⌈
|B|/2

⌉
B-vertices on one side of the jth gap of ϕ, and there are

⌈
|A|/2

⌉
A-vertices and

⌊
|B|/2

⌋
B-

vertices on the other side of the jth gap.

Proof. By Corollary 1 there is a worst cut θ(j, ϕ,G) such that vertices in positions j and j+ 1
belong to different color classes and are bipartite universal. Let b ∈ B be one of these vertices;
it can be on either side of the cut. Let L = L(j, ϕ,G) and R = R(j, ϕ,G). By Observation 2,
rankϕ(b) ∈ {−1, 0, 1}. Hence the difference between |N(b) ∩ L| and |N(b) ∩ R| is at most 1.
Since b is adjacent to every A-vertex, we immediately obtain that |A∩L| and |A∩R| differ by
at most 1. Consequently, there are

⌊
|A|/2

⌋
A-vertices on one side, and

⌈
|A|/2

⌉
A-vertices on

the other side of the jth gap of ϕ.
Next we show that |B∩L| and |B∩R| differ by at most 1. Let ai be the rightmost A-vertex

in L. Let B′ be the set of B-vertices between ai and ai+1 in ϕ. By Corollary 1, we may assume
that B′ is not empty and that either ai = vj or ai+1 = vj+1. We will first show that ai, ai+1

and all vertices in B′ are bipartite universal. Let us first consider the case where ai = vj . Then
we already know by Corollary 1 that ai and the leftmost vertex b in B′ are bipartite universal.
We also know that each vertex of B′ is adjacent to all A-vertices in R by Lemma 3. Let us add
all the missing edges between the vertices of B′ and the A-vertices in L to obtain a modified
graph G′. Since b is bipartite universal in G, the new graph G′ is a bipartite permutation
graph, and (σA, σB) is a strong ordering of G′. We will show that G′ is a counterexample as
well. Let ϕ′ be the layout computed by MinCutBPG on input G′ and (σA, σB). In G′, b is still
bipartite universal, and therefore it stays in the box that it was in before. The position of a
vertex b′ 6= b of B′ cannot be further to the left in ϕ′ than in ϕ, as b′ is not allowed to pass
the other vertices of B′, and in particular b, toward the left, since the algorithm respects the
strong ordering. For the same reason, no A-vertex can change position from one side of ai to
the other side of ai. Therefore, L(j, ϕ′, G′) = L(j, ϕ,G). Let ` be the number of edges we added
to G to obtain G′. Hence, |θ(j, ϕ′, G′)| = |θ(j, ϕ,G)|+ ` and cw(G′) ≤ cw(G) + `. As ϕ′ has a
worst cut larger than the cutwidth of G′, G′ is a counterexample, contradicting the assumption
that G is a tight counterexample. Thus all vertices in B′ are bipartite universal. To show that
ai+1 is bipartite universal we use similar arguments. If it is not bipartite universal, consider
the rightmost B-vertex b′ in L which ai+1 is not adjacent to. Then G+b′ai+1 is a bipartite
permutation graph with the same strong ordering as G, and it is a counterexample as well.
The case where ai+1 = vj+1 is completely symmetric, since in that case we know that ai+1 and
the rightmost vertex of B′ are bipartite universal.

Now we know that ai, ai+1, and the set B′ of B-vertices between them are all bipartite
universal. Thus the vertices in B′ all have the same neighborhood and the same rank. This
means that all the vertices of B′ belong to exactly one of the sets Xi, Xi,i+1, or Xi+1. First
assume that all vertices of B′ belong to Xi,i+1. Then by Observation 2, they all have rank 0.
Observe that rankϕ(ai) ≥ 0, since otherwise moving the cut toward the left just to the left of
ai gives a larger cut. Similarly, rankϕ(ai+1) ≤ 0; otherwise moving the cut toward the right
just to the right of ai+1 gives a larger cut. As a consequence, at least

⌈
|B|/2

⌉
B-vertices are

to the right of ai and at least
⌈
|B|/2

⌉
B-vertices are to the left of ai+1. Therefore, there is

a position k with ϕ(ai) ≤ k < ϕ(ai+1) that satisfies the following: the number of B-vertices
to the right of the kth gap and the number of B-vertices to the left of the kth gap differ by
at most 1. Since the vertices in B′ are all bipartite universal and not adjacent to each other,
we can conclude that they all have the same number of neighbors in L as they have in R.

10

Consequently, |θ(k, ϕ,G)| = |θ(j, ϕ,G)|, and we can take θ(k, ϕ,G) as a worst cut. Thus we
arrive at a situation where there are

⌊
|B|/2

⌋
B-vertices on one side of the kth gap and

⌈
|B|/2

⌉
B-vertices on the other side. Note that A ∩ L(k, ϕ,G) = A ∩ L and A ∩ R(k, ϕ,G) = A ∩ R.
Consequently, the number of A-vertices on either side of the worst cut remains unchanged.

It remains to study the case where all vertices of B′ belong to either Xi or Xi+1. If they
are all in Xi, then they all have rank −1 by Observation 2. In this case, the cut just to the
right of ai is larger in size than the cut just to the left of ai+1, since the vertices of B′ have
more neighbors to the left of B′ than they have to the right of B′. Therefore, ai = vj . The
rank of ai cannot be larger than 1, because if it were, then Algorithm MinCutBPG would have
placed ai further right in Xi. On the other hand, rankϕ(ai) ≥ 0, since otherwise moving the
cut toward the left just to the left of ai gives a larger cut. Hence rankϕ(ai) ∈ {0, 1}. Since ai
is adjacent to all B-vertices, this implies that there are

⌊
|B|/2

⌋
B-vertices on one side of the

cut and
⌈
|B|/2

⌉
B-vertices on the other side. If all vertices of B′ belong to Xi+1, then they all

have rank 1 and the cut is just to the left of ai+1, by the same arguments as above. As we saw
before, rankϕ(ai) ≤ 0, since otherwise moving the cut toward the right just to the right of ai
gives a larger cut. If the rank of ai+1 were smaller than 0, then it would appear further left in
Xi+1 than it does, and therefore its rank must be 0 or 1. Exactly as above, we conclude that
there are

⌊
|B|/2

⌋
B-vertices on one side of the cut and

⌈
|B|/2

⌉
B-vertices on the other side.

Again, the number of A-vertices on either side of the cut is the same as before.
We have thus shown that there is a cut θ(k, ϕ,G) with the same size as θ(j, ϕ,G), where

ϕ(ai) ≤ k < ϕ(ai+1), such that there are at least
⌊
|A|/2

⌋
A-vertices and at least

⌊
|B|/2

⌋
B-

vertices one one side of the cut, and there are at most
⌈
|A|/2

⌉
A-vertices and at most

⌈
|B|/2

⌉
B-vertices on the other side of the cut. If either |A| or |B| is even, then the statement of the
lemma already follows from what we have proved so far. So the only problem might occur
when A and B both have odd cardinality. Assume that both |A| and |B| are odd. Note that
this implies that none of the bipartite universal vertices has rank 0. Recall that all vertices of
B′ between ai and ai+1 have the same rank. If they all have rank 0, then there are equally
many A-vertices on either side of the cut. Thus A has even cardinality, which contradicts the
assumption that |A| and |B| are both odd. If all vertices of B′ have rank −1, then there is
one more A-vertex in L′ = L(k, ϕ,G) than in R′ = R(k, ϕ,G). On the other hand, we showed
earlier that the rank of ai is 0 or 1. This, together with the fact that ai is bipartite universal
and therefore cannot have rank 0, implies that there is one more B-vertex in R′ than in L′. If all
vertices of B′ have rank 1 then, symmetrically, we must have rankϕ(ai+1) = −1. Consequently
there is one more A-vertex in R′ than in L′, and one more B-vertex in L′ than in R′. Thus the
statement of the lemma follows.

We are now ready to prove the main theorem of this paper.

Theorem 2. The cutwidth of a bipartite permutation graph can be computed in linear time.

Proof. We describe the main algorithm for computing the cutwidth of a bipartite permutation
graph G. First we compute a strong ordering of each connected component of G. Then we
run MinCutBPG on each connected component with the computed strong ordering of that
connected component. We concatenate the returned layouts from each of these calls into one
layout ϕ for G. The order in which the layouts are concatenated does not matter, as the cuts
at the concatenation points are empty. We check every position j with 1 ≤ j < n to find a
largest cut θ(j, ϕ,G), and we output |θ(j, ϕ,G)| as the cutwidth of G. If Algorithm MinCutBPG
is correct, then clearly the output of the described algorithm is equal to cw(G).

Before we prove the correctness of Algorithm MinCutBPG, let us analyze the running time
of the above algorithm. By the results of [19], computing a strong ordering for each connected
component of G takes in total O(n + m) time. The running time of Algorithm MinCutBPG

11

is also O(n + m). To see this, observe that in the first loop, when deciding the box of a B-
vertex, we never need to consider boxes to the left of the most recently considered box. By
Observation 1, the next B-vertex is placed in either the box in which the previous B-vertex was
placed, or a box further to the right. Thus running MinCutBPG on each connected component
takes O(n+m) time for the whole graph. Concatenating the returned layouts and finding the
largest cut takes O(n+m) time, and the overall running time follows.

Let us prove that Algorithm MinCutBPG correctly computes the cutwidth of a connected
bipartite permutation graph. Assume for contradiction that there is a tight counterexample
G = (A,B,E). By Lemma 6, we know that there is a worst cut θ = θ(j, ϕ,G) of the layout ϕ
computed by Algorithm MinCutBPG on G, such that there are

⌊
|A|/2

⌋
A-vertices and

⌈
|B|/2

⌉
B-vertices on one side of the jth gap of ϕ, and

⌈
|A|/2

⌉
A-vertices and

⌊
|B|/2

⌋
B-vertices on

the other side. Let F = {ab /∈ E | a ∈ A ∧ b ∈ B} be the set of missing edges in G. Then
F ∩ E = ∅ and (A,B, (E ∪ F)) is a complete bipartite graph. Since by Lemma 3 vertices on
either side of θ induce a complete bipartite graph, we have that for each ab ∈ F , a and b are
on different sides of θ. Thus we can conclude the following about the size of θ:

|θ| =
⌊
|A|
2

⌋⌊
|B|
2

⌋
+

⌈
|A|
2

⌉⌈
|B|
2

⌉
− |F | .

Let S be any set of
⌊
|A|/2

⌋
+

⌈
|B|/2

⌉
vertices of G. We claim that |θ(S,G)| ≥ |θ|, regardless

of how many A-vertices and how many B-vertices there are in S. To consider all possibilities, let
there be

⌊
|A|/2

⌋
−x A-vertices and

⌈
|B|/2

⌉
+x B-vertices in S, for an appropriate (positive,

zero or negative) integer x. Consequently, there are
⌈
|A|/2

⌉
+ x A-vertices and

⌊
|B|/2

⌋
− x

B-vertices in (A∪B)\S. Some of the set F of missing edges might have endpoints on different
sides of the cut θ(S,G) and some might not. Since (A,B, (E ∪ F)) is a complete bipartite
graph, we know the following about the size of θ(S,G):

|θ(S,G)| ≥
(⌊
|A|
2

⌋
− x

)(⌊
|B|
2

⌋
− x

)
+

(⌈
|A|
2

⌉
+ x

)(⌈
|B|
2

⌉
+ x

)
− |F |

=
⌊
|A|
2

⌋⌊
|B|
2

⌋
−

⌊
|A|
2

⌋
x−

⌊
|B|
2

⌋
x+ x2 +

⌈
|A|
2

⌉⌈
|B|
2

⌉
+

⌈
|A|
2

⌉
x+

⌈
|B|
2

⌉
x+ x2 − |F |

= |θ|+ 2x2 + x

(⌈
|A|
2

⌉
−

⌊
|A|
2

⌋
+

⌈
|B|
2

⌉
−

⌊
|B|
2

⌋)
.

Note that the value of the expression in parentheses in the last line of the equation is 0, 1,
or 2. Consequently, for all possible values of x, we have that |θ(S,G)| ≥ |θ|.

Let ϕ∗ be an optimal layout of G, and let j =
⌊
|A|/2

⌋
+

⌈
|B|/2

⌉
. Let S∗ = L(j, ϕ∗, G).

Hence S∗ contains
⌊
|A|/2

⌋
+

⌈
|B|/2

⌉
vertices and θ(j, ϕ∗, G) = θ(S∗, G). Clearly cw(G) ≥

|θ(j, ϕ∗, G)| = |θ(S∗, G)|. However, for any such set S∗, we have shown above that a worst cut θ
of the layout computed by Algorithm MinCutBPG has the property |θ(S∗, G)| ≥ |θ|. Therefore,
cw(G) ≥ |θ|, contradicting the assumption that G is a counterexample. Consequently, no
counterexample exists, and the algorithm correctly computes the cutwidth of every connected
bipartite permutation graph.

4 Concluding Remarks

Algorithm MinCutBPG takes as input a connected bipartite permutation graph G = (A,B,E)
and a strong ordering (σA, σB) of G. Before the algorithm is called, O(n+m) time is spent on
recognizing G as a bipartite permutation graph and computing a strong ordering of G. Within

12

the same running time one can assign two integers `(v) and r(v) to every vertex v ∈ A ∪ B
for the following purpose. If v ∈ A, then `(v) and r(v) are the positions of the leftmost and
the rightmost neighbor of v in σB . If v ∈ B, then `(v) and r(v) are the positions of the
leftmost and the rightmost neighbor of v in σA. Observe that with this information, d(v) can
be computed in constant time, and the middle neighbor of a vertex can be found in constant
time. Consequently, if `(v) and r(v) are supplied to MinCutBPG as input for every v ∈ A ∪B,
the running time of MinCutBPG is in fact O(n).

Within the same running time, we can also modify MinCutBPG so that it outputs dL(v) and
dR(v) for each vertex v of G, the number of neighbors of each vertex appearing to its left and
to its right, respectively, in the final layout ϕ generated by the algorithm. These two values can
be computed in constant time for each vertex at the end of each iteration of the last for-loop,
and hence in O(n) time in total. Using this information, the cutwidth of the produced optimal
layout, and consequently the cutwidth of any bipartite permutation graph, can be computed
in O(n) time as well.

With our results in addition to the results of [12], the cutwidth of two unrelated subclasses
of permutation graphs can be computed in linear time: threshold graphs and bipartite per-
mutation graphs. We leave as an open problem to decide the computational complexity of
computing the cutwidth of permutation graphs. In fact, it would be interesting to know the
computational complexity of cutwidth on other well known subclasses of permutation graphs,
like cographs or even their subclass trivially perfect graphs.

References

1. D. Adolphson and T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math., 25 (1973), pp. 403–
423.

2. S. Arora, A. Frieze, and H. Kaplan, A new rounding procedure for the assignment problem
with applications to dense graphs arrangements, In Proceedings of the 37th Annual Symposium
on Foundations of Computer Science (FOCS), IEEE, 1996, pp. 21–30.

3. G. Blin, G. Fertin, D. Hermelin, and S. Vialette, Fixed-parameter algorithms for protein
similarity search under RNA structure constraints, In Proceedings of the 31st International Work-
shop on Graph-Theoretic Concepts in Computer Science (WG), Lecture Notes in Comput. Sci.
3787, Springer, Berlin, 2005, pp. 271–282.

4. R. A. Botafogo, Cluster analysis for hypertext systems, In Proceedings of the 16th Annual
International ACM-SIGIR Conference on Research and Development in Information Retrieval,
ACM, 1993, pp. 116–125.

5. A. Brandstädt, V. B. Le, and J. Spinrad, Graph Classes: A Survey. SIAM, Philadelphia,
1999.

6. A. Brandstädt and V. V. Lozin, On the linear structure and clique-width of bipartite permu-
tation graphs, Ars Combin., 67 (2003), pp. 273–289.

7. M. J. Chung, F. Makedon, I. H. Sudborough, and J. Turner, Polynomial time algorithms
for the min cut problem on degree restricted trees, In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science (FOCS), IEEE, 1982, pp. 262–271.

8. J. D́ıaz, M. Penrose, J. Petit, and M. J. Serna, Approximating layout problems on random
geometric graphs, J. Algorithms, 39 (2001), pp. 78–117.

9. J. D́ıaz, J. Petit, and M. J. Serna, A survey of graph layout problems, ACM Computing
Surveys, 34 (2002), pp. 313–356.

10. F. Gavril, Some NP-complete problems on graphs, In Proceedings of the 11th Conference on
Information Sciences and Systems, Johns Hopkins University, Baltimore, 91–95, 1977.

11. P. Heggernes, P. van ’t Hof, D. Lokshtanov, and J. Nederlof, Computing the cutwidth
of bipartite permutation graphs in linear time, In Proceedings of the 36th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG), Lecture Notes in Comput. Sci. 6410,
Springer, Berlin, 2010, pp. 75–87.

13

12. P. Heggernes, D. Lokshtanov, R. Mihai, and C. Papadopoulos, Cutwidth of split graphs,
threshold graphs, and proper interval graphs, SIAM J. Discrete Math., 25 (2011), pp. 1418–1437.

13. M. Jünger, G. Reinelt, and G. Rinaldi, The traveling salesman problem, In Handbook on
Operations Research and Management Sciences, vol. 7, pp. 225–330, North-Holland, 1995.

14. D. R. Karger, A randomized fully polynomial approximation scheme for the all terminal net-
work reliability problem, In Proceedings of the 27th Annual ACM Symposium on the Theory of
Computing (STOC), ACM, 1995, pp. 11–17.

15. F. T. Leighton and S. Rao, An approximate max-flow min-cut theorem for uniform multicom-
modity flow problems with applications to approximation algorithms, In Proceedings of the 29th
Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 1988, pp. 422–431.

16. F. Makedon and I. H. Sudborough, Minimizing width in linear layouts, In Proceedings of the
10th Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Comput.
Sci. 154, Springer, Berlin, 1983, pp. 478–490.

17. B. Monien and I. H. Sudborough, Min cut is NP-complete for edge weighted trees, In Proceed-
ings of the 10th Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes
in Comput. Sci. 226, Springe,r Berlin, 1986, pp. 265–274.

18. P. Mutzel, A polyhedral approach to planar augmentation and related problems, In Proceedings
of the 3rd Annual European Symposium on Algorithms (ESA), Lecture Notes in Comput. Sci.
979, Springer, Berlin, 1995, pp. 497–507.

19. J. Spinrad, A. Brandstädt, and L. Stewart, Bipartite permutation graphs, Discrete Appl.
Math., 18 (1987), pp. 279–292.

20. D. M. Thilikos, M. J. Serna, and H. L. Bodlaender, Cutwidth I: A linear time fixed parameter
algorithm, J. Algorithms, 56 (2005), pp. 1–24.

21. D. M. Thilikos, M. J. Serna, and H. L. Bodlaender, Cutwidth II: Algorithms for partial
w-trees of bounded degree, J. Algorithms, 56 (2005), pp. 24–49.

22. M. Yannakakis, A polynomial algorithm for the min cut linear arrangement of trees, J. ACM,
32 (1985), pp. 950–988.

23. J. Yuan and S. Zhou, Optimal labelling of unit interval graphs, Appl. Math. J. Chinese Univ.
Ser. B (English edition), 10 (1995), pp. 337–344.

14

