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Abstract. A graph G is called a block graph if each maximal 2-connected component of G is a
clique. In this paper we study the Block Graph Vertex Deletion from the perspective of fixed
parameter tractable (FPT) and kernelization algorithm. In particular, an input to Block Graph
Vertex Deletion consists of a graph G and a positive integer k and the objective to check whether
there exists a subset S ⊆ V (G) of size at most k such that the graph induced on V (G) \ S is a
block graph. In this paper we give an FPT algorithm with running time 4knO(1) and a polynomial
kernel of size O(k4) for Block Graph Vertex Deletion. The running time of our FPT algorithm
improves over the previous best algorithm for the problem that ran in time 10knO(1) and the size
of our kernel reduces over the previously known kernel of size O(k9). Our results are based on a
novel connection between Block Graph Vertex Deletion and the classical Feedback Vertex
Set problem in graphs without induced C4 and K4 − e. To achieve our results we also obtain an
algorithm for Weighted Feedback Vertex Set running in time 3.618knO(1) and improving over
the running time of previously known algorithm with running time 5knO(1).

1 Introduction

Deleting minimum number of vertices from a graph such that the resulting graph belongs to a family
F of graphs, is a measure on how close the graph is to the graphs in the family F . In the problem
of vertex deletion, we ask whether we can delete at most k vertices from the input graph G such that
the resulting graph belongs to the family F . Lewis and Yannakakis [14] showed that for any non-trivial
and hereditary graph property Π on induced subgraphs, the vertex deletion problem is NP-complete.
Thus these problems have been subjected to intensive study in algorithmic paradigms that are meant for
coping with NP-completeness [7, 8, 15, 16]. These paradigms among others include applying restrictions
on inputs, approximation algorithms and parameterized complexity. The focus of this paper is to study
one such problem from the view point of parameterized algorithms.

Given a family F , a typical parameterized vertex deletion problem gets as an input an undirected
graph G and a positive integer k and the goal is to test whether there exists a vertex subset S ⊆
V (G) of size at most k such that G \ S ∈ F . In the parameterized complexity paradigm the main
objective is to design an algorithm for the vertex deletion problem that runs in time f(k) · nO(1), where
n = |V (G)| and f is an arbitrary computable function depending only on the parameter k. Such an
algorithm is called an FPT algorithm and such a running time is called FPT running time. We also desire
to design a polynomial time preprocessing algorithm that reduces the given instance to an equivalent
one with size as small as possible. This is mathematically modelled by the notion of kernelization. A
parameterized problem is said to admit a h(k)-kernel if there is a polynomial time algorithm (the degree
of the polynomial is independent of k), called a kernelization algorithm, that reduces the input instance
to an equivalent instance with size upper bounded by h(k). If the function h(k) is polynomial in k, then
we say that the problem admits a polynomial kernel. The formal definitions are in Section 2. For more
background, the reader may refer to the following monograph [6].

A large part of research in paramaterized vertex deletion problems has centred around F , that can
be defined by finite excluded minor characterization and in particular when F has a planar graph [7, 12].
These include problem of deleting k vertices to get a graph of treewidth t [7, 12]. One of the main reason
to study these problems is that several NP-hard problems become polynomial time solvable on graphs of
bounded treewidth. However, there are several other notions similar to treewidth where several NP-hard
problems become polynomial time solvable; these include cliquewidth, rankwidth and linear rankwidth.
Recently, Kanté et al. [10] studied the problem of deleting k vertices to get a graph of linear rankwidth
one and in an other study Kim and Kwon [11] studied deleting k vertices to get a block graph.



A graph G is known as a block graph if every maximal 2-connected component in G is a clique.
Equivalently, we can see a block graph as a graph obtained by replacing each edge in a forest by a
clique. A chordal graph is a graph which has no induced cycles of length at least four. An equivalent
characterisation of a block graph is a chordal graph with no induced K4 − e [2, 9]. The class of block
graphs is the intersection of the chordal and distance-hereditary graphs [9].

In this paper, we consider the problem which we call Block Graph Vertex Deletion (BGVD).
Here, as an input we are given a graphG and an integer k, and the question is whether we can find a subset
S ⊆ V (G) of size at most k such that G \ S is a block graph. The NP-hardness of the BGVD problem
follows from [14].

Block Graph Vertex Deletion (BGVD) Parameter: k
Input: An undirected graph G = (V,E), and a positive integer k
Question: Is there a set S ⊆ V , of size at most k, such that G \ S is a block graph?

Kim and Kwon [11] gave an FPT algorithm with running time O?(10k) and a kernel of size O(k9) for
the BGVD problem. In this paper we improve both these results via a novel connection to Feedback
Vertex Set problem.

Our Results and Methods. We start by giving the results we obtain in this article and then we explain
how we obtain these results. Our two main results are:

Theorem 1. BGVD has an FPT algorithm running in time O?(4k).

Theorem 2. BGVD has a kernel of size O(k4).

Our two theorems improve both the results in [11]. That is, the running time of our FPT algorithm
improves over the previous best algorithm for the problem that ran in time 10knO(1) and the size of our
kernel reduces over the previously known kernel of size O(k9).

Our results are based on a connection between the Weighted-FVS and BGVD problems. In partic-
ular we show that if a given input graph does not have induced four cycles or diamonds (K4−e) then we
can construct an auxiliary bipartite graph and solve Weighted-FVS on it. This results in a faster FPT
algorithm for BGVD. In the algorithm that we give for the BGVD problem, as a sub-routine we use
the algorithm for the Weighted-FVS problem. For obtaining a better polynomial kernel for BGVD,
most of our Reduction Rules are same as those used in [11]. On the way to our result we also design a
factor four approximation algorithm for BGVD.

Finally, we talk about Weighted-FVS. For which, we also design a faster algorithm than known in
the literature. The Feedback Vertex Set problem is one of the most well studied problems. Given
an undirected graph G = (V,E) and a positive integer k, the problem is to decide whether there is a set
S ⊆ V such that G \S is a forest. Thus, S is a vertex subset that intersects with every cycle of G. In the
parameterized complexity setting, Feedback Vertex Set parameterized by k, has an FPT algorithm.
The best known FPT algorithm runs in time O?(3.618k) [4, 13]. The problem also admits a kernel on
O(k2) vertices [17]. Another variant of Feedback Vertex Set that has been studied in parameterized
complexity is Weighted Feedback Vertex Set, where each vertex in the graph has some rational
number as its weight.

Weighted-FVS Parameter: k
Input: An undirected graph G = (V,E), a weight function w : V → Q, and a positive integer k
Output: The minimum weighted set S ⊆ V of size at most k, such that G \ S is a forest.

Weighted-FVS is known to be in FPT with an algorithm of running time 5knO(1) [3]. We obtain
a faster FPT algorithm for Weighted-FVS. This algorithm uses, as a subroutine, the algorithm for
solving Weighted-Matroid Parity [18]. In fact, this algorithm is very similar to the algorithm for
Feedback Vertex Set given in [4]. Thus, our final new result is the following theorem.

Theorem 3. Weighted-FVS has an FPT algorithm running in time
O?(3.618k).
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2 Preliminaries

We start with some basic definitions and terminology from graph theory and algorithms. We also establish
some of the notation that will be used in this paper.

We will use the O? notation to describe the running time of our algorithms. Given f : N → N, we
define O?(f(n)) to be O(f(n) · p(n)), where p(·) is some polynomial function. That is, the O? notation
suppresses polynomial factors in the running-time expression.

Graphs. A graph is denoted by G = (V,E), where V and E are the vertex and edge sets, respectively.
We also denote the vertex set and edge set of G by V (G) and E(G), respectively. All the graphs that we
consider are finite graphs, possibly having loops and multi-edges. For any non-empty subset W ⊆ V (G),
the subgraph of G induced by W is denoted by G[W ]; its vertex set is W and its edge set consists of all
those edges of E(G) with both endpoints in W . For W ⊆ V (G), by G \W we denote the graph obtained
by deleting the vertices in W and all edges which are incident to at least one vertex in W .

For a graph G, we denote the degree of vertex v in G by dG(v). A vertex v ∈ V (G) is called as a
cut vertex if the number of connected components in G \ {v} is more than the number of connected
components in G. For a vertex v ∈ V (G), the neighborhood of v in G is the set NG(v) = {u|(v, u) ∈
E(G)}. We drop the subscript G from NG(v), whenever the context is clear. Two vertices u, v ∈ V (G)
are called true-twins in G if N(u) \ {v} = N(v) \ {u}. For A ⊂ V (G), an A-path in G is a path with at
least one edge, whose end vertices are in A and all the internal vertices are from V (G) \A.

Suppose that u, v ∈ V (G), such that u 6= v and neither u nor v has a self loop. By contracting
an edge (u, v) ∈ E(G) we mean the following operation. We create a new graph G′, where V (G′) =
(V (G) \ {u, v}) ∪ {uv∗} and E(G′) = E(G[V (G) \ {u, v}]) ∪ {(uv∗, w)|w ∈ (N(u) ∪ N(v)) \ {u, v}}.
Note that there is bijection f between E(G) \ {(u, v)} and E(G′). The bijection f is as follows. For
(x, y) ∈ E(G) f((x, y)) = (x, y) if both x, y are not one of {u, v}. Otherwise, one of x, y is same as u, v.
Note that the edge (x, y) is not same as the edge (u, v), also since u 6= v implies x 6= y. The only case left
is when exactly one of x or y is same as one of u, v say, x = u then, f((x, y)) = (uv∗, y). Analogously, we
can find f((x, y)) for the remaining cases. Slightly abusing the notation, for an edge e ∈ E(G) \ {(u, v)}
we will refer to f(e) ∈ E(G′) by e.

A weighted undirected graph is a graph G = (V,E), with a weight function w : V (G) → Q. For a
subset X ⊆ V (G), w(X) =

∑
v∈X w(v).

A feedback vertex set is a subset S ⊆ V (G) such that G \ S is a forest. A minimum weight feedback
vertex set of a weighted graph G is a subset X ⊆ V (G), such that G\X is a forest and w(X) is minimum
among all possible weighted-fvs inG. In a graph with vertex weights, an FVS is called a weighted feedback
vertex set (weighted-fvs). Similarly, for a given positive integer k, a minimum weighted-fvs of size k is
a subset X ⊆ V (G) such that |X| ≤ k, G \ X is a forest and w(X) is minimum among all possible
weighted-fvs in G that are of size at most k. Given a graph G and a vertex subset S ⊆ V (G), we say
that S is a block vertex deletion set if G− S is a block graph.

A family F of sets over a finite universe U is called a matroid if it satisfies the following properties.

– ∅ ∈ F ,

– if A ∈ F and B ⊆ A then, B ∈ F ,

– if A,B ∈ F and |A| < |B| then, there exists b ∈ B \A such that A ∪ {b} ∈ F .

For a matroid (U,F), the elements of U are called the edges of the matroid and the sets S ∈ F are called
as the independent sets. For an undirected graph G, a graphic matroidMG is a matroid with U = E(G)
and a set S ⊆ E(G) is an independent set in the matroid MG if the graph G′ = (V (G), S) is acyclic.
Note that MG satisfies all the properties required for it to be a matroid.

A graph G is called a block graph if every maximal 2-connected component of G is a clique. A
maximal 2-connected subgraph in G is called a block. Another characterization of block graph is a graph
which has no induced cycles of length more than 4 and no induced K4− e [2]. Here K4− e is a complete
graph on 4 vertices with one of the edges removed. For a graph G, let Vc denote the set of cut vertices of
G, and B the set of its blocks. We then have a natural bipartite graph F on Vc ∪ B formed by the edges
(v,B) if and only if v ∈ V (B). Note that for a block graph G, F is a forest [5]. The bipartite graph F is
called as block forest of H. We will arbitrarily root F at some vertex B ∈ V (F ).

A leaf block of a block graph G is a maximal 2-connected component with at most one cut vertex.
For a maximal 2-connected component C in G a vertex v ∈ V (C) is called as an internal vertex if v is
not a cut vertex in G.
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We refer the reader to [5] for details on standard graph theoretic notation and terminology we use in
the paper.

Parameterized Complexity. A parameterized problem Π is a subset of Γ ∗ × N, where Γ is a finite
alphabet. An instance of a parameterized problem is a tuple (x, k), where x is a classical problem instance,
and k is called the parameter. A central notion in parameterized complexity is fixed-parameter tractability
(FPT) which means, for a given instance (x, k), decidability in time f(k) · p(|x|), where f is an arbitrary
function of k and p is a polynomial in the input size.

Kernelization. A kernelization algorithm for a parameterized problem Π ⊆ Γ ∗ × N is an algorithm
that, given (x, k) ∈ Γ ∗ × N, outputs, in time polynomial in |x| + k, a pair (x′, k′) ∈ Γ ∗ × N such that
(a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable function.
The output instance x′ is called the kernel, and the function g is referred to as the size of the kernel. If
g(k) = kO(1) (resp. g(k) = O(k)) then we say that Π admits a polynomial (resp. linear) kernel.

3 Improved Algorithm for Weighted Feedback Vertex Set

In this section we give an improved algorithm for the Weighted-FVS. We use the method of itera-
tive compression together with branching and reduce Weighted-FVS to the problem of Weighted-
Matroid Parity, which can be solved in polynomial time. The algorithm we give is similar to the
algorithm for Feedback Vertex Set described in [4, 13]. We give an algorithm only for the disjoint
variant of the problem.

Observation 1 ([4]) The existence of an algorithm for the disjoint variant of Weighted-FVS with
running time ck ·nO(1), for a constant c, implies that Weighted-FVS can be solved in time ck+1 ·nO(1).

In the Disjoint Weighted-FVS, we are given an undirected graph G = (V,E), a weight function
w : V (G)→ N, an integer k and a feedback vertex set R ⊆ V (G) of size k+ 1. The objective is to find a
set X ⊆ V (G) \R, such that X is a minimum weight feedback vertex set of size at most k in G.

3.1 Reduction Rules for Disjoint Weighted-FVS

Let (G = (V,E), w,R, k) be an instance of Disjoint Weighted-FVS and let F = G \ R. We call a
vertex v ∈ V (F ) a nice vertex if dG(v) = 2 and both its neighbors are in R. A vertex v ∈ V (F ) is
called tent if dG(v) = 3 and all its neighbors are in R. We start with some simple reduction rules that
preprocesses the graph. The Reduction Rules are applied in the order that they are described.

Reduction Rule 1 Delete all vertices of degree at most one as they do not participate in any cycle.

Reduction Rule 2 If there is a vertex v ∈ V (F ), such that G[R ∪ {v}] has a cycle, then include v to
the solution X, delete v from G and decrease k by 1.

Reduction Rule 3 If there is an edge of multiplicity larger than 2 in E(G), then reduce its multiplicity
to 2.

The correctness of the above Reduction Rules do not depend on the weights and thus it is similar to the
one for undirected version of Weighted-FVS and can be found in [4].

Reduction Rule 4 Let x ∈ V (F ) be a leaf with the only neighbor as y in F . Also, x has at most
2 neighbors in R. Subdivide the edge (x, y) add the newly created vertex x∗ to R. We define the new
weight function w∗ : V (G) ∪ {x∗} → Q, as follows: w∗(x∗) = 1 and w∗(v) = w(v), for v ∈ V (G). Let
G∗ be the newly created graph after subdivision of the edge (x, y). Our reduced instance for Disjoint
Weighted-FVS is (G∗, w∗, R ∪ {x∗}, k).

Lemma 1. Reduction Rule 4 is safe.

Proof. Towards the proof we show that G has a weighted-fvs of size at most k and weight at most W if
and only if G∗ has a weighted-fvs of size at most k and weight at most W .

In the forward direction, let S ⊆ V (G)\R be a weighted-fvs ofG of size at most k such that w(S) ≤W .
We will show that indeed S is a weighted-fvs in G∗ of size at most k and w∗(S) ≤W . We first bound the
weight of S in G∗. Note that w∗(v) = w(v), for v ∈ V (G). Therefore w∗(S) = w(S) ≤W . We now show
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that S is a feedback vertex set in G∗. Suppose not, then there is a cycle C in G∗ \S. If C does not contain
x∗. Then it also does not contain the edges {(x, x∗), (x∗, y)}. By definition, C is also a cycle of G\S, which
is a contradiction. On the other hand, let C contain the vertex x∗. By construction, C must also contain
the edges {(x, x∗), (x∗, y)}. However, this means that the cycle C ′ = (C \ {(x, x∗), (x∗, y)})∪ {(x, y)}) is
a cycle in G \ S, which is a contradiction. Therefore, S ⊆ V (G) \R is also a weighted-fvs in G∗.

In the reverse direction, consider a weighted-fvs S ⊆ V (G∗) \ (R ∪ {x∗}) of size at most k and
w∗(S) ≤ W . As S is a weighted-fvs disjoint from R ∪ {x∗}, x∗ /∈ S. Thus, w(S) = w∗(S), . We now
show that S is a feedback vertex set in G. Suppose not, then there is a cycle C in G \ S. If C does
not contain the edge (x, y), then by construction, C is also a cycle of G∗ \ S. This is a contradiction
to the fact that S was a weighted-fvs of G∗. Otherwise, C contains the edge (x, y). But then, the cycle
C ′ = (C \ {(x, y)})∪ {(x, x∗), (x∗, y)} belongs to G∗ \S, which is a contradiction. Hence, S must also be
a weighted-fvs for G. ut

Now, we are ready to describe the main algorithm. To measure the running time of our algorithm for
an instance I = (G,w,R, k), we define the following measure.

µ(I) = k + ρ(R)− (η + τ)

Here, ρ(R) is the number of connected components in G[R] and η, τ are the number of nice vertices and
tents in F , respectively.

Let I = (G,w,R, k) be an instance where none of the Reduction Rules 1, 2, 3 and 4 apply. It is clear
that Reduction Rules 1, 2 and 3 do not increase the measure. We only need to worry about Reduction
Rule 4 which increases the number of vertices in R. The number of vertices in the resulting R increases
and thus the number of connected component in G∗[R] increases by one. However, we create either a nice
vertex or a tent in G∗, therefore one of η or τ increases by 1. Hence, µ(I∗) = k+(ρ(R)+1)−(η+τ+1) ≤
µ(I). Note that we do not increase the number of vertices in F , therefore we can apply the Reduction
Rule 4 at most |V (F )| times.

In Lemma 2, we show that if µ < 0, then (G,w,R, k) is a No instance. This will form a base case of
our branching algorithm.

Lemma 2. For an instance I = (G,w,R, k) of Disjoint Weighted-FVS, if µ < 0, then I is a No
instance.

Proof. Let us assume for contradiction that I is a Yes instance and µ < 0. Let S be a weighted-fvs in G
of size at most k. Therefore, F ′ = G \ S is a forest. Let N ⊆ V (G) \R, T ⊆ V (G) \R be the set of nice
vertices and tents in V (G) \R, respectively. Since F ′ is a forest we have that G′ = G[(R∪N ∪ T ) \ S] is
a forest. In G′, we contract each of the connected components in R to a single vertex to obtain a forest
F̃ . Observe that F̃ has at most |V (F̃ )| ≤ ρ(R) + |N \ S| + |T \ S| vertices and thus can have at most
ρ(R) + |N \S|+ |T \S|−1 many edges. The vertices in (N ∪T )\S ⊆ V (G)\R forms an independent set
in F̃ , since they are nice vertices or tents. The vertices in N \S and T \S have degree 2 and degree 3 in
F̃ , respectively, since their degree cannot drop while contracting the components of G[R]. This implies
that,

2|N \ S|+ 3|T \ S| ≤ |E(F̃ )| ≤ ρ(R) + |N \ S|+ |T \ S| − 1.

Therefore, |N \ S|+ |T \ S| < ρ(R). But N ∩ T = ∅ and thus

|N |+ |T | < ρ(R) + |S| ≤ ρ(R) + k. (1)

However, by our assumption, µ(I) = ρ(R) + k − (|N | + |T |) < 0 and thus |N | + |T | > ρ(R) + k. This,
contradicts the inequality given in Equation 1 contradicting our assumption that I is a Yes instance.
This completes the proof. ut

3.2 Algorithm for Disjoint Weighted-FVS

In this section we conjure all that we have developed and give the description of the algorithm for
Disjoint Weighted-FVS, prove its correctness and analyze its running time assuming a polynomial
time procedure that we explain in the next subsection.

Description of the Algorithm. Let I = (G,w,R, k) be an instance of Disjoint Weighted-FVS.
If G[R] is not a forest, then return that (G,w,R, k) is a No instance. Hereafter, we will assume that
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G[R] is a forest. First, the algorithm exhaustively applies the Reduction Rules 1 to 4. If at any point
µ(I) < 0, then we return that (G,w,R, k) is a No instance. For sake of clarity, we will denote the reduced
instance by (G,w,R, k). If all the vertices v ∈ V (G \ R) are either nice vertices or tents then we solve
the problem in polynomial time by using Theorem 4. We defer the proof of Theorem 4 to the following
subsection, where we solve the instance using Weighted Matroid Parity. Otherwise, we apply the
following single Branching rule.

Branching Rule 1 If there is a leaf vertex v ∈ V (G)\R, which is neither a nice vertex nor a tent then,
we branch as the following:

(i) v belongs to the solution. In this branch we delete v from G and decrease k by 1. The resulting
instance is (G \ {v}, w′, R, k − 1). Here, w′ is restriction of w to V (G) \ {v}.
The measure µ decreases by at least 1

(ii) v does not belong to the solution. Note that v is neither a nice vertex nor a tent and none of
the Reduction rule applies. Therefore, v has at least 3 neighbors in R. We add the vertex v to R.
As a result, the number of components in G[R] decreases by at least 2. The resulting instance is
(G,w,R ∪ {v}, k).

The measure µ decreases by at least 2.

The worst case branching vector corresponding to the above branching rule is (1, 2).

Lemma 3. The algorithm presented is correct.

Proof. Let I = (G,w,R, k) be an input to the Disjoint Weighted-FVS. We prove the correctness
of the algorithm by induction on the measure µ = µ(I). By Lemma 2 when µ < 0, then we correctly
conclude that I is a No instance.

For induction hypothesis, let us assume that the algorithm correctly decides whether the input is a
Yes/No instance for µ = t. We will prove it for µ = t+ 1. If any of the Reduction Rules apply then we
create an equivalent instance by the safeness of the Reduction rules. We either get an instance I ′, where
µ(I ′) < µ(I) (the case when Reduction Rule 2 is applied) and then by induction hypothesis the algorithm
correctly decides for the measure µ = t. Otherwise, we have an instance with the same measure. If none
of the reduction rules are applicable, then we have the following cases:

– Each v ∈ V (G) \R is either a nice vertex or a tent. In this case we solve the problem in polynomial
time, and the correctness follows from the correctness of Theorem 4.

– There is a leaf v ∈ V (G) \ R, such that v is neither a nice vertex nor a tent. In this case we apply
the Branching Rule 1. The Branching Rule is exhaustive. Moreover, at each branch the measure
decreases at least by one. Hence, by induction hypothesis it follows that the algorithm correctly
decides whether I is a Yes instance or not.

This completes the proof of correctness. ut

Thus, we have an FPT algorithm for Disjoint Weighted-FVS.

Lemma 4. Disjoint Weighted-FVS can be solved in time O?(2.618k).

Proof. The correctness of the algorithm follows from Lemma 3. All of the Reduction rules 1 to 4 can be
applied in polynomial time. Also, at each branch we spend a polynomial amount of time. For each of
the recursive calls at a branch, the measure µ decreases at least by 1. When µ < 0, then we are able to
correctly conclude that the given input is a no instance by Lemma 2. The number of leaves and thus the
size of the branching tree is upper bounded by the solution to the following recurrence,

T (µ) ≤ T (µ− 1) + T (µ− 2).

The above recurrence solves to 1.618µ. Since at the start of the algorithm µ ≤ 2k, we have that the
number of leaves is upper bounded by O(1.6182k). Therefore, Disjoint Weighted-FVS can be solved
in time O?(2.618k). ut

Using Lemma 4 and Observation 1, we prove Theorem 3.
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3.3 Algorithm for sub-cubic Disjoint Weighted-FVS

Let (G,w,R, k) be an instance of Disjoint Weighted-FVS where each vertex in V (G) \R is either a
nice vertex or a tent. An instance of the Matroid Parity problem we create is same as that in [13]. In
fact, what we will use is the Weighted Matroid Parity problem.

The Weighted Matroid Parity problem for the graphic matroid MH of a graph H is defined
as follows. Let H be a graph with even number of edges, i.e. |E(H)| = 2m and we have a partition of
E(H) into pairs, say E(H) = {e11, e12} ∪ {e21, e22} ∪ · · · ∪ {em1 , em2 }. Furthermore, for each pair {ei1, ei2},
for i ∈ {1, 2, . . . ,m} there is a positive weight wM({ei1, ei2}). That is, wM is a weight function on pairs.
We want to find a set I ⊆ {1, 2, . . . ,m} of maximum weight such that ∪i∈I{ei1, ei2} is an independent
set of MH . Equivalently, ∪i∈I{ei1, ei2} is acyclic in H. The Weighted Matroid Parity problem is
polynomial time solvable on graphical matroids (gammoids) [18].

For each vertex v ∈ V (G) \ R, we arbitrarily label the edges incident to v. If v is a nice vertex
then we label it as {ev1, ev2}; otherwise if v is a tent vertex then we label it as {ev0, ev1, ev2}. We let
wM({ev1, ev2}) = w(v). Note that, F = E(G[R]) ∪ {ev0 : v ∈ V (G) \ R} is a forest. We contract all the
edges in G which are in F to get a new graph H. In the process of contraction, we have not contracted
any multiple edge or self loops. Also,

E(H) =
⋃

v∈V (G)\R

{ev1, ev2}.

The input to the Weighted Matroid Parity algorithm for graphical matroid is the graph H, the
set of pairs {ev1, ev2} with weight wM({ev1, ev2}), for v ∈ V (G) \ R. In Lemma 5 we prove that finding a
minimum weight feedback vertex set X ⊆ V (G)\R in (G,w,R, k) is equivalent to computing a maximum
weight subset I ⊆ {{ev1, ev2}|v ∈ V (G) \R}, such that ∪v∈I{ev1, ev2} is an independent set in MH .

Lemma 5. For a subset I ⊆ V (G) \ R, ∪i∈I{ei1, ei2} is an independent set in MH of maximum weight
if and only if (V (G) \R) \ I is a feedback vertex set in G of minimum weight.

Proof. Note that by the definition of H, ∪i∈I{ei1, ei2} is an independent set in MH if and only if F ∪
(∪i∈I{ei1, ei2}) is acyclic in G. As mentioned earlier, F = E(G[R]) ∪ {ev0 : v ∈ V (G) \ R} is a forest.
Therefore, if ∪i∈I{ei1, ei2} is an independent set in MH , then G′ = G \ ((V (G) \ R) \ I) is a forest. In
other words, (V (G) \R) \ I is a feedback vertex set in G.

In the reverse direction, consider I ⊆ V (G) \ R such that (V (G) \ R) \ I is a feedback vertex set in
G. This implies that G[I ∪R] is a forest. Define F ′ =

⋃
i∈I{ei1, ei2}. Clearly, F ′ ⊆ E(G[I ∪R]). Suppose,

F ′ contains a cycle in H. This means that, upon uncontracting the edges of F , there is a cycle contained
in G[I ∪R], which is a contradiction. Therefore, ∪i∈I{ei1, ei2} is an independent set in MH .

Note that by definition of wM, wM(I) = w(I). Therefore, w((V (G)\R)\I) = w(V (G))−w(R)−w(I) =
w(V (G)) − w(R) − wM(I). This implies that whenever wM(I) is maximized then w((V (G) \ R) \ I) is
minimized and vice-versa. This completes the proof. ut

Lemma 5 immediately implies the following theorem.

Theorem 4. Let (G,w,R, k) be an instance of Disjoint Weighted-FVS. If every vertex v ∈ V (G) \
R is either a nice vertex or a tent then, Disjoint Weighted-FVS in (G,w,R, k) can be solved in
polynomial time.

4 FPT algorithm for Block Graph Vertex Deletion

In this section, we present an FPT algorithm for the BGVD problem. First, we look at the special
case, when the input graph does not have any small obstructions in the form of D4’s and C4’s. Here,
D4 = K4−e. We show that, in this case, BGVD reduces to Weighted-FVS. Later, we solve the general
problem, using the algorithm of the special case.

4.1 Restricted BGVD

In this part, we solve the following special case of BGVD in FPT time.

Restricted BGVD Parameter: k
Input: A connected undirected graph G, which is {D4, C4}-free, and a positive integer k.
Question: Does there exist a set S such that G \ S is a block graph?
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Let G be the input graph. Let C be the set of maximal cliques in G. We start with the following
simple observation about graphs without C4 and D4.

Lemma 6. Let G be a graph that does not contain C4 and D4 as an induced subgraph then (a) any two
maximal cliques intersect on at most one vertex and (b) the number of maximal cliques in G is at most
n2.

Proof. Let C1 and C2 be two distinct maximal cliques in C. Since G is D4-free, V (C1)∩ V (C2) can have
at most one vertex. Thus, each edge of G belongs to exactly one maximal clique. This gives a bound of
n2 on the number of maximal cliques. ut

We construct an auxiliary weighted bipartite graph Ĝ in the following way: Ĝ is a bipartite graph
with vertex set bipartition V (G) ∪ VC , where VC is the set where we add a vertex vC corresponding to
each maximal clique C ∈ C. Note that there is a bijective correspondence between the vertices of VC and
the maximal cliques in C. A vertex v of a clique C is called external if it is part of at least two maximal
cliques in C. We add an edge between a vertex v ∈ V (G) and a vertex vC ∈ VC in E(Ĝ) if and only if v
is an external vertex of the clique C ∈ C.

Lemma 7. Let G be a graph without induced C4 and D4 and S ⊆ V (G). Then S is block vertex deletion
set of G if and only if Ĝ \ S is acyclic.

Proof. First, let S be a block vertex deletion set solution for G. Suppose that Ĝ\S has a cycle C. Notice
that C cannot be a C4, as this corresponds to two maximal cliques that share 2 vertices. Thus, C is an
even cycle of length at least 6. Suppose C has length 6. This corresponds to maximal cliques C1, C2, C3

such that u = C1 ∩ C2, v = C2 ∩ C3 and w = C1 ∩ C3. Since C1, C2, C3 are distinct maximal cliques, at
least one of them must have a vertex other than u, v or w. Without loss of generality, let C1 have a vertex
x /∈ {u, v, w}. Then, the set {x, u, v, w} forms a D4 in G. However, this is not possible, as G did not have
a D4 to start with. Hence, C must be an even cycle of length at least 8. However, this corresponds to
a set of maximal cliques and external vertices, such that the external vertices form an induced cycle of
length at least four. This contradicts that S was a block vertex deletion set for G. Thus, Ĝ \ S must be
acyclic.

On the other hand, let Ĝ \ S be acyclic. Suppose G \ S has an induced cycle C, of length at least
four. As C is an induced cycle of length at least four, no two edges of C can belong to the same maximal
clique. For an edge (u, v) of C, let C(u,v) be the maximal clique containing it. Also, let c(u,v) be the

corresponding vertex in Ĝ. We replace the edge (u, v) in C by two edges (u, c(u,v)) and (v, c(u,v)). In this

way, We obtain a cycle C ′ of Ĝ \ S, which is a contradiction. Thus, S must be a block vertex deletion
set for G. ut

If the input graph G is without induced C4 and D4 then Lemma 7 tells us that to find block vertex
deletion set of G of size at most k one can check whether there is a feedback vertex set of size at most
k for Ĝ contained in V (G). To enforce that we find feedback vertex set for Ĝ completely contained in
V (G) we solve an appropriate instance of Weighted-FVS. In particular we give the weight function
w : V (Ĝ) → Q as follows. For v ∈ V (G), w(v) = 1 and for vC ∈ VC , w(vC) = n4. Clearly, V (G) is a
feedback vertex set of Ĝ and thus the weight of a minimum sized feedback vertex set of Ĝ is at most
n. This implies that running an algorithm for Weighted-FVS on an instance (Ĝ, w, k) either returns a
feedback vertex set contained inside V (G) or returns that the given instance is a No instance.

Theorem 5. Restricted BGVD can be solved in O?(3.618k).

Proof. We apply Weighted-FVS on an instance (Ĝ, w, k). Let S be the weighted-fvs of size at most k
in Ĝ returned by Weighted-FVS (of course if there exists one). By the discussion above we know that
if Weighted-FVS does not return that the given instance is a No instance then S ⊆ V (G). If it returns
that the given instance is a No instance then we return the same. Else, assume that S is non-empty.
Now we check whether w(S) is at most k or not. Since every vertex in V (G) has been assigned weight
one we have that w(S) = |S| and thus if w(S) ≤ k then we return S as block vertex deletion set of G.
In the case when w(S) > k we return that the given instance is a No instance for Restricted BGVD.
Correctness of these steps are guaranteed by Lemma 7. The running time of the algorithm is dominated
by the running time of Weighted-FVS and thus it is O?(3.618k). This completes the proof. ut
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4.2 Block Graph Vertex Deletion

We are now ready to describe an FPT algorithm for BGVD, and hence prove Theorem 1. We design
the algorithm for the general case with the help of the algorithm for Restricted BGVD.

Proof (of Theorem 1). Let O be a D4 or C4 present in the input graph G. For any potential solution S, at
least one of the vertices of O must belong to S. Therefore, we branch on the choice of these vertices, and
for every vertex v ∈ O, we recursively apply the algorithm to solve BGVD instance (G − \{v}, k − 1).
If one of these branches returns a solution X, then clearly X ∪ {v} is a block vertex deletion set of
size at most k for G. Else, we return that the given instance is a No instance. On the other hand,
if G is {D4, C4}-free, then we do not make any further recursive calls. Instead, we run the algorithm
for Restricted BGVD on G and return the output of the algorithm. Thus, the running time of the
algorithm is upper bounded by the following recurrence.

T (n, k) =


1 if k = 0 or n = 0
3.168k if there is no D4, C4

4T (n− 1, k − 1) + nO(1) otherwise

Thus, the running time of this algorithm is upper bounded by O∗(4k). ut

5 An Approximation Algorithm for BGVD

In this section, we present a simple approximation algorithm A1 for BGVD. Given a graph G, we give
a block vertex deletion set S of size at most 4 · OPT, where OPT is the size of a minimum sized block
vertex deletion set for G.

Theorem 6. BGVD admits a factor four approximation algorithm.

Proof. Let G be the given instance of BGVD and OPT be the size of a minimum sized block vertex
deletion set for G and SOPT be a minimum sized block vertex deletion set for G.

Let S be a maximal family of D4 and C4 such that any two members of S are pairwise disjoint.
One can easily construct such a family S greedily in polynomial time. Let S1 be the set of vertices
contained in any obstruction in S. That is, S1 =

⋃
O∈S O. Since any block vertex deletion set must

contain a vertex from each obstruction in S and any two members of S are pairwise disjoint, we have
that |SOPT ∩ S1| ≥ |S|.

Let G′ = G − S1. Observe that G′ does not contain either D4 or C4 as an induced subgraph. Now
we construct Ĝ′, as described in Section 4.1. We apply the factor two approximation algorithm A given
in [1] on the instance (Ĝ′, w). This returns an fvs S2 of Ĝ′ such that w(S2) is at most twice the weight
of a minimum weight feedback vertex set. By our construction S2 ⊆ V (G′). Lemma 7 implies that S2

is a factor two approximation for BGVD on G′. We return the set S = S1 ∪ S2 as our solution. Since
SOPT − S1 is also an optimum solution for G′ we have that |S2| ≤ 2|SOPT − S1|.

It is evident that S is block vertex deletion set of G. To conclude the proof of the theorem we will
show that |S| ≤ 4OPT. Towards this observe that

|S| = |S1|+ |S2| ≤ 4|S|+ 2|SOPT − S1|
≤ 4|SOPT ∩ S1|+ 2|SOPT − S1|
≤ 4|SOPT| = 4OPT.

This completes the proof. ut

6 Improved Kernel for Block Graph Vertex Deletion

In this section, we give a kernel ofO(k4) vertices for BGVD. Let (G, k) be an instance of the BGVD prob-
lem. We start with some of the known reduction rules from [11].

Reduction Rule BGVD. 1 If G has a component H, where H is a block graph, then remove H from
G.

Reduction Rule BGVD. 2 If there is a vertex v ∈ V (G), such that G\{v} has a component H, where
G[{v} ∪ V (H)] is a connected block graph then, remove H from G.
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Reduction Rule BGVD. 3 Let S ⊆ V (G), where each u, v ∈ S are true-twins in G. If |S| > k + 1,
then remove all the vertices from S except k + 1 vertices.

Reduction Rule BGVD. 4 Let t1, t2, t3, t4 be an induced path in G. For i ∈ {1, 2, 3}, let Si ⊆ V (G) \
{t1, t2, t3, t4} be a clique in G such that the following holds.

– For i ∈ {1, 2, 3}, v ∈ Si, NG(v) \ Si = {ti, ti+1}, and
– For i ∈ {2, 3}, NG(ti) = {ti−1, ti+1} ∪ Si−1 ∪ Si.

Remove S2 from G and contract the edge (t2, t3).

Proposition 1 (Proposition 3.1 [11]). Let G be a graph and k be a positive integer. For a vertex
v ∈ V (G), in O(kn3) time, we can find one of the following.

i. k + 1 pairwise vertex disjoint obstructions,
ii. k + 1 obstructions whose pairwise intersection is exactly v,

iii. S′v ⊆ V (G), such that |S′v| ≤ 7k and G \ S′v has no block graph obstruction containing v.

Reduction Rule BGVD. 5 Let v ∈ V (G) and G′ = G \ {v}. We remove the edges between NG(v)
from G′, i.e. E(G′) = E(G′) \ {(u,w)|u,w ∈ NG(v)}. In G′ if there are at least 2k + 1 vertex-disjoint
NG(v)-paths in G′ then we do one of the following.

– If G contains k + 1 vertex disjoint obstructions, then return that the graph is a no-instance.
– Otherwise, delete v from G and decrease k by 1.

The Reduction rules BGVD.1 to BGVD.5 are safe and can be applied in polynomial time [11].
For sake of clarity we denote the reduced instance at each step by (G, k). We always apply the lowest
numbered Reduction Rule, in the order that they have been stated, that is applicable at any point
of time. For the rest of the discussion, we assume that Reduction rules BGVD.1 to BGVD.5 are not
applicable.

For a vertex v ∈ V (G), by Proposition 1, we may find k+1 pairwise vertex-disjoint obstructions, and
we can safely conclude that the graph is a No instance. Secondly, if we find k + 1 obstructions whose
pairwise intersection is exactly v then the Reduction rule BGVD.5 will be applicable. Thus, we assume
that for each vertex v ∈ V (G), the third condition of Proposition 1 holds. In other words, we have a set
S′v of size at most 7k, such that G \ S′v does not contain any obstruction passing through v. In fact, for
each v ∈ V (G), we can find a block vertex deletion set Sv ⊆ V (G) \ {v} of bounded size.

Observation 2 For every vertex v ∈ V (G), we can find in nO(1) time, a set Sv ⊆ V (G) \ {v} such that
|Sv| ≤ 11k and G \ Sv is a block graph.

Proof. Using the approximation algorithm for BGVD we compute an approximate solution A of size at
most 4k. If v /∈ A, then Sv = A. Otherwise, Sv = (A\{v})∪S′v. Note that for each v ∈ V (G), |Sv| ≤ 11k
and G \ Sv is a block graph. ut

For a vertex v ∈ V (G), component degree of v is the number of connected components in C, where C
is the set of connected components in G\(Sv∪{v}) that have a vertex adjacent to v. We give a reduction
rule that bounds the component degree of a vertex v ∈ V (G), using Expansion Lemma [4].

A q-star, q ≥ 1, is a graph with q + 1 vertices, one vertex of degree q and all other vertices of degree
1. Let B be a bipartite graph with the vertex bipartition as (X,Y ). A set of edges M ⊆ E(B) is called
a q-expansion of X into Y if (i) every vertex of X is incident with exactly q edges of M and (ii) M
saturates exactly q|X| vertices in Y , i.e. edges in M are adjacent to exactly q|X| vertices in Y .

Lemma 8 (Expansion Lemma [4]). Let q be a positive integer and B be a bipartite graph with vertex
bipartition (X,Y ) such that |Y | ≥ q|X| and there are no isolated vertices in Y . Then, there exist nonempty
vertex sets X ′ ⊆ X and Y ′ ⊆ Y such that:

1. X ′ has a q-expansion into Y ′ and
2. no vertex in Y ′ has a neighbour outside X ′, i.e. N(Y ′) ⊆ X ′.

Furthermore, the sets X ′ and Y ′ can be found in polynomial time.
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For a vertex v ∈ V (G), let Cv be the set of connected components in G\ (Sv ∪{v}) that have a vertex
adjacent to v. Consider a connected component C ∈ Cv, such that no vertex u ∈ V (C) is adjacent to any
vertex in Sv. But then, G\{v} has a component which is a block graph (namely, the connected component
C) therefore, Reduction rule BGVD.2 is applicable, a contradiction to the assumption that none of the
previous Reduction rules are applicable. Therefore, for each C ∈ C there is a vertex u ∈ V (C) and s ∈ Sv,
such that (u, s) ∈ E(G). Let D be a vertex set, with a vertex d corresponding to each component D ∈ C.
Consider the bipartite graph Bv with the vertex set bipartitioned as (D, Sv). There is an edge between
d ∈ D and s ∈ Sv if and only if the component D corresponding to which the vertex d was added to D
has a vertex ud such that (ud, s) ∈ E(G).

Reduction Rule BGVD. 6 For a vertex v ∈ V (G) if |Cv| > 33k, then we do the following.

– Let D′ ⊆ D and S ⊆ Sv be the sets obtained after applying Lemma 8 with q = 3, X = Sv and Y = D;
– For each d ∈ D′, let the component corresponding to d be D ∈ Cv. Delete all the edges between (u, v),

where u ∈ V (D);
– For each s ∈ S, add two vertex disjoint paths between v and s.

Safeness of the Reduction rule BGVD.6 follows from the safeness of Reduction rule 6 in [11].

6.1 Bounding the number of blocks in G \ A

Using the approximation algorithm for BGVD we compute an approximate solution A of size at most
4k. Of course if |A| > 4k then we can immediately return that G is a No instance. First, we bound the
number of leaf blocks in G\A, when none of the Reduction rules apply. Note that G\A is a block graph,
since A is an approximate solution to BGVD. For v ∈ A, let S′v be the set obtained from Proposition 1
and Sv be the set obtained from Observation 2. Let Cv be the set of connected components in G\(Sv∪{v})
which have a vertex adjacent to v. All the connected components in G \ A, which do not have a vertex
that is adjacent to v, must be adjacent to some v′ ∈ A. Otherwise, Reduction rule BGVD.1 will be
applicable. Also, all the leaf blocks in G \A must have an internal vertex that is adjacent to some vertex
in A, since the Reduction rules BGVD.1 and BGVD.2 are not applicable. The number of leaf blocks,
in G \A, whose set of internal vertices have a non-empty intersection with S′v, is at most 7k. Therefore,
it is enough to count, for each v ∈ A, the number of leaf blocks in Cv. In the Observation 3, we give a
bound on the number of leaf blocks in G \A, not containing any vertex from S′v.

Observation 3 For v ∈ A, the number of leaf blocks in G \ A not containing any vertex from S′v is at
most the number of leaf blocks in G \ (Sv ∪ {v}).

Proof. Note that for v ∈ A, Sv = (A \ {v}) ∪ S′v. By deleting a vertex u ∈ S′v from G \ A one of the
following can happen. If u was a cut vertex in G \ A, then we increase the number of components after
deleting u from G \ A. By increasing the number of components, the number of leaves cannot decrease.
If u was not a cut vertex in G \ A then by deleting u the number of cut vertices can only increase.
Therefore, the number of leaf blocks after deletion of u from G \ A can only increase. Hence, the claim
follows. ut

Therefore, for each v ∈ A we count those leaf blocks in Cv which do not contain any vertex from S′v.

Lemma 9. Consider a vertex v ∈ V (G) and its corresponding set Sv. Let C be the set of connected
components in G \ (Sv ∪ {v}). For each C ∈ C, there is a block B̃ in C, such that NC(v) ⊆ V (B̃).

Proof. Let C be the set of connected components of G \ (Sv ∪ {v}), v ∈ V (G). By definition of Sv, for
each C ∈ C, C ∪ {v} is a block graph.

If for some C ∈ C, NC(v) = ∅, then the condition is trivially satisfied for that connected component
C. Let C ∈ C be a connected component such that NC(v) 6= ∅. Let t be a vertex in NB(v), where B is a
block in C. Let B′ be a block in C, where B′ 6= B and B′ has a vertex t′ ∈ V (B′)\V (B) that is adjacent
to v. Note that B,B′ are in the same connected component C. Let P be the shortest path from t to t′.

We first argue for the case when (t, t′) /∈ E(G). Therefore, the path P has at least 2 edges. We prove
that we can find an obstruction, by induction on the length of the path (number of edges). If length of
path P is 2, say P = t, u, t′. If (u, v) ∈ E(G), then {t, t′, u, v} forms an induced D4, otherwise they form
an induced C4, contradicting that C ∪ {v} is a block graph.

Let us assume that we can find an obstruction if the path length is l. We now prove it for paths
of length l + 1. Let P = t, x1, x2, . . . , xl−1, t

′ and y be the first vertex other than t in P such that

11



(y, v) ∈ E(G). If y = t′, then P along with v forms an induced cycle of length at least 5, contradicting
that C∪{v} is a block graph. If y = x1, then {t, x1, x2, v} either forms a D4, the case when (x2, v) ∈ E(G),
or P̂ = x1, x2, . . . , t

′ is a path of shorter length with at least 2 edges and by induction hypothesis has
an obstruction along with v. Otherwise, P ′ = t, x1, . . . , y is a path of length less than l, with at least 2
edges, such that (y, t) ∈ E(G). Therefore, by induction hypothesis there is an obstruction along with the
vertex v, contradicting that C ∪ {v} is a block graph.

From the above arguments it follows that if v has a neighbour t in block B in C, then v cannot have
a neighbour t′ in block B′, if the shortest path between t, t′ has at least 2 edges.

If (t, t′) ∈ E(G), then t, t′ are contained in some block B̂. If v is adjacent to any other vertex u
not in V (B̂) then at most one of (t, u) or (t′, u) can be an edge in G, since t, t′ and u are in different
blocks. If there is an edge, say (t, u), then t, t′, u, v forms an induced D4, contradicting that C ∪ {v} is
a block graph. Otherwise, there is a path with at least two edges between u and t. Therefore, by the
previous arguments we can find an obstruction along with the vertex v. Therefore, NC(v) ⊆ V (B̂) when
(t, t′) ∈ E(G).

Hence, it follows that there is a block B̃ in C such that NC(v) ⊆ V (B̃). ut

Lemma 10. For every v ∈ A , the number of leaf blocks in Cv is O(k).

Proof. Note that every leaf block must have at least one internal vertex. By Lemma 9 we know that
neighbours of v are contained in a block of C, where C ∈ Cv. Therefore, v cannot be adjacent to internal
vertices of two leaf blocks in C ∈ Cv. In other words, v can be adjacent to vertices in at most one leaf
block from C ∈ Cv. But |Cv| ≤ 33k, since the Reduction rule BGVD.6 is not applicable. Therefore, the
number of leaf blocks in G \ (Sv ∪ {v}) in which v can have a neighbour is at most O(k). ut

Observe that in G \A, a vertex v ∈ A can be adjacent to at most O(k) leaf blocks by Observation 3
and Lemma 10. Also, for a leaf block B in G \ A, there must be an internal vertex b ∈ V (B), such that
b is adjacent to some vertex in Sv, since the Reduction rule BGVD.2 is not applicable. Therefore, the
number of leaf blocks in G \A is O(k2).

Lemma 11. The number of blocks B in G \ A such that the vertex set of B intersects with the vertex
set of at least three other block in G \A is O(k2).

Proof. Consider the block forest FA for the block graph G \A. The number of blocks in G \A is at most
the number of vertices in FA. Note that the leaves in FA correspond to the blocks in G \A with at most
one cut vertex. The number of leaf blocks is G′ is bounded by O(k2) and therefore the number of leaves
in FA is O(k2). For a forest the number of vertices of degree at least 3 is bounded by the number of
leaves. Therefore, the number of degree three vertices in FA is bounded by O(k2). For a block B in G\A
which has at least 3 cut vertices, the vertex b corresponding to block B in FA will be of degree at least
3. Therefore, the number of blocks in G \A with at least three cut vertices is bounded by O(k2).

Consider a block B in G \A, such that B has exactly 2 cut vertex, but V (B) intersects with at least
three blocks in G \ A. Let b be the vertex corresponding to B in FA and vB , uB the cut-vertices in B.
At least one of vB , uB is a cut-vertex in at least two blocks other than B, say vB is such a cut vertex.
If we contract the edge (b, vB) in FA to obtain F ′A, then number of leaves and degree 3 vertices in F ′A
remains the same which is bounded by O(k2). Furthermore, the contracted vertex b∗ is of degree at least
3. There is a bijection f between the vertices corresponding to blocks in FA and F ′A, where f(b) = b∗

and f(b′) = b′, for all b′ ∈ VB(FA) \ {b}, where VB(FA) is the set of vertices corresponding to blocks in
G \ A. Hence follow that the number of blocks B with exactly 2 cut vertices, but V (B) intersects with
at least three blocks in G \A is bounded by O(k2). ut

Let L be the set of leaf blocks in G \ A and T be the set of blocks in G \ A such that each block in
T intersects with at least three other blocks in G \A. By Lemmas 10 and 11, we have that |L| = O(k2)
and |T | = O(k2).

Let B be a block in G∗ = G \ (Sv ∪ {v}) such that the vertex set of B has exactly two cut vertices,
and intersects with exactly two blocks of G∗. Furthermore, the vertex set of B has an empty intersection
with leaf blocks of G∗ and those blocks in G∗ which vertex set intersects with at least three other blocks
of G∗. Also, B has a vertex that is a neighbor of v. Such blocks are called nice degree two blocks of v. If
a block satisfies the above conditions for some vertex w ∈ A, the block is called a nice degree two block.
We denote the set of nice degree two blocks by T1.

Lemma 12. Let G∗ = G \ (Sv ∪ {v}). Then G∗ has at most O(k) nice degree two blocks of v.
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Proof. Recall that Cv is the set of connected components in G \ (Sv ∪ {v}) which have a vertex adjacent
to v. From Lemma 9, for each of the connected component C ∈ Cv, there is a block B̃ in C such that,
NC(v) ⊆ V (B̃). Consider two nice degree two blocks B and B′ in C such that both of them have at least
one neighbor of v. Let b ∈ V (B) and b′ ∈ V (B′) be the vertices such that (v, b), (v, b′) ∈ E(G). Consider
the following cases.

– b 6= b′. In this case, b, b′ ∈ V (B̃), where NC(v) ⊆ V (B̃) and B̃ is a block with exactly 2 cut vertices.
But then, for all blocks B̂ in C, V (B̂) ∩ V (B̃) = ∅. Therefore, v cannot be adjacent to any vertex in
B̂. Hence it follows that the number of blocks with a vertex having neighbour in v is O(1).

– If b = b′, then b is a cut vertex in B,B′. Therefore, one of B,B′ is same as B̃, say B = B̃. But B
shares cut vertices with exactly two blocks. Therefore, v can have neighbous in at most O(1) blocks
in C.

But note that |Cv| = O(k). Hence, the claim follows. ut

What remains is to bound the number of blocks which have exactly two cut vertices and are not nice
degree two blocks.

Lemma 13. The number of blocks in G \A with exactly two cut vertices is O(k2).

Proof. From Lemma 10 the number of leaf blocks in G \ A is O(k2). Let FA be the block forest for the
block graph G \A. From Lemmas 10 and 11, we know that |L ∪ T | = O(k2). Also, the number of blocks
in T1 is bounded by O(k2) by Lemma 12.

Let P be the set of paths in FA such that the endpoints are vertices corresponding to blocks in
L∪T ∪T1 and all internal block vertices do not correspond to blocks in L∪T ∪T1. Note that, all internal
vertices of such paths have degree exactly two in FA. Since FA is a tree, the number of paths in P is at
most O(k2).

Denote the remaining blocks with exactly two cut vertices by T2. By definition of FA and P, the
vertex corresponding to a block B ∈ T2 must be an internal vertex in some path of P. Let PA be a path
in P, Note that FA is a bipartite graph with the vertex bipartitions as (B, VC), where B is the set of
blocks in G′ and VC is the set of cut vertices in G′. Therefore, in P no two cut vertices in V (G′) can be
adjacent to each other. Similarly for b, b′ ∈ B, (b, b′) /∈ E(P ). Therefore, the b ∈ V (P ) such that b ∈ B
corresponds to block B in G′ with exactly two cut vertices. Let S be the sequence of blocks in the order
they appear in path PA. In S each two adjacent blocks in the sequence share a cut vertex. We remove
the starting block and the end block from S. We do this because these blocks in the subsequence either
belong to L∪T ∪T1. If S has more than two blocks then, Reduction rule BGVD.4 would be applicable.
Therefore, the number of blocks in P can be at most O(1).

The set of blocks in G \A with exactly two cut vertices is contained in T ∪ T1 ∪ T2. Hence, it follows
that the number of blocks with exactly 2 cut vertices in G \A is bounded by O(k2). ut

Now, we have a bound on the total number of blocks in G \A.

Lemma 14. Consider a graph G, a positive integer k and an approximate block vertex deletion set set
A of size O(k). If none of the Reduction rules BGVD.1 to BGVD.6 is applicable then the number of
blocks in G \A is bounded by O(k2).

Proof. Follows from Lemmas 10, 11 and 13. ut

6.2 Bounding the number of internal vertices in a maximal clique of the block graph

We start by bounding the number of internal vertices in a maximal 2-connected component of G \ A.
Consider a block B in G \ A. We partition the internal vertices VI(B) of block B into three sets B,R
and I depending on the neighborhood of A in block B. We also partition the vertices in A depending
on the number of vertices they are adjacent to in B. In Lemma 15 we show that the number of internal
vertices in a block B of G \ A is upper bounded by O(k2). We do so by partitioning the vertices into
different sets and bounding each of these sets separately.

Lemma 15. Let (G, k) be an instance to BGVD and let A be an approximate block vertex deletion set
of G of size O(k). If none of the Reduction rules BGVD.1 to BGVD.6 is applicable then the number
of internal vertices in a block B of G \A is bounded by O(k2).
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Proof. Let A≤2k = {v ∈ A||NB(v)| ≤ 2k + 1} and A>2k+1 = A \ A≤2k+1. For a vertex u ∈ VI(B), if u
is adjacent to at least one of the vertices in A≤2k+1 then, we add u to the set B. Note that the number
of vertices in B is bounded by O(k2), since each v ∈ A≤2k+1 is adjacent to at most 2k + 1 vertices in
VI(B). Also, for a vertex u ∈ VI(B) \ B, N(u) ∩A≤2k = ∅.

For each vertex u ∈ VI(B) \ B, if u is not adjacent to at least one vertex in A>2k+1 then, we add u
to the set R. Let Qv be those vertices in VI(B) \ B which are not adjacent to a vertex v ∈ A>2k+1. Note
that |Qv| ≤ k otherwise, for each pair of vertices t1, t2 ∈ NB(v) along with one vertex in Qv we get k+ 1
vertex disjoint obstruction, namely D4, intersecting only at v. Therefore, the number of vertices in R is
bounded by O(k2).

Let I = VI(B) \ (B ∪ R). Note that the vertices in I induce a clique. Furthermore, for each w ∈ I,
N(w) ∩ A≤2k+1 = ∅ and N(w) ∩ A>2k+1 = A>2k+1. Therefore, each w,w′ ∈ I are twins. In fact, I is a
set of twins. If |I| > k + 1 then Reduction rule BGVD.3 would be applicable. Therefore, |I| ≤ k + 1.
But, |VI(B)| = |B|+ |R|+ |I| = O(k2) +O(k2) +O(k), which is bounded by O(k2). ut

We wrap up our arguments to show a O(k4) sized vertex kernel for BGVD, and hence prove Theo-
rem 2.

Proof (of Theorem 2). Let (G, k) be an instance to BGVD and let A be an approximate block vertex
deletion set of G of size O(k). Also, assume that none of the Reduction rules BGVD.1 to BGVD.6
are applicable. By Theorem 14, the number of blocks in G \ A is bounded by O(k2). By Lemma 15
the number of internal vertices in a block of G \ A is bounded by O(k2). Also note that the number of
cut-vertices in G \ A is bounded by the number of blocks in G \ A, i.e. O(k2). The number of vertices
in G \ A is sum of the internal vertices in G \ A and the number of cut vertices in G \ A. Therefore,
|V (G)| = |V (G \A)|+ |A| = (O(k2) · O(k2) +O(k2)) +O(k) = O(k4). ut
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