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Abstract17

A bond of a graph G is an inclusion-wise minimal disconnecting set of G, i.e., bonds are cut-sets that18

determine cuts [S, V \ S] of G such that G[S] and G[V \ S] are both connected. Given s, t ∈ V (G),19

an st-bond of G is a bond whose removal disconnects s and t. Contrasting with the large number of20

studies related to maximum cuts, there are very few results regarding the largest bond of general21

graphs. In this paper, we aim to reduce this gap on the complexity of computing the largest22

bond and the largest st-bond of a graph. Although cuts and bonds are similar, we remark that23

computing the largest bond of a graph tends to be harder than computing its maximum cut. We24

show that Largest Bond remains NP-hard even for planar bipartite graphs, and it does not admit25

a constant-factor approximation algorithm, unless P = NP. We also show that Largest Bond26

and Largest st-Bond on graphs of clique-width w cannot be solved in time f(w)× no(w) unless27

the Exponential Time Hypothesis fails, but they can be solved in time f(w)× nO(w). In addition,28

we show that both problems are fixed-parameter tractable when parameterized by the size of the29

solution, but they do not admit polynomial kernels unless NP ⊆ coNP/poly.30
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1 Introduction36

Let G = (V,E) be a simple, connected, undirected graph. A disconnecting set of G is37

a set of edges F ⊆ E(G) whose removal disconnects G. The edge-connectivity of G is38

κ′(G) = min{|F | : F is a disconnecting set of G}. A cut [S, T ] of G is a partition of V into39

two subsets S and T = V \ S. The cut-set ∂(S) of a cut [S, T ] is the set of edges that40

have one endpoint in S and the other endpoint in T ; these edges are said to cross the cut.41

In a connected graph, each cut-set determines a unique cut. Note that every cut-set is a42
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23:2 Computing the largest bond of a graph

disconnecting set, but the converse is not true. An inclusion-wise minimal disconnecting43

set of a graph is called a bond. It is easy to see that every bond is a cut-set, but there are44

cut-sets that are not bonds. More precisely, a nonempty set of edges F of G is a bond if45

and only if F determines a cut [S, T ] of G such that G[S] and G[T ] are both connected.46

Let s, t ∈ V (G). An st-bond of G is a bond whose removal disconnects s and t.47

In this paper, we are interested in the complexity aspects of the following problem.48

Largest Bond
Instance: A graph G = (V,E); a positive integer k.
Question: Is there a proper subset S ⊂ V (G) such that G[S] and G[V \S] are connected
and |∂(S)| ≥ k?

49

We also consider Largest st-Bond, where given a graph G = (V,E), vertices s, t ∈ V (G),50

and a positive integer k, we are asked whether G has an st-bond of size at least k.51

A minimum (maximum) cut of a graph G is a cut with cut-set of minimum (maximum)52

size. Every minimum cut is a bond, thus a minimum bond is also a minimum cut of G,53

and it can be found in polynomial time using the classical Edmonds–Karp algorithm [12].54

Besides that, minimum st-bonds are well-known structures, since they are precisely the55

st-cuts involved in the Gomory-Hu trees [21].56

Regarding bonds on planar graphs, a folklore theorem states that if G is a connected57

planar graph, then a set of edges is a cycle in G if and only if it corresponds to a bond in58

the dual graph of G [19]. Note that each cycle separates the faces of G into the faces in the59

interior of the cycle and the faces of the exterior of the cycle, and the duals of the cycle60

edges are exactly the edges that cross from the interior to the exterior [28]. Consequently,61

the girth of a planar graph equals the edge connectivity of its dual [5].62

Although cuts and bonds are similar, computing the largest bond of a graph seems to be63

harder than computing its maximum cut. Maximum Cut is NP-hard in general [17], but64

becomes polynomial for planar graphs [22]. On the other hand, finding a longest cycle in a65

planar graph is NP-hard, implying that finding a largest bond of a planar multigraph (or66

of a simple edge-weighted planar graph) is NP-hard. In addition, it is well-known that if a67

simple planar graph is 3-vertex-connected, then its dual is a simple planar graph. In 1976,68

Garey, Johnson, and Tarjan [18] proved that the problem of establishing whether a 3-vertex-69

connected planar graph is Hamiltonian is NP-complete, thus finding the largest bond of a70

simple planar graph is also NP-hard, contrasting with the polynomial-time solvability of71

Maximum Cut on planar graphs.72

From the point of view of parameterized complexity, it is well known that Maximum73

Cut can be solved in FPT time when parametrized by the size of the solution [25], and since74

every graph has a cut with at least half the edges [13], it follows that it has a linear kernel.75

Concerning approximation algorithms, a 1/2-approximation algorithm can be obtained76

by randomly partitioning the set vertices into two parts, which induces a cut-set whose77

expected size is at least half of the number of edges [26]. The best-known result is the78

seminal work of Goemans and Williamson [20], who gave a 0.878-approximation based on79

semidefinite programming. This has the best approximation factor unless the Unique Games80

Conjecture fails [24]. To the best of our knowledge, there is no algorithmic study regarding81

the parameterized complexity of computing the largest bond of a graph as well as the82

approximability of the problem.83

A closely related problem is the Connected Max Cut [23], which asks for a cut [S, T ]84

of a given a graph G such that G[S] is connected, and that the cut-set ∂(S) has size at85

least k. Observe that a bond induces a feasible solution of Connected Max Cut, but not86

the other way around, since G[T ] may be disconnected. Indeed, the size of a largest bond87
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can be arbitrarily smaller than the size of the maximum connected cut; take, e.g., a star88

with n leaves. For Connected Max Cut on general graphs, there exists a Ω(1/ logn)-89

approximation [16], where n is the number of vertices. Also, there is a constant-factor90

approximation with factor 1/2 for graphs of bounded treewidth [31], and a polynomial-time91

approximation scheme for graphs of bounded genus [23].92

Recently, Saurabh and Zehavi [30] considered a generalization of Connected Max Cut,93

named Multi-Node Hub. In this problem, given numbers l and k, the objective is to find a94

cut [S, T ] of G such that G[S] is connected, |S| = l and |∂(S)| ≥ k. They observed that the95

problem is W [1]-hard when parameterized on l, and gave the first parameterized algorithm96

for the problem with respect to the parameter k. We remark that the W [1]-hardness also97

holds for Largest Bond parameterized by |S|.98

Since every nonempty bond determines a cut [S, T ] such that G[S] and G[T ] are both99

connected, every bond of G has size at most |E(G)| − |V (G)|+ 2. A graph G has a bond100

of size |E(G)| − |V (G)|+ 2 if and only if V (G) can be partitioned into two parts such that101

each part induces a tree. Such graphs are known as Yutsis graphs. The set of planar Yutsis102

graphs is exactly the dual class of Hamiltonian planar graphs. According to Aldred, Van103

Dyck, Brinkmann, Fack, and McKay [1], cubic Yutsis graphs appear in the quantum theory104

of angular momenta as a graphical representation of general recoupling coefficients. They105

can be manipulated following certain rules in order to generate the so-called summation106

formulae for the general recoupling coefficient (see [2, 11, 33]).107

There are very few results about the largest bond size in general graphs. In 2008, Aldred,108

Van Dyck, Brinkmann, Fack, and McKay [1] showed that if a Yutsis graph is regular with109

degree 3, the partition of the vertex set from the largest bond will result in two sets of equal110

size. In 2015, Ding, Dziobiak and Wu [10] proved that any simple 3-connected graph G111

will have a largest bond with size at least 2
17
√

logn, where n = |V (G)|. In 2017, Flynn [14]112

verified the conjecture that any simple 3-connected graph G has a largest bond with size at113

least Ω(nlog3 2) for a variety of graph classes including planar graphs.114

In this paper, we complement the state of the art on the problem of computing the largest115

bond of a graph. Preliminarily, we observe that while Maximum Cut is trivial for bipartite116

graphs, Largest Bond remains NP-hard for such a class of graphs, and we also present117

a general reduction that allows us to observe that Largest Bond is NP-hard for several118

classes for which Maximum Cut is NP-hard. Using this framework, we are able to show that119

Largest Bond on graphs of clique-width w cannot be solved in time f(w)× no(w) unless120

the ETH fails. Moreover, we show that Largest Bond does not admit a constant-factor121

approximation algorithm, unless P = NP, and thus is asymptotically harder to approximate122

than Maximum Cut.123

As for positive results, the main contributions of this work concern the parameterized124

complexity of Largest Bond. Inspired by the principle of preprocessing the input to obtain125

a kernel, we consider the strategy of preprocessing the input in order to bound the treewidth126

of the resulting instance. After that, by presenting a dynamic programming algorithm for127

Largest Bond parameterized by the treewidth, we show that the problem is fixed-parameter128

tractable when parameterized by the size of the solution. Finally, we remark that Largest129

Bond and Largest st-Bond do not admit polynomial kernels, unless NP ⊆ coNP/poly.130

Due to space constraints, the proofs of results indicated by ? are presented in the131

Appendix.132
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23:4 Computing the largest bond of a graph

2 Intractability results133

In this section, we discuss aspects of the hardness of computing the largest bond. Notice that134

Largest Bond is Turing reducible to Largest st-Bond. Therefore, the results presented135

in this section also holds for Largest st-Bond.136

Although Maximum Cut is trivial for bipartite graphs, we first observe that the same137

does not apply to compute the largest bound. Since a connected planar graph is Eulerian138

if and only if its dual graph is bipartite, subdivision of edges does not increase the size of139

the largest bond, and to decide whether a 4-regular planar graph has a Hamiltonian cycle is140

NP-complete [29]. The following holds.141

I Theorem 1. ? Largest Bond is NP-complete for planar bipartite graphs.142

I Theorem 2. ? Let G be a simple bipartite graph and ` ∈ N. To determine the largest143

bond ∂(S) of G with |S| = ` is W [1]-hard with respect to `.144

Next, we present a general framework for reducibility from Maximum Cut to Largest145

Bond, by defining a special graph operator ψ such that Maximum Cut on a graph class F146

is reducible to Largest Bond on the image of F via ψ. An interesting particular case147

occurs when F is closed under ψ (for instance, chordal graphs are closed under ψ).148

I Definition 3. Let G be a graph and let n = V (G). The graph ψ(G) is constructed as149

follows: (i) create n disjoint copies G1, G2, . . . , Gn of G; (ii) add vertices va and vb; (iii)150

add an edge between va and vb; (iv) add all possible edges between V (G1 ∪ G2 ∪ . . . ∪ Gn)151

and {va, vb}.152

I Definition 4. A set of graphs G is closed under operator ψ if whenever G ∈ G, then153

ψ(G) ∈ G.154

From the fact that a graph G has a cut [S, V (G) \ S] of size k if and only if ψ(G) has a155

bond ∂(S′) of size at least nk + n2 + 1, the following theorem holds.156

I Theorem 5. ? Largest Bond is NP-complete for any graph class G such that:157

(i) G is closed under operator ψ;158

(ii) MaxCut is NP-complete for graphs in G.159

I Corollary 6. ? Largest Bond is NP-complete for the following classes:160

1. chordal graphs;161

2. co-comparability graphs;162

3. P5-free graphs.163

2.1 Algorithmic lower bound for clique-width parameterization164

In the ’90s, Courcelle, Makowsky, and Rotics [7] proved that all problems expressible in165

MS1-logic are fixed-parameter tractable when parameterized by the clique-width of a graph166

and the logical expression size. The applicability of this meta-theorem has made clique-width167

become one of the most studied parameters in parameterized complexity. However, although168

several problems are MS1-expressible, this is not the case with Maximum Cut.169

In 2014, Fomin, Golovach, Lokshtanov and Saurabh [15] showed that Maximum Cut170

on a graph of clique-width w cannot be solved in time f(w)× no(w) for any function f of w171

unless Exponential Time Hypothesis (ETH) fails. Using operator ψ, we are able to extend172

this result to Largest Bond.173
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I Lemma 7. Largest Bond on graphs of clique-width w cannot be solved in time f(w)×174

no(w) unless the ETH fails.175

Proof. Maximum Cut cannot be solved in time f(w)× no(w) on graphs of clique-width w,176

unless Exponential Time Hypothesis (ETH) fails [15]. Therefore, by the polynomial-time177

reduction presented in Theorem 5, it is enough to show that the clique-width of ψ(G) is178

upper bounded by a linear function of the clique-width of G.179

If G has clique-width w, then the disjoint union H1 = G1 ⊕ G2 ⊕ . . . ⊕ Gn has clique-180

width w. Suppose that all vertices in H1 have label 1. Now, let H2 be the graph isomorphic181

to a K2 such that V (H) = {va, vb}, and va, vb are labeled with 2. In order to construct ψ(G)182

from H1⊕H2 it is enough to apply the join η(1, 2). Thus, ψ(G) has clique-width equals w. J183

2.2 Inapproximability184

While the maximum cut of a graph has at least a constant fraction of the edges, the size185

of the largest bond can be arbitrarily smaller than the number of edges; take, e.g., a cycle186

on n edges, for which a largest bond has size 2. This discrepancy is also reflected on the187

approximability of the problems. Indeed, we show that Largest Bond is strictly harder to188

approximate than Maximum Cut. To simplify the presentation, we consider a weighted189

version of the problem in which edges are allowed to have weights 0 or 1; the hardness results190

will follow for the unweighted case as well. In the Binary Weighted Largest Bond,191

the input is given by a connected weighted graph H with weights w : E(H)→ {0, 1}. The192

objective is to find a bond whose total weight is maximum.193

Let G be a graph on n vertices and whose maximum cut has size k. Next, we define194

the G-edge embedding operator ξG. Given a connected weighted graph H, the weighted195

graph ξG(H) is constructed by replacing each edge {u, v} ∈ E(H) with weight 1 by a copy196

of G, denoted by Guv, whose edges have weight 1, and, for each vertex t of Guv, new197

edges {u, t} and {v, t}, both with weight 0.198

We can also apply the G-edge embedding operation on the graph ξG(H), then on199

ξG(ξG(H)), and so on. In what follows, for an integer h ≥ 0, denote by ξhG(H) the graph200

resulting from the operation that receives a graph H and applies ξG successively h times. For201

some j, 0 ≤ j ≤ h− 1, observe that an edge {u, v} ∈ E(ξjG(H)) will be replaced by a series202

of vertices added in iterations j+ 1, j+ 2, . . . , h. These vertices will be called the descendants203

of {u, v}, and will be denoted by Vuv.204

Let K2 be the graph composed of a single edge {u, v}, and consider the problem of finding205

a bond of ξG(K2) with maximum weight. Since edges connecting u or v have weight 0, one206

can assume that u and v are in different sides of the bond, and the problem reduces to finding207

a maximum cut of G. In other words, the operator ξG embeds an instance G of Maximum208

Cut into an edge {u, v} of K2.209

This suggests the following strategy to solve an instance of Maximum Cut. For some210

constant integer h ≥ 1, calculate H = ξhG(K2), and obtain a bond F of H with maximum211

weight. Note that, to solve H, one must solve embedded instances of Maximum Cut in212

multiple levels simultaneously. For a level j, 1 ≤ j ≤ h− 1, each edge {u, v} ∈ E(ξjG(K2))213

with weight 1 will be replaced by a graph Guv which is isomorphic to G. In Lemma 9 below,214

we argue that F is such that either V (Guv) ∪ {u, v} are all in the same side of the cut,215

or u and v are in distinct sides. In the latter case, the edges of F that separate u and v will216

induce a cut of G.217

In the remaining of this section, we consider a constant integer h ≥ 0. Then, we define218

Hj = ξjG(K2) for every j, 0 ≤ j ≤ h, and H = Hh. Also, we write [S, T ] to denote the cut219

IPEC 2019



23:6 Computing the largest bond of a graph

induced by a bond F of H.220

I Definition 8. Let F be a bond of H with cut [S, T ]. We say that an edge {u, v} ∈ E(Hj)221

with weight 1 is nice for F if either222

|{u, v} ∩ S| = 1, or223

({u, v} ∪ Vuv) ⊆ S, or224

({u, v} ∪ Vuv) ⊆ T .225

Also, we say that F is nice if, for every j, 0 ≤ j ≤ h− 1, and every edge {u, v} ∈ E(Hj)226

with weight 1, {u, v} is nice for F .227

I Lemma 9. ? There is a polynomial-time algorithm that receives a bond F , and finds a228

nice bond F ′ such that w(F ′) = w(F ).229

In the following, assume that F is a nice bond with cut [S, T ]. Consider a level j,230

0 ≤ j ≤ h, and an edge {u, v} ∈ E(Hj) with weight 1 such that |{u, v} ∩ S| = 1. If j < h,231

then we define Fuv to be the subset of edges in F which are incident with some vertex of Vuv;232

if j = h, then we define Fuv = {{u, v}}. Note that, because F is nice, if |{u, v} ∩ S| 6= 1,233

then no edge of F is incident with Vuv.234

Suppose now that |{u, v} ∩ S| = 1 for some edge {u, v} ∈ E(Hj) with weight 1 and235

0 ≤ j ≤ h− 1. In this case, F induces a cut-set of Guv. Namely, define Ŝuv := S ∩ V (Guv)236

and T̂uv := T ∩ V (Guv) and let F̂uv be the cut-set of Guv corresponding to cut [Ŝuv, T̂uv].237

Observe that for distinct edges {u, v} and {s, t}, it is possible that |F̂uv| 6= |F̂st|. We will238

consider bonds F for which all induced cut-sets F̂uv have the same size.239

I Definition 10. Let ` be a positive integer. A bond F of H with cut [S, T ] is said to be240

`-uniform if, (i) F is nice, and (ii) for every j, 0 ≤ j ≤ h− 1, and every edge {u, v} ∈ E(Hj)241

with weight 1 such that |{u, v} ∩ S}| = 1, |F̂uv| = `.242

An `-uniform bond induces a cut-set of G of size `.243

I Lemma 11. Suppose F is an `-uniform bond of H. One can find in polynomial time a244

cut-set L of G with |L| = `.245

Proof. Let u, v be the vertices of K2 to which ξG was applied. Since F is `-uniform, |F̂uv| = `.246

Note that F̂uv induces a cut-set of size ` on G. J247

In the opposite direction, a cut of G induces an `-uniform bond of H.248

I Lemma 12. Suppose L is a cut-set of G with |L| = `. One can find in polynomial time an249

`-uniform bond F of H with w(F ) = `h.250

Proof. For each j ≥ 0, we construct a bond F j of Hj . For j = 0, let F 0 be the set containing251

the unique edge of H0 = K2. Suppose now that we already constructed a bond F j−1
252

of Hj−1. For each edge {u, v} ∈ F j−1, let Luv be the set of edges of Guv corresponding253

to L. Define F j := ∪{u,v}∈F j−1Luv. One can verify that indeed F j is a bond of Hj , and254

that w(Fj) = |L| × w(Fj−1) = `j . J255

I Lemma 13. ? There is a polynomial-time algorithm that receives a bond F of H, and256

finds an `-uniform bond F ′ of H such that w(F ′) = `h ≥ w(F ).257

I Lemma 14. Let F ∗ be a bond of H with maximum weight. Then w(F ∗) = kh.258
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Proof. We assume that F ∗ is `-uniform such that w(F ∗) = `h for some `; if this is not the259

case, then use Lemma 13.260

Since F ∗ is `-uniform, using Lemma 12 one obtains a cut-set L of G with size `, then ` ≤ k,261

and thus w(F ∗) ≤ kh.262

Conversely, let L be a cut-set of G with size k. Using Lemma 12 for L, we obtain a263

bond F of H with weight kh, and thus w(F ∗) ≥ kh. J264

I Lemma 15. If there exists a constant-factor approximation algorithm for Weighted265

Largest Bond, then P = NP.266

Proof. Consider a graph G whose maximum cut has size k. Construct graph H and obtain267

a bond F of H using an α-approximation, for some constant 0 < α < 1. Using the algorithm268

of Lemma 13, obtain an `-uniform bond F ′ of H such that w(F ′) = `h ≥ w(F ). Using269

Lemma 14 and the fact that F ′ is an α-approximation, `h ≥ α× kh. Using Lemma 11, one270

can obtain a cut-set L of G with size ` ≥ α 1
h k.271

For any constant ε, 0 < ε < 1, we can set h = dlog1−ε αe, such that the cut-set L has size272

at least ` ≥ (1− ε)k. Since Maximum Cut is APX-hard, this implies P = NP. J273

I Theorem 16. If there exists a constant-factor approximation algorithm for Largest274

Bond, then P = NP.275

Proof. We show that if there exists an α-approximation algorithm for Largest Bond,276

for constant 0 < α < 1, then there is an α/2-approximation algorithm for the Binary277

Weighted Largest Bond, so the theorem will follow from Lemma 15.278

Let H be a weighted graph whose edge weights are all 0 or 1. Let m be the number of279

edges with weight 0, and let l be the weight of a bond of H with maximum weight. Assume280

l ≥ 2/α, as otherwise, one can find an optimal solution in polynomial time by enumerating281

sets of up to 2/α edges.282

Construct an unweighted graph G as follows. Start with a copy of H and, for each edge283

{u, v} ∈ E(H) with weight 1, replace {u, v} ∈ E(G) by m parallel edges. Finally, to obtain284

a simple graph, subdivide each edge of G. If F is a bond of G, then one can construct a285

bond F ′ of H by undoing the subdivision and removing the parallel edges. Each edge of F ′286

has weight 1, with exception of at most m edges. Thus, w(F ′) ≥ (|F | −m)/m.287

Observe that an optimal bond of H induces a bond of G with size at least ml. Thus, if F288

is an α-approximation for G, then |F | ≥ αml and therefore289

w(F ′) ≥ αml −m
m

= αl − 1 ≥ αl − αl/2 = α/2 l.290

We conclude that F ′ is an α/2-approximation for H. J291

3 Algorithmic upper bounds for clique-width parameterization292

Lemma 7 shows that Largest Bond on graphs of clique-width w cannot be solved in time293

f(w)× no(w) unless the ETH fails. Now, we show that given an expression tree of width at294

most w, Largest Bond can be solved in f(w)× nO(w) time.295

An expression tree T is irredundant if for any join node η(i, j), the vertices labeled by i296

and j are not adjacent in the graph associated with its child. It was shown by Courcelle297

and Olariu [8] that every expression tree T of G can be transformed into an irredundant298

expression tree T of the same width in time linear in the size of T . Therefore, without loss299

of generality, we can assume that T is irredundant.300
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23:8 Computing the largest bond of a graph

Our algorithm is based on dynamic programming over the expression tree of the input301

graph. We first describe what we store in the tables corresponding to the nodes in the302

expression tree.303

Given a w-labeled graph G, two connected components of G has the same type if they304

have the same set of labels. Thus, a w-labeled graph G has at most 2w−1 types of connected305

components.306

Now, for every nodeX` of T , denote by GX`
the w-labeled graph associated with this node,307

and let L1(X`), . . . , Lw(X`) be the sets of vertices of GX`
labeled with 1, . . . , w, respectively.308

We define a table where each entry is of the form c[`, s1, ..., sw, r, e1, ..., e2w−1, d1, ..., d2w−1],309

such that: 0 ≤ si ≤ |Li(X`)| for 1 ≤ i ≤ w; 0 ≤ r ≤ |E(GX`
)|; 0 ≤ ei ≤ min{2, |Li(X`)|} for310

1 ≤ i ≤ 2w − 1; and 0 ≤ di ≤ min{2, |Li(X`)|} for 1 ≤ i ≤ 2w − 1.311

Each entry of the table represents whether there is a partition V1, V2 of V (GX`
) such312

that: |V1 ∩Li(GX`
)| = si; the cut-set of [V1, V2] has size at least r; GX`

[V1] has ei connected313

components of type i; GX`
[V2] has di connected components of type i, where ei = 2 means314

that GX`
[V1] has at least two connected components of type i. The same holds for di.315

Notice that this table contains f(w)× nO(w) entries. If X` is the root node of T (that is,316

G = GX`
), then the size of the largest bond of G is equal to the maximum value of r for317

which the table for X` contains a valid entry (true value), such that there are j and k such318

that ei = 0, ej = 1 for 1 ≤ i, j ≤ 2w−1, i 6= j; and di = 0, dk = 1 for 1 ≤ i, k ≤ 2w−1, i 6= k.319

It is easy to see that we store enough information to compute a largest bond. Note that a320

w-labeled graph is connected if and only if it has exactly one type of connected components321

and exactly one component of such a type.322

Now we provide the details of how to construct and update such tables. The construction323

for introduce nodes of T is straightforward.324

Relabel node: Suppose that X` is a relabel node ρ(i, j), and let X`′ be the child of X`.325

Then the table for X` contains a valid entry c[`, s1, ..., sw, r, e1, ..., e2w−1, d1, ..., d2w−1] if and326

only if the table for X`′ contains an entry c[`′, s′1, ..., s′w, r, e′1, ..., e′2w−1, d
′
1, ..., d

′
2w−1] = true,327

where: si = 0; sj = s′i + s′j ; s′p = sp for 1 ≤ p ≤ w, p 6= i, j; ep = e′p for any type that contain328

neither i nor j; ep = 0 for any type that contains i; and for any type ep that contains j, it329

holds that ep = min{2, e′p + e′q + e′r} where e′q represent the set of labels (Cp \ {j}) ∪ {i}, e′r330

represent the set of labels Cp ∪ {i}, and Cp is the set of labels associated to p. The same331

holds for d1, ..., d2w−1.332

Union node: Suppose that X` is a union node with children X`′ and X`′′ . It holds that333

c[`, s1, ..., sw, r, e1, ..., e2w−1, d1, ..., d2w−1] equals true if and only if there are valid entries334

c[`′, s′1, ..., s′w, r′, e′1, ..., e′2w−1, d
′
1, ..., d

′
2w−1] and c[`′′, s′′1 , ..., s′′w, r′′, e′′1 , ..., e′′2w−1, d

′′
1 , ..., d

′′
2w−1],335

having: si = s′i+s′′i for 1 ≤ i ≤ w; r′+r′′ ≥ r; ek = min{2, e′k+e′′k}, and dk = min{2, d′k+d′′k}336

for 1 ≤ k ≤ 2w − 1.337

Join node: Finally, let X` be a join node η(i, j) with the child X`′ . Remind that since
the expression tree is irredundant then the vertices labeled by i and j are not adjacent in
the graph GX`′ . Therefore, the entry c[`, s1, ..., sw, r, e1, ..., e2w−1, d1, ..., d2w−1] equals true
if and only if there is a valid entry c[`′, s1, ..., sw, r

′, e′1, ..., e
′
2w−1, d

′
1, ..., d

′
2w−1] where

r′ + si × (|Lj(X`′)| − sj) + sj × (|Li(X`′)| − si) ≥ r,

and ep = e′p, case p is associated to a type that contains neither i nor j; ep = 1, case p is338

associated to C`′i,j \ {i}, where C`
′

i,j is the set of labels obtained by the union of the types339

of GX`′ with some connected component having either label i or label j; ep = 0, otherwise.340

The same holds for d1, ..., d2w−1.341

The correctness of the algorithm follows from the description of the procedure. Since for342
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each `, there are O((n+ 1)w ×m× (32w−1)2) entries, the running time of the algorithm is343

f(w)×nO(w). This algorithm together with Lemma 7 concludes the proof of the Theorem 17.344

I Theorem 17. Largest Bond cannot be solved in time f(w)× no(w) unless ETH fails,345

where w is the clique-width of the input graph. Moreover, given an expression tree of width346

at most w, Largest Bond can be solved in time f(w)× nO(w).347

In order to extend this result to Largest st-Bond, it is enough to observe that given a348

tree expression T of G with width w, it is easy to construct a tree expression T ′ with width349

equals w + 2, where no vertex of V (G) has the same label than either s or t. Let w + 1350

be the label of s, and let w + 2 be the label of t. By fixing, for each `, sw+1 = |Lw+1(X`)|351

and sw+2 = 0, one can solve Largest st-Bond in time f(w)× nO(w).352

4 Bounding the treewidth of G353

In the remainder of this paper we deal with our main problems: Largest Bond and354

Largest st-Bond parameterized by the size of the solution (k). Inspired by the principle355

of preprocessing the input to obtain a kernel, we consider the strategy of preprocessing the356

input in order to bound the treewidth of the resulting instance.357

We start our analysis with Largest Bond.358

I Definition 18. A graph H is called a minor of a graph G if H can be formed from G by359

deleting edges, deleting vertices, and by contracting edges. For each vertex v of H, the set of360

vertices of G that are contracted into v is called a branch set of H.361

I Lemma 19. Let G be a simple connected undirected graph, and k be a positive integer. If362

G contains K2,k as a minor then G has a bond of size at least k.363

Proof. Let H be a minor of G isomorphic to K2,k. Since G is connected and each branch364

set of H induces a connected subgraph of G, from H it is easy to construct a bond of G of365

size at least k. J366

Combined with Lemma 19, the following results show that, without loss of generality, our367

study on k-bonds can be reduced to graphs of treewidth O(k).368

I Lemma 20. [4] Every graph G = (V,E) contains K2,k as a minor or has treewidth at369

most 2k − 2.370

I Lemma 21. [4] There is an O(k × n) time algorithm that either concludes that the input371

graph G contains K2,k as a minor, or outputs a tree-decomposition of G of width at most372

2k − 2.373

From Lemma 19 and Lemma 21 it follows that there is an O(k × n) time algorithm374

that either concludes that the input graph G has a bond of size at least k, or outputs a375

tree-decomposition of G of width at most 2k − 2.376

4.1 The st-bond case377

Let S ⊆ V (G) and let ∂(S) be a bond of a graph G. Recall that a block is a 2-vertex-378

connected subgraph of G which is inclusion-wise maximal. Then, ∂(S) intersects at most one379

block of G. More precisely, for any two distinct blocks B1 and B2 of G, if S ∩V (B1) 6= ∅ and380

S ∩ V (B1) 6= V (B1), then either V (B2) ⊆ S, or V (B2) ⊆ V \ S. Indeed, if this is not the381

case, then either G[S] or G[V \ S] would be disconnected. Thus, to solve Largest st-Bond,382

IPEC 2019



23:10 Computing the largest bond of a graph

it is enough to consider, individually, each block on the path between s and t in the block-cut383

tree of G. Also, if a block is composed of a single edge, then it is a bridge in G, which is not384

a solution for the problem unless k = 1. Thus, we may assume without loss of generality385

that G is 2-vertex-connected.386

I Lemma 22. ? Let G be a 2-vertex-connected graph. For all v ∈ V (G) \ {s, t}, there is an387

sv-path and a tv-path which are internally disjoint.388

I Lemma 23. Let G be a 2-vertex-connected graph. If G contains K2,2k as a minor, then389

there exists S ⊆ V (G) such that ∂(S) is a bond of size at least k.390

Proof. Let G be a graph containing a K2,2k as a minor. If k = 1, the statement holds391

trivially, thus assume k ≥ 2. Also, since G is connected, one can assume that this minor392

was obtained by contracting or removing edges only, and thus its branch sets contain all393

vertices of G. Let A and B be the branch sets corresponding to first side of K2,2k, and let394

X1, X2, . . . , X2k be the remaining branch sets.395

First, suppose that s and t are in distinct branch sets. If this is the case, then there exist396

distinct indices a, b ∈ {1, . . . , 2k} such that s ∈ A ∪Xa and t ∈ B ∪Xb. Now observe that397

G[A ∪Xa] and G[B ∪Xb] are connected, which implies an st-bond with at least 2k − 1 ≥ k398

edges. Now, suppose that s and t are in the same branch set. In this case, one can assume399

without loss of generality that s, t ∈ A ∪X2k.400

Define U = A ∪ X2k and Q = V (G) \ U . Observe that G[U ] and G[Q] are connected.401

Consider an arbitrary vertex v in the set Q. Since G is 2-vertex-connected, Lemma 22 implies402

that there exist an sv-path Ps and a tv-path Pt which are internally disjoint. Let P ′s and P ′t403

be maximal prefixes of Ps and Pt, respectively, whose vertices are contained in U .404

We partition the set U into parts Us and Ut such that G[Us] and G[Ut] are connected.405

Since G[U ] is connected, there exists a tree T spanning U . Direct all edges of T towards s406

and partition U as follows. Every vertex in P ′s belongs to Us and every vertex in P ′t belongs407

to Ut. For a vertex u /∈ V (P ′s∪P ′t ), let w be the first ancestor of u (accordingly to T ) which is408

in P ′s ∪ P ′t . Notice that w is well-defined since u ∈ V (T ) and the root of T is s ∈ V (P ′s ∪ P ′t ).409

Then u belongs to Us if w ∈ V (P ′s), and u belongs to Ut if w ∈ V (P ′t ).410

Observe that that there are at least 2k − 1 edges between U and Q, and thus there are411

at least k edges between Us and Q, or between Ut and Q. Assume the former holds, as the412

other case is analogous. It follows that G[Us] and G[Ut ∪ Q] are connected and induce a413

bond of G with at least k edges. J414

Lemma 21 and Lemma 23 imply that there is an algorithm that either concludes that the415

input graph G has a bond of size at least k, or outputs a tree-decomposition of an equivalent416

instance G′ of width O(k).417

I Corollary 24. Given a graph G, vertices s, t ∈ V (G), and an integer k, there exists a418

polynomial-time algorithm that either concludes that G has an st-bond of size at least k or419

outputs a subgraph G′ of G together with a tree decomposition of G′ of width equals O(k),420

such that G′ has an st-bond of size at least k if and only if G has an st-bond of size at least k.421

Proof. Find a block-cut tree of G in linear time [6], and let Bs and Bt be the blocks of G422

that contain s and t, respectively. Remove each block that is not in the path from Bs to Bt423

in the block-cut tree of G. Let G′ be the remaining graph. For each block B of G′, consider424

the vertices s′ and t′ of B which are nearest to s and t, respectively. Using Lemmas 21 and 23425

one can in polynomial time either conclude that B has an s′t′-bond, in which case G is a426

yes-instance, or compute a tree decomposition of B with width at most O(k).427
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Now, construct a tree decomposition of G′ as follows. Start with the union of the tree428

decompositions of all blocks of G′. Next, create a bag {u} for each cut vertex u of G′. Finally,429

for each cut vertex u and any bag corresponding to a block B connected through u, add an430

edge between {u} and one bag of the tree decomposition of B containing u. Note that this431

defines a tree decomposition of G′ and that each bag has at most O(k) vertices. J432

5 Taking the treewidth as parameter433

In the following, given a tree decomposition T , we denote by ` one node of T and by X`434

the vertices contained in the bag of `. We assume w.l.o.g that T is a extended version of435

a nice tree decomposition (see [9]), that is, we assume that there is a special root node r436

such that X` = ∅ and all edges of the tree are directed towards r and each node ` has one437

of the following five types: Leaf ; Introduce vertex; Introduce edge; Forget vertex; and Join.438

Moreover, define G` to be the subgraph of G which contains only vertices and edges that439

have been introduced in ` or in a descendant of `.440

The number of partitions of a set of k elements is the k-th Bell number, which we denote441

by B(k) (B(k) ≤ k! [27]).442

I Theorem 25. Given a nice tree decomposition of G with width tw, one can find a bond of443

maximum size in time 2O(tw log tw) × n where n is the number of vertices of G.444

Proof. Let ∂G(U) be a bond of G, and [U, V \ U ] be the cut defined by such a bond. Set445

S`U = U ∩X`. The removal of ∂G(U) partitions G`[U ] into a set C`U of connected components,446

and G`[V \ U ] into a set C`V \U of connected components. Note that C`U and C`V \U define447

partitions of S`U and X` \ S`U , denoted by ρ`1 and ρ`2 respectively, where the intersection of448

each connected component of C`U with S`U corresponds to one part of ρ`1. The same holds449

for C`V \U with respect to X` \ S`U and ρ`2.450

We define a table for which an entry c[`, S, ρ1, ρ2] is the size of a largest cut-set (partial451

solution) of the subgraph G`, where S is the subset of X` to the left part of the bond, X` \S452

is the subset to the right part, and ρ1, ρ2 are the partitions of S and X` \S representing, after453

the removal of the partial solution, the intersection with the connected components to the left454

and to the right, respectively. If there is no such a partial solution then c[`, S, ρ1, ρ2] = −∞.455

For the case that S is empty, two special cases may occur: either U ∩ V (G`) = ∅, in456

which case there are no connected components in C`U , and thus ρ1 = ∅; or C`U has only one457

connected component which does not intersect X`, i.e., ρ1 = {∅}, this case means that the458

connected component in C`U was completely forgotten. Analogously, we may have ρ2 = ∅459

and ρ2 = {∅}. Note that we do not need to consider the case {∅} ( ρi since it would imply460

in a disconnected solution. The largest bond of a connected graph G corresponds to the root461

entry c[r, ∅, {∅}, {∅}].462

To describe a dynamic programming algorithm, we only need to present the recurrence463

relation for each node type.464

Leaf: In this case, X` = ∅. There are a few combinations for ρ1 and ρ2: either ρ1 = ∅,465

or ρ1 = {∅}, and either ρ2 = ∅, or ρ2 = {∅}. Since for this case G` is empty, there can be no466

connected components, so having ρ1 = ∅ and ρ2 = ∅ is the only feasible choice.467

c[`, S, ρ1, ρ2] =
{

0 if ρ1 = ∅ and ρ2 = ∅,
−∞ if ρ1 6= ∅ or ρ2 6= ∅.

468

Introduce vertex: We have only two possibilities in this case, either v is an isolated469

vertex to the left (v ∈ S) or it is an isolated vertex to the right (v /∈ S). Thus, a partial470
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23:12 Computing the largest bond of a graph

solution on ` induces a partial solution on `′, excluding v from its part.471

c[`, S, ρ1, ρ2] =


c[`′, S \ {v}, ρ1 \ {{v}}, ρ2] if {v} ∈ ρ1,

c[`′, S, ρ1, ρ2 \ {{v}}] if {v} ∈ ρ2,

−∞ if {v} /∈ ρ1 ∪ ρ2.

472

Introduce edge: In this case, either the edge {u, v} that is being inserted is incident473

with one vertex of each side, or the two endpoints are at the same side. In the former case,474

a solution on ` corresponds to a solution on `′ with the same partitions, but with value475

increased. In the latter case, edge {u, v} may connect two connected components of a partial476

solution on `′.477

c[`, S, ρ1, ρ2] =


c[`′, S, ρ1, ρ2] + 1 if u ∈ S and v /∈ S or u /∈ S and v ∈ S,
maxρ′1{c[`

′, S, ρ′1, ρ2]} if u ∈ S and v ∈ S,
maxρ′2{c[`

′, S, ρ1, ρ
′
2]} if u /∈ S and v /∈ S.

478

Here, ρ′1 spans over all refinements of ρ1 such that the union of the parts containing u and v479

results in the partition ρ1. The same holds for ρ′2.480

Forget vertex: In this case, either the forgotten vertex v is in the left side of the partial481

solution induced on `, or is in the right side. Thus, v must be in the connected component482

which contains some part of ρ1, or some part of ρ2. We select the possibility that maximizes483

the value484

c[`, S, ρ1, ρ2] = maxρ′1,ρ′2{c[`
′, S ∪ {v}, ρ′1, ρ2], c[`′, S, ρ1, ρ

′
2]}.485

Here, ρ′1 spans over all partitions obtained from ρ1 by adding v in some part of ρ1 (if ρ1 = {∅}486

then ρ′1 = {v}). The same holds for ρ′2.487

Join: This node represents the join of two subgraphs G`′ and G`′′ and X` = X`′ = X`′′ .488

By counting the bond edges contained in G`′ and in G`′′ , each edge is counted at least once,489

but edges in X` are counted twice. Thus490

c[`, S, ρ1, ρ2] = max{c[`′, S, ρ′1, ρ′2] + c[`′, S, ρ′′1 , ρ′′2 ]} − |{{u, v} ∈ E, u ∈ S, v ∈ X` \ S}|.491

In this case, we must find the best combination between the two children. Namely, for492

i ∈ {1, 2}, we consider combinations of ρ′i with ρ′′i which merge into ρi. If ρi = {∅} then493

either ρ′i = {∅} and ρ′′i = ∅; or ρ′i = ∅ and ρ′′i = {∅}. Also, if ρi = ∅ then ρ′i = ∅ and ρ′′i = ∅.494

The running time of the dynamic programming algorithm can be estimated as follows.495

The number of nodes in the decomposition is O(tw×n) [9]. For each node `, the parameters ρ1496

and ρ2 induce a partition of X`; the number of partitions of X` is given by the corresponding497

Bell number, B(|X`|) ≤ B(tw + 1). Each such a partition ρ corresponds to a number of498

choice of parameter S that corresponds to a subset of the parts of ρ; thus the number of499

choices for S is not larger than 2|ρ| ≤ 2|X`| ≤ 2tw+1. Therefore, we conclude that the table500

size is at most O(B(tw+ 1)×2tw× tw×n). Since each entry can be computed in 2O(tw log tw)
501

time, the total complexity is 2O(tw log tw) × n. The correctness of the recursive formulas is502

straightforward. J503

The reason for the 2O(tw log tw) dependence on treewidth is because we enumerate all504

partitions of a bag to check connectivity. However, one can obtain single exponential-505

time dependence by modifying the presented algorithm using techniques based on Gauss506

elimination, as described in [9, Chapter 11] for Steiner Tree.507
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I Theorem 26. Largest st-Bond is fixed-parameter tractable when parameterized by508

treewidth.509

Proof. The solution of Largest st-Bond can be found by a dynamic programming as510

presented in Theorem 25 where we add s and t in all the nodes and we fix s ∈ S and t /∈ S. J511

Finally, the following holds.512

I Corollary 27. Largest Bond and Largest st-Bond are fixed-parameter tractable when513

parameterized by the size of the solution, k.514

Proof. Follows from Lemma 19, Lemma 21, Corollary 24, Theorem 25 and Theorem 26. J515

6 Infeasibility of polynomial kernels516

As seen previously, any bond ∂(S) of a graph G intersects at most one of its block. Thus, an or-517

composition for Largest Bond parameterized by k can be done from the disjoint union of `518

inputs, by selecting exactly one vertex of each input graph and contracting them into a single519

vertex. Now, let (G1, k, s1, t1), (G2, k, s2, t2), . . . , (G`, k, s`, t`) be ` instances of Largest520

st-Bond parameterized by k. An or-composition for Largest st-Bond parameterized by k521

can be done from the disjoint union of G1, G2, . . . , G`, by contracting ti, si+1 into a single522

vertex, 1 ≤ i ≤ `− 1, and setting s = s1 and t = t`. Therefore, the following holds.523

I Theorem 28. Largest Bond and Largest st-Bond do not admit polynomial kernel524

unless NP ⊆ coNP/poly.525
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APPENDIX600

Proof of Theorem 1. Largest Bond is NP-complete for planar bipartite graphs.601

Proof. It is well-known that a connected planar graph is Eulerian if and only if its dual602

graph is bipartite [32]. In 1994, Picouleau [29] proved that deciding whether a 4-regular603

planar graph has a Hamiltonian cycle is NP-complete. Thus, to determine the size of the604

largest bond of a planar bipartite multigraph is NP-complete. In order to obtain a simple605

planar bipartite graph, it is enough to subdivide each edge of the graph; notice that this606

operation preserves the size of the largest bond of the graph. Therefore, determining the size607

of the largest bond of a simple planar bipartite graph is NP-complete. J608

Proof of Theorem 5. Largest Bond is NP-complete for any graph class G such that:609

(i) G is closed under operator ψ;610

(ii) MaxCut is NP-complete for graphs in G.611

Proof. Let G ∈ G, n = |V (G)|, and H = ψ(G). By (i), H ∈ G. Suppose G has a612

cut [S, V (G) \ S] of size k, and let S1, S2, . . . , Sn be the copies of S in G1, G2, . . . , Gn,613

respectively. If S′ = {va} ∪ S1 ∪ S2 ∪ . . . ∪ Sn, then [S′, V (H) \ S′] defines a bond ∂(S′)614

of H of size at least nk + n2 + 1. Conversely, suppose H has a bond ∂(S′) of size at least615

nk + n2 + 1. We consider the following cases: (a) If {va, vb} ⊆ S′, then for all copies Gi616

but one we have V (Gi) ⊆ S′, as otherwise the graph induced by V (H) \ S′ would not be617

connected, and ∂(S′) would not be a bond. Thus, V (H) \ S′ ⊆ V (Gj) for some j, then the618

size of ∂(S′) is smaller than nk + n2 + 1, a contradiction. (b) If va ∈ S′ and vb /∈ S′, then619

{va, vb} is incident with exactly n2 + 1 edges crossing [S′, V (H) \ S′], which implies that at620

least one copy Gi has k or more edges crossing [S′, V (H) \ S′]. Therefore, G has a cut of621

size at least k. J622

Proof of Corollary 6. Largest Bond is NP-complete for the following classes:623

1. chordal graphs;624

2. co-comparability graphs;625

3. P5-free graphs.626

Proof. Bodlaender and Jansen [3] proved that Maximum Cut is NP-complete when restric-627

ted to split and co-bipartite graphs. Since split graphs are chordal and co-bipartite graphs628

are P5-free and co-comparability graphs, the NP-completeness also holds for these classes.629

Now we have to show that the classes are closed under ψ.630

(1.) A graph is chordal if every cycle of length at least 4 has a chord. Let G be a chordal631

graph. Notice that the disjoint union of G1, G2, . . . , Gn is also chordal. In addition, no632

chordless cycle of length at least 4 may contain either va or vb because both vertices are633

universal. Therefore, ψ(G) is chordal.634

(2.) A graph is a co-comparability if it is the intersection graph of curves from a line to a635

parallel line. Let G be a co-comparability graph. Notice that the class of co-comparability636

graphs is closed under disjoint union. Thus, in order to conclude that ψ(G) is co-comparability,637

it is enough to observe that from a representation of curves (from a line to a parallel line) of638

the disjoint union of G1, G2, . . . , Gn, one can construct a representation of ψ(G) by adding639

two concurrent lines (representing va and vb) crossing all curves.640

(3.) The disjoint union of P5-free graphs is also P5-free. In addition, no induced P5641

contains either va or vb because both vertices are universal. Then, the class of P5-free graphs642

is closed under ψ. J643
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Proof of Theorem 2. Let G be a simple bipartite graph and ` ∈ N. To determine the644

largest bond ∂(S) of G with |S| = ` is W [1]-hard with respect to `.645

Proof. From an instance H of k-Independent Set on regular graphs we first construct a646

multigraph G′ by adding an edge between any pair of vertices. Finally, we obtain a simple647

graph G by subdividing every edge of G′. Notice that H has an independent set of size k if648

and only if G has a bond ∂(S) of size dk+ k(n− k) with |S| = k+
(
k
2
)
, where d is the vertex649

degree of H. J650

Proof of Lemma 9. There is a polynomial-time algorithm that receives a bond F , and finds651

a nice bond F ′ such that w(F ′) = w(F ).652

Proof. Let [S, T ] be the cut induced by F and let j∗ be minimum such that there exists an653

edge {u, v} ∈ Hj∗ with weight 1 which is not nice for F . Then |{u, v} ∩ S| 6= 1. Assume,654

without loss of generality that u, v ∈ S. In this case, U := Vuv ∩ T is not empty. Since655

removing vertices {u, v} disconnects U , and T must be connected, it follows that U = T .656

This implies that N(T ) ⊆ (Vuv \ T ) ∪ {u, v}.657

We will construct a bond F ′ of H with cut [S′, T ′]. Let S′ be the set of vertices in the658

connected component of H[S \ {v}] which contains u, and T ′ = V (H) \ S′. Since H[S] is659

connected, so must be H[S \S′]. Also, each vertex of U is adjacent to v, thus H[(S \S′)∪U ]660

is connected. Observe that T ′ = (S \ S′) ∪ U , so indeed the cut [S′, T ′] induces a bond661

F ′ = ∂(S′). Observe that any edge that appears only in F or only in F ′ is adjacent to v.662

Since such edges have weight 0, this implies w(F ) = w(F ′).663

To complete the proof, we claim that if for some j, 0 ≤ j ≤ h, there exists an edge664

{u, v} ∈ Hj with weight 1 which is not nice for F ′, then j > j∗. If this claim holds, then we665

need to repeat the previous procedure at most h times before obtaining a nice bond F ′.666

To prove the claim, consider an edge {s, t} ∈ Hj which is not nice for F ′. Suppose, for667

a contradiction, that Vst ∩ Vuv = ∅. There are two possibilities. If s, t ∈ S′, then Vst ⊆ S′;668

if s, t ∈ T ′, then Vst ⊆ S \ S′ ⊆ T ′. In either possibility, {s, t} is nice for F ′. This is a669

contradiction, and thus Vuv ∩ Vst 6= ∅.670

The statement Vuv ∩ Vst 6= ∅ can only happen if Vuv ⊆ Vst or Vst ⊆ Vuv. If Vuv ⊆ Vst,671

then U ⊆ Vst and s, t ∈ S. This implies that {s, t} is not nice for F . But in this case j < j∗,672

contradicting the choice of j∗. Therefore, Vst ⊆ Vuv, and j > j∗, proving our claim. J673

Proof of Lemma 13. There is a polynomial-time algorithm that receives a bond F of H,674

and finds an `-uniform bond F ′ of H such that w(F ′) = `h ≥ w(F ).675

Proof. Let [S, T ] be the cut corresponding to F . First, find the largest cut-set of a graph Guv676

over cut-sets F̂uv. More precisely, define F̂ to be the cut-set F̂uv with maximum |F̂uv| over all677

edges {u, v} ∈ E(Hj) with weight 1 such that |{u, v} ∩ S}| = 1, and over all j, 0 ≤ j ≤ h− 1.678

Let ` := |F̂ |.679

We claim that for every j, 0 ≤ j ≤ h, and every edge {u, v} ∈ E(Hj) with weight 1 such680

that |{u, v} ∩ S}| = 1, w(Fuv) ≤ `h−j . The proof is by (backward) induction on j. For j = h,681

Fuv = {u, v}, so w(Fuv) = 1. Next, let j < h, and assume the claim holds for j + 1.682

Let F 0
uv be the subset of edges in Fuv incident with u or v. The set Fuv can be partitioned683

into F 0
uv and sets Fst for {s, t} ∈ F̂uv. To see this, observe that each edge {x, y} ∈ Fuv \ F 0

uv684

must be incident with descendants of {u, v}, and thus {x, y} is incident with vertices of Vst, for685

some edge {s, t} ∈ E(Guv). Since |{x, y}∩S| = 1, neither Vst∪{s, t} ⊆ S, nor Vst∪{s, t} ⊆ T .686

Because F is nice, it follows that |{s, t} ∩ S| = 1, then {s, t} ∈ F̂uv, and thus {x, y} ∈ Fst.687
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To complete the claim, observe that, by the induction hypothesis, w(Fst) ≤ `h−j−1 for each688

{s, t} ∈ F̂uv, and recall that |F̂uv| ≤ |F̂ |. Therefore689

w(F ) = w(F 0
uv) +

∑
{s,t}∈F̂uv

w(Fst) ≤ |F̂ | × `h−j−1 = `h−j .690

Using Lemma 12 for F̂ , we construct a bond F ′ for H with w(F ′) = `h. J691

Proof of Lemma 22. Let G be a 2-vertex-connected graph. For all v ∈ V (G) \ {s, t}, there692

is an sv-path and a tv-path which are internally disjoint.693

Proof. Since G is 2-vertex-connected, there are two disjoint sv-paths Ps and P ′s and there694

is a tv-path P ′t which does not include s. Let x be the first vertex of P ′t which belongs to695

V (Ps ∪ P ′s) and assume, w.l.o.g., that x ∈ P ′s. Let P ′′t be the sub-path of P ′t from t to x696

and P ′′s the sub-path of P ′s from x to v. Now define Pt as tP ′′t xP ′′s v and notice that Pt is a697

tv-path disjoint from Ps. J698
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