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Abstract

Capacitated versions of Dominating Set and Vertex Cover have been studied
intensively in terms of polynomial time approximation algorithms. Although the problems
Dominating Set and Vertex Cover have been subjected to considerable scrutiny in
the parameterized complexity world, this is not true for the capacitated versions. Here we
make an attempt to understand the behavior of the problems Capacitated Dominating
Set and Capacitated Vertex Cover from the perspective of parameterized complexity.

The original versions of these problems, Vertex Cover and Dominating Set, are
known to be fixed parameter tractable when parameterized by a structure of the graph
called the treewidth (tw). In this paper we show that the capacitated versions of these
problems behave differently. Our results are:

• Capacitated Dominating Set is W[1]-hard when parameterized by treewidth. In
fact, Capacitated Dominating Set is W[1]-hard when parameterized by both
treewidth and solution size k of the capacitated dominating set.

• Capacitated Vertex Cover is W[1]-hard when parameterized by treewidth.

• Capacitated Vertex Cover can be solved in time 2O(tw log k)nO(1) where tw is
the treewidth of the input graph and k is the solution size. As a corollary, we show
that the weighted version of Capacitated Vertex Cover in general graphs can be
solved in time 2O(k log k)nO(1). This improves the earlier algorithm of Guo et al. [15]

running in time O(1.2k2

+ n2).

We would also like to point out that our W[1]-hardness result for Capacitated Vertex
Cover, when parameterized by treewidth, makes it (to the best of our knowledge) the
first known “subset problem” which has turned out to be fixed parameter tractable when
parameterized by solution size but W[1]-hard when parameterized by treewidth.

1 Introduction

Dominating Set (or more generally Set Cover) and Vertex Cover are problems rep-
resentative for domination and covering, respectively. Given a graph G and an integer k,
Vertex Cover asks for a size-k set of vertices that cover all edges of the graph, while
Dominating Set asks for a size-k set of vertices such that every vertex in the graph ei-
ther belongs to this set or has a neighbor which does. These fundamental problems in al-
gorithms and complexity have been studied extensively and find applications in various do-
mains [3, 4, 5, 8, 9, 12, 13, 15, 16, 18, 22].
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Vertex Cover and Dominating Set have a special place in parameterized complexity [7,
10, 21]. Vertex Cover was one of the earliest problems that was shown to be fixed parameter
tractable (FPT) [7]. On the other hand, Dominating Set turned out to be intractable in
the realm of parameterized complexity—specifically, it was shown to be W[2]-complete [7].
Vertex Cover has been put to intense scrutiny, and many papers have been written on
the problem. After a long race, the currently best algorithm for Vertex Cover runs in
time O(1.2738k + kn)) [4]. Vertex Cover has also been used as a testbed for developing
new techniques for showing that a problem is FPT [7, 10, 21]. Though Dominating Set
is a fundamentally hard problem in the parameterized W-hierarchy, it has been used as a
benchmark problem for developing sub-exponential time parameterized algorithms [1, 6, 11]
and also for obtaining a linear kernels in planar graphs [2, 14, 10, 21], and more generally, in
graphs that exclude a fixed graph H as a minor.

Different applications of Vertex Cover and Dominating Set (or Set Cover) have
initiated studies of different generalizations and variations of these problems. These include
Connected Vertex Cover, Connected Dominating Set, Partial Vertex Cover,
Partial Set Cover , Capacitated Vertex Cover and Capacitated Dominating Set,
to name a few. All these problems have been investigated extensively and are well understood
in the context of polynomial time approximation [5, 12, 13, 16]. However, these problems hold
a lot of promise and remain hitherto unexplored in the light of parameterized complexity; with
exceptions that are few and far between [3, 15, 19, 22, 23].

Problems Considered: Here we consider two problems, Capacitated Vertex Cover
(CVC) and Capacitated Dominating Set (CDS). To define these problems, we need to
introduce the notions of capacitated graphs, vertex covers, and dominating sets. A capacitated
graph is a graph G = (V,E) together with a capacity function c : V → N such that
1 ≤ c(v) ≤ d(v), where d(v) is the degree of the vertex v. Now let G = (V,E) be a capacitated
graph, C be a vertex cover of G and D be a dominating set of G.

Definition 1 We call C ⊆ V a capacitated vertex cover if there exists a mapping f : E → C

which maps every edge in E to one of its two endpoints such that the total number of edges
mapped by f to any vertex v ∈ C does not exceed c(v).

Definition 2 We call D ⊆ V a capacitated dominating set if there exists a mapping f :
(V \ D) → D which maps every vertex in (V \ D) to one of its neighbors such that the total
number of vertices mapped by f to any vertex v ∈ D does not exceed c(v).

Now we are ready to define Capacitated Vertex Cover and Capacitated Dominating
Set.

Capacitated Vertex Cover (CVC): Given a capacitated graph G = (V,E)
and a positive integer k, determine whether there exists a capacitated vertex cover
C for G containing at most k vertices.

Capacitated Dominating Set (CDS): Given a capacitated graph G = (V,E)
and a positive integer k, determine whether there exists a capacitated dominating
set D for G containing at most k vertices.

Our Results: To describe our results we first need to define the treewidth (tw) of a graph.
Let V (U) be the set of vertices of a graph U . A tree decomposition of an (undirected)

graph G = (V,E) is a pair (X,U) where U is a tree whose vertices we will call nodes and
X = {Xi | i ∈ V (U)} is a collection of subsets of V such that
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1.
⋃

i∈V (U) Xi = V ,

2. for each edge {v,w} ∈ E, there is an i ∈ V (U) such that v,w ∈ Xi, and

3. for each v ∈ V the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi|i ∈ V (U)}, U) equals maxi∈V (U){|Xi| − 1}. The
treewidth of a graph G is the minimum width over all tree decompositions of G.

There is a tendency to think that most combinatorial problems, especially “subset prob-
lems”, are tractable for graphs of bounded treewidth (tw) when parameterized by tw. In fact,
the non-capacitated versions of the problems considered here, namely Vertex Cover and
Dominating Set, are known to be fixed parameter tractable when parameterized by the
treewidth of the input graph. The algorithms for Vertex Cover and Dominating Set run
in time O(2twn) [21] and time O(4twn) [1], respectively. In contrast, the capacitated versions
of these problems behave differently. More precisely, we show the following:

• Capacitated Dominating Set is W[1]-hard when parameterized by treewidth. In
fact, CDS is W[1]-hard when parameterized by both treewidth and solution size k of the
capacitated dominating set.

• Capacitated Vertex Cover is W[1]-hard when parameterized by treewidth.

• Capacitated Vertex Cover can be solved in time 2O(tw log k)nO(1) where tw is the
treewidth of the input graph and k is the solution size. As a corollary of the last result we
obtain an improved algorithm for the weighted version of Capacitated Vertex Cover
in general graphs. Here, every vertex of the input graph has, in addition to the capacity,
a weight, and the question is if there is a capacitated vertex cover whose weight is at
most k. Our algorithm running in time O(2O(k log k)nO(1)) improves the earlier algorithm
of Guo et al. [15] running in time O(1.2k2

+ n2).

The so-called “subset problems” are known to go either way, that is, FPT or W[i]-hard
(i ≥ 1) when parameterized by solution size. However, when parameterized by treewidth
they have invariably been FPT. Examples favoring this claim include, but are not limited to,
Independent Set, Dominating Set, Partial Vertex Cover. Contrary to these observed
patterns, our hardness result for CVC when parameterized by treewidth makes it possibly the
first known “subset problem” which has turned out to be FPT when parameterized by solution
size, but W[1]-hard when parameterized by treewidth.

2 Preliminaries

We assume that all our graphs are simple and undirected. Given a graph G = (V,E), the
number of its vertices is represented by n and the number of its edges by m. For a subset
V ′ ⊆ V , by G[V ′] we mean the subgraph of G induced by V ′. With N(u) we denote all vertices
that are adjacent to u, and with N [u], we refer to N(u) ∪ {u}. Similarly, for a subset D ⊆ V ,
we define N [D] = ∪v∈DN [v] and N(D) = N [D] \ D. Let f be the function associated with
a capacitated dominating set D. Given u ∈ D and v ∈ V \ D, we say that u dominates v

if f(v) = u; moreover, every vertex u ∈ D dominates itself. Note that the capacity of a
vertex v only limits the number of neighbors that v can dominate, that is, a vertex v ∈ D can
dominate c(v) of its neighbors plus v itself.

Parameterized complexity is a two-dimensional framework for studying the computational
complexity of problems [7, 10, 21]. One dimension is the input size n and the other one
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the parameter. A problem is called fixed-parameter tractable (FPT) if it can be solved in
time f(k) · nO(1), where f is a computable function only depending on k. Now we define the
notion of parameterized reduction.

Definition 3 Let A,B be parameterized problems. We say that A is (uniformly many:1)
reducible to B if there is an algorithm Φ which transforms (x, k) into (x′, g(k)) in time f(k) ·
|x|α, where f, g : N → N are arbitrary functions and α is a constant independent of |x| and k,
so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

3 Parameterized Intractability – Hardness Results

3.1 CDS is W[1]-hard parameterized by treewidth and solution size

In this section we show that Capacitated Dominating Set is W [1]-hard when parameterized
by treewidth and solution size. We reduce from k-Multicolor Clique, a restriction of the
k-Clique problem.

Multicolor Clique: Given an integer k and a connected undirected graph
G = (V [1] ∪ V [2] · · · ∪ C[k], E) such that for every i the vertices of V [i] induce
an independent set, is there a k-clique C in G?

In fact, we will reduce to a slightly modified version of Capacitated Dominating Set,
Marked Capacitated Dominating Set where we mark some vertices and demand that all
marked vertices must be in the dominating set. We can then reduce from Marked Capac-
itated Dominating Set to Capacitated Dominating Set by attaching k + 1 leaves to
each marked vertex and increasing the capacity of each marked vertex by k + 1. It is easy to
see that the new instance has a k-capacitated dominating set if and only if the original one
had a k-capacitated dominating set that contained all marked vertices, and that this operation
does not increase the treewidth of the graph. Thus, to prove that Capacitated Dominating
Set is W [1]-hard when parameterized by treewidth and solution size, it is sufficient to prove
that Marked Capacitated Dominating Set is.

We will show how given an instance (G, k) of Multicolor Clique, we can build an
instance (H, c, k′) of Marked Capacitated Dominating Set such that

• k′ = 7k(k − 1) + 2k,

• G has a clique of size k if and only if H has a capacitated dominating set of size k′, and

• the treewidth of H is O(k4).

For a pair of distinct integers i, j, let E[i, j] be the set of edges with one endpoint in
V [i] and the other in V [j]. Without loss of generality, we will assume that |V [i]| = N and
|E[i, j]| = M for all i, j, i 6= j. To each vertex v we assign a unique identification number vup

between N + 1 and 2N , and we set vdown = 2N − vup. For two vertices u and v, by adding
an (A,B)-arrow from u to v we will mean adding A subdivided edges between u and v and
attaching B leaves to v (see Fig. 1). Now we describe how to build the graph H for a given
instance (G = (V [1] ∪ V [2] · · · ∪ V [k], E), k) of Multicolor Clique.

For every integer i between 1 and k we add a marked vertex x̂i that has a neighbor v for
every vertex v in V [i]. For every j 6= i, we add a marked vertex ŷij and a marked vertex ẑij .
Now, for every vertex v ∈ V [i] and every integer j 6= i we add a (vup, vdown)-arrow from v to
ŷij and a (vdown, vup)-arrow from v to ẑij . Finally we add a set Si of k′ + 1 vertices and make
every vertex in Si adjacent to every vertex v with v ∈ V [i]. See Fig. 2 for an illustration.
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Figure 1: Adding an (A,B)-arrow from u to v.
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ŷ21
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Figure 2: Vertex selection for color class 2.

Similarly, for every pair of integers i, j with i < j, we add a marked vertex x̂ij with a
neighbor e for every edge e in E[i, j]. Moreover, we add four new marked vertices p̂ij , p̂ji, q̂ij ,
and q̂ji. For every edge e = {u, v} in E[i, j] with u ∈ V [i] and v ∈ V [j], we add a (udown, uup)-
arrow from e to p̂ij, a (uup, udown)-arrow from e to q̂ij , a (vdown, vup)-arrow from e to p̂ji and
a (vup, vdown)-arrow from e to p̂ji. We also add a set Sij of k′ + 1 vertices and make every
vertex in Sij adjacent to every vertex e with e ∈ E[i, j]. See Fig. 3 for an illustration.

Finally, we add a marked vertex r̂ij and a marked vertex ŝij for every i 6= j. For every
i 6= j, we add (2N, 0)-arrows from ŷij to r̂ij, from p̂ij to r̂ij, from ẑij to ŝij, and from q̂ij to ŝij

(see Fig. 4). This concludes the description of the graph H.
We now describe the capacities of the vertices. For every i 6= j, the vertex x̂i has capacity

N − 1, the vertex x̂ij has capacity M − 1, the vertices ŷij and ẑij both have capacity 2N2, the
vertices p̂ij and q̂ij have capacity 2NM , and both r̂ij and ŝij have capacity 2N . For all other
vertices, their capacity is equal to their degree in H.

Observation 1 The treewidth of H is O(k4).

Proof: If we remove all marked vertices (
⋃k

i=1 Si and
⋃

i6=j Sij), a total of O(k4) vertices,
from H, we obtain a forest. As deleting a vertex reduces the treewidth by at most one, this
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Figure 4: Vertex-Edge incidence gadget

concludes the proof. 2

Lemma 1 If G has a multicolor clique C = {v1, v2, . . . , vk} then H has a capacitated domi-
nating set D of size k′ containing all marked vertices.

Proof: For every i < j let eij be the edge from vi to vj in G. In addition to all the marked
vertices, let D contain vi and eij for every i < j. Clearly D contains exactly k′ vertices, so it
remains to prove that D is indeed a capacitated dominating set.

For every i < j, let x̂i and x̂ij dominate all their neighbors except for vi and eij respectively.
The vertices vi and eij can dominate all their neighbors, since their capacity is equal to their
degree. Let r̂ij dominate vdown

i of the vertices in the (2N, 0)-arrow from ŷij, and v
up
i of the

vertices of the (2N, 0)-arrow from p̂ij. Similarly let ŝij dominate v
up
i of the vertices in the

(2N, 0)-arrow from ẑij , and vdown
i of the vertices of the (2N, 0)-arrow from q̂ij. Finally, for

every i 6= j we let ŷij, ẑij, p̂ij and q̂ij dominate all their neighbors that have not been dominated
yet. One can easily check that every vertex of H will either be a dominator or dominated in
this manner, and that no dominator dominates more vertices than its capacity. 2

Lemma 2 If H has a capacitated dominating set D of size k′ containing all marked vertices,
then G has a multicolor clique of size k.
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Proof: Observe that for every integer 1 ≤ i ≤ k, there must be a vi ∈ V [i] such that vi ∈ D.
Otherwise we have that Si ⊂ D and, since |Si| > k′, we obtain a contradiction. Similarly, for
every pair of integers i, j with i < j there must be an edge eij ∈ E[i, j] such that eij ∈ D. We
let eji = eij . Since |D| ≤ k′ it follows that these are the only unmarked vertices in D. Since
all the unmarked vertices in D have capacity equal to their degree, we can assume that each
such vertex dominates all its neighbors. We now proceed with proving that for every pair of
integers i,j with i 6= j, eij = uv is incident to vi. We prove this by showing that if u ∈ V [i]
then v

up
i + udown = 2N .

Suppose for a contradiction that v
up
i + udown < 2N . Observe that each vertex of T =

(N(ŷij) ∪ N(r̂ij) ∪ N(p̂ij)) \ (N(vi) ∪ N(eij)) must be dominated by either ŷij, r̂ij , or p̂ij.
However, by our assumption that v

up
i +udown < 2N , it follows that |T | = 2N2 +4N +2MN −

(vup
i + udown) > 2N2 + 2N + 2MN . The sum of the capacities of ŷij, r̂ij , and p̂ij is exactly

2N2 + 2N + 2MN . Thus it is impossible that every vertex of T is dominated by one of ŷij,
r̂ij , and p̂ij, a contradiction. If v

up
i + udown > 2N then vdown

i + uup < 2N , and we can apply
an identical argument for ẑij, ŝij, and q̂ij .

Thus, it follows that for every i 6= j there is an edge eij incident both to vi and to vj . Thus
{v1, v2, . . . , vk} forms a clique in G. As any k-clique in G is a multicolor clique this completes
the proof. 2

Observation 1, Lemma 1 and Lemma 2 immediately imply the following theorem.

Theorem 1 CDS parameterized by treewidth and solution size is W [1]-hard.

3.2 CVC parameterized by treewidth is W[1]-hard

Usually vertex cover problems can be seen as restrictions of domination problems, and therefore
it is natural to expect Capacitated Vertex Cover to be somewhat easier than Capaci-
tated Dominating Set. In this section, we give a result similar to the hardness result for
Capacitated Dominating Set, but weaker in the sense that we only show that Capaci-
tated Vertex Cover is hard when parameterized by the treewidth, while we have seen in
the previous section that Capacitated Dominating Set is hard when parameterized by the
treewidth and the solution size.

To obtain our result we reduce from Multicolor Clique, as in the previous section.
Again, we reduce to a marked version of Capacitated Vertex Cover, where we search for
a size k′ capacitated vertex cover that contains all the marked vertices. The reduction from
Marked Capacitated Vertex Cover to Capacitated Vertex Cover is identical to
the reduction from Marked Capacitated Dominating Set to Capacitated Dominating
Set described in the previous section. Notice also that in Marked Capacitated Vertex
Cover it makes sense to have marked vertices with capacity zero, as they will get non-zero
capacity after the reduction to Capacitated Vertex Cover.

We reduce by building for an instance (G, k) of Multicolor Clique an instance (H, c, k′)
of Marked Capacitated Vertex Cover. In fact, we construct the graph H from G in
almost the same manner as in the reduction to Marked Capacitated Dominating Set.
The only differences are:

• We do not add the vertex sets Si and Sij for every i, j.

• When we add an (A,B)-arrow from u to v, the A vertices on the subdivided edges are
marked and have capacity 1, while the B leaves attached to v are also marked but have
capacity 0.

7



• k′ = 7k(k − 1) + 2k + (2k2N + (2M + 4) · k · (k − 1)) · 2N .

The new term in the value of k′ is simply a correction for all the extra marked vertices
in the (A,B)-arrows. Notice that in this case the value of k′ is not a function of k alone,
and that therefore this reduction does not imply that Capacitated Vertex Cover is W [1]-
hard parameterized by treewidth and solution size. However, by applying arguments almost
identical to the ones in the previous section, we can prove the following claims. The verification
of these claims is similar to the ones we made in the last section and hence the details are
omitted.

Claim 1 The treewidth of H is O(k3).

Claim 2 If G has a multicolor clique C = {v1, v2, . . . , vk} then H has a capacitated vertex
cover S of size k′ containing all marked vertices.

Claim 3 If H has a capacitated vertex cover S of size k′ containing all marked vertices, then
G has a multicolor clique of size k.

Together, the claims imply that Capacitated Vertex Cover parameterized by treewidth is
W [1]-hard.

Theorem 2 CVC parameterized by treewidth is W [1]-hard.

4 FPT Algorithm for CVC on Graphs of Bounded Treewidth

In the last section we showed that Capacitated Vertex Cover, when parameterized only
by treewidth (tw) of the input graph, is W[1]-hard. However, for Capacitated Dominating
Set we were able to show that the problem remains W[1]-hard even when we parameterize by
both tw and k (the solution size). We complement the hardness result about Capacitated
Vertex Cover of the last section by giving a time 2O(tw log k)nO(1) algorithm on graphs of
bounded treewidth with respect to the combined parameters tw and k, a result which was
sketched independently by Hannes Moser [20]. Furthermore, using this 2O(tw log k)nO(1) time
algorithm for CVC on graphs of bounded treewidth, we give an improved algorithm for the
weighted version of Capacitated Vertex Cover in general graphs. Our algorithm, running
in time O(2O(k log k)nO(1)), improves the earlier algorithm of Guo et al. [15], that runs in
time O(1.2k2

+ n2).
To this end, we give a dynamic programming algorithm working on a so-called nice tree

decomposition of the input graph G: A tree decomposition (X,U) is a nice tree decomposition
if one can root U in such a way that the root and every inner node of U is either an insert
node, a forget node, or a join node. Thereby, a node i of U is an insert node if i has exactly
one child j, and Xi consists of all vertices of Xj plus one additional vertex; it is a forget node
if i has exactly one child j, and Xi consists of all but one vertices of Xj ; and it is a join
node if i has exactly two children j1, j2, and Xi = Xj1 = Xj2 . Given a tree decomposition of
width tw, a nice tree decomposition of the same width can be found in linear time [17]. In
what follows, we assume that the nice tree decomposition (X,U) that we are using has the
additional property that the bag associated with the root of U is empty (such a decomposition
can easily be constructed by taking an arbitrary nice tree decomposition and adding some
forget nodes “above” the original root). Similarly, we assume that every bag associated with
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a leaf node different from the root of U contains exactly one vertex. For a node i in the tree U

of a tree decomposition (X,U), let

Yi :=
⋃

{v ∈ Xj | j is a node in the subtree of U whose root is i},
Zi := Yi \ Xi, and

Ei := {{v,w} ∈ E | v ∈ Zi ∨ w ∈ Zi}.

Starting at the leaf nodes of U that are different from the root, our dynamic programming
algorithm assigns to every node i of U a table Ai that has

• a column ℓ with ℓ ≤ k,

• for every vertex v ∈ Xi a column vc(v) with vc(v) ∈ {true, false}, and

• for every vertex v ∈ Xi a column s(v) with s(v) ∈ {null, 0, 1, . . . , k − 1}.
Every row of such a table Ai corresponds to a solution (f,C) for CVC on the subgraph of G

that consists of all vertices in Yi and all edges in E having at least one endpoint in Zi. More
exactly, for every row of a table Ai there is a vertex set C ⊆ Yi and mapping f : Ei → C with
the following properties:

• C is a capacitated vertex cover for Gi = (Yi, Ei).

• |C| ≤ ℓ.

• C contains all vertices v ∈ Xi with vc(v) = true and no vertex v ∈ Xi with vc(v) = false.

• For every vertex v ∈ Xi ∩ C, we have

|{{v,w} ∈ Ei | f({v,w} = w}| = s(v),

and for every vertex v ∈ Xi \ C, we have s(v) = null.
Intuitively speaking, for a vertex v ∈ C, the variable s(v) contains the number of edges incident
to v that are covered by vertices in Zi and, therefore, do not have to be covered by v. The
simple observation that s(v) can be at most k − 1 (because C can contain at most k − 1
neighbors of v) is crucial for the running time of the algorithm.

Clearly, if the table associated with the root of U is nonempty, the given instance of CVC
is a yes-instance.

We will now describe the computation of the table Ai for a node i in U , depending on if i is
a leaf node different from the root, an insert node, a forget node, or a join node. If necessary,
we write ℓi, vci(v), and si(v) in order to make clear that a value ℓ, vc(v), and s(v), respectively,
stems from a row of a table Ai.

The node i is a leaf node different from the root. Let Xi = {v}. Then we add one
row to the table Ai for the case that v is not part of C and one row for the case that v is part
of C, provided that k > 0. Because i has no child and, hence, no neighbor of v belongs to Zi,
the variable s(v) is set to 0 in the case that v is part of C:

1 if k > 0: {
2 add a new row to Ai;
3 update the new row in Ai and set vc(v) := true; s(v) := 0; ℓ := 1; }
4 add a new row to Ai;
5 update the new row in Ai and set vc(v) := false; s(v) := null; ℓ := 0;

The node i is an insert node. Let j be the child of i in U , and let Xi = Xj ∪{v}. Here
we extend the table Aj by adding the variables vc(v) and s(v). For every row of Aj , we add
one row to the table Ai for the case that v is not part of C and one row for the case that v is
part of C, provided that ℓj < k. Because no neighbor of v can belong to Zi, the variable s(v) is
set to 0 in the case that v is part of C:
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1 for every row r of Aj : {
2 if ℓj < k: {
3 copy the row r from Aj into Ai;
4 update the new row in Ai and set vc(v) := true; s(v) := 0; ℓ := ℓ + 1; }
5 copy the row r from Aj into Ai;
6 update the new row in Ai and set vc(v) := false; s(v) := null; }

The node i is a forget node. Let j be the child of i in U , and let Xi = Xj \ {v}.
Clearly, all neighbors of v belong to Yj due to the definition of a tree decomposition. What
has to be done is to consider the edges {v,w} with w ∈ Xi, to decide which of them shall be
covered by v, and to set the value of sj(v) accordingly. Note that this approach ensures that
for all edges {v,w} with w ∈ Zj we have already decided in a previous step which of these
edges are covered by v. More exactly, for every row of Aj , we perform the following steps.
If vcj(v) = true, then we try all possibilities for which edges between v and vertices w ∈ Xi

can be covered by v and add rows to Ai accordingly. If vcj(v) = false, then, of course, no edge
between v and vertices w ∈ Xj can be covered by v, and we add one row to Ai. In both cases,
we have to check that for every edge {v,w} with w ∈ Xi that is not covered by v it holds
that vcj(w) = true and the remaining capacity of w, which can be computed from s(w) and
the number of w’s neighbors in Zj , is big enough to cover {v,w}:
1 N ′ := N(v) ∩ Xi;
2 for every row r of Aj : {
3 if vcj(v) = true: {
4 for every subset N ′′ of N ′ with |N ′′| = min{|N ′|, cap(v) − (|N(v) ∩ Zj | − sj(v))}: {
5 if ∀w ∈ N ′ \ N ′′ : vcj(w) ∧ cap(w) > |N(w) ∩ Zj | − sj(w): {
6 copy the row r from Aj into Ai;
7 for every vertex w ∈ N ′′ with vc(w) = true: {
8 update the new row in Ai and set s(w) := s(w) + 1; }}}
9 else: { // vcj(v) = false

10 if ∀w ∈ N ′ : vc(w) = true∧ cap(w) > |N(w) ∩ Zj | − sj(w): {
11 copy the row r from Aj into Ai; }}}

The node i is a join node. Let j1 and j2 be the children of i in U . Here we consider
every pair r1, r2 of rows where r1 is from Aj1 and r2 is from Aj2. We say that two rows r1

and r2 are compatible if for every vertex v in Xi it holds that vcj1(v) = vcj2(v). If they are
compatible, then we check whether for every vertex v ∈ Xi with vcj1(v) = vcj2(v) = true the
number of edges {v,w} covered by v with w ∈ Zj1 plus the number of edges {v,w} covered
by v with w ∈ Zj2 is at most cap(v). If this is the case, a new row is added to Ai:

1 for every compatible pair r1, r2 of rows where r1 is from Aj1 and r2 is from Aj2 : {
2 if ∀v ∈ Xi : vcj1(v) = false∨ cap(v) ≥ |N(v) ∩ Zj1 | − sj1(w) + |N(v) ∩ Zj2 | − sj2(w): {
3 add a new row to Ai;
4 update the new row in Ai and set ℓ := ℓj1 + ℓj2 − |{v ∈ Xi | vcj1(v) = true}|;
5 for every vertex v ∈ Xi: {
6 update the new row in Ai and set vc(v) = vcj1 (v); s(v) = sj1(v) + sj2(v); }}}

In all four cases (i is a leaf node different from the root, an insert node, a forget node,
or a join node), after inserting a row to Ai, we delete dominated rows from Ai. A row r1 is
dominated by a row r2 if r1 and r2 are compatible, the value of ℓ in r1 is equal or greater than
the value of ℓ in r2, and for every vertex v ∈ Xi with vc(v) = true the value of s(v) in r1 is
equal or less than the value of s(v) in r2. The correctness of this data reduction is obvious: If
the solution corresponding to r1 can be extended to a solution for the whole graph, then this is
also possible with the solution corresponding to r2 instead. Clearly, due to this data reduction,
the table can never contain more than ktw rows, which leads to the following theorem.
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Theorem 3 CVC on graphs of treewidth tw can be solved in k3·tw · nO(1) time.

Proof: The correctness of the algorithm follows from the above description. The running time
for computing one table Ai associated with a tree node i is bounded from above by k3·tw ·nO(1),
due to the fact that every table contains at most ktw rows and that the tree decomposition
has O(n) tree nodes [17]. 2

We mention in passing that with usual backtracking techniques it is possible to construct
the mapping f and the set C after running the dynamic programming algorithm.

CVC in General Undirected Graphs: The algorithm described above can also be used
for solving CVC on general graphs with the following two observations. Firstly, the treewidth
of graphs that have a vertex cover of size k is bounded above by k, and a corresponding tree
decomposition of width k can be found in O(1.2738k + kn) time [4]. (For a graph G = (V,E)
that has a vertex cover C with |C| = k, a tree decomposition of width k can be constructed
as follows: Let U be a path of length |V \ C|, and assign to every node i of U a bag Xi

that contains C and one vertex from V \ C. The vertex cover of size k can be found in time
O(1.2738k + kn) [4].) Secondly, Theorem 3 can easily be adapted to the weighted version of
CVC, where every vertex of the input graph has, in addition to the capacity, a weight, and
the question is if there is a capacitated vertex cover whose weight is at most k. With these
observations, we get the following corollary.

Corollary 1 The weighted version of CVC on general graphs can be solved in k3k · nO(1) =
2O(k log k) · nO(1) time.

5 Conclusions and Discussions

In this paper we studied Capacitated Vertex Cover and Capacitated Dominating Set,
generalizations of Vertex Cover and Dominating Set, respectively, from the parameterized
perspective. In particular, we focused on the parameterized complexity when parameterized by
(a) the treewidth of the input graph and (b) the treewidth of the input graph and the solution
size k. While the original version of these problems were known to be FPT when parameterized
by treewidth we found their behavior in the capacitated context to be surprising. In particular,
CDS turned out to be W[1]-hard and CVC to be FPT when parameterized by treewidth
and k. An improved algorithm for CVC in general undirected graphs was obtained by using
the FPT algorithm for CVC (when parameterized by treewidth and k) as a subroutine. We
also observed that CVC is possibly the first known “subset problem” which has been shown to
be FPT when parameterized by solution size but W[1]-hard when parameterized by treewidth.

It is easy to observe that if a planar graph has a CDS of size at most k then the treewidth
of the input graph is at most O(

√
k) [1, 6, 11]. Hence, in order to show that CDS is FPT

for planar graphs, it is sufficient to obtain a dynamic programming algorithm for it on planar
graphs of bounded treewidth. The following question in this direction remains unanswered:

• Is CDS in planar graphs parameterized by solution size fixed parameter tractable?
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