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Abstract

Given a permutation π of {1, . . . , n} and a positive integer k, can π be partitioned

into at most k subsequences, each of which is either increasing or decreasing? We give an

algorithm with running time 2O(k2 log k)nO(1) that solves this problem, thereby showing

that it is fixed parameter tractable. This NP-complete problem is equivalent to deciding

whether the cochromatic number of a given permutation graph on n vertices is at most

k. Our algorithm solves in fact a more general problem: within the mentioned running

time, it decides whether the cochromatic number of a given perfect graph on n vertices

is at most k.

To obtain our result we use a combination of two well-known techniques within pa-

rameterized algorithms: iterative compression and greedy localization. Consequently

we name this combination “iterative localization”. We further demonstrate the power of

this combination by giving an algorithm with running time 2O(k2 log k)n log n that decides

whether a given set of n non-overlapping axis-parallel rectangles can be stabbed by at

most k of a given set of horizontal and vertical lines.

1 Introduction

A monotone subsequence of a sequence of distinct integers is a collection of these integers that

appear either in increasing or in decreasing order in the sequence. Given a permutation π

on [n] = {1, . . . , n} and a positive integer k, a well-known partitioning problem asks whether

we can partition π into at most k monotone subsequences. This partition problem is NP-

complete [33] and it can be solved in time nO(k) [3]. Using the famous Erdős-Szekeres theorem

[16] which states that every sequence of p ·q+1 real numbers has a monotone subsequence of

length either p+ 1 or q+ 1, an algorithm with running time nO(k) implies a subexponential-

time algorithm with running time nO(
√
n) for partitioning π into the minimum number of

monotone subsequences [3]. A natural question which has been left open, and most recently

stated at a 2008 Dagstuhl Seminar [19], is whether the problem is fixed parameter tractable

(FPT) when parameterized by the number of monotone subsequences. Equivalently, is there
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‡Université Paul Verlaine Metz, France. kratsch@univ-metz.fr
§Dept. of Comp. Sc. and Engin., University of California San Diego, USA. dlokshtanov@ucsd.edu
¶The Institute of Mathematical Sciences, Chennai, India. {vraman|saket}@imsc.res.in

1



an algorithm with running time f(k) nO(1) for partitioning a permutation into at most k

monotone subsequences? We answer this question affirmatively by giving an algorithm with

running time 2O(k2 log k)nO(1).

Every permutation π on [n] corresponds to a permutation graph G(π) on n vertices.

This graph has a vertex for each integer 1, 2, . . . , n and there is an edge between any two

integers if their order in π is the opposite of their natural order, that is, for i < j, we have

an edge between i and j if π(i) > π(j). Hence, the above mentioned partitioning problem

is equivalent to deciding whether the vertices of G(π) can be partitioned into at most k

independent sets or cliques. This brings us to the notion of cochromatic number of a graph.

The cochromatic number of a graph G = (V,E) is the minimum number of sets the vertex

set V can be partitioned into, such that each set is either an independent set or a clique.

Thus, the above mentioned partitioning problem is equivalent to finding the cochromatic

number of permutation graphs. On arbitrary graphs, the Cochromatic Number problem

is defined as follows.

Cochromatic Number

Input: A graph G on n vertices, and an integer k ≥ 1.

Parameter: k.

Question: Is the cochromatic number of G at most k?

Cochromatic Number, being a natural extension of chromatic number and graph color-

ings, has been well-studied [14, 15], and it is NP-complete even on permutation graphs [33].

Brandstädt [2] showed that we can recognize in polynomial time whether the vertex set of

a given undirected graph can be partitioned into one or two independent sets and one or

two cliques. However, it remains NP-complete to decide whether we can partition the given

graph into at most κ independent sets and at most ` cliques if either κ ≥ 3 or ` ≥ 3. It

is easy to show that testing whether the cochromatic number of a given graph is at most 3

is NP-complete. Thus, we cannot hope to solve Cochromatic Number on general graphs

even in time nf(k) for any arbitrary function f of k unless P=NP. We show that Cochro-

matic Number is fixed parameter tractable on perfect graphs; a graph class that subsumes

permutation graphs, bipartite graphs, and chordal graphs, to name a few.

A graph is perfect if the chromatic number is equal to the clique number for each of its

induced subgraphs. Perfect graphs were introduced by Berge in the early 60’s, and they

form one of the most well-studied classes of graphs [4, 17, 23, 30]. The proof of the Perfect

Graph Theorem by Chudnovsky et al. [8], after being a conjecture by Berge [1] for over 40

years, is one of the major achievements in algorithmic graph theory. Perfect graphs have

many desirable algorithmic properties. They can be recognized in polynomial time [7], and

one can find a maximum independent set, a minimum coloring, and a maximum clique, all

in polynomial time [24]. Our algorithm solves Cochromatic Number in 2O(k2 log k)nO(1)

time on perfect graphs and crucially uses several algorithmic properties of perfect graphs.

To the best of our knowledge even an nO(k) time algorithm solving this problem on perfect

graphs was not known before. The only known algorithmic results for the Cochromatic

Number problem are by Fomin et al. [20] who gave a factor 1.71 approximation algorithm

on comparability graphs and on cocomparability graphs, and a factor log n approximation

algorithm on perfect graphs. Note that permutation graphs are both comparability and

cocomparability, and these two graph classes are both perfect.
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To show our result, we use a combination of two well-known techniques within param-

eterized algorithms, namely, iterative compression and greedy localization. Thus we term

this combination “iterative localization”. This combination follows the well-known iterative

compression paradigm in parameterized complexity, but finds a small witness to branch and

move towards an optimal solution “for the compressed instance” at the compression step.

Using this new combination, we are also able to resolve another open question [11, 12],

namely whether Disjoint Rectangle Stabbing is fixed parameter tractable.

Disjoint Rectangle Stabbing

Input: A set R of n axis-parallel non-overlapping rectangles embedded in a

plane, a set L of vertical and horizontal lines embedded in the plane, and an

integer k ≥ 1.

Parameter: k.

Question: Is there a set L′ ⊆ L with |L′| ≤ k such that every rectangle from R

is stabbed by at least one line from L′?

Here we say that a rectangle is stabbed by a line if their intersection is nonempty. Fur-

thermore, two rectangles are said to be overlapping if there exists a vertical line v and a

horizontal line h such that both rectangles are stabbed by the lines v and h. In particular,

non-intersecting rectangles are always non-overlapping.

The Rectangle Stabbing problem, the more general version of the Disjoint Rect-

angle Stabbing problem, where the rectangles can overlap is a generic geometric covering

problem having wide applicability [25]. A number of polynomial-time approximation results

for Rectangle Stabbing and its variants are known [9, 34, 28, 25]. In [12], Dom and Sik-

dar prove a W[1]-hardness result for a higher dimensional version of the Rectangle Stab-

bing problem and show several restrictions of this two dimensional version fixed-parameter

tractable. Recently, Dom et al. [11] and Giannopoulos et al. [22] independently considered

the general two dimensional version and showed it to be complete for the parameterized

complexity class W[1]. They also showed a restricted version of Disjoint Rectangle

Stabbing, b-Disjoint Square Stabbing fixed parameter tractable for a fixed b. All these

papers leave the parameterized complexity of the general Disjoint Rectangle Stabbing

problem open.

Our paper is organized as follows. In Section 2 we give the remaining necessary definitions

and set up our notations. Section 3 gives an overview of the method we use to solve the two

problems we address. The fixed parameter tractable algorithm for Cochromatic Number

on perfect graphs is given in Section 4 and for Disjoint Rectangle Stabbing in Section 5.

We conclude with some remarks in Section 6.

2 Definitions and Notation

All graphs in this paper are simple, undirected, and unweighted. For a graph G = (V,E), we

denote the size of the vertex set V by n and the edge set E by m. For a subset S of V , the

subgraph of G induced by S is denoted by G[S]. The complement of G = (V,E) is denoted

by G, it has the same vertex set V , and edge set {uv | u, v ∈ V and u 6= v and uv /∈ E}.
A (proper) coloring of a graph is an assignment of colors to its vertices so that adjacent

vertices receive different colors. A coloring is minimum if it uses the minimum number of
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colors. The chromatic number and the clique number of G are, respectively, the number of

colors in a minimum coloring of G, and the size of a largest clique in G. A clique cover

in a graph is a collection of cliques such that every vertex is in one of the cliques of the

collection. A graph is perfect if the chromatic number is equal to the clique number for each

of its induced subgraphs. The cochromatic number of a graph G is the minimum number of

sets V can be partitioned into, such that each set is either an independent set or a clique.

A parameterized problem L takes two values as input – an input x and an integer pa-

rameter k, and is said to be fixed parameter tractable (FPT) if there is an algorithm that

decides whether the input (x, k) is in L in f(k)nO(1) time where f is some function of k. We

refer to [13, 31, 18] for more information on fixed-parameter algorithms and parameterized

complexity.

3 Methodology

Iterative Localization can be viewed as a combination of two well-known methods in obtaining

fixed parameter tractable algorithms, that is, greedy localization and iterative compression.

The method of greedy localization is primarily used for maximization problems. The idea

is to start off by greedily computing a solution to the problem at hand and showing that

the optimal solution must in some sense lie “close” to the current solution. For a concrete

example consider the problem of finding k vertex disjoint P3’s, paths on three vertices, in a

given graph G. We greedily compute a maximal collection of pairwise disjoint P3’s. If the

number of P3’s in our collection is at least k, we are done. Else, observe that any collection

of k pairwise disjoint P3’s must intersect with vertices of P3’s in our greedy solution. We

refer to [10, 27] for applications of greedy localization.

Iterative Compression is a technique primarily used for minimization problems. Algo-

rithms based on iterative compression apply polynomially many “compression steps”. In a

compression step, we are given an instance I of the problem, a solution S′ to the problem,

and the objective is to check whether there exists a solution S for I such that |S| < |S′|
in f(|S′|)|I|O(1) time. The idea is to process the instance incrementally, maintaining a so-

lution S to the intermediate instances. In each incremental step both the instance and the

maintained solution increase in size. Then the compression algorithm is run to decrease the

size of S again. Iterative Compression has proved very useful in the design of parameter-

ized algorithms and is instrumental in the currently fastest parameterized algorithms for

Odd Cycle Transversal [32], Feedback Vertex Set [6] and Directed Feedback

Vertex Set [5]. We refer to [31] for a more thorough introduction to Iterative Compression.

We combine the two methods, applying iterative compression to incrementally build the

solution. In each compression step we search the solution space around the given solution

similarly to how it is done in greedy localization.

4 Cochromatic Number on Perfect Graphs

In this section we give an algorithm for Cochromatic Number on perfect graphs. We

start by guessing the number α of cliques and the number β of independent sets such that

α + β = k, and for each of the k + 1 guesses (of (α, β)) we will decide whether G can
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be partitioned into at most α cliques and at most β independent sets. We order V into

v1, v2, . . . , vn and define Vi = {v1, . . . , vi} for every i. Notice that if V can be partitioned

into at most α cliques and β independent sets, then for every i, so can G[Vi]. Also, given

such a partitioning for G[Vi] we can easily make a partitioning of G[Vi+1] into α+ 1 cliques

and β independent sets by letting vi+1 be a clique by itself. At this point we want to use the

current partitioning to decide whether there is a partitioning of G[Vi+1] into α cliques and

β independent sets. This naturally leads to the definition of the compression version of the

problem.

Compression Cochromatic Number (CCN)

Input: A perfect graph G = (V,E) on n vertices, a partition P = (C1, . . . , Cα+1,

I1, . . . , Iβ) of V , where Ci, 1 ≤ i ≤ α + 1, are cliques, and Ij , 1 ≤ j ≤ β, are

independent sets.

Task: Find a partitioning of G into α cliques and β independent sets, or conclude

that no such partitioning exists.

We will give a 2O(αβ log(αβ))nO(1) time algorithm for CCN, which together with the dis-

cussion above yields a 2O(αβ log(αβ))nO(1) time algorithm for Cochromatic Number. To do

that we use the following classical results.

Lemma 1 ([24]). Let G be a perfect graph. Then there exist algorithms that can compute in

polynomial time: (a) a minimum coloring of G, (b) a maximum independent set of G, and

(c) a maximum clique of G.

Lemma 2 ([29]). G is a perfect graph if and only if G is a perfect graph.

Using Lemmata 1 and 2, we can prove the following preliminary lemma which is integral

to our algorithm.

Lemma 3. Given a perfect graph G = (V,E) and an integer `, there is a polynomial time

algorithm that outputs

(a) either a partition of V into at most ` independent sets or a clique of size `+ 1, and

(b) either a partition of V into at most ` cliques or an independent set of size `+ 1.

Proof. We first give a proof for (a). We start by finding a minimum coloring of G in poly-

nomial time using Lemma 1.

If the number of colors required is at most `, then we have our required partitioning of V

into at most ` independent sets. Otherwise since G is a perfect graph, the chromatic number

of G is the same as the clique number of G. Hence a maximum clique is of size at least `+ 1.

Now we find a maximum clique using Lemma 1. Let C be such a clique. Now choose an

arbitrary subset C ′ ⊆ C of size ` + 1 and return C ′ as the desired clique of size ` + 1. To

prove part (b) we just need to observe that a clique in G is an independent set in G. Now

the proof follows by the proof of (a) and using the fact that G is also a perfect graph (by

Lemma 2).

We will now explain how the given partitioning P is useful in solving the compression

step. The main idea is that while the partitioning P ′ we search for may differ significantly

5



from P, only a few vertices that were covered by cliques in P can be covered by independent

sets in P ′ and vice versa. To formalize this idea we introduce the notion of a bitstring BP
of the partition P.

Given G = (V,E) with V = {v1, v2, . . . , vn}, and a partition P of V into cliques and

independent sets, let BP be the binary vector of length n in which position i is 0 if vi belongs

to a clique in P, and 1 if vi belongs to an independent set in P. Given an n-vertex graph G

and a bitstring B of length n, define XB to be the set of vertices of G whose corresponding

entry in B is 0, and YB = V \ XB. For two integers α and β we say that B is valid in G

with respect to α and β if there exists a partition P of V into at most α cliques and at most

β independent sets such that B = BP . Given two bitstrings B1 and B2 of equal length, the

hamming distance between B1 and B2 is the number of positions on which the corresponding

bits differ, and it is denoted by H(B1, B2).

First, in Lemma 4 we will show that for a perfect graph G a valid bitstring B is sufficient

to reconstruct a partition of G into α cliques and β independent sets. Then, in Lemma 5 we

will show that two valid bitstrings must be “similar”.

Lemma 4. There is a polynomial time algorithm that, given a perfect graph G = (V,E) on

n vertices, a bitstring B of length n, and positive integers α and β, tests whether B is valid

in G with respect to α and β. If B is valid the algorithm outputs a partition P of V into

α cliques and β independent sets. If not, the algorithm either outputs an independent set of

size α+ 1 in G[XB] or a clique of size β + 1 in G[YB].

Proof. As G is perfect, G[XB] and G[YB] the induced subgraphs on XB and YB respectively

are perfect. The algorithm first uses Lemma 3 (b) to either find a partitioning of G[XB] into

α cliques or an independent set of size α+ 1 in G[XB]. Then it uses Lemma 3 (a) to either

find a partitioning of G[YB] into β independent sets or a clique set of size β+1 in G[YB].

Lemma 5. Let G = (V,E) be a graph, P = (C1, C2, . . . , Cα, I1, . . . , Iβ) be a partition of G

into α cliques and β independent sets and Q = (C ′
1, C

′
2, . . . , C

′
α′ , I

′
1, . . . , I

′
β′) be a partition of

G into α′ cliques and β′ independent sets. Let BP and BQ be the bitstrings associated with

P and Q respectively. Then H(BP , BQ) ≤ αβ′ + α′β.

Proof. Observe that an independent set and a clique can intersect in at most one vertex.

Hence∣∣∣∣
(

α⋃
i=1

Ci

)⋂ β′⋃
j=1

I ′j

∣∣∣∣ ≤ αβ′ and

∣∣∣∣
(

β⋃
i=1

Ii

)⋂ α′⋃
j=1

C ′
j

∣∣∣∣ ≤ βα′.

This concludes the proof of the lemma.

We are now ready to present our algorithm for the compression step. Recall that we are

given a perfect graph G as input, together with integers α and β and a partition P of G into

α + 1 cliques and β independent sets. The task is to find a partition P ′ of G into α cliques

and β independent sets, if such a partition exists. Lemma 5 yields that it is sufficient to look

for solutions with bitstrings ‘close to’ BP . Lemma 3 is used to pinpoint the “wrong” bits of

BP . Formally, the algorithm Algo-CCN takes as input a perfect graph G, a bitstring B

and integers α, β and µ. It outputs a partition P ′ of G into α cliques and β independent
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Algo-CCN(G,B, α, β, µ))

(Here G is a perfect graph on n vertices, B is an n-bit vector, α, β and µ are integers.

Algo-CCN outputs a partition P ′ of G into α cliques and β independent sets such

that H(BP ′ , B) ≤ µ if such a partition exists, or answers “NO” otherwise.)

1. If µ < 0 return “NO”.

2. Use Lemma 4 to either find a partition of P ′ of G into α cliques and β inde-

pendent sets with BP ′ = B or find an independent set I ⊆ XB of size α+ 1 or

find a clique C ⊆ YB of size β + 1. If a partition was found answer “YES”.

3. If an independent set I was found in step 2: For each vertex v ∈ I, let the

bitvector B(v) be obtained from B by flipping v’s bit 0 to 1. For each v ∈ I,

recursively solve the subproblem Algo-CCN(G,B(v), α, β, µ − 1). Return

“YES” if any of the recursive calls returns “YES”, otherwise return “NO”.

4. If a clique C was found in step 2: For each vertex v ∈ C, let the bitvector

B(v) be obtained from B by flipping v’s bit 1 to 0. For each v ∈ C, recursively

solve the subproblem Algo-CCN(G,B(v), α, β, µ− 1). Return “YES” if any

of the recursive calls returns “YES”, otherwise return “NO”.

Figure 1: Description of Algorithm Algo-CCN

sets such that H(BP ′ , B) ≤ µ if such a partition exists, and answers “NO” otherwise. To

solve the problem CCN we call Algo-CCN(G,BP , α, β, 2αβ + β). A formal description of

the algorithm Algo-CCN is given in Figure 1.

Lemma 6. The call to Algo-CCN(G,BP , α, β, 2αβ+β) correctly solves the CCN instance

G,P,α,β in time (α+ β)2αβ+βnO(1).

Proof. We first argue about the correctness. By Lemma 5 it is sufficient to search for parti-

tions P ′ such that H(BP ′ , BP) ≤ 2αβ + β. If the algorithm answers “YES” it also outputs

a partition P ′ of G into α cliques and β independent sets such that BP ′ was obtained from

BP by flipping at most 2αβ + β bits. Thus it remains to argue that if such a partition P ′

exists, the algorithm will find it. Let B′ = BP ′ .

In any recursive call, if there exists an independent set I of size α + 1 in G[XB] then

there is a vertex v ∈ I whose corresponding bit is 1 in B′. The algorithm tries flipping the

bit of each v in I, decreasing the hamming distance between B and B′ by one in at least

one recursive call. Similarly, if there exists a clique C of size β + 1 in G[YB] then there is a

vertex v ∈ C whose corresponding bit is 0 in B′. Again, the algorithm tries flipping the bit

of each v in C, decreasing the hamming distance between B and B′ by one in at least one

recursive call, and the correctness of the algorithm follows.

To argue the time bound, we consider a slight modification of the algorithm that if either

α = 0 or β = 0, applies Lemma 4 to solve the CCN instance in polynomial time. Hence

without loss of generality α+ 1 ≤ α+ β and β + 1 ≤ α+ β. Then every node in the search

tree has at most α+ β children and the depth of the tree is at most 2αβ + β and hence the
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number of nodes in the search tree is O((α + β)2αβ+β). Since the amount of work in each

node is polynomial, the time bound follows.

Now we are ready to prove the main theorem of this section.

Theorem 1. The Cochromatic Number problem can be solved in 2O(k2 log k)nO(1) time on

perfect graphs.

Proof. We apply iterative compression as described in the beginning of this section. In par-

ticular, the algorithm guesses the value of α and β and decides whether G can be partitioned

into α cliques and β independent sets using n− k − 1 compression steps. The i’th compres-

sion step is resolved by calling Algo-CCN(G[Vi], BP , α, β, 2αβ+β) where P is the partition

into α + 1 cliques and β independent sets. The correctness and time bound follow from

Lemma 6.

5 Disjoint Rectangle Stabbing

In this section we give a fixed parameter tractable algorithm for Disjoint Rectangle

Stabbing. Recall that a rectangle is stabbed by a line if their intersection is nonempty.

In O(n log n) time we can sort the top right corner coordinates of the rectangles in non-

decreasing order, and make two lists containing all the rectangles, one with the rectangles

sorted in non-decreasing order by their x-coordinates and the other where the rectangles are

sorted in non-decreasing order by their y-coordinates of their top right corner. We also sort

the set LH of horizontal lines in L by their y-coordinates and the set LV of vertical lines in

L by their x-coordinates. Whenever we speak of a subset of R (the set of all rectangles) or

L we will assume that the corresponding sorted lists are given.

For each of the k + 1 possible choices of non-negative integers α, β such that α+ β = k

we will run an algorithm that decides whether the rectangles can be stabbed by at most α

horizontal and β vertical lines. In order to get an O(n log n) time bound for fixed k, we apply

a recursive compression scheme rather than an iterative compression scheme. In particular,

our algorithm partitions the n rectangles into two groups R1 and R2 with at most dn/2e
rectangles in each group and runs recursively on the two groups. Now, if R can be stabbed

by α horizontal and β vertical lines then so can R1 and R2, so if either of the recursive calls

returns “NO” we return “NO” as well. Otherwise we combine the solutions to R1 and R2 to

a solution with at most 2α horizontal and at most 2β vertical lines that stab R. We want to

use this solution in order to decide whether R can be stabbed by at most α horizontal and

at most β vertical lines. This leads to the definition of the compression version of Disjoint

Rectangle Stabbing.

Compression Disjoint Rectangle Stabbing (CDRS)

Input: A set R of n axis-parallel non-overlapping rectangles embedded in the

plane, a set L = LH ∪LV of horizontal and vertical lines embedded in the plane,

integers α and β and a set Z ⊆ L with at most 2α horizontal and at most 2β

vertical lines such that every rectangle from R is stabbed by at least one line

from Z.

Task: Find a set L′ ⊆ L with at most α horizontal and at most β vertical lines
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such that every rectangle from R is stabbed by at least one line from L′. If no

such set exists, return “NO”.

The algorithm for CDRS has exactly the same structure as Algo-CCN, but with the

individual pieces tailored to fit the Disjoint Rectangle Stabbing problem. We start by

proving a lemma analogous to Lemma 3.

Lemma 7. Given a set R of axis-parallel rectangles in the plane, two sets LV , LH of vertical

and horizontal lines respectively, and an integer k, there is an O(n) time algorithm that

outputs

(a) either a set L′
H ⊆ LH of lines with |LH | ≤ k that stabs all rectangles in R or a collection

H of k+ 1 rectangles such that each horizontal line in L stabs at most one rectangle in

H, and

(b) either a set L′
V ⊆ LV of lines with |LV | ≤ k that stabs all rectangles in R or a collection

V of k+ 1 rectangles such that each vertical line in L stabs at most one rectangle in V .

Proof. We only show (b) as the proof of (a) is identical. Initially V = ∅ and L′
V = ∅. We

process R sorted in non-decreasing order of the x-coordinate of the top-right corner. At any

step, if the considered rectangle r is not stabbed by any line in L′
V , add r to V and add

the rightmost vertical line in L stabbing r to L′
V (to check whether r is not stabbed by any

line in L′
V , we just keep track of the rightmost line in L′

V and check whether it stabs r; to

find the rightmost vertical line in L that stabs r, we compute and keep this for every r in

a preprocessing step). If at any step |V | ≥ k + 1, output V otherwise all rectangles have

been considered, |L′
V | ≤ k and every rectangle is stabbed by some line in LV . Clearly no

vertical line in L can stab any two rectangles in V . The described algorithm can easily be

implemented to run in O(n) time.

Now we define the notion of a bitstring of a solution and prove lemmata analogous to

Lemmata 4 and 5 for CDRS. Let L′ ⊆ L be a set of lines that stab all the rectangles of R.

We define the bitstring BL′ of L′ as follows. Let R be ordered into r1, r2, . . . , rn. The i’th bit

of BL′ is set to 0 if ri is stabbed by a horizontal line in L′ and 1 otherwise. Observe that if

ri is stabbed both by a horizontal and by a vertical line of L′, the i’th bit of BL′ is 0. Given

a collection R of rectangles, a set L of horizontal and vertical lines, integers α and β and a

bitstring B of length n, we say that B is valid in R with respect to α and β if there exists a

set L′ ⊆ L of at most α horizontal lines and at most β vertical lines stabbing all rectangles

in R such that B = BL′ . Given R and B we define XB to be the set of rectangles in R whose

corresponding entry in B is 0, and YB = R \XB.

Lemma 8. There is an O(n) time algorithm that given a collection R of n axis-parallel

rectangles, a collection L of horizontal and vertical lines, a bitstring B of length n, and

positive integers α and β, tests whether B is valid in R with respect to α and β. If B is

valid the algorithm outputs a set L′ ⊆ L of at most α horizontal and at most β vertical lines

such that every rectangle in R is stabbed by a line in L′ and BL′ = B. If B is not valid, the

algorithm either outputs a set H ⊆ R of size α+ 1 such that every horizontal line in L stabs

at most one rectangle in H or a set V ⊆ R of size β + 1 such that every vertical line in L

stabs at most one rectangle in V .

9



Proof. Let XB be the set of rectangles in R whose bit in B is 0, and let YB = R\XB. Apply

the first part of Lemma 7 to XB and the second part of Lemma 7 to YB.

Now we are ready to show an analogue of Lemma 5 to the CDRS problem. To that end,

for a line l ∈ L let Sl be the set of rectangles in R stabbed by l. The proof of Lemma 9 relies

on the fact that the rectangles in R are non-overlapping.

Lemma 9. Let R be a collection of n non-overlapping axis-parallel rectangles, L be a col-

lection of horizontal and vertical lines, P ⊆ L and Q ⊆ L be sets of lines so that every

r ∈ R is stabbed by a line in P and a line in Q. Suppose |P ∩ LH | ≤ α, |P ∩ LV | ≤ β,

|Q∩LH | ≤ α′ and |Q∩LV | ≤ β′. Let BP be the bitstring of P and BQ be the bitstring of Q.

Then H(BP , BQ) ≤ αβ′ + α′β.

Proof. Notice that since the rectangles are non-overlapping, if lH ∈ LH and lV ∈ LV then

|SlH ∩ SlV )| ≤ 1. Hence∣∣∣∣
 ⋃
p∈P∩LH

Sp

⋂ ⋃
q∈Q∩LV

Sq

∣∣∣∣ ≤ αβ′ and

∣∣∣∣
 ⋃
p∈P∩LV

Sp

⋂ ⋃
q∈Q∩LH

Sq

∣∣∣∣ ≤ α′β.

This concludes the proof of the lemma.

Note that α′ = 2α and β′ = 2β. Now we have given all the ingredients required to solve

the compression step of the disjoint rectangle stabbing problem. The proof of the following

Lemma is identical to the proof of Lemma 6.

Lemma 10. The Compression Disjoint Rectangle Stabbing problem can be solved in

O((α+ β)4αβ+O(1)n) time.

Theorem 2. The Disjoint Rectangle Stabbing problem can be solved in 2O(k2 log k)n log n

time.

Proof. The algorithm follows the recursive scheme described in the beginning of this section

and uses the algorithm of Lemma 10 to solve the compression step. Correctness follows

directly from Lemma 10. Let T (n, k) be the time required to solve an instance with n

rectangles and α+ β = k. Then

T (n, k) ≤ 2T (n/2, k) + 2O(k2 log k)n

which solves to T (n, k) ≤ 2O(k2 log k)n log n by the Master Theorem. The O(k) overhead

of trying all possible values of α and β with α + β = k is subsumed in the asymptotic

notation.

In [11], it is observed that the version of the Rectangle Stabbing problem, where we

are given only the set of rectangles and we need to find at most k horizontal and vertical

lines to stab them, polynomially reduces to the version where we are also given a set of

horizontal and vertical lines. Hence this version of the Disjoint Rectangle Stabbing

problem (where we are not given a set of lines) is also fixed parameter tractable.

Remark: It is worth noting that while the polynomial factor of our algorithm for Cochro-

matic Number of perfect graphs is rather large, it is only n log n for Disjoint Rectangle

10



Stabbing. In fact our algorithm for Cochromatic Number can be made to run in time

2O(k2 log k)n log n on permutation graphs if the permutation model is given. In a permutation

graph, independent sets are increasing sequences in the permutation model while cliques are

decreasing sequences in the model [21]. For a permutation of length n and an integer k, a

simple greedy algorithm will in time O(nk) either partition the permutation into k increasing

sequences or find a decreasing sequence of length k+1. Thus, for permutation graphs one can

make the algorithm of Lemma 4 run in time O(nk) yielding a 2O(k2 log k)n time bound for the

compression step. Combining this with the same recursive scheme as the one in Theorem 2

one obtains the desired 2O(k2 log k)n log n running time bound.

6 Conclusion

Using a new combination of iterative compression and greedy localization we have estab-

lished that two interesting problems in different domains, Cochromatic Number on perfect

graphs and Disjoint Rectangle Stabbing, are fixed parameter tractable. The method-

ology is applicable whenever the (k + 1)-sized solution at the beginning of a compression

step of the iterative compression technique can be shown to be not ‘too far’ (in some specific

sense) from a k-sized solution if one exists, and if we can find in polynomial (or even fixed

parameter tractable) time, a small witness to branch on in the compression step. It would

be interesting to explore further applications of this combination.
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[16] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math-

ematica, 2 (1935) 463–470.

[17] P. C. Fishburn, Interval Orders and Interval Graphs: A Study of Partially Ordered

Sets, Wiley, 1985.

[18] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer-Verlag, 2006.

[19] F. V. Fomin, K. Iwama, D. Kratsch, P. Kaski, M. Koivisto, L. Kowalik,

Y. Okamoto, J. van Rooij, and R. Williams, 08431 open problems – moderately

exponential time algorithms, in Moderately Exponential Time Algorithms, F. V. Fomin,

K. Iwama, and D. Kratsch, eds., no. 08431 in Dagstuhl Seminar Proceedings, Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2008.

[20] F. V. Fomin, D. Kratsch, and J.-C. Novelli, Approximating minimum cocolorings,

Inf. Process. Lett., 84 (2002) 285–290.

[21] A. Frank, On chain and antichain families of a partially ordered set, J. Comb. Theory,

Ser. B, 29 (1980) 176–184.

[22] P. Giannopoulos, C. Knauer, G. Rote, and D. Werner, Fixed-parameter

tractability and lower bounds for stabbing problems, in Proceedings of the 25th European

Workshop on Computational Geometry (EuroCG), (2009) 281–284.

[23] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, vol. 57, Elsevier,

2004. Second edition.

12



[24] M. Grötschel, L. Lovász, and A. Schrijver, Polynomial algorithms for perfect

graph, Annals of Discrete Mathematics, 21 (1984) 325–356.

[25] R. Hassin and N. Megiddo, Approximation algorithms for hitting objects with straight

lines, Discrete Applied Mathematics, 30 (1991) 29–42.

[26] P. Heggernes, D. Kratsch, D. Lokshtanov, V. Raman, and S. Saurabh, Fixed-

parameter algorithms for Cochromatic Number and Disjoint Rectangle Stabbing, in

SWAT, vol. 6139 of Springer LNCS (2010) 334–345.

[27] W. Jia, C. Zhang, and J. Chen, An efficient parameterized algorithm for -set packing,

J. Algorithms, 50 (2004) 106–117.

[28] S. Kovaleva and F. C. R. Spieksma, Approximation algorithms for rectangles tabbing

and interval stabbing problems, SIAM J. Discrete Mathematics, 20 (2006) 748–768.

[29] L. Lovász, A characterization of perfect graphs, J. Comb. Theory, Ser. B, 13 (1972) 95–

98.

[30] N. Mahadev and U. Peled, Threshold graphs and related topics, vol. 56, North

Holland, 1995.

[31] R. Niedermeier, Invitation to Fixed Parameter Algorithms, Oxford Lecture Series in

Mathematics and Its Applications, Oxford University Press, USA, 2006.

[32] B. A. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Oper. Res.

Lett., 32 (2004) 299–301.

[33] K. Wagner, Monotonic coverings of finite sets, Elektron. Inform. Kybernet., 20

(1984) 633–639.

[34] G. Xu and J. Xu, Constant approximation algorithms for rectangle stabbing and related

problems, Theory of Computing Systems, 40 (2007) 187–204.

13


