
Lower bounds for approximation schemes for Closest String

Marek Cygan∗ Daniel Lokshtanov† Marcin Pilipczuk‡ Micha l Pilipczuk§

Saket Saurabh¶

Abstract

In the Closest String problem one is given a family S of equal-length strings over some
fixed alphabet, and the task is to find a string y that minimizes the maximum Hamming distance
between y and a string from S. While polynomial-time approximation schemes (PTASes) for this
problem are known for a long time [Li et al.; J. ACM’02], no efficient polynomial-time approx-
imation scheme (EPTAS) has been proposed so far. In this paper, we prove that the existence
of an EPTAS for Closest String is in fact unlikely, as it would imply that FPT = W[1], a
highly unexpected collapse in the hierarchy of parameterized complexity classes. Our proof also
shows that the existence of a PTAS for Closest String with running time f(ε) · no(1/ε), for
any computable function f , would contradict the Exponential Time Hypothesis.

∗Institute of Informatics, University of Warsaw, Poland, cygan@mimuw.edu.pl. Supported by Polish National
Science Centre grant DEC-2012/05/D/ST6/03214.
†Department of Informatics, University of Bergen, Norway, daniello@ii.uib.no. Supported by the BeHard grant

under the recruitment programme of the of Bergen Research Foundation.
‡Institute of Informatics, University of Warsaw, Poland, marcin.pilipczuk@mimuw.edu.pl. Supported by Polish

National Science Centre grant DEC-2012/05/D/ST6/03214.
§Institute of Informatics, University of Warsaw, Poland, michal.pilipczuk@mimuw.edu.pl. Supported by Polish

National Science Centre grant DEC-2013/11/D/ST6/03073 and by the Foundation for Polish Science via the START
stipend programme. During the work on these results, Micha l Pilipczuk held a post-doc position at Warsaw Center
of Mathematics and Computer Science.
¶Institute of Mathematical Sciences, India, saket@imsc.res.in, and Department of Informatics, University of

Bergen, Norway, Saket.Saurabh@ii.uib.no. Supported by PARAPPROX, ERC starting grant no. 306992.

1 Introduction

Closest String and Closest Substring are two computational problems motivated by questions
in molecular biology connected to identifying functionally similar regions of DNA or RNA sequences,
as well as by applications in coding theory. In Closest String we are given a family S of strings
over some fixed alphabet Σ, each of length L. The task is to find one string y ∈ ΣL for which
maxx∈S H(x, y) is minimum possible, where H(x, y) is the Hamming distance between x and y,
that is, the number of positions on which x and y have different letters. We will consider both the
optimization variant of the problem where the said distance is to be minimized, and the decision
variant where an upper bound d is given on the input, and the algorithm needs to decide whether
there exists a string y with maxx∈S H(x, y) ≤ d. Closest Substring is a more general problem
where the strings from the input family S all have length m ≥ L, and we look for a string y ∈ ΣL

that minimizes maxx∈S minx′ substring of xH(x′, y). In other words, we look for y that can be fit as
close as possible to a substring of length L of each of the input strings from S.

Both Closest String and Closest Substring, as well as numerous variations on these
problems, have been studied extensively from the point of view of approximation algorithms. Most
importantly for us, for both of these problems there are classic results providing polynomial-time
approximation schemes (PTASes): for every ε > 0, it is possible to approximate in polynomial time
the optimum distance within a multiplicative factor of (1 + ε). The first PTASes for these problems
were given by Li et al. [9], and they had running time bounded by nO(1/ε

4). This was later improved

by Andoni et al. [1] to nO(
log 1/ε

ε2
), and then by Ma and Sun [11] to nO(1/ε

2), which constitutes the
current frontier of knowledge. We refer to the works [3, 8, 7, 9, 11, 12] for a broad introduction
to biological applications of Closest String, Closest Substring, and related problems, as well
as pointers to relevant literature.

One of the immediate questions stemming from the works of Li et al. [9], Andoni et al. [1], and
Ma and Sun [11], is whether either for Closest String or Closest Substring one can also give an
efficient polynomial-time approximation scheme (EPTAS), i.e., an approximation scheme that for ev-
ery ε > 0 gives a (1+ε)-approximation algorithm with running time f(ε)·nO(1), for some computable
function f . In other words, the degree of the polynomial should be independent of ε, whereas the
exponential blow-up (inevitable due to NP-completeness) should happen only in the multiplicative
constant standing in front of the running time. EPTASes are desirable from the point of view of
applications, since they provide approximation algorithms that can be useful in practice already
for relatively small values of ε, whereas running times of general PTASes are usually prohibitive.

For the more general Closest Substring problem, this question was answered negatively by
Marx [12] using the techniques from parameterized complexity. More precisely, Marx considered
various parameterizations of Closest Substring, and showed that when parameterized by d and
|S|, the problem remains W[1]-hard even for the binary alphabet. This means that the existence
of a fixed-parameter algorithm with running time f(d, |S|) · nO(1), where n is the total size of the
input, would imply that FPT = W[1], a highly unexpected collapse in the parameterized complexity.
This result shows that, under FPT 6= W[1], also an EPTAS for Closest Substring can be
excluded. Indeed, if such an EPTAS existed, then by setting any ε < 1

d one could in time f(d) ·nO(1)
distinguish instances with optimum distance value d from the ones with optimum distance value
d+ 1, thus solving the decision variant in fixed-parameter tractable (FPT) time. Using more precise
results about the parameterized hardness of the Clique problem, Marx [12] showed that, under the
assumption of Exponential Time Hypothesis (ETH), which states that 3-SAT cannot be solved in
time O(2δn) for some δ > 0, one even cannot expect PTASes for Closest Substring with running
time f(ε) · no(log(1/ε)) for any computable function f . We refer to a survey of Marx [13] for more

1

examples of links between parameterized complexity and the design of approximation schemes.
The methodology used by Marx [12], which is the classic connection between parameterized

complexity and EPTASes that dates back to the work of Bazgan [2] and of Cesati and Trevisan [4],
completely breaks down when applied to Closest String. This is because this problem actually
does admit an FPT algorithm when parameterized by d. An algorithm with running time dd · nO(1)
was proposed by Gramm et al. [7]. Later, Ma and Sun [11] gave an algorithm with running time
2O(d) · |Σ|d ·nO(1), which is more efficient for constant-size alphabets. Both the algorithms of Gramm
et al. and of Ma and Sun are known to be essentially optimal under ETH [10], and nowadays they
constitute textbook examples of advanced branching techniques in parameterized complexity [5].
Therefore, in order to settle the question about the existence of an EPTAS for Closest String,
one should look for a substantial refinement of the currently known techniques.

An approach for overcoming this issue was recently used by Boucher et al. [3], who attribute
the original idea to Marx [13]. Boucher et al. considered a problem called Consensus Patterns,
which is a variation of Closest Substring where the goal function is the total sum of Hamming
distances between the center string and best-fitting substrings of the input strings, instead of the
maximum among these distances. The problem admits a PTAS due to Li et al. [8], and was shown
by Marx [12] to be fixed-parameter tractable when parameterized by the target distance d. Despite
the latter result, Boucher et al. [3] managed to prove that the existence of an EPTAS for Consensus
Patterns would imply that FPT = W[1]. The main idea is to provide a reduction from a W[1]-hard
problem, such as Clique, where the output target distance d is not bounded by a function of the
input parameter k (indeed, the existence of such a reduction would prove that FPT = W[1]), but
the multiplicative gap between the optimum distances yielded for yes- and no-instances is 1 + 1

g(k) ,
for some computable function g. Even though the output parameter is unbounded in terms of k,
an EPTAS for the problem could be still used to distinguish between output instances obtained
from yes- and no-instances of Clique in FPT time, thus proving that FPT = W[1].

Our contribution In this paper we provide a negative answer to the question about the existence
of an EPTAS for Closest String by proving the following theorem.

Theorem 1.1. The following assertions hold:

• Unless FPT = W[1], there is no EPTAS for Closest String over binary alphabet.

• Unless ETH fails, there is no PTAS for Closest String over binary alphabet with running
time f(ε) · no(1/ε), for any computable function f .

Thus, one should not expect an EPTAS for Closest String, whereas for PTASes there is still
a room for improvement between the running time of nO(1/ε

2) given by Ma and Sun [11] and the
lower bound of Theorem 1.1. It is worth noting that our f(ε) · no(1/ε) time lower bound for (1 + ε)-
approximating Closest String also holds for the more general Closest Substring problem. This
yields a significantly stronger lower bound than the previous f(ε)·no(log(1/ε)) lower bound of Marx [12].

Our proof of Theorem 1.1 follows the methodology proposed Marx [13] and used by Boucher et
al. [3] for Consensus Patterns. The following theorem, which is the main technical contribution
of this work, states formally the properties of our reduction.

Theorem 1.2. There is an integer c and an algorithm that, given an instance (G, k) of Clique,
works in time 2k · nO(1) and outputs an instance (S, L, d) of Closest String over alphabet {0, 1}
with the following properties:

• If G contains a clique on k vertices, then there is a string w ∈ {0, 1}L such that H(w, x) ≤ d
for each x ∈ S.

2

• If G does not contain a clique on k vertices, then for each string w ∈ {0, 1}L there is x ∈ S
such that H(w, x) > (1 + 1

ck) · d.

The statement of Theorem 1.2 is similar to the core of the hardness proof of Boucher et al. [3].
However, our reduction is completely different from the reduction of Boucher et al., because the
causes of the computational hardness of of Closest String and Consensus Patterns are quite
orthogonal to each other. In Consensus Patterns the difficulty lies in picking the right substrings
of the input strings. Once these substrings are known the center string is easily computed in
polynomial time, since we are minimizing the sum of the Hamming distances. In Closest String
there are no substrings to pick, we just have to find a center string for the given input strings. This
is a computationally hard task because we are minimizing the maximum of the Hamming distances
to the center, rather than the sum.

Theorem 1.1 follows immediately by combining Theorem 1.2 with the known parameterized
hardness results for Clique, gathered in the following theorem, and setting ε = 1

ck .

Theorem 1.3 (cf. Theorem 13.25 and Corollary 14.23 of [5]). The following assertions hold:

• Unless FPT = W[1], Clique cannot be solved in time f(k) · nO(1) for any computable
function f .

• Unless ETH fails, Clique cannot be solved in time f(k) · no(k) for any computable function f .

The main idea of the proof of Theorem 1.2 is to encode the n vertices of the given graph G as
an “almost orthogonal” family T of strings from {0, 1}`, for some ` = O(log n). Strings from T are
used as identifiers of vertices of G, and the fact that they are almost orthogonal means that the
identifiers of two distinct vertices of G differ on approximately `/2 positions. On the other hand
` = O(log n), so the whole space of strings into which V (G) is embedded has size polynomial in n.
Using these properties, the reduction promised in Theorem 1.2 is designed by a careful construction.

Notation. By log p we denote the base-2 logarithm of p. For a positive integer n, we denote
[n] = {1, 2, . . . , n}. The length of a string x is denoted by |x|. For an alphabet Σ and two equal-
length strings x, y over Σ, the Hamming distance between x and y, denoted H(x, y), is the number
of positions on which x and y have different letters. If Σ = {0, 1} is the binary alphabet, then the
Hamming weight of a string x over Σ, denoted H(x), is the number of 1s in it. The complement
of a string x over a binary alphabet, denoted x, is obtained from x by replacing all 0s with 1s and
vice versa. Note that if |x| = |y| = n, then H(x, y) = n−H(x, y) = n−H(x, y) = H(x, y).

2 Selection gadget

For the rest of this paper, we fix the following constants: ρ = 1/100, α = 1/10, β = 1/20. Since C is
divisible by 100, we have that that ρ`, α`, and β` are all integers. First, we prove that among binary
strings of logarithmic length one can find a linearly-sized family of “almost orthogonal” strings of
balanced Hamming weight. The proof is by a simple greedy argument.

Lemma 2.1. There exist positive integers C and N , where C is divisible by 100, with the following
property. Let n > N be any integer, and let us denote ` = C · dlog ne. Then there exists a set
T ⊆ {0, 1}` with the following properties:

1. |T | = n,

2. H(x) = `/2 for each x ∈ T , and

3

3. (1/2− ρ)` < H(x, y) < (1/2 + ρ)` for each distinct x, y ∈ T .

Moreover, given n, T can be constructed in time polynomial in n.

Proof. Let H2(·) denote the binary entropy, i.e., H2(p) = −p log p− (1− p) log(1− p) for p ∈ (0, 1).
Suppose ` is some positive integer divisible by 100. Then it is well known that

k∑
i=0

(
`

i

)
≤ 2`·H2(k/`) (1)

for all integers k with 0 < k ≤ `/2; cf. [6, Lemma 16.19]. Let us denote

A =

(1/2−ρ)`∑
i=0

(
`

i

)
+

∑̀
i=(1/2+ρ)`

(
`

i

)
.

Then from (1) it follows that
A ≤ 2 · 2σ`,

where σ = H2(1/2− ρ) < 1.
Suppose now that ` = C · dlog ne for some positive integers C and n > 1, where C is divisible

by 100. Then

n(`+ 1) ·A ≤ 2n · (Cdlog ne+ 1) · 2σ·Cdlogne

≤ 2 · (2C + 1) · 2σC · n log n · 2σ·C logn

≤ (4C + 2) · 2σC · nσC+2.

Since σ < 1, we can choose C to be an integer divisible by 100 so that σC + 2 < C. Then, we can
choose N large enough so that

(4C + 2) · 2σC · nσC+2 ≤ nC

for all integers n > N . Hence,

nA ≤ nC

`+ 1
. (2)

We now verify that this choice of C,N satisfies the required properties.
Consider the following greedy procedure performed on {0, 1}`. Start with T = ∅ and all strings

of {0, 1}` marked as unused. In consecutive rounds perform the following:

1. Pick any x ∈ {0, 1}` with H(x) = `/2 that was not yet marked as used, and add x to T .

2. Mark every y ∈ {0, 1}` with H(x, y) ≤ (1/2− ρ)` or H(x, y) ≥ (1/2 + ρ)` as used.

It is clear that at each step of the procedure, the constructed family T satisfies properties (2)
and (3). Hence, it suffices to prove that the procedure can be performed for at least n rounds.

Note that the number of strings marked as used at each round is at most A. On the other hand,
if D is the set of strings from {0, 1}` that have Hamming weight exactly `/2, then

|D| ≥ |{0, 1}
`|

`+ 1
=

2Cdlogne

`+ 1
≥ nC

`+ 1
.

From (2) we infer that |D| ≥ nA. This means that the algorithm will be able to find an unmarked
x ∈ D for at least n rounds, and hence to construct the family T with |T | = n. It is easy to implement
the algorithm in polynomial time using the fact that the size of {0, 1}` is polynomial in n.

4

From now on, we adopt the constants C,N given by Lemma 2.1 to the notation. Let us also
fix n > N ; then let ` = C · dlog ne and T be the set of strings given by Lemma 2.1, which we shall
call selection strings. We define the set of forbidden strings F = F(T) as follows:

F = {y : y ∈ {0, 1}` and H(x, y) ≤ (1− α)` for all x ∈ T }.

In other words, F comprises all the strings that are not almost diametrically opposite to some string
from T . The following lemma asserts the properties of T and F that we shall need later on.

Lemma 2.2. Suppose u ∈ {0, 1}`. Then the following assertions hold:

1. If u ∈ T , then H(u, y) ≤ (1− α)` for each y ∈ F .

2. If H(x, u) ≥ β` for all x ∈ T , then there exists y ∈ F such that H(u, y) ≥ (1− β)`.

Proof. Property (1) follows directly from the definition of F , so we proceed to the proof of (2).
Suppose H(u, x) ≥ β` for all x ∈ T . If u ∈ F , then we could take y = u, so suppose that u /∈ F .

This means that there exists x0 ∈ T , for which H(x0, u) > (1−α)`; equivalently, H(x0, u) < α`. On
the other hand, we have that H(x0, u) ≥ β`, so also H(x0, u) ≥ β`. Construct y from u by taking
any set of positions X of size β` on which u and x0 have the same letters, and flipping the letters on
these positions (replacing 0s with 1s and vice versa). Such a set of positions always exists because
α+ β < 1. Then we have that H(x0, y) = H(x0, u) + β`, which implies that

α` = β`+ β` ≤ H(x0, y) < (α+ β)`.

We claim that y ∈ F ; suppose otherwise. Since H(x0, y) ≥ α`, then also H(x0, y) ≤ (1 − α)`.
As y /∈ F , there must exist some x1 ∈ T , x0 6= x1, such that H(x1, y) > (1 − α)`; equivalently
H(x1, y) < α`. Hence, from the triangle inequality we infer that

H(x0, x1) = H(x0, x1) ≤ H(x0, y) +H(y, x1) < (2α+ β)`.

This is a contradiction with the assumption that H(x0, x1) ≥ (1/2 − ρ)`, which is implied by
x0, x1 ∈ T . Indeed, we have that 2α+ β = 1

4 <
49
100 = 1/2− ρ.

Hence y ∈ F . By definition we have that H(u, y) = β`, which implies that H(u, y) = (1− β)`.
Thus, y satisfies the required properties.

3 Main construction

In this section we provide the proof of Theorem 1.2. Let (G, k) be the input instance of Clique,
and let n = |V (G)|. Let C,N be the constants given by Lemma 2.1. We can assume that n > N ,
because otherwise the instance (G, k) can be solved in constant time. Let ` = Cdlog ne. We run
the polynomial-time algorithm given by Lemma 2.1 that computes the set T ⊆ {0, 1}` of selection
strings. Let F = F(T) be the set of forbidden strings, as defined in Section 2. Note that F can
be computed in polynomial time directly from the definition, due to |{0, 1}`| = nO(1).

We now present the construction of the output instance (S, L, d) of Closest String. Set
L = k`+ γ`, where γ = ρ+ α = 11

100 , and partition the set [L] of positions in strings of length L
into k + 1 blocks:

• k blocks Bi for i ∈ [k] of length ` each, where Bi = {(i− 1)`+ 1, (i− 1)`+ 2, . . . , i`};

• special balancing block C of length γ`, where C = {k`+ 1, k`+ 2, . . . , L}.

5

For w ∈ {0, 1}L and a contiguous subset of positions X, by w[X] we denote the substring of w
formed by positions from X.

Let us first discuss the intuition. The choice the solution string makes on consecutive blocks
Bi will encode a selection of a k-tuple of vertices in G. Vertices of G will be mapped one-to-one
to strings from T . The family of constraint strings S will consist of two subfamilies Ssel and Sadj
with the following roles:

• Strings from Ssel ensure that on each blockBi, the solution picks a substring that is close to some
element of T . The selection of this element encodes the choice of the ith vertex from the k-tuple.

• Strings from Sadj verify that vertices of the chosen k-tuple are pairwise different and adjacent,
and hence they form a clique.

A small technical caveat is that for strings from Ssel and from Sadj, the intended Hamming distance
from the solution string will be slightly different. The role of the balancing block C is to equalize
this distance by a simple additional construction.

We proceed to the formal description. Since |V (G)| = |T |, let ι : V (G) → T be an arbitrary
bijection.

The family Ssel consists of strings a(i, y, φ, z), for all i ∈ [k], y ∈ F , φ being a function from
[k]\{i} to {0, 1}, and z being a binary string of length γ`. String a(i, y, φ, z) is constructed as follows:

• On block Bi put the string y.

• For each j ∈ [k] \ {i}, on block Bj put a string consisting of ` zeroes if φ(j) = 0, and a string
consisting of ` ones if φ(j) = 1.

• On balancing block C put the string z.

Thus, |Ssel| = k · |F| · 2k−1 · 2γ` ≤ 2k · nO(1). Also, Ssel can be constructed in time 2k · nO(1) directly
from the definition.

The family Sadj consists of strings b(i, j, (u, v), ψ), for all i, j ∈ [k] with i < j, (u, v) being an
ordered pair of vertices of G that are either equal or non-adjacent, and ψ being a function from
[k] \ {i, j} to {0, 1}. String b(i, j, (u, v), ψ) is constructed as follows:

• On block Bi put the string ι(u).

• On block Bj put the string ι(v).

• On block Bq, for q ∈ [k] \ {i, j}, put a string consisting of ` zeroes if ψ(q) = 0, and a string
consisting of ` ones if ψ(q) = 1.

• On balancing block C put a string consisting of γ` zeroes.

Thus, |Sadj| ≤
(
k
2

)
· n2 · 2k−2 ≤ 2k · nO(1). Again, Sadj can be constructed in time 2k · nO(1) directly

from the definition.
Set S = Ssel ∪ Sadj and d = (k/2 + 1/2 + ρ) · `. This concludes the construction. Its correctness

will be verified in two lemmas that mirror the properties listed in Theorem 1.2.

Lemma 3.1. If G contains a clique on k vertices, then there exists a string w ∈ {0, 1}L such that
H(w, x) ≤ d for each x ∈ S.

6

Proof. Let {c1, c2, . . . , ck} be a k-clique in G. Construct w by putting ι(ci) on block Bi, for each
i ∈ [k], and zeroes on all the positions of the balancing block C.

First, take any string a = a(i, y, φ, z) ∈ Ssel. Since ι(ci) ∈ T and y ∈ F , by Lemma 2.2(1) we
infer that H(w[Bi], a[Bi]) = H(ι(ci), y) ≤ (1− α)`. For each j ∈ [k] \ {i}, since H(ι(cj)) = `/2 due
to ι(cj) ∈ T , we have that H(w[Bj], a[Bj]) = H(ι(cj), a[Bj]) = `/2, regardless of the value of φ(j).
Finally, obviously H(w[C], a[C]) ≤ |C| = γ`. Hence

H(w, a) ≤ (1− α)`+ (k − 1)`/2 + γ` = d.

Second, take any string b = b(i, j, (u, v), ψ) ∈ Sadj. Since ci and cj are different and adjacent,
whereas u and v are either equal or non-adjacent, we have (ci, cj) 6= (u, v). Without loss of generality

suppose that ci 6= u; the second case will be symmetric. Then H(w[Bi], b[Bi]) = H(ι(ci), ι(u)) ≤
(1/2+ρ)`, due to property (3) of Lemma 2.1. Obviously,H(w[Bj], b[Bj]) ≤ |Bj | ≤ `. Finally, for every
q ∈ [k]\{i, j} we have thatH(ι(cq)) = `/2, and henceH(w[Bq], b[Bq]) = H(ι(cq), b[Bq]) = `/2, regard-
less of the value of ψ(q). Strings w and b match on positions of C, soH(w[C], b[C]) = 0. Summarizing,

H(w, b) ≤ (1/2 + ρ)`+ `+ (k − 2)`/2 = d.

Lemma 3.2. If there is a string w ∈ {0, 1}L such that H(w, x) < d+ β` for each x ∈ S, then G
contains a clique on k vertices.

Proof. We first prove that on each block Bi, w is close to selecting an element of T .

Claim 1. For each i ∈ [k] there exists a unique xi ∈ T such that H(w[Bi], xi) < β`.

Proof. Uniqueness follows directly from property (3) of Lemma 2.1 and the triangle inequality, so
it suffices to prove existence.

Let u = w[Bi]. For the sake of contradiction, suppose H(u, x) ≥ β` for each x ∈ T . From
Lemma 2.2(2) we infer that there exists y ∈ F such that H(u, y) ≥ (1−β)`. Let us take φ : [k]\{i} →
{0, 1} defined as follows: φ(j) = 0 if in w the majority of positions of Bj contain a one, and φ(j) = 1

otherwise. Also, define z = w[C]. Consider string a = a(i, y, φ, z) ∈ Ssel. Then, it follows that

• H(w[Bi], a[Bi]) = H(u, y) ≥ (1− β)`;

• H(w[Bj], a[Bj]) ≥ `/2 for each j ∈ [k] \ {i};

• H(w[C], a[C]) = H(w[C], w[C]) = |C| = γ`.

Consequently,
H(w, a) ≥ (1− β)`+ (k − 1)`/2 + γ` = d+ β`.

This is a contradiction with the assumption that H(w, x) < d+ β` for each x ∈ S. y

For each i ∈ [k], let ci = ι−1(xi).

Claim 2. For all i, j ∈ [k] with i < j, vertices ci and cj are different and adjacent.

Proof. For the sake of contradiction, suppose ci and cj are either equal or non-adjacent. Define ψ : [k]\
{i, j} → {0, 1} as follows: ψ(q) = 0 if in w the majority of positions of Bq contain a one, and ψ(q) = 1
otherwise. Then, for (ci, cj) we have constructed string b = b(i, j, (ci, cj), ψ) ∈ Sadj. Observe now that

• H(w[Bi], b[Bi]) = H(w[Bi], xi) > (1− β)`, since H(w[Bi], xi) < β`;

7

• Similarly, H(w[Bj], b[Bj]) > (1− β)`;

• H(w[Bq], b[Bq]) ≥ `/2 for each q ∈ [k] \ {i, j};

• H(w[C], b[C]) ≥ 0.

Consequently,

H(w, b) ≥ 2(1− β)`+ (k − 2)`/2 = (k/2 + 1− 2β)` > d+ β`.

This is a contradiction with the assumption that H(w, x) < d+ β` for each x ∈ S. y

Claim 2 asserts that, indeed, {c1, c2, . . . , ck} is a k-clique in G.

Lemmas 3.1 and 3.2 conclude the proof of Theorem 1.2, where c can be taken to be any constant
larger than d

β`·k ≤
2
β = 40.

4 Conclusions

In this paper we have proved that Closest String does not have an EPTAS under the assumption
of FPT 6= W[1]. Moreover, under the stronger assumption of the Exponential Time Hypothesis,
one can also exclude PTASes with running time f(ε) · no(1/ε), for any computable function f .
However, the fastest currently known approximation scheme for Closest String has running time
nO(1/ε

2) [11]. This leaves a significant gap between the known upper and lower bounds. Despite
efforts, we were unable to close this gap, and hence we leave it as an open problem.

References

[1] A. Andoni, P. Indyk, and M. Pătraşcu. On the optimality of the dimensionality reduction method.
In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October
2006, Berkeley, California, USA, Proceedings, pages 449–458. IEEE Computer Society, 2006.

[2] C. Bazgan. Schémas d’approximation et complexité paramétrée. PhD thesis, Université Paris Sud, 1995.
In French.

[3] C. Boucher, C. Lo, and D. Lokshtanov. Consensus Patterns (probably) has no EPTAS. In Algorithms
- ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings,
volume 9294 of Lecture Notes in Computer Science, pages 239–250. Springer, 2015. Full version available
at http://www.ii.uib.no/~daniello/papers/ConsensusPatterns.pdf.

[4] M. Cesati and L. Trevisan. On the efficiency of polynomial time approximation schemes. Inf. Process.
Lett., 64(4):165–171, 1997.

[5] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

[6] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer-Verlag, Berlin, 2006.

[7] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for Closest String and
related problems. Algorithmica, 37(1):25–42, 2003.

[8] M. Li, B. Ma, and L. Wang. Finding similar regions in many sequences. J. Comput. Syst. Sci.,
65(1):73–96, 2002.

[9] M. Li, B. Ma, and L. Wang. On the Closest String and Substring problems. J. ACM, 49(2):157–171, 2002.

[10] D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential parameterized problems. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011,
San Francisco, California, USA, January 23-25, 2011, pages 760–776. SIAM, 2011.

8

[11] B. Ma and X. Sun. More efficient algorithms for Closest String and Substring problems. SIAM J.
Comput., 39(4):1432–1443, 2009.

[12] D. Marx. Closest substring problems with small distances. SIAM J. Comput., 38(4):1382–1410, 2008.

[13] D. Marx. Parameterized complexity and approximation algorithms. Comput. J., 51(1):60–78, 2008.

9

