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Given a graphG and a parameter k , the Chordal Vertex Deletion (CVD) problem asks whether there exists
a subsetU ⊆ V (G) of size at most k that hits all induced cycles of size at least 4. The existence of a polynomial
kernel for CVD was a well-known open problem in the field of Parameterized Complexity. Recently, Jansen and
Pilipczuk resolved this question affirmatively by designing a polynomial kernel for CVD of size O(k161 log58 k),
and asked whether one can design a kernel of size O(k10) [Jansen an Pilipczuk, SODA 2017]. While we do
not completely resolve this question, we design a significantly smaller kernel of size O(k12 log10 k), inspired
by the O(k2)-size kernel for Feedback Vertex Set [Thomassé, TALG 2010]. Furthermore, we introduce the
notion of the independence degree of a vertex, which is our main conceptual contribution.
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1 INTRODUCTION
Data reduction techniques are widely applied to deal with computationally hard problems in real
world applications. It has been a long-standing challenge to formally express the efficiency and
accuracy of these “pre-processing” procedures. The framework of parameterized complexity turns
out to be particularly suitable for a mathematical analysis of pre-processing heuristics. Formally,
in parameterized complexity each problem instance is accompanied by a parameter k , and we
say that a parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm that
solves the problem in time f (k) · |I |O(1), where |I | is the size of the input and f is a computable
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function of the parameter k alone. Kernelization is the subarea of parameterized complexity that
deals with the mathematical analysis of pre-processing heuristics. A parameterized problem is said
to admit a polynomial kernel if there is a polynomial-time algorithm (the degree of polynomial is
independent of the parameter k), called a kernelization algorithm, that reduces the input instance
down to an instance whose size is bounded by a polynomial p(k) in k , while preserving the answer.
This reduced instance is called a p(k)-kernel for the problem. Observe that if a problem has a
kernelization algorithm, then it also has an FPT algorithm.
Kernelization appears to be an interesting computational approach not only from a theoretical

perspective, but also from a practical perspective. There are many real-world applications where
even very simple preprocessing can be surprisingly effective, leading to significant size-reduction
of the input. Kernelization is a natural tool for measuring the quality of existing preprocessing
rules proposed for specific problems as well as for designing new powerful such rules. The most
fundamental question in the field of kernelization is:

Let Π be parameterized problem that admits an FPT algorithm. Then, does Π admit a
polynomial kernel?

In recent times, the study of kernelization, centred on the above question, has been one of the
main areas of research in parameterized complexity, yielding many new important contributions
to theory. These include general results showing that certain classes of parameterized problems
have polynomial kernels, as well as other results that utilize advanced techniques from algebra,
matroid theory and topology for data reduction [4, 6, 17, 18, 22, 25, 28, 29, 31, 32, 39, 40]. The
development of a framework for ruling out polynomial kernels under certain complexity-theoretic
assumptions [5, 7, 14, 20] has added a new dimension to the area, and strengthened its connections
to classical complexity theory. We refer to the following surveys [30, 34] and the corresponding
chapters in the books [12, 15, 16, 38], for a detailed introduction to the field of kernelization.
An important class of problems, that has led to the development of many upper bound tools

and techniques in kernelization, is the class of parameterized graph deletion problems. A typical
problem of this class is associated with a family of graphs, F , such as edgeless graphs, forests,
cluster graphs, chordal graphs, interval graphs, bipartite graphs, split graphs or planar graphs. The
deletion problem corresponding to F is formally stated as follows.

F -Vertex (Edge) Deletion Parameter: k
Input: An undirected graph G and a non-negative integer k .
Question: Does there exist S ⊆ V (G) (or S ⊆ E(G)) such that |S | ≤ k and G \ S is in F ?

Graph deletion problems are also among the most basic problems in graph theory and graph
algorithms. Most of these problems are NP-complete [33, 41], and thus they were subject to intense
study in various algorithmic paradigms to copewith their intractability [17, 21, 35, 37]. These include,
considering a restricted class of inputs, approximation algorithms, parameterized complexity and
kernelization.

Some of the most well known results in kernelization are polynomial kernels for graph deletion
problems such as Feedback Vertex Set [40], Odd Cycle Transversal [31, 32], Vertex Cover [2,
11], Planar-F -Deletion [17], and Treedepth-η-Deletion [22]. A common thread among all
these problems, with the exception of Odd Cycle Transversal, is that the corresponding family F

can be characterized by a finite set of forbidden minors that include at least one connected planar
graph. It is known that, if F can be characterized by a finite set of forbidden induced subgraphs,
then the corresponding F -Vertex Deletion problem immediately admits an FPT algorithm as
well as polynomial sized kernel because of its connection to d-Hitting Set [1]. However, if F
is characterized by an infinite set of forbidden induced subgraphs, which is the case when F is
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the class of chordal graphs, chordal bipartite graphs, interval graphs, proper interval graphs and
permutation graphs, our understanding of these problems in the realm of parameterized complexity
and kernelization, is still at a nascent stage. While Chordal Vertex Deletion (CVD) was known
to be FPT for some time [10, 36], the parameterized complexity of Interval Vertex Deletion was
settled only recently [8, 9]. The parameterized complexity of Permutation Vertex Deletion and
Chordal Bipartite Vertex Deletion is still unknown. Coming to the question of polynomial
kernels for these problems, the situation is even more grimmer. Until recently, the only known
result was a polynomial kernel for Proper Interval Vertex Deletion: Fomin et al. [19] obtained
a O(k53) sized polynomial kernel for Proper Interval Vertex Deletion, which has recently
been improved to O(k4) [27]. A dearth of further results in this area has led to the questions of
kernelization complexity of Chordal Vertex Deletion and Interval Vertex Deletion becoming
prominent open problems [10, 13, 19, 24, 36].
A recent work [26] has resolved one of these open questions. They showed that CVD admits a

polynomial kernel of size O(k161 log58 k), and further posed an open question:
Does CVD admit a kernel of size O(k10)?

While we do not completely resolve this question, we design a significantly smaller kernel. In
particular, we obtain the following result.

Theorem 1.1. CVD admits a polynomial kernel of size O(k12 log10 k).

Our Methods. Our result is inspired by the O(k2)-size kernel for Feedback Vertex Set (FVS)
(checking whether there exists a k sized vertex subset that intersects all cycles) , designed by [40].
The kernel for FVS consists of the two following steps.

(1) Reduce the maximum degree of the graph by using matching based tools (in particular
expansion lemma). That is, upper bound the maximum degree ∆ of the graph by O(k).

(2) When the graph has maximum degree ∆, one can show that if a graph has minimum degree
at least 3 (which can be easily achieved for FVS) then any minimum feedback vertex set has
size Ω(n/∆). This together with an upper bound on ∆ implies O(k2)-size kernel.

Let us now look at the CVD problem. Here, our objective is to check whether there exists a
k-sized vertex subset S such that G \ S is a chordal graph, i.e., a graph without induced cycles
of length at least 4 (also called chordless cycles). Thus, FVS is about intersecting all cycles and
CVD is about intersecting all chordless cycles. Unfortunately, this apparent similarity stops here!
Nevertheless, we are still able to exploit ideas used in the O(k2)-size kernel for FVS. Towards
this, we define the notion of independence degree of vertices and graphs. Roughly speaking, the
independence degree of a vertex v is the size of a maximum independent set in its neighborhood
(G[N (v)]). The study of this notion is our main conceptual contribution.

As a first step we bound the independence degree of every vertex by kO(1) – this is similar to the
first step of the kernel for FVS. Once we have bounded the independence degree of a graph, we
obtain an approximate solutionM (also called modulator) and analyze the graphG \M . The bound
on the independence degree immediately implies that the number of leaves, vertices of degree at
least three and the number of maximal degree two paths in the clique forest ofG \M is bounded by
kO(1). Then, using ideas similar to those used in [36] to bound the size of a maximal clique while
designing the first FPT algorithm for CVD, we reduce the size of each maximal clique in G \M
to kO(1). Finally, we use structural analysis to bound the size of each maximal degree two path,
which includes the design of a reduction rule that computes a family of minimum cuts, and thus we
obtain our final kernel. We believe that the notion of independent degree is likely to be useful for
designing algorithms for other graph modification problems. Not only does it lead to a significant
improvement, once it is bounded, it greatly simplifies the analysis of the resulting instance.
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Finally, after we obtain a kernel, we show that by rerunning our entire kernelization procedure
once, we can actually reduce the size of the kernel. Since we rely on an O(log2 n)-approximation
algorithm, when we call our kernelization procedure for the first time, we work with an approximate
solution of size O(k3 log2 k); indeed, it can be assumed that logn < k logk , else the 2O(k logk) ·nO(1)-
time algorithm for CVD by [10] solves the input instance in polynomial time. However, once we
have our first kernel, it holds that n =O(k22 log12 k). At this point, if we reuse the approximation
algorithm, we obtain an approximate solution of size O(k log2 k). The size of our kernel depends
on the size of the approximate solution; in particular, having an approximate solution of size
O(k log2 k) allows us to obtain a kernel of size O(k12 log10 k).

2 PRELIMINARIES
For a positive integer k , we use [k] as a shorthand for {1, 2, . . . ,k}. Given a function f : A → B
and a subset A′ ⊆ A, we let f |A′ denote the function f restricted to the domain A′.

Parameterized Complexity. In Parameterized Complexity each problem instance is accompanied
by a parameter k . A central notion in this field is the one of fixed-parameter tractability (FPT).
This means, for a given instance (I ,k), solvability in time f (k)|I |O(1) where f is some computable
function of k . A parameterized problem is said to admit a polynomial kernel if there is a polynomial-
time algorithm (the degree of polynomial is independent of the parameter k), called a kernelization
algorithm, that reduces the input instance down to an equivalent instance whose size is bounded
by a polynomial p(k) in k . Here, two instances are equivalent if one of them is a yes-instance if and
only if the other one is a yes-instance. The reduced instance is called a p(k)-kernel for the problem.
For a detailed introduction to the field of kernelization, we refer to the following surveys [30, 34]
and the corresponding chapters in the books [12, 15, 16, 38].

Kernelization algorithms often rely on the design of reduction rules. The rules are numbered, and
each rule consists of a condition and an action. We always apply the first rule whose condition is
true. Given a problem instance (I ,k), the rule computes (in polynomial time) an instance (I ′,k ′)

of the same problem where k ′ ≤ k . Typically, |I ′ | < |I |, where if this is not the case, it should be
argued why the rule can be applied only polynomially many times. We say that the rule safe if the
instances (I ,k) and (I ′,k ′) are equivalent.

The standard definition of an approximation algorithm for a parameterized problem is as follows.
We say that a parameterized minimization problem Π admits a c-factor approximation algorithm A,
if given an instance (I ,k) of Π, in polynomial time A returns either (i) the answer No, in which
case there is no solution of value (size) at most k , or (ii) a solution of value (size) at most c · k .

Graphs. Given a graphG , we let V (G) and E(G) denote its vertex-set and edge-set, respectively. In
this paper, we only consider undirected graphs. We let n = |V (G)| denote the number of vertices in
the graphG , whereG will be clear from context. The open neighborhood, or simply the neighborhood,
of a vertex v ∈ V (G) is defined as NG (v) = {w | {v,w} ∈ E(G)}. The closed neighborhood of v is
defined as NG [v] = NG (v) ∪ {v}. The degree of v is defined as dG (v) = |NG (v)|. We can extend the
definition of neighborhood of a vertex to a set of vertices as follows. Given a subset U ⊆ V (G),
NG (U ) =

⋃
u ∈U NG (u) and NG [U ] =

⋃
u ∈U NG [u]. The induced subgraph G[U ] is the graph with

vertex-set U and edge-set {{u,u ′} | u,u ′ ∈ U , and {u,u ′} ∈ E(G)}. Moreover, we define G \U as
the induced subgraphG[V (G) \U ]. We omit subscripts when the graphG is clear from context. An
independent set in G is a set of vertices such that there is no edge between any pair of vertices in
this set. The independence number ofG , denoted by α(G), is defined as the cardinality of the largest
independent set inG . A clique inG is a set of vertices such that there is an edge between every pair
of vertices in this set.
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A path P in G is a subgraph of G where V (P) = {x1,x2, . . . ,xℓ} ⊆ V (G) and
E(P) = {{x1,x2}, {x2,x3}, . . . , {xℓ−1,xℓ}} ⊆ E(G)

for some ℓ ∈ [n]. The vertices x1 and xℓ are called endpoints of the path P and the remain-
ing vertices in V (P) are called internal vertices of P . We also say that P is a path between x1
and xℓ . A cycle C in G is a subgraph of G where V (C) = {x1,x2, . . . ,xℓ} ⊆ V (G) and E(C) =
{{x1,x2}, {x2,x3}, . . . , {xℓ−1,xℓ}, {xℓ,x1}} ⊆ E(G), i.e., it is a path with an additional edge between
x1 and xℓ . Let P be a path in the graph G on at least three vertices. We say that {u,v} ∈ E(G)
is a chord of P if u,v ∈ V (P) but {u,v} < E(P). Similarly, for a cycle C on at least four vertices,
{u,v} ∈ E(G) is a chord of C if u,v ∈ V (C) but {u,v} < E(C). A path P or cycle C is chordless if it
has no chords. Let us note that any chordless cycle has length at least 4.
The graph G is connected if there is a path between every pair of vertices, otherwise G is

disconnected. A connected graph without any cycles is a tree, and a collection of trees is a forest. A
maximal connected subgraph of G is called a connected component of G.

Forest Decompositions. A forest decomposition of a graphG is a pair (F , β) where F is forest, and
β : V (T ) → 2V (G) is a function that satisfies the following,
(i)

⋃
v ∈V (F ) β(v) = V (G),

(ii) for any edge {v,u} ∈ E(G) there is a nodew ∈ V (F ) such that v,u ∈ β(w),
(iii) and for any v ∈ V (G), the collection of nodes Tv = {u ∈ V (F ) | v ∈ β(u)} is a subtree of F .
For v ∈ V (F ), we call β(v) the bag of v , and for the sake of clarity of presentation, we sometimes
use v and β(v) interchangeably. We refer to the vertices in V (F ) as nodes. A tree decomposition is a
forest decomposition where F is a tree.

Chordal Graphs. A graphG is a chordal graph if it has no chordless cycle as an induced subgraph,
i.e., every cycle of length at least four has a chord. A clique forest of G is a forest decomposition
of G where every bag is a maximal clique. We further insist that every bag of the clique forest is
distinct. The following lemma shows that the class of chordal graphs is exactly the class of graphs
which have a clique forest.

Lemma 2.1 (Theorem 4.8, [23]). A graph G is a chordal graph if and only if G has a clique forest.

Given a subset U ⊆ V (G), we say that U hits a chordless cycle C in G ifU ∩V (C) , ∅. Observe
that if U hits every chordless cycle of G, then G \U is a chordal graph. Given a v ∈ V (G), we say
that a vertex-set B ⊆ V (G) \ {v} is a v-blocker if B hits every chordless cycle inG . Observe that the
set B must not contain the vertex v .

The Chordal Vertex Deletion (CVD) problem is defined as follows.

Chordal Vertex Deletion (CVD) Parameter: k
Input: An undirected graph G and a non-negative integer k .
Question: Does there exist a subset S ⊆ V (G) such that |S | ≤ k and G \ S is a chordal graph?

For purposes of approximation, we also formulate this problem as an optimization problem.

Chordal Vertex Deletion (CVD)
Input: An undirected graph G.
Question: What is the minimum cardinality of a subset S ⊆ V (G) such that G \ S is a chordal
graph?

The Expansion Lemma. Let c be a positive integer. A c-star is a graph on c + 1 vertices where
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one vertex, called the center, has degree c , and all other vertices are adjacent to the center and have
degree one. A bipartite graph is a graph whose vertex-set can be partitioned into two independent
sets. Such a partition of the vertex-set is called a bipartition of the graph. LetG be a bipartite graph
with bipartition (A,B). A subset of edgesM ⊆ E(G) is called c-expansion of A into B if
(i) every vertex of A is incident to exactly c edges ofM ,
(ii) andM saturates exactly c |A| vertices in B.
Note that a c-expansion saturates all vertices ofA, and for each u ∈ A the set of edges inM incident
on u form a c-star. The following lemma allows us to compute a c-expansion in a bipartite graph. It
captures a certain property of neighborhood sets which is very useful for designing kernelization
algorithms.
Lemma 2.2 ([12, 40]). Let G be a bipartite graph with bipartition (A,B) such that there are no

isolated vertices in B. Let c be a positive integer such that |B | ≥ c |A|. Then, there are non-empty subsets

X ⊆ A and Y ⊆ B such that

• there is a c-expansion from X into Y ,
• and there is no vertex in Y that has a neighbor in A \ X , i.e. NG (Y ) = X .

Further, the sets X and Y can be computed in polynomial time.

3 KERNELIZATION
In this section we prove Theorem 1.1. First, in Section 3.1, we briefly state results relating to
approximate solutions for CVD, which will be relevant to following subsections. In Section 3.2 we
address annotations that will be added to the input instance. Next, in Section 3.3, we introduce the
notion of the independent degree of a vertex, which lies at the heart of the design of our kernelization
algorithm. We carefully examine the independent degrees of vertices in our graphs, and show how
these degrees can be bounded by a small polynomial in k . In Section 3.4, we consider the clique
forest of the graph obtained by removing (from the input graph) the vertices of an approximate
solution. In particular, we demonstrate the usefulness of our notion of an independent degree of a
vertex – having bounded the independent degree of each vertex, we show that the number of leaves
in the clique forest can be bounded in a simple and elegant manner. We also efficiently bound the
size of a maximal clique. Then, in Section 3.5, we turn to bound the length of degree-2 paths in
the clique forest. This subsection is quite technical, and its proofs are based on insights into the
structure of chordal graphs and their clique forests. In particular, we use a reduction rule which
computes a collection of minimum cuts rather than one minimum cut which overall allows us
to capture the complexity of a degree-2 path using only few vertices. In Section 3.6, we remove
annotations introduced in preceding sections. Next, in Section 3.7, we bound the size of our kernel.
Finally, in Section 3.8, we show that an alternating application of approximation and kernelization
can improve the performance of our kernelization algorithm.

3.1 Approximation
Observe that it can be assumed that logn < k logk , else the 2O(k logk ) · nO(1)-time algorithm for
CVD by [10] runs in time 2O(k logk ) · nO(1) < 2O(logn) · nO(1), and hence solves the input instance
in polynomial time. Thus, since CVD admits an O(log2 n)-factor approximation algorithm [3], we
obtain the following result.

Lemma 3.1. CVD admits an O(k2 log2 k)-factor approximation algorithm.

Throughout Section 3, we let APPROX denote a polynomial-time algorithm for CVD that returns
approximate solutions of size f (opt) for some function f . Initially, it will denote the algorithm
given by Lemma 3.1. Given an instance of CVD, we say that an approximate solution D is redundant
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if for every vertex v ∈ D, D \ {v} is also an approximate solution, that is,G \ (D \ {v}) is a chordal
graph. Jansen and Pilipczuk [26] showed the following result.

Corollary 3.2 ([26]). Suppose that Chordal Vertex Deletion admits an approximation solution

of size f (opt), for some function f , in polynomial time. Then given an instance (G,k), in polynomial

time, one can find either a vertex that is contained in every solution of size k or a redundant approximate

solution of size O(k · f (k)).

Next, we fix an instance (G,k) of CVD. By relying on APPROX and Corollary 3.2, we may
assume that we have a vertex-set D̃ ⊆ V (G) that is an approximate solution of size f (k) and a
vertex-set D ⊆ V (G) that is a redundant approximate solution of size c · k · f (k) for some constant
c independent of the input.

In the following subsection, we will also need to strengthen approximate solutions to be v-
blockers for some vertices v ∈ V (G). To this end, we will rely on the following result.

Lemma 3.3. Given a vertex v ∈ V (G), one can find (in polynomial time) either a vertex contained in

every solution of size at most k or an approximate solution of size f (k) that is a v-blocker.

Proof. Fix a vertex v = v0 ∈ V (G). We define the graph G ′ by setting V (G ′) = V (G) ∪
{v1,v2, . . . ,vf (k)}, where v1,v2, . . . , vf (k ) are new vertices, and E(G ′) = E(G) ∪ {{u,vi } : {u,v} ∈
E(G), i ∈ [f (k)]} ∪ {(vi ,vj ) : i , j ∈ {0} ∪ [f (k)]}. In other words, G ′ is the graph G to which we
add f (k) copies of the vertex v , which form a clique amongst themselves and v .

We call the algorithm APPROX on G ′ to obtain an approximate solution S . Since G ′[{v0,v1, . . . ,
vf (k )}] is a clique, any chordless cycle inG ′ contains at most one vertex from {v0,v1, . . . ,vf (k )}. In
particular, for any chordless cycleC inG ′, by replacingvi byv0 (in casevi belongs toC), we obtain a
chordless cycle inG . Therefore, if the instance (G,k) admits a solution of size at most k that does not
contain v , then this solution is also a solution for the instance (G ′,k), which implies that the size of
S should be at most f (k). Thus, we can next assume that |S | ≤ f (k), else we conclude that the vertex
v is contained in every solution of size at most k . Since the vertices v0,v1,v2, . . . ,vf (k ) have the
same neighbor-set, if {v0,v1,v2, . . . ,vf (k )} ∩ S , ∅, we can assume that {v0,v1,v2, . . . ,vf (k )} ⊆ S ,
since otherwise we can take S \ {v0,v1,v2, . . . ,vf (k)} as our approximate solution S . Since we
assume that |S | ≤ f (k), we deduce that {v0,v1,v2, . . . ,vf (k )} ∩ S = ∅. In particular, we have that
v < S and therefore S is a v-blocker. □

In light of Lemma 3.3, we may next assume that for every vertex v ∈ V (G), we have a vertex-set
Bv that is both a v-blocker and an approximate solution of size f (k).

3.2 Irrelevant and Mandatory Edges
During the execution of our kernelization algorithm, we mark some edges in E(G) as irrelevant edges.
At the beginning of its execution, all of the edges in E(G) are assumed to be relevant edges. When
we mark an edge as an irrelevant edge, we prove that any solution that hits all of the chordless
cycles inG that contain only relevant edges also hits all of the chordless cycles inG that contain the
irrelevant edge. In other words, we prove that we can safely ignore chordless cycles that contain
at least one irrelevant edge. Observe that we cannot simply remove irrelevant edges from E(G)
since this operation may introduce new chordless cycles in G. Instead we maintain a set EI , which
contains the edges marked as irrelevant.

We also mark some edges in E(G) as mandatory edges. We will ensure that at least one endpoint
of a mandatory edge is present in any solution of size at most k . We let EM denote the set of
mandatory edges.
In some situations, we identify a pair of non-adjacent vertices such that any solution of size

at most k must contain at least one of them. Then, we add an edge between the vertices of the
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pair, and mark this edge as a mandatory edge. The correctness of this operation follows from the
observation that any chordless cycle affected by the addition of this edge contains both vertices of
the pair, and since the edge is marked as a mandatory edge, we ensure this chordless cycle will be
hit although it may no longer exist. Formally, we have the following reduction rule.

Reduction Rule 1. Given two non-adjacent vertices in G, v and u, such that at least one of them

belongs to any solution of size at most k , insert the edge {v,u} into both E(G) and EM .

Hence from now onwards our instance is of the form (G,k,EI ,EM ), and during the execution of
our kernelization algorithm, we will update the sets EI and EM . In Section 3.6, we show that we can
unmark the edges in EI ∪ EM , obtaining an ordinary instance of CVD. For the sake of simplicity,
when EI and EM are clear from context, we omit them.

The Number of Mandatory Edges. If a vertex v is incident to at least k + 1 mandatory edges,
it must belong to any solution of size at most k . Therefore, we may safely apply the following
reduction rule.

Reduction Rule 2. If there exists a vertex v incident to at least k + 1 mandatory edges, remove v
from G and decrement k by 1.

After exhaustively applying the above reduction rule we have the following lemma.
Lemma 3.4. If |EM | > k2 then the input instance is a no-instance.

Proof. After the exhaustive application of Reduction Rule 2, any vertex incident to a mandatory
edge is incident to at most k such edges. Therefore, any set of at most k vertices from V (G) may
intersect at most k2 mandatory edge. Since every solution of size at most k must intersect every
mandatory edge, we deduce that if |EM | > k2, the input instance is a no-instance. □

Thus, we will next assume that |EM | ≤ k2 (else Reduction Rule 2 applies). In particular, whenever
we find a new mandatory edge, we apply the above reduction rule. Moreover, we let D ′ denote
the set D ∪ D̃ to which we add every vertex that is an endpoint of an edge in EM (recall that D̃ is
our approximate solution of size at most f (k) and D is our redundant approximate solution of size
O(k · f (k))). Observe that by adding vertices to a redundant approximate solution, it remains a
redundant approximate solution, and therefore D ′ or any other superset of D is such a solution.
Furthermore, we will also update D ′ whenever the set of mandatory edges EM is updated.

3.3 Independent Degree
Given a vertex v ∈ V (G), we use the notation N R

G (v) to refer to the set consisting of each vertex
u ∈ NG (v) such that {v,u} does not belong to EI ∪ EM . We remark that in this subsection we
identify and mark some edges as irrelevant edges.

Independent Degrees. We start by introducing the notion of the independent degree of vertices
and graphs.

Definition 3.5. Given a vertex v ∈ V (G), the independent degree of v , denoted by d IG (v), is the size
of a maximum independent set in the graph G[N R

G (v)]. The independent degree of G, denoted by
∆I
G , is the maximum independent degree of a vertex in V (G).
Fix ∆ = (k+3)f (k). The objective of this subsection is to investigate the notion of an independent

degree, ultimately proving the following result.
Lemma 3.6. One can construct (in polynomial time) an instance (G ′,k ′,E ′

I ,E
′
R ) of CVD that is

equivalent to the input instance (G,k,EI ,ER ) and such that both k ′ ≤ k and ∆I
G′ ≤ ∆.
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To this end, we may assume that we are given a (fixed) vertex v ∈ V (G) such that d IG (v) > ∆.
Hereafter, in this subsection all the sets/graphs that are definedwill bewith respect to the fixed vertex
v . We say that an instance (G ′,k ′,E ′

I ,E
′
M ) of CVD is better than the input instance (G,k,EI ,EM )

if k ′ ≤ k , V (G ′) = V (G), EI ⊆ E ′
I , EM ⊆ E ′

M , d IG′(v) ≤ ∆ and for all u ∈ V (G ′), d IG′(u) ≤ d IG (u). To
prove the correctness of Lemma 3.6, it is sufficient to prove the correctness of the following lemma.

Lemma 3.7. We can construct (in polynomial time) an instance (G ′,k ′,E ′
I ,E

′
M ) of CVD that is better

than the input instance (G,k,EI ,EM ).

Indeed, to prove Lemma 3.6, one can repeatedly apply the operation given by Lemma 3.7 in the
context of every vertex u ∈ V (G) such that d IG (u) > ∆. We start with a simple result concerning
independent degrees.

Lemma 3.8. Let u ∈ V (G) be a vertex such that d IG (u) ≥ |Bu |. Then, one can find (in polynomial

time) an independent set in G[N R
G (u) \ Bu ] of size at least d

I
G (u) − |Bu |.

Proof. Since Bu is a solution,G \ Bu is a chordal graph. In particular,G[N R
G (u) \ Bu ] is a chordal

graph. Since chordal graphs are perfect, Maximum Independent Set in chordal graphs is solvable
in polynomial time [23]. This means that we can find a maximum independent set inG[N R

G (u) \Bu ]

in polynomial time. Since the size of a maximum independent set in G[N R
G (u)] is at least d

I
G (u), the

size of a maximum independent set in G[N R
G (u) \ Bu ] is at least d

I
G (u) − |Bu |, which concludes the

correctness of the lemma. □

Recall that for any vertex u ∈ V (G), |Bu | ≤ f (k). Thus, we have the following corollary.

Corollary 3.9. One can find (in polynomial time) an independent set in G[N R
G (v) \ Bv ] of size at

least ∆ − f (k).

We let I denote the independent set given by Corollary 3.9.

Independent Components. LetX = NG (v) \ (Bv ∪ I ) denote the neighbor-set ofv from which we
remove the vertices of thev-blockerBv and of the independent set I .We also letH = G\({v}∪Bv∪X )

denote the graph obtained by removing (from G) the vertex v , the v-blocker Bv and any neighbor
of v that does not belong to the independent set I . We define the set of independent components of
v as the set consisting of each connected component of H that contains at least one vertex from I ,
and denote this set by A.
For the set A, we prove the following lemmata.

Lemma 3.10. Each connected component A ∈ A contains exactly one vertex from I and no other
vertex from NG (v).

Proof. The graph H does not contain any vertex from NG (v) \ I , and therefore we only need
to prove the first part of the statement of the lemma. Fix a connected component A ∈ A. By the
definition of A, it is only necessary to prove that A cannot contain (at least) two vertices from I .
Suppose, by way of contradiction, that it contains two such vertices, u and w . Let P denote the
shortest path in A that connects u andw . Since I is an independent set, this path contains at least
two edges. Therefore, together with the vertex v , the path P forms a chordless cycle. However, this
chordless cycle contains no vertex from Bv , which contradicts the fact that Bv is an approximate
solution. □

By Lemma 3.10, for each connected component A ∈ A we can let z(A) ∈ I denote the unique
neighbor of v in A. In fact, Corollary 3.9 and Lemma 3.10 imply that ∆ − f (k) ≤ |A|.
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Fig. 1. The relations between v , Bv , X and A.

Lemma 3.11. Every vertex x ∈ X that is adjacent (in G) to some vertex y ∈ V (A), where A ∈ A, is

also adjacent (in G) to the vertex z(A).

Proof. Let x ∈ X be a vertex that is adjacent (inG) to some vertex y ∈ V (A). Suppose, by way of
contradiction, that {x , z(A)} < E(G). Then, y , z(A). Let P denote a shortest path inG[V (A) ∪ {v}]
that connects v and y. Let y ′ be the vertex on P that is closest to v , excluding v itself, among the
neighbors of x . Moreover, let P ′ denote the subpath of P between v and y ′. By Lemma 3.10, P ′ must
contain the edge {v, z(A)}, and in particular P ′ contains at least two edges. By our choice of y ′,
the only neighbors of x on this path are v and y ′. Moreover, as this path is a shortest path from v
to y ′ in G[V (A) ∪ {v}], we derive that together with x , it forms a chordless cycle that includes v .
Therefore, G[V (P) ∪ {x}] contains a chordless cycle that that includes v . However, this chordless
cycle contains no vertex from Bv , which contradicts the fact that Bv is an approximate solution. □

An illustration of the relations between v , Bv X and A is given in Fig. 1.

The Bipartite Graph Ĥ . To decrease d IG (v), we will consider the bipartite graph Ĥ , which is
defined as follows. We define the vertex-set of Ĥ by V (Ĥ ) = A ∪ Bv . In this context, we mean
that each connected component A ∈ A is represented by a vertex in V (Ĥ ), and for the sake of
simplicity, we use the symbolA also to refer to this vertex. We partition Bv into two sets, Bc and Bf ,
where Bc contains the vertices in Bv that are adjacent (in G) to v , while Bf contains the remaining
vertices in Bv . Here, the letters c and f stand for “close” and “far”. Having this partition, we define
the edge-set of Ĥ as follows. For every vertex b ∈ Bc and connected component A ∈ A such that
b ∈ NG (V (A)) \NG (z(A)) (i.e., b is a neighbor of some vertex in A but not of the vertex z(A)), insert
the edge {b,A} into E(Ĥ ). Moreover, for every vertex b ∈ Bf and connected component A ∈ A

such that b ∈ NG (V (A)), insert the edge {b,A} into E(Ĥ ). An illustration of the bipartite graph Ĥ is
given in Fig. 2. The motivation behind its definition lies at the following lemma.

Lemma 3.12. The bipartite graph Ĥ satisfies the following properties.

(1) Suppose that we are given an edge {b,A} ∈ E(Ĥ ) such that b ∈ Bc and A ∈ A. Then, the graph

G has a chordless cycle defined by the edges {v,b} and {v, z(A)} and a path in A.
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Fig. 2. The bipartite graph Ĥ .

(2) Suppose that we are given edges {b,A}, {b,A′} ∈ E(Ĥ ) such that b ∈ Bf and A,A′ ∈ A. Then,

the graph G has a chordless cycle defined by the edges {v, z(A)}, {v, z(A′)}, the vertex b and

paths in A and A′
.

Proof. To prove the first item, let y be a vertex in NG (b) ∩V (A), whose existence is guaranteed
by the assumption that {b,A} ∈ E(Ĥ ). The desired chordless cycle can be defined by the edges
{v,b}, {v, z(A)}, {b,y} and the edge-set of a shortest path between z(A) and y in A – in particular,
by the definition of A and Lemma 3.10, v is not adjacent to any vertex on this path, excluding z(A),
and since {b,A} ∈ E(Ĥ ), b is not adjacent to z(A).
For the second item, choose y ∈ NG (b) ∩ V (A) and y ′ ∈ NG (b) ∩ V (A′), whose existence is

guaranteed by the assumption that {b,A}, {b,A′} ∈ E(Ĥ ), such that the length of a shortest path
between z(A) (z(A′)) and y (resp. y ′) in A (resp. A′) is minimum. Observe that the cycle defined
{v, z(A)}, {v, z(A′)}, {y,b}, {y ′,b} and the shortest paths between z(A) and y in A and z(A′) and y ′

in A′, respectively, is a chordless cycle – in particular, by the definition of A, Lemma 3.10 and since
b,b ′ ∈ Bf , the cycle cannot have a chord containing v . □

Isolated Vertices in Ĥ . We start investigating the bipartite graph Ĥ by examining the isolated
vertices in A that it contains. In this context, we need the two following lemmata.

Lemma 3.13. Let A ∈ A be an isolated vertex in Ĥ , and denote z = z(A). Then, NG (V (A)) =
NG (z) \V (A).

Proof. Since z ∈ A, it is clear that NG (z) \V (A) ⊆ NG (V (A)). Next, we show that NG (V (A)) ⊆
NG (z) \ V (A). To this end, consider some vertices y ∈ V (A) and u ∈ NG (y) \ V (A), and suppose,
by way of contradiction, that u < NG (z). Because A is a connected component of H , it holds that
u ∈ {v} ∪ Bv ∪ X . Moreover, because A is isolated in Ĥ and yet u ∈ NG (V (A)) \ NG (z), it further
holds that u ∈ X . However, this results in a contradiction to the statement of Lemma 3.11. □

Lemma 3.14. Let A ∈ A be an isolated vertex in Ĥ , and denote z = z(A). Then, G does not have a

chordless cycle that contains the edge {v, z}.

Proof. Suppose, by way of contradiction, that G has a chordless cycle C that contains the edge
{v, z}. By Lemma 3.10, z is the only neighbor of v in A, and therefore the cycle C must contain an
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edge {y,u} such that y ∈ A and u < A for u , v . By Lemma 3.13, NG (V (A)) = NG (z) \A. Because
u ∈ NG (V (A)), this means that {z,u} ∈ E(G). Hence, since the cycle C is chordless, it holds that
z = y, which, in turn, implies that u < NG (v). We deduce that u must belong to Bf . However, this
implies that {A,u} ∈ Ĥ , contradicting the assumption that A is an isolated vertex in Ĥ . □

Lemma 3.14 leads us to the design of the following reduction rule.

Reduction Rule 3. If the graph Ĥ contains an isolated vertex A ∈ A, mark the edge {v, z} as
irrelevant.

After an exhaustive application of this rule, we can assume that Ĥ does not contain an isolated
vertex A ∈ A.

Applying the Expansion Lemma. Next, we would like to apply Lemma 2.2 in the context of the
bipartite graph Ĥ . Since |A| ≥ ∆ − f (k) ≥ (k + 2) · |Bv | and we have already ensured that Ĥ does
not contain any isolated vertex A ∈ A, this lemma implies that we can find (in polynomial time)
non-empty subsets A∗ ⊆ A and B∗ ⊆ Bv such that there exists a (k + 2)-expansion from B∗ into
A∗.
The usefulness of B∗ is stated in the following lemma.

Lemma 3.15. Any solution of size at most k to the input instance that does not contain v contains

all of the vertices in B∗
.

Proof. Suppose that the input instance is a yes-instance, and suppose it has a solution S of
size at most k that does not contain v . Consider some vertex b ∈ B∗. Let A1,A2, . . . ,Ak+2 be the
neighbors of b in Ĥ that correspond to our (k + 2)-expansion. For any choice of Ai and Aj , Lemma
3.12 implies that if there is no chordless cycle defined by v , b and a path in Ai , then there is a
chordless cycle defined by v , b, a path in Ai and a path in Aj . Therefore, if S contains neither v nor
b, it must contain at least one vertex from each connected component Ai excluding at most one
such component. However, there are k + 2 such components, and since S does not contain v , we
deduce that it contains b. The choice of b ∈ B∗ was arbitrary, and therefore we conclude that S
contains all of the vertices in B∗. □

Decreasing the Independent Degree of v. Armed with Lemma 3.15, we can apply the following
reduction rule.

Reduction Rule 4. (a) For each vertex b ∈ B∗
, insert the edge {b,v} into E(G) (if it is not already

present), and mark {b,v} as a mandatory edge.

(b) Mark each edge {v, z(A)} such that A ∈ A∗
as an irrelevant edge.

Let us consider the first statement of the reduction rule.

Lemma 3.16. Reduction Rule 4(a) is safe.

Proof. Suppose that (G,k,EM ,EI ) is the given instance. We claim that it is safe to add mandatory
edges between v and all of the vertices in B∗. To this end, let G ′ denote the graph obtained after
applying this operation, and let E ′

M denote the new set of mandatory edges. Note that we obtain a
new instance (G ′,k,E ′

M ,EI ).
We first prove the forward direction. For this purpose, let S be a solution of size k for the given

instance (G,k,EM ,EI ). By Lemma 3.15, either the vertex v or all of the vertices in B∗ must be
present in any solution of size at most k inG , and in particular, they must be present in S . Therefore,
S includes an endpoint of every new mandatory edge, and hence it hits every mandatory edge in
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E ′
M \ EM . Because G \ S and G ′ \ S are equal, we conclude that S hits all chordless cycles in G ′ and

all mandatory edges in EM . Therefore, S is a solution for (G ′,k,E ′
M ,EI ) as well.

In the reverse direction, consider any solution S ′ of size k to (G ′,k,E ′
M ,EI ). Observe that by the

definition of E ′
M , S ′ contains an endpoint of every mandatory edge in E ′

M . Now, consider the set S ′
in the graph G, and note that S ′ intersects every edge in EM as EM ⊆ E ′

M . Observe that if C is a
chordless cycle in G but not in G ′, then there must be a newly added mandatory edge that forms
a chord of C in G ′. Therefore, any chordless cycle C in G either contains a chord in G ′ that is a
mandatory edge, or it is also a chordless cycle in G ′. In any case, S ′ must contain a vertex of C .
Therefore, S ′ is a solution of size k to the instance (G,k,EM ,EI ). □

Now, we consider the second statement of the reduction rule.

Lemma 3.17. Reduction Rule 4(b) is safe.

Proof. Let (G ′,k,E ′
M ,EI ) be the instance that is obtained after applying the first statement. Let

(G ′,k,E ′
M ,E

′
I ) denote the new instance obtained by marking the edges between v and {z(A) | A ∈

A∗} as irrelevant. Observe that the graph remains unchanged, and therefore any solution S to the
instance (G ′,k,E ′

M ,EI ) is also a solution to (G ′,k,E ′
M ,E

′
I ), which proves the forward direction.

In the reverse direction, let S ′ be a solution to (G ′,k,E ′
M ,E

′
I ). We argue that if S ′ is also a solution

to (G ′,k,E ′
M ,EI ). Note that S

′ hits all chordless cycles in G ′ that do not contain any edge from E ′
I ,

and that it also hits every edge in E ′
M . Thus, it remains to show that S ′ hits all chordless cycles in

G ′ that contain at least one edge from E ′
I . To this end, consider a chordless cycleC inG ′ such that it

contains a new irrelevant edge in E ′
I . Then, the cycleC must containv and z(A) for someA ∈ A∗. If

S ′ contains v , then clearly S ′ intersects the cycleC . Hence, we next suppose that this is not the case.
Then, S ′ contains all of B∗, since E ′

M contains all the edges between v and B∗. We claim that the
cycle C contains a vertex from B∗, which would mean that C is hit by S ′. Observe that, if the cycle
C in the graph G ′ does not contain any vertex of B∗, then it contains no newly added mandatory
edges in E ′

M . Hence, C is also a chordless cycle in the graph G that we had at hand before applying
part (a) of the reduction rule. This follows from the fact that G and G ′ differ only in the set of new
mandatory edges. Therefore the chordless cycle C , which contains the vertices v and z(A), must
also contain a vertex b ∈ Bv , (the v-blocker in G). But then, by the definition of the bipartite graph
Ĥ , the sets A∗ and B∗, and Lemma 2.2, the vertex b must lie in B∗. Indeed, letC = v0, . . . ,vr where
v0 = v,v1 = z(A), and consider it in the graph G. Let b = vl+1 be the first vertex from Bv in the
sequence v0, . . . ,vr . Denote A′ = {v1, . . . ,vl }. Since C is chordless, vi < NG (v) for i = 2, . . . , l .
Hence, the edges of the path v1, . . . ,vl are in H andA′ ⊆ A. Since vlb ∈ E, we have thatAb ∈ E(Ĥ ),
and by the second condition in Lemma 2.2, we conclude that b ∈ B∗. We thus get that C is hit by S ′.
Hence, S ′ is a solution to (G ′,k,E ′

M ,EI ). □

Reduction Rule 4 decreases |N R
G (v)|. Moreover, as long as d IG (v) > ∆, we can apply this rule.

Thus, after an exhaustive application of this rule, it should hold that d IG (v) ≤ ∆. Furthermore, this
rule neither inserts vertices into V (G) nor unmarks edges, and therefore we conclude that Lemma
3.7 is correct. Denote ∆′ = ∆ + k . Thus, by Reduction Rule 2, the size of a maximum independent
set in the neighborhood of each vertex in the graph G from which we remove irrelevant edges is
bounded by ∆′.

3.4 The Clique Forest
In the rest of the paper, we focus on reducing the graph using the properties of clique-forests. Let F
denote the clique forest associated with the chordal graph G \ D ′. In the following sections, for a
vertex v ∈ G \ D ′, we often define Bv as a certain bag in the clique-forest F that contains v . Recall
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that Bv was earlier defined to denote a v-blocker in G. However, this abuse of notation introduces
no ambiguity as v-blockers are not required in the following sections, and Furthermore it improves
the readability. Let us now proceed towards bounding the number of leaves in F . We start the
following lemma.

Lemma 3.18. Let I be an independent set in the graphG \D ′
. Then, there are most |D ′ | · ∆′

relevant

edges between vertices in D ′
and vertices in I .

Proof. The claim follows from the observation that since ∆I
G ≤ ∆, |EM | ≤ k2 (as Reduction

rule 2 doesn’t apply) and I is an independent set, for every vertex v ∈ D ′, there are at most ∆′

relevant edges between v and vertices in I . □

We will also need the following reduction rule.

Reduction Rule 5. If there exists a vertex v in G \ D ′
such that the vertices in NG (v) which are

connected to v via relevant edges form a clique, remove the vertex v from G.

Lemma 3.19. Reduction Rule 5 is safe.

Proof. The special choice of the vertex v implies that every chordless cycle containing v must
contain at least one irrelevant edge, and can therefore be ignored. We thus conclude that it is safe
to remove the vertex v from G. □

The bound on the number of leaves will follow from a bound on the number of bags containing
private vertices, which are defined as follows.

Definition 3.20. A vertex v in G \ D ′ is a private vertex if there exists only one bag in F that
contains it.

Lemma 3.21. The number of bags in F containing private vertices is bounded by |D ′ | · ∆′
.

Proof. Let ℓ denote the number of bags in F containing private vertices. By the definition of a
clique forest, if we take exactly one private vertex from each bag in F , we obtain an independent set.
Therefore, the graph G contains an independent set of size at least ℓ. Let I denote this independent
set. Observe that since each vertex in I is a private vertex, its neighborhood inG \D ′ forms a clique.
Therefore, after an exhaustive application of Reduction Rule 5, each vertex in I must be connected
by at least one relevant edge to a vertex in D ′. By Lemma 3.18, we conclude that ℓ ≤ |D ′ | · ∆′. □

We are now ready to bound the number of leaves and nodes of degree at least 3 in the clique
forest F .

Lemma 3.22. Both the number of leaves in F and the number of nodes of degree at least 3 in F are

bounded by |D ′ | · ∆′
.

Proof. Observe that since every leaf in F corresponds to a maximal clique in G \ D ′, it contains
a private vertex. Thus, by Lemma 3.21, the number of leaves is bounded by |D ′ | · ∆′. Since in a
forest, the number of nodes of degree at least 3 is bounded by the number of leaves, we conclude
that the lemma is correct. □

Next, we turn to bound the size of a bag of F , to which end we prove the correctness of the
following lemma.

Lemma 3.23. In polynomial timewe can produce an instance (G ′,k ′,E ′
M ,E

′
I ) equivalent to (G,k,EM ,EI )

such thatk ′ ≤ k and the size of anymaximal clique inG ′
is bounded byκ = c ·(|D̃ |3 ·k+ |D̃ | ·∆′ ·(k+2)3).

(Here c is some constant independent of the input.)
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The proof of this lemma closely follows the approach using which [36] bounds the size of
maximal cliques, but requires a few modification since the purpose of the paper [36] is to give
a parameterized algorithm for CVD, which runs in exponential time, while we need to reduce
instances in polynomial time. The details are deferred to Section 4, since it is an adaption of the
work of Marx and is largely independent of the results of this section.

From now onwards, let us consider (G,k,EM ,EI ) as the instance obtained after the application
of the above lemma. The redundant solution D ′ for this instance is defined as before. Observe that
the size of each bag of F is bounded by the size of a maximal clique of G \ D ′. Furthermore, since
G \D ′ is a subgraph ofG , the size of a maximal clique ofG \D ′ is bounded by the size of a maximal
clique ofG . Thus, having applied the procedure given by Lemma 3.23, we have the following result.

Lemma 3.24. The size of any bag of F is upper bounded by κ.

3.5 The Length of Degree-2 Paths
The Family of Paths P. Let VF denote the set consisting of each node of degree at least 3 in the
forest F as well as each node whose bag has at least one private vertex. Let P denote the set of
paths in the forest F whose endpoints belong to VF and such that all of their internal nodes do not
belong to VF . Clearly, it holds that |P | ≤ |VF |. By Lemmata 3.21 and 3.22, we have the following
observation.

Observation 1. |P | ≤ 2|D ′ | · ∆′
.

Thus, in light of Lemma 3.24, by bounding the maximum number of nodes on each path in P,
we can bound the total number of vertices in the graph. To this end, we fix some path P ∈ P.
Moreover, we orient the path from left to right, where the choice of the leftmost and rightmost
nodes is arbitrary.

Partitioning the Path P . Next, we will partition P into more “manageable paths”. To this end, we
need the following definition.

Definition 3.25. We say that a subpath Q of P complies with a vertex d ∈ D ′ if at least one of the
following conditions holds.
(1) For every two bags B and B′ on Q , both B ⊆ NG (d) and B′ ⊆ NG (d).
(2) Let B1,B2, . . . ,Bt denote the bags of Q ordered from left to right. Then, at least one of the

following condition holds.
(a) B1 ∩ NG (d) ⊆ B2 ∩ NG (d) ⊆ . . . ⊆ Bt ∩ NG (d).
(b) Bt ∩ NG (d) ⊆ Bt−1 ∩ NG (d) ⊆ . . . ⊆ B1 ∩ NG (d).
In particular, NG (d) ∩ (∪t

i=1Bi ) is a subset of at least one of the two bags B1 and Bt .

We would like to find a set B of at most O(|D ′ |) bags on the path P such that after their removal
from P , the following lemma will be true.

Lemma 3.26. Each subpath resulting from the removal of the bags in B from P complies with every

vertex in D ′
.

The rest of this subsubsection concerns the proof of this lemma. To prove it, it is sufficient to
show that for each vertex d ∈ D ′, we can find O(1) bags such that after their removal from P , each
of the resulting subpaths complies with d . To this end, fix some vertex d ∈ D ′.
First, we need the following lemma.

Lemma 3.27. Let u,v ∈ NG (d) \D
′
be non-adjacent vertices, Bu be a bag containing u such that no

bag to its right (on P ) contains u, Bv be a bag containing v such that not bag to its left (on P ) contains
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v , and Bu lies on the left of Bv (on P ). Then, d is adjacent to every vertex in every bag that lies strictly

between Bu and Bv .

Proof. Let z be a vertex in a bag that lies strictly between Bu and Bv . Since this bag is not an
endpoint of the path P , z belongs to at least two bags that lie between Bu and Bv (here we rely on the
construction ofVF and P). Denote the path between Bu and Bv by Bu = B1−B2−B3− . . .−Bt = Bv .
Let Bi be the leftmost bag containing z, and let Bj be the rightmost bag containing z. Suppose, by
way of contradiction, that z < NG (d).

We claim that there exists a path in G, P1, from u to z such that none of its internal vertices
belongs to Bi+1 ∪ Bi+2 . . . ∪ Bv . The proof by induction on the number i . When i = 1, we have that
Bi = Bu . Then, since the vertices in Bu form a clique, the claim is correct. Now, suppose that the
claim holds for i − 1 ≥ 1, and let us prove it for i .

Since the vertices of the bag Bi form a maximal clique in the graph G \ D ′, and the bag Bi does
not contain private vertices, we have that Bi ⊆ Bi−1 ∪ Bi+1 and Bi \ Bi+1 ⊂ Bi−1 is non-empty.
Consider a vertexw ∈ Bi \ Bi+1 and observe that z andw are adjacent in G (since both belong to
Bi ), and further the vertexw is not present in Bi+1 ∪ Bi+2 . . . ∪ Bv . By induction, there is a path P
from u tow whose internal vertices do not belong to Bi ∪ Bi+1 . . . ∪ Bv . Appending the edge (w, z)
to P gives us the path P1.
Similarly, there is a path P2 from z to v such that none of its internal vertices belongs to

Bu ∪ . . . ∪ Bj−2 ∪ Bj−1. Since i < j , the paths P1 and P2 have no common vertex except z, and there
is no edge between V (P1) \ {z} and V (P2) \ {z}.

Let P ′
1 be the subpath of P1 from u ′ to z, where u ′ is the last vertex in P1 adjacent to d . Similarly,

let P ′
2 be the subpath of P2 from z to v ′, where v ′ is the first vertex in P2 adjacent to d . We may

assume that P ′
1 and P ′

2 do not contain chords, else we can replace P ′
1 and P ′

2 by a chordless subpath
of P ′

1 and chordless subpath of P ′
2, respectively, which will still contain u ′, z and v ′. The cycle

d − P ′
1 − z − P ′

2 − d is a chordless cycle in G, contradicting the fact that G \ (D ′ \ {d}) is a chordal
graph. □

We also need the following notation. Let Bℓ be the leftmost bag on P that contains a neighbor vℓ

of d such that vℓ does not belong to any bag to the right of Bℓ . Similarly, let Br be the rightmost
bag on P that contains a neighbor vr of d such that vr does not belong to any bag to the left of Br .

Lemma 3.28. Let B and B′
be two bags on P that do not lie on the right of Bℓ and such that B lies

on the left of B′
. Then, it holds that B ∩ NG (d) ⊆ B′ ∩ NG (d).

Proof. Suppose, by way of contradiction, that B ∩ NG (d) ⊈ B′ ∩ NG (d). However, this implies
that B contains a neighbor v of d such that v does not belong to any bag to the right of B, which
contradicts the choice of Bℓ . □

Lemma 3.29. Let B and B′
be two bags on P that do not lie on the left of Br and such that B lies to

the right of B′
. Then, it holds that B ∩ NG (d) ⊆ B′ ∩ NG (d).

Proof. The proof of this lemma is symmetric to the proof of Lemma 3.28. □

By Lemmas 3.27–3.29, each of the subpaths resulting from the removal of Bℓ and Br from P
complies with d . Thus, we conclude that Lemma 3.26 is correct.

Handling a Manageable Path.We now examine a subpath of P , denoted by Q , which complies
with every vertex d ∈ D ′. We will devise reduction rules such that after applying them exhaustively,
the number of vertices in the union of the bags of the path Q will be bounded by O(κ).
Let B1,B2, . . . ,Bt denote the bags of Q ordered from left to right. Moreover, denote V (Q) =⋃t
i=1 Bi and A =

⋂t
i=1 Bi . We partition D ′ into two sets Da and Dp , where Da = {d ∈ D ′ : V (Q) ⊆
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NG (d)} and Dp = D ′ \ Da . Here the letters a and p stand for “all” and “partial”, respectively.
Definition 3.25 directly implies that the following observation is correct.

Observation 2. For every vertex d ∈ Dp , either (i) B1 ∩NG (d) ⊆ B2 ∩NG (d) ⊆ . . . ⊆ Bt ∩NG (d)
or (ii) Bt ∩ NG (d) ⊆ Bt−1 ∩ NG (d) ⊆ . . . ⊆ B1 ∩ NG (d). In particular, either (i) NG (d) ∩V (Q) ⊆ B1
or (ii) NG (d) ∩V (Q) ⊆ Bt .

We also denote U = V (Q) \ (B1 ∪ Bt ). It is sufficient to ensure that |U | = O(κ) since then, by
Lemma 3.24, |V (Q)| = O(κ). Thus, we can next suppose that |U | > δ where δ = 2(k + 1) + 6κ.

For each pair of non-adjacent vertices in Da , we apply Reduction Rule 1. The correctness of this
operation is given by the following lemma.

Lemma 3.30. Let u and v be two distinct non-adjacent vertices in Da . Then, every solution of size at

most k contains at least one of the vertices u and v .

Proof. Since |U | > δ and the size of each bag is bounded by κ, standard arguments on weighted
paths imply that there exists i ∈ [t] such that |

⋃i
j=1 Bj | > δ/2 − κ and |

⋃t
j=i+1 Bj | > δ/2 − κ;

indeed, we may iteratively increase i from 1 to t until we reach the first time where it holds
that |

⋃i
j=1 Bj | > δ/2 − κ, in which case it will also hold that |

⋃t
j=i+1 Bj | > δ/2 − κ. Denote

U 1 = U ∩ ((
⋃i−1

j=1 Bj ) \ (B1 ∪Bi )) andU 2 = U ∩ ((
⋃t

j=i+2 Bj ) \ (Bi+1 ∪Bt )). Then, again since the size
of each bag is bounded by κ, it holds that |U 1 |, |U 2 | > δ/2− 3κ ≥ k + 1. Moreover, by the definition
of a clique forest,U 1 ∩U 2 = ∅ and there is no vertex inU 1 that is adjacent to a vertex in U 2. Thus,
for any pair of vertices x ∈ U 1 and y ∈ U 2, the subgraph induced by {u,v,x ,y} is a chordless cycle.
However, any solution of size at most k can only contain at most k vertices fromU 1 ∪U 2, and thus,
to hit all of these chordless cycles, it must contain at least one vertex among u and v . □

Thus, from now on we can assume that G[Da] is a clique. However, by the definition of A, for
every vertex in A and every vertex in V (Q), there exists a bag Bi , i ∈ [t], which contains both of
them, and therefore they are adjacent. We thus deduce that the following observation is correct.

Observation 3. Any two distinct vertices v ∈ Da ∪A and u ∈ Da ∪V (Q) are adjacent.

Let us now examine chordless cycles that contain vertices fromU .

Lemma 3.31. Let C be a chordless cycle in G that contains some vertex u ∈ U . Then, no vertex on

V (C) belongs to Da ∪A, and both neighbors of u in C do not belong to D ′ ∪A.

Proof. First, by Observation 2, we have thatu does not have neighbors (inG) inDp , and therefore
both the neighbors of u in C do not belong to Dp . Thus, it remains to show that no vertex in V (C)
belongs to Da ∪ A. By Observation 3, if at least one of vertices v ∈ V (C) belongs to Da ∪ A, it
is adjacent to u in G and therefore it is a neighbor of u in C . Moreover, the other neighbor w of
u in C is not in Da for otherwise vw is a chord by Observation 3. Hence w ∈ V \ D ′ and since
uw ∈ E,w ∈ ∪t−1

i=2Bi and in particularw ∈ V (Q). It follows that by Observation 3 vw is a chord, a
contradiction. □

Lemma 3.32. Let C be a chordless cycle in G that contains some vertex u ∈ U . Then, C contains a

path between a vertex in B1 \A and a vertex in Bt \A whose internal vertices belong to U and one of

them is u.

Proof. Since D ′ is an approximate solution, the cycle C must contain at least one vertex that
does not belong toU . And by Lemma 3.31, C is disjoint from A ∪ Da . Hence the cycle C contains a
vertex inDp . This implies thatC contains two subpaths, each betweenu and a vertex in (B1∪Bt )\A,
whose only common vertex is u and whose internal vertices belong toU . Moreover, one of these
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paths must contain an endpoint from B1 \A and the other from Bt \A, else the cycle C contains a
chord corresponding to the edge between these two endpoints. Therefore, by concatenating the
two paths, we obtain the desired subpath of C . □

We continue our examination of chordless cycles that contain vertices fromU in the context of
separators.

Lemma 3.33. Let S be a minimal solution that contains at least one vertex fromU . Then, there exists

i ∈ [t − 1] such that (i) (Bi ∩ Bi+1) \A ⊆ S , and (ii) S ∩U ⊆ Bi ∩ Bi+1.

Proof. Property (i). Since S is a minimal solution,G contains a chordless cycle C with a vertex
u ∈ S ∩U and no other vertex from S . By Lemma 3.32, C contains a path P between a vertex in
x ∈ B1 \A and a vertex in y ∈ Bt \A whose set of internal vertices includes u and is a subset of U .
In particular, since each bag induces a clique while C is a chordless cycle, the internal vertices of
the path P is a non-empty subset ofV (Q) \A. Moreover (V (C) \V (P)) ∩V (Q) = ∅, since the path P
contains a vertex from each bag Bi for i = 1, 2, . . . , t . This also implies that x and y are not adjacent.
Moreover, by Lemma 3.31,V (C)∩ (Da ∪A) = ∅. Thus, since D ′ is a redundant approximate solution,
C contains a vertex d ∈ Dp .

Suppose, by way of contradiction, that there does not exist i ∈ [t −1] such that (Bi ∩Bi+1) \A ⊆ S .
Then,G has a (chordless) path P ′ between x and y whose internal vertices belong toV (Q) \ (S ∪A).
Since (V (C) \ V (P)) ∩ V (Q) = ∅, it holds that (V (C) \ V (P)) ∩ V (P ′) = ∅, which implies that C
contains a path between x and y whose set of internal vertices is disjoint from the one of V (P ′).
Observe that if a graph H contains a vertex a with two non-adjacent neighbors, b and c , such that
H \ {a} has a chordless path between b and c with at least one vertex that is not a neighbor of a,
then H has a chordless cycle. On the one hand, by the definition of a clique forest, any vertex in
V (G) \ (V (Q) ∪D ′) cannot be adjacent to both a vertex in B1 \A and a vertex in Bt \A, and further
it is adjacent to no vertex inU . On the other hand, Observation 2 implies that any vertex in Dp also
satisfies this property. Thus,V (P ′) ∩U = ∅, since any vertex in this set fits the above description of
the vertex a where H = G[(V (C) \V (P)) ∪V (P ′)], which is a subgraph of the chordal graph G \ S .
Without loss of generality, we have that P ′ contains a subpath p − q − r where p,q ∈ B1 \A and
r ∈ Bt \A. Let P ′′ denote a shortest path between p and r inG[(V (C) \V (P)) ∪ (V (P ′) \ {q})], which
contains at least two internal vertices (since it must contain a vertex from V (C) \ V (P), else P ′

would have had a chord, and such a vertex cannot be adjacent to both p and r ). Every vertex on P ′′

should be adjacent to q, else q fits the above description of the vertex a. Since P ′ is a chordless path
and (V (C) \V (P)) ∩V (Q) = ∅, P ′′ does not contain any vertex from B1 that is not p, and the only
vertex from Bt that is not r and which P ′′ can contain is the neighbor of r . Overall, this implies
that P ′′ contains a vertex from V (C) \V (P) adjacent to both q and a vertex in Bt \ A, which is a
contradiction.

Property (ii). Pick any i ∈ [t − 1] such that (Bi ∩ Bi+1) \A ⊆ S . Now we will show that S ∩U ⊆

Bi ∩ Bi+1. To this end, we consider some arbitrary vertex u ∈ S ∩U and show that it belongs to
Bi ∩ Bi+1. Since S is a minimal solution, G contains a chordless cycle C ′ such that V (C ′) ∩ S = {u}.
By Lemma 3.32, C ′ contains a subpath between a vertex in B1 \ A and a vertex in Bt \ A whose
internal vertices belong to U . Thus, by the definition of a clique forest, C ′ must contain a vertex
from (Bi ∩ Bi+1) \A. Since (Bi ∩ Bi+1) \A ⊆ S , and therefore it must hold that u ∈ Bi ∩ Bi+1 (since
otherwise we reach a contradiction to the fact that V (C ′) ∩ S = {u}). □

LetW be the family of each subsetW ⊆ (B1 ∪ Bt ) \A of size at most k for which there exists
an index i ∈ [t − 1] such thatW = (Bi ∩ Bi+1) \ (A ∪U ) and |(Bi ∩ Bi+1) ∩U | ≤ k . We can easily
bound the size of the family W as follows.
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Lemma 3.34. |W| ≤ 2k + 1.

Proof. Let i be the smallest index in [t − 1] for which there existsW i ∈ W such thatW i =

(Bi ∩ Bi+1) \ (A ∪ U ), and let j be the largest for which there existsW j ∈ W such thatW j =

(Bj ∩ Bj+1) \ (A ∪ U ). Then, by the definition of a clique forest, for every setW ∈ W it holds
thatW ⊆ W i ∪W j . Furthermore, the sets in W can be sorted byW1,W2, . . . ,W |W | such that
for all r ∈ [|W| − 1],Wr+1 ∩ B1 ⊆ Wr ∩ B1 andWr ∩ Bt ⊂ Wr+1 ∩ Bt . We thus conclude that
|W| ≤ 2k + 1. □

We proceed by associating a separator with each setW ∈ W as follows. First, let IW denote the
set of all indices i ∈ [t − 1] such thatW = (Bi ∩ Bi+1) \ (A∪U ). Now, let iW denote an index in IW
that minimizes |(Bi ∩ Bi+1) ∩U | (if there are several choices, choose one arbitrarily). We further
denote M =

⋃
W ∈W

(
(BiW ∩ BiW +1) ∩U

)
. Observe that by Lemma 3.34 and the definition of W,

|M | = O(k2). Thus, it is sufficient to argue that there exists a vertex inU \M that can be removed
from G (since as long as |U | > δ , we will be able to find such a vertex). To this end, we will need
the following lemma.

Lemma 3.35. Let u ∈ U \M . If (G,k) is a yes-instance, then it has a solution S of size at most k
that does not contain the vertex u.

Proof. Suppose that (G,k) is a yes-instance, and let S be a solution of minimum size. Assume
that u ∈ S , else we are done. By Lemma 3.33, there exists i ∈ [t − 1] such that (Bi ∩ Bi+1) \A ⊆ S
and S ∩U ⊆ Bi ∩ Bi+1. DenoteW = (Bi ∩ Bi+1) \ (A ∪U ). Since |S | ≤ k andW ⊆ S , we have that
W ∈ W. Denote R = (BiW ∩ BiW +1) ∩U and T = (Bi ∩ Bi+1) ∩U . Since u ∈ U \M , it holds that
u < R. Moreover, since S ∩U ⊆ Bi ∩ Bi+1, it holds that u ∈ T . By the definition of iW , we have that
|R | ≤ |T |. Thus, to show that the lemma is correct, it is sufficient to show that S ′ = (S \T ) ∪ R is a
solution.

Suppose, by way of contradiction, that S ′ is not a solution. Then, since S is a solution of minimum
size, there exist a chordless cycle C and a vertex v ∈ T such that v ∈ V (C) and V (C) ∩ S ′ = ∅.
Since T ⊆ U , by Lemma 3.32, C contains a path between a vertex in (B1 ∩ B2) \A and a vertex in
(Bt−1 ∩Bt ) \Awhose internal vertices belong toU . In particular, by the definition of a clique forest,
V (C) ∩ ((BiW ∩ BiW +1) \ A) , ∅. However, we have that (BiW ∩ BiW +1) \ A = R ∪W ⊆ S ′, which
contradicts the fact that V (C) ∩ S ′ = ∅. □

We are now ready to present our reduction rule.

Reduction Rule 6. Let u ∈ U \M . Remove the vertex u from the graphG and add an edge between

any two non-adjacent vertices in NG (u).

Lemma 3.36. Reduction Rule 6 is safe.

Proof. LetG ′ be the graph resulting from the application of this rule. For the forward direction,
suppose that (G,k) is a yes-instance, and let S be a solution of minimum size. By Lemma 3.35, we
can assume that u < S , and therefore S ⊆ V (G ′). Thus, to show that (G ′,k) is a yes-instance, we
need to prove that S hits every chordless cycle in G ′. Let C be a chordless cycle in G ′. Suppose that
this cycle does not exist in G, else it is clear that S hits it. Then, C contains an edge between two
vertices v,w ∈ NG (u) that are non-adjacent in G. Observe that since C is a chordless cycle and
G ′[NG (u)] is a clique, V (C) ∩ NG (u) = {v,w}. Thus, by replacing {v,w} by {v,u} and {u,w}, we
obtain a chordless cycle in G. Since S hits this cycle and u < S , it holds that S also hits C .
For the backward direction, suppose that (G ′,k) is a yes-instance, and let S be a solution of

minimum size. To show that (G,k) is a yes-instance, it is sufficient to show that S is also a solution
to (G,k). SinceV (G ′) ⊆ V (G), it is clear that S ⊆ V (G). We need to prove that S hits every chordless
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cycle in G. Let C be a chordless cycle in G. Suppose that this cycle does not exist in G ′, else it is
clear that S hits it. Furthermore, suppose thatG ′[V (C) \ {u}] does not contain a chordless cycle, else
again it is clear that S hitsC . We get thatC contains two verticesv,w ∈ NG (u) that are not adjacent
inG . Since u ∈ U , Observation 2 and the definition of a clique forest imply that NG (u) ⊆ V (Q)∪Da .
By Observation 3, we deduce that v,w < Da ∪ A, and that C contains at most one vertex from
Da ∪A (since any two vertices from Da ∪A are adjacent to each other and to both v andw). Since
D ′ is a redundant approximate solution,C must contain a vertex p ∈ Dp . SinceG ′[V (C) \ {u}] does
not contain a chordless cycle, the neighbors of p on C belong to NG (u), and we can assume w.l.o.g
that these neighbors are v andw . However, since v andw are not adjacent there cannot be a bag
that contains both of them, which results in a contradiction to Observation 2. □

3.6 Unmarking Irrelevant and Mandatory Edges
Recall that our instance includes a set EI of irrelevant edges and a set EM of mandatory edges. It
is clear that we can unmark each irrelevant edge (these edges were marked only for the sake of
clarity of the analysis of our kernel). However, to unmark mandatory edge, we need the following
operation.

Reduction Rule 7. For every mandatory edge {x ,y} introduce k + 1 pairs of new vertices,

{x1,y1}, {x2,y2}, . . . , {xk+1,yk+1}, and for each pair {xi ,yi } add the edges {x ,xi }, {xi ,yi } and {yi ,y}.
Moreover, unmark the edge {x ,y}.

Lemma 3.37. Reduction Rule 7 is safe.

Proof. Let (G ′,k,EI = ∅,E ′
M ) be the instance resulting from the application of this rule. Each

edge {x ,y} is contained (inG ′) in k + 1 cycles of size 4 which do not share vertices other than x and
y. Therefore, and solution of size at most k to (G ′,k) must contain at least one of the vertices x and
y. Thus, since any chordless cycle inG is also present inG ′ and we have only unmarked the edge
{x ,y}, we conclude that if (G ′,k,EI ,E

′
M ) is a yes-instance, so is (G,k,EI ,EM ). On the other hand,

any solution to (G,k,EI ,EM ) hits all of the chordless cycles in G ′ since each of these chordless
cycles is either present in G or contain both of the vertices x and y. Therefore, if (G,k,EI ,EM ) is a
yes-instance, so is (G ′,k,EI ,E

′
M ). □

Recall that |EM | ≤ k2. Hence, the total number of newly added vertices does not exceed O(k3).

3.7 The Number of Vertices in the Kernel
In this section, we obtained an approximate solution D̃ of size f (k) and a redundant approximate
solution D of size O(k · f (k)). Then, we examined the clique forest F associated with the chordal
graph G \ D ′ where |D ′ | = O(|D | + k2). To this end, we considered a set P of degree-2 paths
that together cover all of the nodes of the forest, and showed that |P | = O(|D ′ | · ∆′). Recall that
∆′ = O(k · f (k)). We removed O(|D ′ |) bags, each of size κ = O(|D̃ |3 ·k + |D̃ | ·∆′ ·k3), from each path
P ∈ P, and considered each of the resulting subpaths Q . We showed the number of vertices in the
union of the bags of the path Q will be bounded by O(κ). Finally, we added O(k3) new vertices to
unmark mandatory edges. Thus, we conclude that the number of vertices in our kernel is bounded
by

O(|P| · |D ′ | · κ + |D ′ | · ∆′ · κ + k)
= O(|P| · |D ′ | · κ)

= O(|D ′ |2 · ∆′ · (|D̃ |3 · k + |D̃ | · ∆′ · k3))
= O(f (k)3k3 · (f (k)3k + f (k)2k4))
= O(f (k)5k4 · (f (k) + k3))
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Recall that by Lemma 3.1, we can assume that f (k) = O(k3 log2 k). Thus, at this point, we obtain
a kernel of size O(k22 log12 k).

3.8 A Better Kernelization Algorithm
Finally, we present a bootstrapping trick that will exploit the nature of our approximation algorithm
to obtain a kernel of size O(k12 log10 k). Recall that at this point, where we have already run our
kernelization algorithm once, it holds that n = O(k22 log12 k). Now, we again recall that CVD admits
an O(log2 n)-factor approximation algorithm [3]. Currently, it holds that f (k) = O(k log2 k) rather
than f (k) = O(k3 log2 k). Thus, if we rerun our kernelization procedure, obtaining a kernel of
size O(f (k)5k4 · (f (k) + k3)) (see Section 3.7), it now holds that this size is upper bounded by
O(k12 log10 k). This concludes the proof of correctness of Theorem 1.1.

4 BOUNDING THE SIZE OF MAXIMAL CLIQUES
Let (G,k,EM ,EI ) be an instance of CVD whose independent degree is bounded ∆, and letD be some
(possibly approximate) solution to this instance. Here EM and EI denote the set of mandatory and
irrelevant edges, respectively, of the instance. In this section, we will bound the size of a maximal
clique in the graphG . We will show that if the graph admits a chordal deletion set of size at most k ,
then for any maximal clique K inG \D, it is safe to remove all but a bounded number vertices of K .
Formally, we will show the following lemma, which is a restatement of Lemma 3.23 along with all
the relevant details.
Lemma 4.1. Let (G,k,EM ,EI ) be an instance of CVD whose independent degree is bounded ∆,

and let D be a solution to this instance. Then in polynomial time we can produce an equivalent

instance (G ′,k ′,E ′
M ,E

′
I ) such that k ′ ≤ k , and the size of any maximal clique in G ′

is bounded by

c · (|D |3 · k + |D | · ∆ · (k + 2)3). (Here c is some constant independent of the input.)

Our proof of this lemma is an adaptation of the work of [36] with a fewmodifications. Specifically,
the lemmas in [36] construct a so called “necessary set” of vertices with the property that one of the
vertices in this set must be part of any solution of size k . We modify these lemmas to ensure that a
necessary set output by them always has at most two vertices. Observe that such a necessary set is
either a vertex that must be part of any solution of size at most k , or a mandatory edge. We note
that [26] also give similar result, inspired by the results of [36]. Given a redundant approximate
solution D̂, the size of a maximal clique inG \ D̂ can be bounded by O(|D̂ |3k). However the present
method for computing a redundant approximate solution implies that |D̂ | ≥ |D | · k , and hence
Lemma 4.1 gives a better upper-bound.

Lemma 4.2 ([26]). The size of each bag in the clique forest F is bounded by c · |D̂ |3k , where c is
some constant independent of the input.

For the rest of this subsection, we fix a maximal clique K of G \ D, which contains more than
c · (|D |3 · k + |D | · ∆ · (k + 2)3) vertices. We will show that we can mark a bounded number of
vertices of K so that the following holds. Let X be any set of at most k vertices such that G \ X has
a chordless cycle H that contains a vertex u of K . If u is an unmarked vertex then there is another
chordless cycle H ′ in G \ X that avoids u and contains strictly fewer unmarked vertex in K . This
condition implies that we can safely ignore any chordless cycle that includes an unmarked vertex,
which further implies that it is safe to delete these vertices from the graph. We shall closely follow
the notations and proofs of [36], but in light of the bound on (relevant) independent-degree of
vertices in D, we shall modify them appropriately. For a vertex v ∈ V (G) \D, we say that the vertex
has the label t ∈ D if v is a neighbor of t . Note that the edge (t ,v) could be relevant or irrelevant,
and a vertex may have several labels depending on its set of neighbors in D.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:22 Agrawal et al.

4.1 Dangerous vertices and their witnesses in K

Let us begin with the notion of dangerous vertices for the clique K in the graph.

Definition 4.3. Let v ∈ V (G) \ (D ∪K) be a relevant neighbor of t ∈ D such that there is a path P
from v to u ∈ K whose internal vertices do not have the label t .
(i) The vertex v is a t-dangerous vertex for K if the vertex u does not have the label t .
(ii) The vertex v is a t∗-dangerous vertex for K if the vertex u is also a relevant neighbor of t and

u,v are not neighbors in G.
The vertexu ∈ K is called a t-witness (t∗-witness) ofv , and the path P is called a t-witness (t∗-witness)
path of v .

In [36], it is shown that there are many vertices in the clique K whose deletion does not affect
any of the dangerous vertices in the following sense. We mark a bounded number of vertices in K
such that, for any subset X of vertices of size at most k , if there is chordless cycle in G \ X that
passes through t , a dangerous vertex v and through some unmarked vertex u in K , then there is
another chordless cycle inG \X which contains a marked vertex u ′ and avoids u. This implies that
we may ignore any chordless cycles in G that includes an unmarked vertex of K . Note that the
definition above differs from [36] in the requirement that v (and u) must be a relevant neighbor of
t , since if the edge (t ,v) (or the edge (t ,u)) were irrelevant then any chordless cycles that contain
both t and v (or t and u) can be safely ignored. We have the following bounds on the size of an
independent set of dangerous vertices in G.

Lemma 4.4 (Lemma 11, [36]). If I is any collection of independent t-dangerous vertices, then either

|I | ≤ 6k2 or we can find a new mandatory edge in the graph, or we can find a vertex that must be part

of any solution of size at most k .

The following lemma improves upon Lemma 12 of [36] by using the bound on the independent
degree of vertices in D.

Lemma 4.5 (Lemma 12, [36]). If I is any collection of independent t∗-dangerous vertices, then |I | ≤ ∆.

The following lemma shows that if Q is a clique of t-dangerous vertices we require only k + 1
vertices as witnesses for all the vertices of Q .

Lemma 4.6 (Lemma 13 [36]). Let Q be a clique of t-dangerous vertices. Then we can mark k + 1
vertices in K such that for any set X of k vertices, if v ∈ Q has an unmarked t-witness in K \X then it

has a marked t-witness in K \ X .

In the context of the following lemma, we remark that there is a similar lemma for cliques of
t∗-dangerous vertices in [36], but we give a version of it that is more suitable for our purposes.

Lemma 4.7 (Lemma 14, [36]). Let Q be a clique of t∗ dangerous vertices. Then either we can find a

vertex that must be part of any solution of size at most k , or we can find a new mandatory edge, or

else we can mark (k + 2)3 vertices of K such that for any set X of k vertices, if v ∈ Q has a unmarked

t∗ witness in K \ X then it also has a marked witness K \ X .

Proof. Our proof is a minor modification of the proof of Lemma 14, [36]. Let T be a clique-tree
of G \ D. Following [36], we say that a vertex v covers a bag x of T if v is contained in the bag
x , and then Tv denotes the sub-clique-tree of all the bags which are covered by v . Now, since
Q and K are cliques in G \ D, there are two bags x and y which contain Q and K , respectively.
Consider the unique path connecting x and y in T , and suppose that the bags on this path are
numbered as x = 1, 2, . . . s = y. Let u1,u2, . . . be vertices of K with label t , and let ai denote the
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smallest numbered bag on this path that occurs inTui , i.e. the smallest numbered bag containing ui .
Similarly, let v1,v2, . . . be the vertices of Q and let bi denote the largest numbered bag which is
contained in Tvi . It follows that Tvi and Tuj intersect if and only if aj ≤ bi , in which case there is
an edge (vi ,uj ) in the graph. We also assume that the collection of ai and bi are distinct, which is
easily achieved by adding additional bags along this path in T . Further we assume that the vertices
u1,u2, . . . and v1,v2, . . . are ordered so that the sequences of ai and bj are strictly increasing.

We define a subsequence of bi and aj as follows. Let β1 = 1, and for ever j ≥ 1 let α j be the
smallest value such that aα j > bβj . For every i ≥ 2, let βi be the smallest value such that bβi > aαi−1 .
Observe that we obtain a strictly increasing sequence, bβ1 < aα1 < bβ2 < aα2 . . .. Let βℓ be the last
element of the above sequence which corresponds to a vertex in Q .
Now, let us be a witness of a t∗-dangerous vertex vβj . We will show that aα j is also a witness

for vβj . Clearly, as > bβj , which implies as ≥ aα j . Hence, the t∗-witness path from vβj to us passes
through the bag aα j which contains uα j (see the proof of Lemma 14, [36]) . Further, aα j > bβj
implies that vβj and aα j are not neighbors in G. Therefore, aα j is also a witness for vβj .
Now, suppose that ℓ ≤ (k + 2)2. Then for each i = 1, 2, . . . , ℓ we mark the k + 2 vertices

uαi ,uαi+1, . . . ,uαi+k+1 (if they exist), and we will show that this set of marked vertices contains a
sufficient number of witnesses for every vertex in Q . Note that we have marked at most (k + 2)3
vertices of K . Consider any set X of k vertices such that a vertex vx ∈ Q has a witness path inG \X
to some unmarked uy ∈ K . In other words there is a chordless cycle in G \ X which includes the
vertex t , a t∗-dangerous vertexvx and its t∗-witness uy ∈ K . Sincevx and uy are non-neighbors, we
have that bx < ay , which implies that there is some j for which bx < aα j ≤ ay . If ay is not marked
then y > α j +k + 1, and henceG \X contains some bx < aα j+r < ay . Now the witness path fromvx
to ay must contain a neighbor of aα j+r , which implies that aα j+r is also a witness for vx , in G \ X .
Finally, suppose that ℓ > (k + 2)2. We will show that either the vertex t must be part of any

solution of size k , or we can find a new mandatory edge in the graph. Let Pi be a witness path from
vβi to uαi for every 1 ≤ i ≤ ℓ. Consider the collection of chordless cycles H(k+2)·j for 1 ≤ j ≤ k + 1,
where H(k+2)·j = (t vβ(k+2)·j P(k+2)·j uα(k+2)·j t). If all these cycles are pairwise vertex disjoint except
for the vertex t , then we have obtained a collection of k + 1 chordless cycles with t as the only
common vertex. Hence t must be part of any solution of size at most k .

Otherwise, letH(k+2)·j andH(k+2)·j′ have a common vertexw , for some j < j ′. Then observe thatw
can only be an internal vertex of the paths P(k+2)·j and P(k+2)·j′ , and therefore it is not a neighbor of t .
Since T is a tree-decomposition, this implies thatw occurs in every bag numbered between aα(k+2)·j
and bβ(k+2)·j′ . Since aα(k+2)·j < bβ(k+2)·j+1 < aα(k+2)·j+1 < . . . . . . < bβ(k+2)·j+k+1 < aα(k+2)·j+k+1 < bβ(k+2)·j′ ,
we have that w occurs in every one of these bags. Observe that we obtain a collection of k + 1
chordless cycles of length 4, namely (t vβ(k+2)·j+i w uα(k+2)·j+i t) for i = 1, 2, . . .k + 1, such that the
vertices t andw are the only common vertices. Since t andw are non-adjacent in G, we obtain a
new mandatory edge (t ,w) in G. □

Since G \ D is a chordal graph which contains all the dangerous vertices for K , it follows that
the graph induced by the set of all t-dangerous (t∗-dangerous) vertices forms a chordal graph as
well. Since a chordal graph is perfect, it has a clique cover of size α , where α is the cardinality of a
maximum independent set in the graph (see [23]). This gives us the following lemma, using the
bound on the size of an independent set of dangerous vertices.

Lemma 4.8 (Lemmas 15 & 16, [36]). (i) Either we can find a vertex that must be part of any

solution of size at most k , or we can find a new mandatory edge, or we can mark 6k2(k + 1)
vertices in K such that for any set X of k vertices, if a t-dangerous vertex v has a unmarked

witness in K \ X , then it also has a marked witness in K \ X .
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(ii) Either we can find a vertex that must be part of any solution of size at most k , or we can find

a new mandatory edge, or we can mark ∆ · (k + 2)3 vertices in K such that for any set X of k
vertices, if a t∗-dangerous vertex has a unmarked witness in K \ X , then it also has a marked

witness in K \ X .

From the above lemma we conclude that, for any set X of at most k vertices, to test if X intersects
all those chordless cycles that pass through t , K and some dangerous vertex v , it is sufficient to
consider only the marked vertices of K as witnesses. However the above lemma considers only a
single vertex t ∈ D, and we must mark additional witness vertices for each t ∈ D.

Lemma 4.9 (Lemmas 15 & 16, [36]). (i) Either we can find a vertex that must be part of any

solution of size at most k , or we can find a new mandatory edge, or we can mark |D | · 6k2(k + 1)
vertices in K such that for any set X of k vertices, if a t-dangerous vertex v has a unmarked

witness in K \ X , then it also has a marked witness in K \ X .

(ii) Either we can find a vertex that must be part of any solution of size at most k , or we can find a

new mandatory edge, or we can mark |D | · ∆ · (k + 2)3 vertices in K such that for any set X of k
vertices, if a t∗-dangerous vertex has a unmarked witness in K \ X , then it also has a marked

witness in K \ X .

4.2 Fragments of Chordless cycles intersecting K

Now we shall mark vertices for chordless cycles in G that intersect K . If H is a chordless cycle
in G, then consider F , P1, P2, . . . , Ps where F = H ∩ D and P1, P2 . . . , Ps are the paths in H \ D. It
follows that each Pi has exactly two labels from F on its endpoints, and the internal vertices have
no labels from F , and further these paths are pairwise independent (i.e. there is no edge between
two vertices that are in two different paths). We call F , P1, . . . , Ps the fragments of the chordless
cycle H . Since K is a clique, at most one of these paths intersects K , which we assume to be the
path P1, and further it contains at most two vertices from K . We will show that we can mark a
bounded number of vertices in K such that for any chordless cycle H that includes an unmarked
vertex (that lies in P1), there is another chordless cycle H ′ that avoids this unmarked vertex. Let us
first consider the case when P1 just a single vertex (in K ). The following lemma is a close variant of
Lemma 18, [36] for this case.

Lemma 4.10 (Lemma 18, [36]). Let F , P1, . . . , Ps be the fragments of H where P1 is just a single

vertex that lies in K . Then either we can find a new mandatory edge, or we can mark |D |3 · (k + 2)
vertices in K such that the following holds. For any set X of k vertices such that G \ X has a chordless

cycle which intersects K in an unmarked vertex, there is another chordless cycle in G \ X which does

not use any unmarked vertices of K .

Proof. Our proof of this lemma is obtained by modifying proof of Lemma 18, [36]. And note
that, as P1 is a single vertex, F must have at least two vertices. For every l1, l2, l3 ∈ D, mark k + 1
vertices of K which have labels l1, l2 and not l3. Hence, in total we have marked |D |3 · (k +1) vertices
of K . The results of [36] shows that this is sufficient for the case when F has 3 or more vertices.
When F contains only two vertices l1, l2, we need to mark some additional vertices. Let us

recall that P1 is only a single vertex of K and has the labels l1, l2, and so it follows that l1, l2 are
non-neighbors. Let x be the bag in the clique-tree of G \ D, which corresponds to the maximal
clique K , and further assume that x is the root of this tree-decomposition. For any chordless cycle
H i such that H i \ D = P i1, P

i
2 where P i1 is a single vertex, letwi be the bag closest to x in the tree

decomposition that contains a vertex of P i2. Note thatwi , x , as vertices of P i1 and P i2 have no edges
between them, and it follows that the vertices of P i2 are contained in the sub-clique-tree rooted
atwi , and furthermore none of them are present in any bag outside this sub-clique-tree. We can
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generate a list of these bagsw1,w2, . . ., by considering every choice of P i1, l1 and l2 and selecting
those bags of the tree decomposition that have a path from l1 to l2 with at least one internal vertex
in the non-neighborhood of the choice of P i1. Among these bags, selectwi1 ,wi2 , . . . ,wiq such that
none of its descendants in the clique-tree are in the collection w1,w2, . . . computed above. Note
that, by definition no bag selected above is an ancestor or a descendant of another selected bag. Let
Hi1 ,Hi2 , . . . ,Hiq be a collection of chordless cycles such that P i j2 is contained in the sub-clique-tree
of wi j , for j = 1, 2 . . . ,q. Note that the collection of P i j2 are pairwise vertex disjoint, and further
there are no edges between the vertices of P i j2 and P i j′2 for j , j ′. This follows from the fact that no
bag outside the sub-clique-tree rooted atwi j contains any vertex of P i j2 , and that no bag selected in
the collection ofwi j is an ancestor or a descendant of another.
Consider the case when q ≤ k + 1. We define the distance of a vertex v from a bag w in the

clique-tree as the minimum of the distance betweenw and a bag x that contains v . Then for each
wi j , sort the vertices of of K , which have labels l1, l2, according to the distance fromwi j , and mark
k + 1 vertices from wi j . It follows that we mark |D |2 · (k + 1)2 vertices of K . Let us argue that
these marked vertices satisfy the requirements. For any set X of at most k vertices, suppose H is a
chordless cycle in G \ X with fragments F , P1, P2 where P1 is just a single vertex u ∈ K with labels
l1, l2 ∈ F . Consider some bagwi whose sub-clique-tree contains the path P2, and note thatwi , or
some descendentwi j was selected in the above collection. Now if u was not marked forwi j , l1, l2,
then any of the vertices that were marked for this tuple has a greater distance from the bagswi j
(and wi ) than u. Since we marked k + 1 vertices for this tuple, at least one of them is present in
K \X and let u ′ be that vertex. It follows that replacing u with u ′ in H gives us a chordless cycle in
G \ X .

Now, consider the case when q ≥ k + 2. The collection of paths P i j , along with l1 and l2, defines
a collection of chordless cycles such that any solution of size k must pick at least one of l1 or l2.
Since l1, l2 are non-neighbors, we obtain a new mandatory edge (l1, l2).
Further note that the total number of marked vertices is |D |3 · (k + 1) + |D |2 · (k + 1)2. Since

|D | ≥ k , it follows that the total number of marked vertices is upper bounded by |D |3 · (k + 2). □

Now, the only remaining case is when the path P1 has two or more vertices. For this case, we
have the following lemma, which follows from Lemma 19 of [36] where we rely on Lemma 4.9.

Lemma 4.11 (Lemma 19, [36]). Let F , P1, . . . , Ps be the fragments of a chordless cycle H where P1
contains at least two vertices, and further at least one of those vertices are in K . Then we can mark at

most |D | · 6k2(k + 1) + |D | · ∆ · (k + 2)3 vertices in K such that, for any set X of at most k vertices, if

G \ X contains a chordless cycle that includes an unmarked vertex u ∈ K , then G \ X also contains a

chordless cycle that avoids u, and it has strictly fewer unmarked vertices of K .

Combining all of the above lemmas we obtain the following.

Lemma 4.12. Let (G,k,EM ,EI ) be an instance of CVD whose independent-degree is bounded by ∆.
Let D be solution to this instance and let K be a maximal clique in G \ D. Then in polynomial time,

either we can find a vertex which must be part of any solution of size at most k , or we can find a new

mandatory edge, or we can safely remove all but c · (|D |3 · k + |D | · ∆ · (k + 2)3) vertices of K . (Here c
is some constant independent of the input.)

Proof. We apply the Lemmas 4.9, 4.10 and 4.11 to the given instance. If any of them return a
vertex that must be part of any solution of size at most k , or a new mandatory edge then we output
that vertex or edge. Otherwise, together they mark a maximum of c ′ · (|D |3 · k + |D | · ∆ · (k + 2)3)
vertices in K , where c ′ is some constant independent of the input. In addition, let us also mark any
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unmarked vertex in K which is an endpoint of a mandatory edge in the instance. Since the total
number of mandatory edges is always bounded by k2, the total number of marked vertices in K
does not exceed c · (|D |3 ·k + |D | · ∆ · (k + 2)3), where c is again a constant independent of the input.

Let u be any unmarked vertex in K . We will show that the instances G and G \ u are equivalent.
Let X be any set of at most k vertices such that (G \u) \X is a chordal graph. IfG \X is not chordal,
then there is some chordless cycle H in G \ X . If H does not contain the vertex u, then it is also
present in (G \u) \X which is a contradiction. On the other hand if H contains u, then by the above
lemmas, we can argue that there is some chordless cycle H ′ in G \ X which avoids u (see Lemma
19, [36]). Therefore H ′ is present in (G \ u) \ X , which is again a contradiction. Now, by induction,
we can show that it is safe to remove all the unmarked vertices in K from the graph. □

Now we are ready to prove Lemma 4.1. Consider any maximal clique in the graphG \ D with
more than c · (|D |3 ·k + |D | ·∆ · (k + 2)3) vertices, and apply Lemma 4.12 to it. If it returns a vertex v
that must be part of any solution of size k , we remove it from the graph and decrease k by one. Else
if it returns a mandatory edge, we add this edge to the graph and mark it as mandatory. We can
argue, as before, that both these operations are safe. We also apply Reduction Rule 2 to the instance
if necessary, to bound the number of mandatory edges in the graph. Otherwise Lemma 4.12 ensures
that it is safe remove all but the c · (|D |3 · k + |D | · ∆ · (k + 2)3) marked vertices of K . Therefore, we
remove these vertices from the graph. We also update the sets EM and EI as follows. Note that both
the endpoints of every mandatory edge (in EM ) are marked by the Lemma 4.12, and hence they are
not removed. However, we may need to update the collection of irrelevant edges, EI , by removing
those edges whose endpoints were deleted.
Observe that, each application of Lemma 4.12 either reduces k , or adds a new mandatory edge,

or reduces the number of vertices in the graph. Further, we may add at most k2 + 1 new mandatory
edges before finding a new vertex that must be part of any solution of size k or concluding that
the given instance is a No instance. Hence, in polynomial time, either we bound the size of every
maximal clique in the graph or conclude that the given instance is a No instance.

5 CONCLUSION
In this paper we obtained a polynomial kernel for CVD of size O(k12 log10 k). The new kernel
significantly improves over the previously known O(k161 log58 k) sized kernel. We believe that the
notion of independence degree and the bootstrapping trick used in our kernelization procedure
could be useful in designing polynomial kernels for other F -Vertex (Edge) Deletion problems,
where F is characterized by an infinite set of forbidden induced graphs. We conclude the paper
with the following open problems.

• Design a polynomial kernel for CVD of size O(kc ) for some fixed constant c < 10.
• Design a constant-factor approximation algorithm for CVD.
• Does there exist an FPT algorithm for CVDwith running time cknO(1), for some fixed constant
c?

REFERENCES
[1] Faisal N. Abu-Khzam. 2010. A kernelization algorithm for d-Hitting Set. J. Comput. Syst. Sci. 76, 7 (2010), 524–531.
[2] Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows, Michael A. Langston, W. Henry Suters, and Christopher T.

Symons. 2004. Kernelization Algorithms for the Vertex Cover Problem: Theory and Experiments. In Proceedings of

the Sixth Workshop on Algorithm Engineering and Experiments and the First Workshop on Analytic Algorithmics and

Combinatorics, New Orleans, LA, USA, January 10, 2004. 62–69.
[3] Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. 2017. Polylogarithmic

Approximation Algorithms for Weighted-F-Deletion Problems. Manuscript available upon request (2017).

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion 39:27

[4] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. 2011. Solving MAX-r -SAT Above a Tight
Lower Bound. Algorithmica 61, 3 (2011), 638–655.

[5] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. 2009. On problems without
polynomial kernels. J. Comput. Syst. Sci. 75, 8 (2009), 423–434. https://doi.org/10.1016/j.jcss.2009.04.001

[6] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos.
2016. (Meta) Kernelization. J. ACM 63, 5 (2016), 44:1–44:69. http://dl.acm.org/citation.cfm?id=2973749

[7] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. 2013. Preprocessing for Treewidth: A Combinatorial
Analysis through Kernelization. SIAM J. Discrete Math. 27, 4 (2013), 2108–2142. https://doi.org/10.1137/120903518
arXiv:1104.4217

[8] Yixin Cao. 2016. Linear Recognition of Almost Interval Graphs. In Proceedings of the Twenty-Seventh Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016. 1096–1115.
[9] Yixin Cao and Dániel Marx. 2015. Interval Deletion Is Fixed-Parameter Tractable. ACM Transactions on Algorithms 11,

3 (2015), 21:1–21:35.
[10] Yixin Cao and Dániel Marx. 2016. Chordal Editing is Fixed-Parameter Tractable. Algorithmica 75, 1 (2016), 118–137.
[11] Jianer Chen, Iyad A. Kanj, and Weijia Jia. 2001. Vertex cover: further observations and further improvements. Journal

of Algorithms 41, 2 (2001), 280–301.
[12] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk,

and Saket Saurabh. 2015. Parameterized Algorithms. Springer-Verlag.
[13] Marek Cygan, Lukasz Kowalik, and Marcin Pilipczuk. 2013. Open problems from workshop on kernels. URL:

http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf (2013).
[14] Holger Dell and Dieter van Melkebeek. 2014. Satisfiability Allows No Nontrivial Sparsification unless the Polynomial-

Time Hierarchy Collapses. J. ACM 61, 4 (2014), 23. https://doi.org/10.1145/2629620
[15] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer.
[16] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer-Verlag, Berlin. 493 pages.
[17] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. 2012. Planar F-Deletion: Approximation,

Kernelization and Optimal FPT Algorithms. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS

2012, New Brunswick, NJ, USA, October 20-23, 2012. 470–479. https://doi.org/10.1109/FOCS.2012.62
[18] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. 2010. Bidimensionality and Kernels. In

Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA,

January 17-19, 2010. 503–510.
[19] Fedor V. Fomin, Saket Saurabh, and Yngve Villanger. 2013. A Polynomial Kernel for Proper Interval Vertex Deletion.

SIAM J. Discrete Math. 27, 4 (2013), 1964–1976.
[20] Lance Fortnow and Rahul Santhanam. 2011. Infeasibility of instance compression and succinct PCPs for NP. J. Comput.

Syst. Sci. 77, 1 (2011), 91–106. https://doi.org/10.1016/j.jcss.2010.06.007
[21] Toshihiro Fujito. 1998. A Unified Approximation Algorithm for Node-deletion Problems. Discrete Applied Mathematics

86, 2-3 (1998), 213–231. https://doi.org/10.1016/S0166-218X(98)00035-3
[22] Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. 2015. Uniform Kernelization

Complexity of Hitting Forbidden Minors. In Automata, Languages, and Programming - 42nd International Colloquium,

ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I. 629–641. https://doi.org/10.1007/978-3-662-47672-7_51
[23] Martin Charles Golumbic. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.
[24] Pinar Heggernes, Pim van ’t Hof, Bart M. P. Jansen, Stefan Kratsch, and Yngve Villanger. 2013. Parameterized complexity

of vertex deletion into perfect graph classes. Theor. Comput. Sci. 511 (2013), 172–180.
[25] Bart M. P. Jansen. 2014. Turing Kernelization for Finding Long Paths and Cycles in Restricted Graph Classes. In Proc.

22th ESA (Lecture Notes in Computer Science), Andreas S. Schulz and Dorothea Wagner (Eds.), Vol. 8737. Springer,
579–591. https://doi.org/10.1007/978-3-662-44777-2_48

[26] Bart M. P. Jansen and Marcin Pilipczuk. 2017. Approximation and Kernelization for Chordal Vertex Deletion. In
Proceedings of the Twenty-Eight Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017. to appear.

[27] Yuping Ke, Yixin Cao, Xiating Ouyang, and Jianxin Wang. 2016. Unit Interval Vertex Deletion: Fewer Vertices are
Relevant. arXiv preprint arXiv:1607.01162 (2016).

[28] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi Sau, and Somnath Sikdar.
2016. Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions. ACM Trans. Algorithms 12, 2
(2016), 21. https://doi.org/10.1145/2797140

[29] Stefan Kratsch. 2012. Polynomial Kernelizations For MIN F+Π1 And MAX NP. Algorithmica 63, 1-2 (2012), 532–550.
https://doi.org/10.1007/s00453-011-9559-5

[30] Stefan Kratsch. 2014. Recent developments in kernelization: A survey. Bulletin of the EATCS 113 (2014). http:
//eatcs.org/beatcs/index.php/beatcs/article/view/285

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/10.1016/j.jcss.2009.04.001
http://dl.acm.org/citation.cfm?id=2973749
https://doi.org/10.1137/120903518
http://arxiv.org/abs/1104.4217
https://doi.org/10.1145/2629620
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1016/S0166-218X(98)00035-3
https://doi.org/10.1007/978-3-662-47672-7_51
https://doi.org/10.1007/978-3-662-44777-2_48
https://doi.org/10.1145/2797140
https://doi.org/10.1007/s00453-011-9559-5
http://eatcs.org/beatcs/index.php/beatcs/article/view/285
http://eatcs.org/beatcs/index.php/beatcs/article/view/285


39:28 Agrawal et al.

[31] Stefan Kratsch and Magnus Wahlström. 2012. Representative Sets and Irrelevant Vertices: New Tools for Kernelization.
In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,

2012. 450–459. https://doi.org/10.1109/FOCS.2012.46
[32] Stefan Kratsch and Magnus Wahlström. 2014. Compression via Matroids: A Randomized Polynomial Kernel for Odd

Cycle Transversal. ACM Trans. Algorithms 10, 4 (2014), 20:1–20:15. https://doi.org/10.1145/2635810
[33] John M. Lewis and Mihalis Yannakakis. 1980. The Node-Deletion Problem for Hereditary Properties is NP-Complete.

J. Comput. Syst. Sci. 20, 2 (1980), 219–230.
[34] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. 2012. Kernelization - Preprocessing with a Guarantee. In The

Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His 60th

Birthday. 129–161.
[35] Carsten Lund and Mihalis Yannakakis. 1994. On the Hardness of Approximating Minimization Problems. J. ACM 41, 5

(1994), 960–981. https://doi.org/10.1145/185675.306789
[36] Dániel Marx. 2010. Chordal Deletion is Fixed-Parameter Tractable. Algorithmica 57, 4 (2010), 747–768.
[37] Dániel Marx, Barry O’Sullivan, and Igor Razgon. 2013. Finding small separators in linear time via treewidth reduction.

ACM Transactions on Algorithms 9, 4 (2013), 30.
[38] Rolf Niedermeier. 2006. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its

Applications, Vol. 31. Oxford University Press, Oxford. xii+300 pages.
[39] Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. 2014. Network Sparsification

for Steiner Problems on Planar and Bounded-Genus Graphs. In Proc. 55th FOCS. IEEE Computer Society, 276–285.
https://doi.org/10.1109/FOCS.2014.37

[40] Stéphan Thomassé. 2010. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6, 2 (2010), 32:1–32:8.
https://doi.org/10.1145/1721837.1721848

[41] Mihalis Yannakakis. 1978. Node- and Edge-Deletion NP-Complete Problems. In Proceedings of the 10th Annual ACM

Symposium on Theory of Computing, May 1-3, 1978, San Diego, California, USA. 253–264. https://doi.org/10.1145/800133.
804355

Received February 2007; revised March 2009; accepted June 2009; revised January 2017

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://doi.org/10.1109/FOCS.2012.46
https://doi.org/10.1145/2635810
https://doi.org/10.1145/185675.306789
https://doi.org/10.1109/FOCS.2014.37
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355

	Abstract
	1 Introduction
	2 Preliminaries
	3 Kernelization
	3.1 Approximation
	3.2 Irrelevant and Mandatory Edges
	3.3 Independent Degree
	3.4 The Clique Forest
	3.5 The Length of Degree-2 Paths
	3.6 Unmarking Irrelevant and Mandatory Edges
	3.7 The Number of Vertices in the Kernel
	3.8 A Better Kernelization Algorithm

	4 Bounding the Size of Maximal Cliques
	4.1 Dangerous vertices and their witnesses in K
	4.2 Fragments of Chordless cycles intersecting K

	5 Conclusion
	References

