
Characterizing and computing minimal cograph completions ∗

Daniel Lokshtanov† Federico Mancini† Charis Papadopoulos†

Abstract

A cograph completion of an arbitrary graph G is a cograph supergraph of G on the same
vertex set. Such a completion is called minimal if the set of edges added to G is inclusion
minimal. In this paper we present two results on minimal cograph completions. The first is a
a characterization that allows us to check in linear time whether a given cograph completion is
minimal. The second result is a vertex incremental algorithm to compute a minimal cograph
completion H of an arbitrary input graph G in O(|V (H)| + |E(H)|) time.

1 Introduction

Cographs are exactly the graphs with no induced path on four vertices. Any graph can be embedded
into a cograph by adding edges to the original graph and the resulting graph is called a cograph

completion, whereas the added edges are called fill edges. A cograph completion with the minimum
number of edges is called minimum, while it is called minimal if no proper subset of the fill edges
produces a cograph when added to the original graph.

Computing a minimum completion of an arbitrary graph into a specific graph class is an impor-
tant and well studied problem with applications in molecular biology, numerical algebra, and more
generally areas involving graph modelling with missing edges due to lacking data [17, 33, 37]. Unfor-
tunately minimum completions into most interesting graph classes, including cographs, are NP-hard
to compute [11, 30, 27, 33, 40]. This fact encouraged researchers to focus on various alternatives
that are computationally more efficient, at the cost of optimality or generality. Examples of the ap-
proaches that have been attempted include approximation [34], restricted input [7, 6, 32, 29, 10, 28],
parameterization [12, 26, 23, 15, 31] and minimal completions [19, 21, 22, 25, 36, 38]. Here we con-
sider the last alternative.

The reason why minimal completions can be used as a tool to understand minimum completions
better, is that every minimum completion must also be a minimal one. Hence, if one is able to
efficiently sample from the space of minimal completions, it is possible to pick the one in the sample
with fewest fill edges and have good chances to produce a completion close to the minimum. This
process, while only being a heuristic without any approximation guarantees, has proven to often
be good enough for practical purposes [4, 2]. In addition, the study of minimal completions gives
a deep insight in the structure of the graph class we consider. It is often the case that new
tools created to characterize minimal completions are applied to design new exact algorithms for
minimum completions [16, 7, 39], or to efficiently solve other problems on the specific graph class
in question. In particular, from a new minimal completion algorithm there can easily follow new

∗This work is supported by the Research Council of Norway through grant 166429/V30.
†Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Emails: {daniello, federico,

charis}@ii.uib.no

1

recognition algorithms [5, 20], since completion can be regarded as a generalization of recognition.
Finally, as shown in [5] for the case of chordal graphs, completions can also be useful to efficiently
solve problems that otherwise are hard on the original input graph.

In this paper we consider minimal cograph completions, and we study them both from a graph
theoretic and from an algorithmic point of view. Our main graph theoretic result is a theorem that
captures the essence of what makes a cograph completion minimal. We apply this characterization
to obtain several algorithmic results. First we give a linear time algorithm for the characterization

problem, that is, for checking whether a given cograph completion is minimal. Second we show
how this algorithm can be applied to solve the extraction problem, i.e., the problem of extracting a
minimal completion from a non-minimal one by removing fill edges. Finally we present our main
algorithmic result: an algorithm that solves computation problem, namely the problem of compting
a minimal cograph completion of an arbitrary input graph. This algorithm can be viewed as a
generalization of the cograph recognition algorithm given in [14], due to its incremental nature.
We consider, in fact, the input graph one vertex at the time, and we complete it locally in an
on-line fashion. Thanks to this feature it is likely that the algorithm can be extended to a dynamic
completion algorithm, like the one for split graphs presented in [20]. The running time is linear
in the size of the computed minimal cograph completion, and therefore optimal if an explicit
representation of the output graph is required.

One should notice that, for cographs, as for other classes for which completions are interesting,
an algorithm for the extraction problem can easily be applied to solve the computation problem
as well. The reason why we provide a separate algorithm for each problem, is the big difference
between their time complexity. While our computation algorithm is linear in output size, the one
for the extraction problem runs in time O(|V (G)|4) in the worst case.

Although we have argued why minimal completions are important in general, we have not yet
explained why it is interesting to study minimal cograph completions. An obvious reason is that
cographs arise naturally in many different fields. It is not by chance that they have been re-
discovered various times and have so many different characterizations [13]. Even more interesting
is the fact that many problems that are NP-hard on general graphs, can be solved very efficiently
when the input is restricted to being a cograph (see [8] for a summary of such results).

However, as noticed by Corneil et. al [14], in most typical applications, the graphs encountered
may not be cographs but in fact will be very close to being a cograph. Due to this they asked for
good heuristics for the problem of adding and deleting as few edges of the input graph as possible
to achieve a cograph. Our computation alorithm can be used as such a heuristic, both in the case
of adding and in the case of deleting edges. The reason for this is that the class cographs is self-
complementary. Besides, an advantage of using a minimal completion algorithm as a heuristic is
that the minimality guarantees that we never add unnecessary fill edges. Also, since our completion
algorithm is fast it is possible to improve the performance of the heuristic by trying several different
completions and picking the one with fewest edges.

Another reason to study cographs with respect to minimal completions, is that this graph class
is not sandwich monotone (see [22] for an exact definition). If a graph class has this property,
then a completion into the class is minimal if and only if no single fill edge can be removed
keeping the completed graph in the class. Hence, for polynomial time recognizable classes with this
property, it becomes trivial to solve the characterization problem, and very easy to solve both the
extraction and the computation problems as well. Examples of algorithms that exploit sandwich
monotonicity for efficiently extracting and computing a minimal completion, are those for chordal
[4], split [19], threshold and chain graph [22] completions. In contrast, among the classes that do
not have the sandwich monotone property, the only one for which a solution to the characterization

2

and extraction probems is known, is the class of interval graphs [24]. When viewed from this
perspective, our characterization of minimal cograph completions becomes interesting. It allows us
to check minimality efficiently and provides a straightforward way to solve the extraction problem
for cograph completions, even though cographs do not have the sandwich monotone property.

Before we begin the technical exposition, we should note that it is possible to adapt the al-
gorithm for the cograph sandwich problem given in [18] to yield a polynomial time algorithm for
the extraction problem. However such an algorithm would only be a smart brute force approach
and would not give any graph theoretical characterization or intuition on how a minimal cograph
completion should look like, which is what we aim for. Also, the running time of the algorithm we
would get from such an approach would be too high for any practical purpose.

The paper is organized in three main sections: Section 2 with background and definitions,
Section 3 with the details of the characterization and finally, Section 4 with the computation
algorithm. The latest section is split in two. The first part contains a high level description of
the algorithm for easing the understanding and proving correctness. The second part contains a
version more suitable for implementation, together with a running time analysis of the algorithm.

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a graph G = (V,E),
V (G) = V and E(G) = E. For S ⊆ V , the subgraph of G induced by S is denoted by G[S].
Moreover, we denote by G − S the graph G[V \ S] and by G − v the graph G[V \ {v}]. We
distinguish between subgraphs and induced subgraphs. By a subgraph of G we mean a graph G′

on the same vertex set containing a subset of the edges of G, and we denote it by G′ ⊆ G. If G′

contains a proper subset of the edges of G, we write G′ ⊂ G.
The neighborhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The degree of x in G is dG(x).

For S ⊆ V NG(S) =
⋃

x∈S NG(x) \ S. The complement G of a graph G consists of all vertices
and all non-edges of G. A vertex x of G is universal if NG(x) = V \ {x} and is isolated if it has
no neighbors in G. A clique is a set of pairwise adjacent vertices while an independent set is a
set of pairwise non-adjacent vertices. Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with
V1 ∩ V2 = ∅, their union is G1 ∪G2 = (V1 ∪ V2, E1 ∪E2). Their join G1 + G2 is the graph obtained
from G1 ∪ G2 by adding all the edges between the vertices of V1 and V2.

A connected component of a disconnected graph G is a connected subgraph of G with a maximal
set of vertices and edges. The co-connected components of G are the connected components of G.
By C(G) and Ĉ(G) we denote the family of the vertex sets of the connected components and co-
connected components, respectively, of G. More formally, C(G) = {Ci | G[Ci] is a connected
component of G} and Ĉ(G) = {Ĉi | G[Ĉi] is a co-connected component of G}.

Given an arbitrary graph G = (V,E) and a graph class Π, a Π completion of G is a graph
H = (V,E ∪ F) such that H ∈ Π, and H is a minimal Π completion of G if (V,E ∪ F ′) fails to be
in Π for every F ′ ⊂ F . The edges added to the original graph in order to obtain a Π completion
are called fill edges.

2.1 Cographs

The class of cographs, also known as complement reducible graphs, is defined recursively as follows:
(i) a single vertex is a cograph, (ii) if G1 and G2 are cographs, then G1 ∪ G2 is also a cograph,
(iii) if G1 and G2 are cographs, then G1 + G2 is also a cograph. Here we shall use the following
characterization of cographs.

3

Theorem 2.1 ([13]). G is a cograph if and only if the complement of any nontrivial connected

induced subgraph of G is disconnected.

Along with other properties, it is known that cographs admit a unique tree representation,
called a cotree [13]. For a cograph G its cotree, denoted by T (G), is a rooted tree having O(|V |)
nodes. Notice that we also consider T () as a function that, given a cograph as argument, returns
the corresponding cotree. Similarly, we define the function Co(), that takes as an input a cotree
and returns the corresponding cograph; that is, for a cograph G, Co(T (G)) = G. The vertices of G
are precisely the leaves of T (G) and every internal node of T (G) is labelled by either 0 (0-node) or
1 (1-node). Two vertices are adjacent in G if and only if their least common ancestor in T (G) is a
1-node. Moreover, if G has at least two vertices then each internal node of the tree has at least two
children and any path from the root to any node of the tree consists of alternating 0- and 1-nodes.
The complement of any cograph G is a cograph and the cotree of the complement of G is obtained
from T (G) with inverted labeling on the internal nodes of T (G). Cographs can be recognized and
their cotrees can be computed in linear time [14].

For a node t of T (G) we denote by Tt the subtree rooted at t. The set of t’s children in
T (G) is denoted by Q(t) and the set of leaves of Tt is denoted by M(t). If S ⊆ V (T (G)) then
M(S) =

⋃
t∈S M(t). Let Q(t) = {t1, . . . , tq}. If t is a 0-node then G[M(t)] is disconnected with

q connected components and M(ti) = Ci, for Ci ∈ C(G[M(t)]). Otherwise, if t is a 1-node then
G[M(t)] is connected with q co-connected components and M(ti) = Ĉi, for Ĉi ∈ Ĉ(G[M(t)]).

Observation 2.2. Let G = (V,E) be a cograph, T (G) be its cotree, and let a(G) be the set of the

1-nodes of T (G).
∑

t∈a(G)

∑

ti,tj∈Q(t)

|M(ti)| · |M(tj)| = |E|.

Proof. To prove the statement we use the fact that two vertices are adjacent in G if and only
if their least common ancestor (LCA) in T (G) is a 1-node. Therefore we can write that |E| =∑

t∈a(G) |{u, v | t is the LCA of u, v}|. Since for a given 1-node t, t is the least common ancestor of
two vertices x, y if and only if x ∈ M(ti) and y ∈ M(tj) for distinct ti, tj ∈ Q(t), thus |{u, v | t is
the LCA of u, v}| = |M(ti)| · |M(tj)|, and the result follows.

3 Characterizing minimal cograph completions

Here we exploit certain properties of cographs in order to characterize minimal cograph completions.

Lemma 3.1. Let H = (V,E ∪ F) be a cograph completion of a graph G = (V,E). H is a minimal

cograph completion of G if and only if H[Ci] is a minimal cograph completion of G[Ci] for every

Ci ∈ C(H).

Proof. Assume H[Ci] is not a minimal cograph completion of G[Ci] for some Ci ∈ C(H). Then
there exists a graph H ′ between G[Ci] and H[Ci] that is a cograph and a strict subgraph of H[Ci].
Since H[V \ Ci] ∪ H ′ is still a cograph and is a strict subgraph of H, H is not minimal. For the
other direction, assume that for each Ci ∈ C(H), H[Ci] is a minimal cograph completion of G[Ci].
Then no subset of the fill edges in each connected component of H can be removed producing a
new cograph. Since there are no edges between the connected components of H, it means that no
subset of the fill edges can be removed. Hence, H is minimal.

Let H = (V,E ∪ F) be a cograph completion of a graph G = (V,E). Next we focus on a
connected cograph completion H of G. Note that H has at least two co-connected components

4

since it is connected. In order to characterize minimality of H, the idea is to consider any two co-
connected components of H, remove all the fill edges between them in H, and then simply check the
connectivity of the resulting graph. More formally, if H is disconnected, let Ĉ(H) = {Ĉ1, . . . , Ĉℓ}.
Given two vertex sets Ĉu, Ĉv ∈ Ĉ(H), we consider the induced subgraph H[Ĉu ∪ Ĉv]. We build a
graph Guv by taking H[Ĉu ∪ Ĉv] and removing all the fill edges between the two vertex sets Ĉu and
Ĉv. We define

Guv = (Ĉu ∪ Ĉv, E(H[Ĉu]) ∪ E(H[Ĉv]) ∪ Euv),

where Euv = {xy | x ∈ Ĉu, y ∈ Ĉv, xy ∈ E}. Let us consider now, the subgraphs of H induced by
the vertex sets of the connected components of Guv . We define Huv =

⋃
Yi∈C(Guv) H[Yi]. Notice

that if Guv is connected, then Huv = H[Ĉu ∪ Ĉv]; otherwise Huv is disconnected and G[Ĉu ∪ Ĉv] ⊆
Guv ⊆ Huv ⊂ H[Ĉu ∪ Ĉv].

Lemma 3.2. Let H = (V,E ∪ F) be a cograph completion of a graph G = (V,E). H is a minimal

cograph completion of G if and only if H[Ĉi] is a minimal cograph completion of G[Ĉi], for every

Ĉi ∈ Ĉ(H) and Guv is a connected graph for any two distinct Ĉu, Ĉv ∈ Ĉ(H).

Proof. Assume that either H[Ĉi] is not a minimal cograph completion of G[Ĉi] for some Ĉi ∈ Ĉ(H),
or Guv is not a connected graph for some distinct Ĉu, Ĉv ∈ Ĉ(H). We will show that in both cases
H = (V,E ∪ F) is not a minimal cograph completion of G = (V,E), because we can build a
cograph H ′ = (V,E ∪ F ′), where F ′ ⊂ F . In the first case there exists a cograph H ′

i which is a

strict subgraph of H[Ĉi]. Therefore we can define the cograph H ′ = H[V \ Ĉi] + H ′
i, that is clearly

a strict subgraph of H. For the second case assume that for every Ĉi ∈ Ĉ(H), H[Ĉi] is a minimal
cograph completion of G[Ĉi], but for at least two distinct Ĉu, Ĉv ∈ Ĉ(H), Guv is not connected.
Since Guv is not connected, the cograph Huv is a strict subgraph of H[Ĉu ∪ Ĉv]. Thus the graph
H ′ = H[V \ (Ĉu ∪ Ĉv)] + Huv is a cograph by Theorem 2.1 and by construction we know that
G ⊆ H ′ ⊂ H. Hence H is not minimal.

To prove the other direction we show that if H[Ĉi] is a minimal cograph completion of G[Ĉi]
for each Ĉi ∈ Ĉ(H), and Guv is a connected graph for each two distinct Ĉu, Ĉv ∈ Ĉ(H), then H
is a minimal cograph completion of G. Since H[Ĉi] is a minimal cograph completion of G[Ĉi], no
fill edge can be removed from these subgraphs. Assume for the sake of contradiction that H is not
minimal. Then there must exist a cograph H ′ such that G ⊆ H ′ ⊂ H. By assumption we know
that H ′[Ĉi] = H[Ĉi] for each Ĉi ∈ Ĉ(H), and H ′[Ĉu ∪ Ĉv] is connected as a supergraph of Guv, for
any two distinct Ĉu, Ĉv ∈ Ĉ(H). We show that H ′ cannot be a cograph, contradicting the existence
of H ′. Since H ′ ⊂ H, there is at least a non-edge in H ′ between two vertex sets Ĉu, Ĉv ∈ Ĉ(H), so
that H ′[Ĉu] is not universal for H ′[Ĉv]. This means that H ′[Ĉu ∪ Ĉv] is a connected graph because
both H ′[Ĉu] and H ′[Ĉv] are connected graphs (since they are connected components in H) and
there is at least one edge between them. Hence, both H ′[Ĉu ∪ Ĉv] and H ′[Ĉu ∪ Ĉv] are connected
and H ′ cannot be a cograph by Theorem 2.1.

As we are about to see, in order to check the connectivity of Guv it is enough to consider only
the edges between the co-connected components Ĉu and Ĉv and not the ones that are inside Ĉu

and Ĉv. For that reason we introduce the graph G∗
uv which can be viewed as the graph obtained

from Guv by replacing every connected component of H[Ĉu] and H[Ĉv] with a single vertex.
We formally define the graph G∗

uv over the cotree T (H) of H. Let tu, tv be two children of the
root of T (H). If Q(tu) 6= ∅ then let Au = Q(tu); otherwise let Au = {tu}. Similarly if Q(tv) 6= ∅
then let Av = Q(tv); otherwise let Av = {tv}. Observe that Au and Av contain nodes of T (H).

5

Cu

^ Cv

^

v1

v2

Guv
*

A v

Cu

^ Cv

^

Guv

Cu

^ Cv

^

Huv

t u

u1 u2
v1 v2

t v

T(H[C U C])u v
^^

uH[C U C]v
^^

A u

u1

u2

f

e

fb

c g

d

e

fb

c g

a

da

d

a e

fb

c g

e 1

0

g

0

11

1

b c

d

a

Figure 1: An example of the graphs Guv, G∗
uv and Huv. The dashed lines represent fill edges added

to the original graph. We depict the way that Guv is obtained from H[Ĉu ∪ Ĉv] by removing the fill
edges between H[Ĉu] and H[Ĉv]. Then we can think of G∗

uv as either the graph obtained from Guv

by contracting the connected component in each side, or directly defined on the cotree of H[Ĉu∪Ĉv]
when we do not consider fill edges between the children of tu and the children of tv.

Given the two nodes tu, tv we define the graph G∗
uv as follows.

G∗
uv = (Au ∪ Av, E

∗
uv),

where E∗
uv = {(au, av) ∈ Au × Av | (M(au) × M(av)) ∩ E 6= ∅}. In other words, edges are between

Au and Av, and a vertex au of Au is adjacent to a vertex av of Av if and only if there is an edge
xy ∈ E such that x ∈ M(au) and y ∈ M(av). This also means that G∗

uv is a bipartite graph.
An example of the graphs Guv and G∗

uv is given in Figure 1.

Observation 3.3. Let T (H) be the cotree of a connected cograph completion H of G and let t
be the root of T (H) and tu, tv ∈ Q(t). G∗

uv is connected if and only if Guv is connected, where

Ĉu = M(tu) and Ĉv = M(tv). Moreover, for any element Yi ∈ C(G∗
uv), M(Yi) ∈ C(Guv).

Proof. Let us explain the graph G∗
uv with respect to Guv. Given two distinct sets Ĉu, Ĉv ∈ Ĉ(H),

notice that Guv[Ĉu] = H[Ĉu] and Guv[Ĉv] = H[Ĉv] are disconnected cographs or a single vertex,
since H[M(t)] is connected. Thus every connected component of Guv [Ĉu] and Guv[Ĉv] corresponds
to a vertex of Au and Av, respectively of G∗

uv. Moreover there is at least one edge between
two connected components of Guv[Ĉu] and Guv[Ĉv] if and only if there is an edge between the
corresponding vertices of G∗

uv. Hence the statement follows.

We can now rephrase Lemma 3.2 in terms of the cotree of H instead of H itself, and using G∗
uv

instead of Guv .

6

Theorem 3.4. Let H be a cograph completion of a graph G and let T (H) be its cotree. H is

a minimal cograph completion of G if and only if for every 1-node t of T (H) the graph G∗
uv is

connected for any two nodes tu, tv ∈ Q(t).

Proof. Suppose H is a minimal cograph completion of G. Consider a 1-node t of T (H), and let
tu,tv ∈ Q(t). The subtree of T (H) rooted at t is the cotree of H[M(t)]. Furthermore H[M(t)] is a
minimal connected cograph completion of G[M(t)], M(tu) ∈ Ĉ(H[M(t)]) and M(tv) ∈ Ĉ(H[M(t)]).
Now, by Lemma 3.2 and Observation 3.3 G∗

uv is connected.
We prove the other direction of the equivalence by induction on |V (T (H))|. If |V (T (H))| = 1

then G has only one vertex and the result follows. Assume that the statement of the theorem
holds whenever |V (T (H))| < k. Consider now the case when |V (T (H))| = k. By the induction
hypothesis H[M(tu)] is a minimal cograph completion of G[M(tu)] for every tu ∈ Q(root(T (H))).
Thus, if root(T (H))) is a 0-node then the result follows by Lemma 3.1. Furthermore if root(T (H)))
is a 1-node then we know that G∗

uv is connected for every pair of children of the root. Therefore H
is a minimal cograph completion of G by Lemma 3.2 and Observation 3.3.

Based on the previous theorem we obtain a linear-time algorithm for deciding whether a given
cograph completion is minimal.

Theorem 3.5. Let H = (V,E ∪ F) be a cograph completion of a graph G = (V,E). Recognizing

whether H is a minimal cograph completion of G can be done in O(|V | + |E| + |F |) time.

Proof. We describe such an algorithm. First we compute the cotree T (H) of H. Then we visit
each 1-node t of T (H). Let Q(t) = {t1, . . . , tℓ}. For every pair of nodes (tu, tv) ∈ Q(t) we construct
the graph G∗

uv and check its connectivity. If at least one of the graphs G∗
uv is disconnected then we

output that H is not a minimal cograph completion of G; otherwise we output that H is a minimal
cograph completion of G. The correctness follows by Theorem 3.4.

Let us now show that the algorithm runs in linear time. Observe that the cotree can be
computed in time linear in the size of H and has O(|V |) nodes [14]. Let t be a 1-node in T (H) and
let Q(t) = {t1, . . . , tℓ}. We need to construct the graph G∗

uv for each pair of nodes (tu, tv) ∈ Q(t).
Let nu = |M(tu)| and nv = |M(tv)|. Note that the subtrees Ttu and Ttv have O(nu) and O(nv)
nodes, respectively. Thus finding the sets M(tu) and M(tv) takes time O(nu + nv). For the edges
of G∗

uv we do not need to check any edge inside H[M(tu)] and H[M(tv)], but only the edges
in between. This implies that building and checking the connectivity of G∗

uv take time O(nunv)
using an adjacency matrix, since nu + nv ≤ nunv + 1 (note that using a trick in [1], the matrix
can be allocated in linear time). Observe that t is a 1-node meaning that there are O(nunv)
edges in H[M(t)]. Thus summing up the time needed for each distinct pair of nodes (tu, tv) in
T (G), gives time linear in the size of H by Observation 2.2. Therefore the overall running time is
O(|V | + |E| + |F |).

Using the previous theorem, we can give an algorithm for extracting a minimal cograph com-
pletion from a given one. The idea is quite simple. On input G and H we use the algorithm from
Theorem 3.5 to check whether H is a minimal cograph completion of G. If the answer is yes we can
output H, while if the answer is no, there must be a 1-node t of T (H) with children u and v such
that the graph G∗

uv is disconnected. In that case Huv is a cograph completion of G[M(u) ∪ M(v)]
such that Huv ⊂ H[M(u)∪M(v)]. Thus H ′ = (H \(M(u)∪M(v)))+Huv) is a cograph completion
of G such that H ′ ⊂ H. We can now reiterate this process with H ′ as a candidate cograph comple-
tion. Since each such iteration can be done in O(|V |+ |E|+ |F |) time and we remove at least one fill
edge for each iteration, this algorithm runs in O((|V |+ |E|+ |F |)|F |) time. One should notice that

7

our extraction algorithm has many similarities with the generic extraction algorithm for sandwich
monotone graph classes [22]. Similarly to sandwich monotonicity, our characterization states that
in some sense, a cograph completion is minimal if and only if it is locally minimal.

Theorem 3.6. Given a cograph completion H = (V,E ∪ F) of a graph G = (V,E), a minimal

cograph completion H ′ with G ⊆ H ′ ⊆ H, can be computed in time O((|V | + |E| + |F |) · |F |).

4 Computing a minimal cograph completion directly

In this section we give an algorithm to solve the problem of computing a minimal cograph comple-
tion of an arbitrary input graph, in time linear in the size of the output graph. We use a vertex
incremental scheme proposed in [21] for computing minimal cograph completions.

It is known that given a graph class that is hereditary1 and has the universal vertex property2,
minimal completions of arbitrary graphs into this class can be computed in a vertex incremental
way [3, 21]. Cographs satisfy both properties by Theorem 2.1 and thus we state this result in the
following lemma.

Proposition 4.1. Let H be a minimal cograph completion of an arbitrary graph G, and let Gx

be a graph obtained from G by adding a new vertex x adjacent to some vertices of G. There is a

minimal cograph completion Hx of Gx such that Hx − x = H.

At all times we maintain a minimal cograph completion of the part of the input graph that
already has been considered. The algorithm starts off with the empty graph and adds in the vertices
of the input graph one at a time, at each step updating the minimal completion by adding fill edges
incident to the new vertex. The main technical part of this section is the design and analysis of an
algorithm for one incremental step.

4.1 Adding a vertex to a cograph

In this section we give an algorithm for one incremental step of our completion algorithm. Hereafter
we use G = (V,E) to denote a cograph, unless otherwise specified. Given a vertex x together with
a list of vertices Nx ⊆ V , we denote by Gx the graph obtained by adding x to G. That is,
Gx = (V ∪ {x}, E ∪ {xy : y ∈ Nx}). Given a cograph G and a vertex set Nx ⊆ V the algorithm
computes a vertex set S ⊆ V such that Nx ⊆ S and Hx = (V ∪ {x}, E ∪ {xy : y ∈ S}) is a minimal
cograph completion of Gx.

The algorithm is fairly simple. We start off with Gx and consider G = Gx − x. If G is
disconnected we only need to add edges to the connected components of G that x is already
adjacent to. If x is adjacent to only one connected component we run the algorithm recursively
on that connected component. However, if x is adjacent to more than one connected component
of G we make x universal to all connected components of G that are adjacent to x. When G is
connected we have to be a bit more careful. The basic idea is the following: We try adding x
to a particular co-connected component Ĉ. To do this we have to make x universal to all other
co-connected components of G and make sure not to make x universal to Ĉ. If we find out that
x cannot be added to any co-connected component in this way, we make x universal to all co-
connected components of G that x is adjacent to in Gx. In order to justify these choices, we will
apply Theorem 3.1.

1A graph class Π is called hereditary if all induced subgraphs of graphs in Π also belong to Π.
2A graph class Π has the universal vertex property if, for every graph G ∈ Π and a vertex x 6∈ V , G + x ∈ Π.

8

Algorithm: Minimal x Cograph Completion – MxCC (G, Nx)

Input: A cograph G, and a set of vertices Nx which are to be made adjacent to a vertex
x /∈ V

Output: An inclusion minimal set S ⊆ V such that Nx ⊆ S and
Hx = (V ∪ {x}, E ∪ {xy : y ∈ S}) is a cograph

if G is connected then

if there are Ĉi ∈ Ĉ(G) and Cj ∈ C(G[Ĉi]) s.t. Ĉi ∩ Nx 6= ∅ and Cj ∩ Nx = ∅ then

S = MxCC(G[Ĉi], Nx ∩ Ĉi) ∪ (V \ Ĉi);

else

S =
⋃

bCi∈bC(G) : bCi∩Nx 6=∅
Ĉi;

else

if there is a Ci ∈ C(G) such that Nx ⊆ Ci then
S = MxCC(G[Ci], Nx);

else
S =

⋃
Ci∈C(G) : Ci∩Nx 6=∅ Ci;

return S;

Observe that the algorithm always terminates because each recursive call takes as an argument
a subgraph of G induced by a strict subset of V . We are now ready to prove the correctness of
Algorithm MxCC.

Lemma 4.2. Given a cograph G and a set of vertices Nx, Algorithm MxCC returns a set of

vertices S such that Hx is a cograph completion of Gx.

Proof. Observe that as Nx ⊆ S we know that Gx ⊆ Hx. Thus it is sufficient to show that Hx is a
cograph. We prove this by induction on |V |. If |V | ≤ 1 then Hx has at most two vertices and is
a cograph. Assume now that the statement of the lemma holds whenever the input graph has less
than k vertices and consider the execution of Algorithm MxCC(G,Nx) on a graph G on k vertices.
For each of the following cases we will prove that Hx can be constructed by either taking the union
or the join of two cographs. This implies that Hx is a cograph by Theorem 2.1.

First we consider the case when G is connected. If S = MxCC(G[Ĉi], Nx∩Ĉi)∪(V \Ĉi) then let
S′ be the set returned by MxCC(G[Ĉi], Nx ∩ Ĉi) and let H ′

x = (Ĉi ∪{x}, E(G[Ĉi])∪{xy : y ∈ S′}).
By the induction hypothesis H ′

x is a cograph. Thus Hx = H ′
x + G[V \ Ĉi] is a cograph. If

S =
⋃

bCi∈bC(G): bCi∩Nx 6=∅
Ĉi then Hx = (G[V \ S] ∪ {x}) + G[S] is a cograph.

Now consider the case when G is disconnected. If there is a Ci ∈ C(G) such that Ci ⊆ Nx, then
let S′ be the set returned by MxCC(G[Ci], Nx) and H ′

x = (Ci ∪ {x}, E(G[Ci]) ∪ {xy : y ∈ S′}).
By the induction hypothesis H ′

x is a cograph. Thus Hx = H ′
x ∪ G[V \ Ci] is a cograph. If

S =
⋃

Ci∈C(G) : Ci∩Nx 6=∅ Ci then Hx = (G[S] + x) ∪ G[V \ S] is a cograph.

Observation 4.3. If G is disconnected, Ci ∈ C(G), Nx ∩ Ci = ∅, and S = MxCC(G,Nx) then

S ∩ Ci = ∅.

Proof. If Nx ⊆ Cj for a Cj ∈ C(G) and Cj 6= Ci then the claim follows immediately as S ⊆ Cj. If
Ci = Cj then the call to MxCC(G[Cj], Nx) returns an empty set as Nx = ∅. Finally, if there is no

Cj ∈ Ĉ(G) so that Nx ⊆ Cj , then S =
⋃

Ck∈C(G) : Ck∩Nx 6=∅ Ck and the result follows.

9

Theorem 4.4. Given a cograph G and a set of vertices Nx, Algorithm MxCC returns a set of

vertices S such that Hx is a minimal cograph completion of Gx.

Proof. By Lemma 4.2, Hx is a cograph completion of Gx. Thus it is sufficient to show minimality.
We prove that Hx is a minimal cograph completion of Gx by induction on |V |. If |V | ≤ 1,
Hx is trivially a minimal completion of Gx. Now, assume that the statement of the theorem
holds whenever the input graph has less than k vertices and consider the execution of Algorithm
MxCC(G,Nx) on a graph G on k vertices. We distinguish between two cases according to the
connectivity of G and prove that at each case Hx is a minimal cograph completion of Gx by using
Lemmas 3.1 and 3.2.

First we consider the case when G is connected. If there are Ĉi ∈ Ĉ(G) and Cj ∈ C(G[Ĉi]) such

that Ĉi ∩ Nx 6= ∅ and Cj ∩ Nx = ∅, then let S′ be the set returned by MxCC(G[Ĉi], Nx ∩ Ĉi).

Given the set S′, consider the graphs G′
x = (Ĉi ∪ {x}, E(G[Ĉi]) ∪ {xy : y ∈ Ĉi ∩ Nx}) and

H ′
x = (Ĉi ∪ {x}, E(H[Ĉi]) ∪ {xy : y ∈ S′}). Now, since Ĉi ∩ Nx 6= ∅ and Cj ∩ Nx = ∅ we know

that Cj ⊂ Ĉi, G[Ĉi] is disconnected, and G[Cj] is a connected component of G[Ĉi]. Thus, by

Observation 4.3, Cj ∩ S′ = ∅. From this it follows that in Hx, x has a non-neighbour in Ĉi.

Furthermore, as G[Ĉi] is a co-connected component of G and x is universal to V \ Ĉi in Hx we
conclude that H[Ĉi ∪ {x}] is a co-connected component of Hx. Finally, as G is connected and Nx

is nonempty, Hx is connected.
We wish to apply Lemma 3.2 in order to show that Hx is a minimal cograph completion of Gx.

Let Ĉu and Ĉv be the vertex sets of two distinct co-connected components of Hx. If neither Ĉu nor
Ĉv contains x we know that both G[Ĉu] and G[Ĉv] are co-connected components of G. Thus Guv

is just G[Cu ∪ Cv], so Guv is connected. Now, without loss of generality, Ĉu contains x. By the
discussion in the paragraph above, Ĉu = Ĉi ∪ {x} = V (H ′

x). By the induction hypothesis Hx[Ĉu]
is a minimal cograph completion of Gx[Ĉu]. Again Hx[Ĉv] = Gx[Ĉv]. We now proceed to show
the connectivity of Guv. Obviously, G[Ĉu ∪ Ĉv \ {x}] = G[Ĉi ∪ Ĉv] ⊆ (Guv − x). Additionally,
as Ĉi and Ĉv are vertex sets of co-connected components of G, G[Ĉi ∪ Ĉv] is connected. As
G[Ĉi ∪ Ĉv] ⊆ (Guv − x), (Guv − x) is connected. But since Ĉi ∩ Nx 6= ∅, x has a neighbour in Ci

so Guv is connected as well. Therefore Hx is a minimal cograph completion of Gx by Lemma 3.2.
Now suppose that there are no Ĉi ∈ C(G) and Cj ∈ C(G[Ĉi]) such that Ĉi ∩ Nx 6= ∅ and

Cj ∩Nx = ∅. If Nx = ∅ then S = ∅ and Hx is trivially a minimal completion of Gx. Otherwise, let

us describe the co-connected components of Hx. Let Ĉ1, ..., Ĉn be the elements of Ĉ(G) such that
Ĉs ∩Nx 6= ∅ for 1 ≤ s ≤ n, and let Ĉ ′

n+1 =
⋃

bC∈bC(G): bC∩Nx=∅
Ĉ. In Hx, x is adjacent to every vertex

of Ĉ1, ..., Ĉn and isolated to Ĉ ′
n+1. Thus Hx has n+1 co-connected components, induced by the sets

Ĉ1, ..., Ĉn and {x}∪ Ĉ ′
n+1. Observe that Hx[{x}∪ Ĉ ′

n+1] = Gx[{x}∪ Ĉ ′
n+1] and thus Hx[{x}∪ Ĉ ′

n+1]

is a minimal cograph completion of Gx[{x} ∪ Ĉ ′
n+1]. The same holds for Hx[Ĉs], 1 ≤ s ≤ n, since

x is not contained in Ĉs. Furthermore, for any two distinct integers u and v between 1 and n, the
graph Guv is just G[Ĉu ∪ Ĉu] and is connected. To complete the proof, we prove that the graph
obtained from Hx[{x} ∪ Ĉ ′

n+1], Hx[Ĉs] and by adding the edges of Gx in between, namely Guv ,

is connected. The minimality then follows by Lemma 3.2. Notice that every vertex of Ĉ ′
n+1 is

adjacent to every vertex of Ĉs as a vertex set of a co-connected component of G. What remains
to show is that Gx[{x} ∪ Ĉs] is connected for any s between 1 and n. Indeed Gx[Ĉs] = G[Ĉs] is
disconnected but x is adjacent to at least one vertex of each of G[Ĉs]’s connected components,
since by construction Ĉs ∩Nx is nonempty, and thus by assumption Cj ∩Nx is nonempty for every

Cj ∈ C(G[Ĉs]). We conclude that Hx is a minimal cograph completion of Gx by Lemma 3.2.
Next we consider the case when G is disconnected. If there is a Ci ∈ C(G) such that Nx ⊆ Ci

10

then Hx is a disconnected cograph and Hx[Ci∪{x}] is a minimal cograph completion of Gx[Ci∪{x}]
by the induction hypothesis. Moreover for every other Cj ∈ C(G) such that Cj 6= Ci, Hx[Cj] is a
connected component of Hx and Hx[Cj] = Gx[Cj]. Thus by Lemma 3.1 Hx is a minimal cograph
completion of Gx.

Otherwise, let H ′
x be the connected component of Hx containing x, and let G′

x = Gx[V (H ′
x)].

By Lemma 3.1, it is enough to prove that H ′
x is a minimal cograph completion of G′

x to show
the minimality of Hx. By construction H ′

x = G[
⋃

Ci∈C(G) : Ci∩Nx 6=∅ Ci] + x. Also, by assumption,

|Ci ∈ C(G) : Ci ∩ Nx 6= ∅| ≥ 2. Thus, H ′
x has two co-connected components: H ′

x[{x}] and H ′
x −x.

Let Cu = {x} and Cv = V (H ′
x) \ {x}. By definition Guv = G′

x, and since x has neighbors in each
connected component of H ′

x[Cv] = G′
x[Cv], it is easy to see that Guv is connected. Hence the result

follows by Lemma 3.2.

4.2 Implementing Algorithm MxCC using a cotree representation

In order to obtain a good running time for Algorithm MxCC we give an algorithm that works
directly on the cotree of the input graph. That is, we give an algorithm, namely CMxCC, that
takes as an input the cotree T (G) of a cograph G and a set Nx of vertices in G and returns a set
of vertices S of G so that Hx is a minimal cograph completion of Gx. For a node t in T (G), recall
that Q(t) is the set of t’s children in T (G). Let Qx(t) = {ti ∈ Q(t) : M(ti) ∩ Nx 6= ∅}. Thus
Qx(t) ⊆ Q(t).

Algorithm: Cotree Minimal x Cograph Completion – CMxCC (T, Nx)

Input: A cotree T of a cograph G = (V,E) and a set of vertices Nx which are to be made
adjacent to a vertex x /∈ V

Output: An inclusion minimal set S ⊆ V such that Nx ⊆ S and
Hx = (V ∪ {x}, E ∪ {xy : y ∈ S}) is a cograph

r = root(T) ;
if r is a 1-node then

if there is a t ∈ Qx(r) such that ∅ ⊂ Qx(t) ⊂ Q(t) then
S = CMxCC(Tt, Nx ∩ M(t)) ∪ (M(r) \ M(t));

else
S =

⋃
t∈Qx(r) M(t);

else

if there is a t ∈ Q(r) such that Qx(r) ⊆ {t} then
S = CMxCC(Tt, Nx);

else
S =

⋃
t∈Qx(r) M(t);

return S;

The correctness of the algorithm follows from the following two observations which imply that
Algorithm CMxCC returns the same set S as Algorithm MxCC.

Observation 4.5. Let G be a connected cograph and let r be the root of T (G). There are vertex

sets Ĉi ∈ Ĉ(G) and Cj ∈ C(G[Ĉi]) such that Ĉi ∩ Nx 6= ∅ and Cj ∩ Nx = ∅ if and only if there is a

node t ∈ Qx(r) such that ∅ ⊂ Qx(t) ⊂ Q(t) 6= ∅.

Proof. In one direction, suppose r has a child t in Qx(r) such that ∅ ⊂ Qx(t) ⊂ Q(t) 6= ∅. Then

11

Qx(t) \ Q(t) Let Ĉi = M(r), and let c be an element of Q(r) \ Qx(r). By construction, G[Ĉi]
is a co-connected component of G, G[Cj] is a connected component of G[Ĉi], Ĉi ∩ Nx 6= ∅ and

Cj ∩ Nx = ∅. In the other direction, suppose there are vertex sets Ĉi ∈ Ĉ(G) and Cj ∈ C(G[Ĉi])

such that Ĉi ∩ Nx 6= ∅ and Cj ∩ Nx = ∅. As Ĉi ∈ Ĉ(G), r has a child t such that Ĉi = M(t).

Furthermore, as there is a Cj ∈ C(G[Ĉi]) such that Ĉj ∩ Nx = ∅, t has a child c with M(c) = Cj

and thus c ∈ Q(t) \ Qx(t) and thus Qx(t) ⊂ Q(t). As M(t) ∩ Nx 6= ∅ it follows that t ∈ Qx(r) and
∅ ⊂ Qx(t).

Observation 4.6. Let G be a disconnected cograph and let r be the root of T (G). There is a set

Ci ∈ C(G) such that Nx ⊆ Ci if and only if there is a node t ∈ Q(r) such that Qx(r) ⊆ {t}.

Proof. Suppose there is a set Ci ∈ C(G) such that Nx ⊆ Ci. Then, let t be the child of r so
that M(t) = Ci. For any other child t′ of r, clearly M(t′) = ∅. Thus Qx(r) ⊆ {t}. In the other
direction, suppose Qx(r) ⊆ {t} for some child t of r. Let Ci = M(t). We know that Ci ∈ C(G).
We prove that for every Cj ∈ C(G) so that Cj 6= Ci, Cj ∩ Nx = ∅. Suppose for contradiction that
Cj ∩Nx 6= ∅. Let c be the child of r so that M(c) = Cj . Clearly c 6= t and c ∈ Qx(r) contradicting
that Qx(r) ⊆ {t}.

Now we are ready to prove a bound on the running time for computing a minimal cograph
completion Hx of Gx, and give the final theorem about the existence of an algorithm to compute
a minimal cograph completion in time linear in the size of the output graph.

Theorem 4.7. Given a cograph G and its cotree T (G), there is an algorithm for computing the set

of vertices S that are adjacent to x in a minimal cograph completion of Gx which runs in O(|S|+1)
time.

Proof. We describe such an algorithm. First we compute the set Qx(t) for every node t in T (G)
and then we apply Algorithm CMxCC on T (G). By the previous arguments and Theorem 4.4 the
set S returned by Algorithm CMxCC contains the vertices that are adjacent to x in a minimal
cograph completion Hx of Gx. Now we analyze the running time.

In addition to the work described below the algorithm does a constant amount of work. This
does not pose any problem if S 6= ∅. However if S = ∅ then we need to add a constant to the
running time bound to cover this case. If S = ∅ it is easy to see that the algorithm requires constant
time. Thus, in the rest of the proof we will assume that S 6= ∅.

Let us show first that given the set Qx(t) for every node t in T (G), Algorithm CMxCC makes
O(|S|) calls. Let R = {r1, r2, . . . , rℓ} where ri be the root of the subtree considered at the ith call of
Algorithm CMxCC. Now we show that ℓ = O(|S|). The nodes of R form a path in T (G) starting
from the root (= r1), since at most one child of an internal node of T (G) is given as an argument
in each call of CMxCC. Observe that the labels of the internal nodes (0- or 1-nodes) of a cotree
T (G) alternate along any path starting at the root. Thus at least ⌊ ℓ

2⌋ nodes of R are 1-nodes. For
the 1-nodes the algorithm adds at least one vertex of G in S. Hence ℓ = O(|S|).

Next we prove that we can compute the set Qx(t) for every node t in O(|S|) time. Before
executing Algorithm CMxCC we start from the leaves of T (G) which correspond to the neighbors
of x and then in a bottom up fashion we construct the set P of all internal nodes t in T (G) that
satisfy |Qx(t)| > 0. We need to show that |P | = O(|S|). Observe that R ⊆ P , since ri+1 ∈ Qx(ri)
where ri, ri+1 ∈ R. Recall that ℓ = |R| and ℓ = O(|S|). Thus we need to show that |P \R| = O(|S|).
For a node t in P \ R observe that M(t) ⊆ S since by the algorithm

⋃
t∈Qx(r) M(t) ⊆ S where

r ∈ R. Therefore |P \ R| = O(|S|).

12

Having computed the set Qx(t) for each node t in T (G) we show that checking the conditions
in the if statements can be done in constant time. In order to do this we traverse the nodes of P
once more. Let t be a node in P and let r be t’s parent in T (G). Note that if |Qx(t)| > 0 then
t ∈ Qx(r). If t is a 0-node and 0 < |Qx(t)| < |Q(t)| then r marks its child t, unless r already has a
marked child. If r already has a marked child we do nothing.

If r is a 1-node we now can test whether there is a t ∈ Qx(r) such that ∅ ⊂ Qx(t) ⊂ Q(t) in
constant time, simply by checking whether r has a marked child or not. Moreover if r is a 0-node,
we can test whether there is a t ∈ Q(r) such that Qx(r) ⊆ {t} in constant time, by checking that
|Qx(r)| ≤ 1. This implies that the algorithm terminates in O(|S| + 1) time.

Theorem 4.8. There is an algorithm for computing a minimal cograph completion H = (V,E∪F)
of an arbitrary graph G = (V,E) in O(|V | + |E| + |F |) time.

Proof. Let n = |V |. Order the vertices of G from v1 to vn, let Vi = {v1, v2, . . . vi} and Gi = G[Vi].
Let H1 = G1 and Si+1 = CMxCC(Ti, NGi+1

(vi+1)) where Ti is the cotree of Hi. Construct Hi+1

from Hi by adding the vertex vi+1 and making vi+1 adjacent to Si+1. Obviously, T1 is the cotree
of a minimal cograph completion of G1. If Ti is the cotree of a minimal cograph completion Hi of
Gi, then Theorem 4.4 yields that Ti+1 is the cotree of a minimal cograph completion Hi+1 of Gi+1.
Thus, by induction, Tn is the cotree of a minimal cograph completion Hn = H of Gn = G. Finally,
we consider the running time for computing H by using the adjacency list of G. Computing Si+1

from Ti takes O(|Si+1| + 1) time by Theorem 4.7, where Si+1 = NHi+1
(vi+1). Note also that Ti+1

can be computed directly from Ti and Si+1 in O(|Si+1|) time since updating the cotree requires
O(d) time whenever the addition of a vertex of degree d results in a cograph [14]. Therefore the
total running time becomes

∑n
i=2 O(|Si|+1) = O(|V |)+O(

∑n
i=2 dH(vi)) = O(|V |+ |E|+ |F |).

5 Concluding remarks

We have studied minimal cograph completions from two different points of view. Our results
include an efficient algorithm for the computation problem and a precise characterization of minimal
cograph completions. Such characterizations are rarely known for graph classes that do not have the
sandwich monotone property. Observe, in fact, that for comparability and proper interval graphs,
there exists a computation algorithm [21, 36] while no characterization of minimal completions
is known. This makes our characterization and the consequent extraction algorithm particularly
interesting.

Three interesting problems we leave open are:

1. Can one design a faster extraction algorithm, possibly linear in the size of the given comple-

tion?

2. Does there exist a computation algorithm running in time linear in the size of the input graph?

3. Is the problem of finding a minimum cograph completion of a graph obtained by adding one

vertex to a cograph polynomial time solvable?

To solve the first of these problems it might be enough to give a clever implementation of our
naive extraction algorithm. For the second one, however, a clever implementation does not help
as long as we output an explicit representation of the completed graph. All the other known al-
gorithms that compute minimal completions in linear time [19, 22, 36], in fact, use some implicit

13

representation. For cographs we can always use cotrees, but there are also other interesting repre-
sentations that might be even more suitable for our problem, like the vertex ordering suggested in
[9].

The third problem can be viewed as a generalization of the problem solved in [35], in which the
addition of an edge instead of a vertex is considered.

Acknowledgement The authors would like to express their thanks to Pinar Heggernes for her
helpful suggestions which improved the presentation of the paper.

References

[1] A. V. Aho, I. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuristic and the minimal triangulation
process. In Proceedings WG 2003 - 29th Workshop on Graph Theoretic Concepts in Computer Science,
pages 58–70, 2003. LNCS 2880.

[3] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach for dynamically maintaining
chordal graphs. Discrete Math., 306:318 – 336, 2006.

[4] J. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making filled graphs minimal. Theo-

retical Computer Science, 250:125–141, 2001.

[5] H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. Discrete Math., 306:337–350,
2006.

[6] H.L. Bodlaender, T. Kloks, D. Kratsch, and H. Müller. Treewidth and minimum fill-in on d-trapezoid
graphs. J. Graph Algorithms Appl., 2(5):1–28 ,1998.

[7] V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: grouping the minimal separators. SIAM

J. Comput., 31(1):212–232 2001.

[8] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete
Mathematics and Applications, 1999.

[9] A. Bretscher, D. Corneil, M. Habib, and C. Paul. A Simple Linear Time LexBFS Cograph Recognition
Algorithm. SIAM J. Disc. Math., to appear.

[10] H.J. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for minimum fill-in and treewidth
for distance hereditary graphs. Discrete Applied Mathematics, 99(1):367–400, 2000.

[11] P. Burzyn, F. Bonomo, and G. Durán. NP-completeness results for edge modification problems. Disc.

Appl. Math., 154:1824–1844, 2006.

[12] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary properties. Inf.

Process. Lett., 58(4):171–176, 1996.

[13] D.G. Corneil, H. Lerchs, and L.K. Stewart. Complement reducible graphs. Disc. Appl. Math., 3:163 –
174, 1981.

[14] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for cographs. SIAM J. Comput.,
14:926 – 934, 1985.

[15] M. Dom, J. Guo, F. Hüffner, and R. Niedermeier. Error compensation in leaf power problems. Algo-

rithmica, 44(4):363–381, 2006.

[16] F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth and minimum
fill-in. In Proceedings ICALP 2004, pages 568–580, 2004. Springer LNCS 3142.

14

[17] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes against physical mapping of
DNA. J. Comput. Bio., 2(1):139–152, 1995.

[18] M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. J. Algorithms, 19:449 – 473,
1995.

[19] P. Heggernes and F. Mancini. Minimal split completions of graphs. In LATIN 2006: Theoretical

Informatics, pages 592–604. Springer Verlag, 2006. LNCS 3887.

[20] P. Heggernes and F. Mancini. Dinamically maintaining split graphs. Tech report:

http://www.ii.uib.no/∼ federico/papers/dynsplit-rev2.pdf.

[21] P. Heggernes, F. Mancini, and C. Papadopoulos. Minimal comparability completions of arbitrary graphs.
Disc. Appl. Math., to appear.

[22] P. Heggernes and C. Papadopoulos. Single-edge monotonic sequences of graphs and linear-time algo-
rithms for minimal completions and deletions. In Proceedings of COCOON 2007 - 13th Annual Inter-

national Conference on Computing and Combinatorics, pages 406–416. Springer Verlag, 2007. LNCS
4598.

[23] P. Heggernes, C. Paul, J. A. Telle, and Y. Villanger. Interval Completion is Fixed Parameter Tractable.
In Proceedings of STOC 2007 - 39th Annual ACM Symposium on Theory of Computing, pages 374–381,
2007.

[24] P. Heggernes, K. Suchan, I. Todinca, and Y. Villanger. Characterizing minimal interval completions:
Towards better understanding of profile and pathwidth. In Proceedings of STACS 2007 - 24th Interna-

tional Symposium on Theoretical Aspects of Computer Science, pages 236 - 247. Springer Verlag, 2007.
LNCS 4393.

[25] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in time O(nα log n) =
o(n2.376). In Proceedings of SODA 2005 - 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 907–916, 2005.

[26] H. Kaplan, R. Shamir, and R.E. Tarjan. Tractability of parameterized completion problems on chordal
and interval graphs: Minimum Fill-in and Physical Mapping. In Proceedings of FOCS 2004 - 35th

Annual Symposium on Foundations of Computer Science, pages 780–791, 2004.

[27] T. Kashiwabara and T. Fujisawa. An NP-complete problem on interval graphs. IEEE Symp. of Circuits

and Systems, pages 82–83, 1979.

[28] T. Kloks, D. Kratsch, and C. K. Wong. Minimum fill-in on circle and circular-arc graphs. Journal of

Algorithms, 28(2):272–289, 1998.

[29] T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of asteroidal triple-free graphs.
Theor. Comput. Sci., 175(2):309–335,1997.

[30] E. El-Mallah and C. Colbourn. The complexity of some edge deletion problems. IEEE Transactions on

Circuits and Systems, 35:354 – 362, 1988.

[31] F. Mancini. Minimum fill-in and treewidth of split+ ke and split+kv graphs. In Proceedings of ISAAC’07

- 18th International Symposium on Algorithms and Computation, pages:881–892, 2007. LNCS 4835.

[32] D. Meister Computing treewidth and minimum fill-in for permutation graphs in linear time. In Proceed-

ings of WG 2005 - 31st International Workshop on Graph-Theoretic Concepts in Computer Science,
pages 91–102, 2005. LNCS 3787.

[33] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge modification problems.
Disc. Appl. Math., 113:109–128, 2001.

[34] A. Natanzon, R. Shamir, and R. Sharan. A polynomial approximation algorithm for the minimum fill-in
problem. In Proceedings of STOC’98 - 30th Annual ACM Symposium on Theory of Computing, pages
41–47, 1998.

15

[35] S.D. Nikolopoulos and L. Palios. Adding an edge in a cograph. In Graph Theoretic Concepts in Computer

Science - WG 2005, pages 214 – 226. Springer Verlag, 2005. LNCS 3787.

[36] I. Rapaport, K. Suchan, and I. Todinca. Minimal proper interval completions. In Proceedings of WG

2006 - 32nd International Workshop on Graph-Theoretic Concepts in Computer Science, pages 217–228.
Springer Verlag, 2006. LNCS 4271.

[37] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of
linear equations. In R. C. Read, editor, Graph Theory and Computing, pages 183–217. Academic Press,
New York, 1972.

[38] K. Suchan and I. Todinca. Minimal interval completion through graph exploration. In Proceedings

of ISAAC 2006 - 17th International International Symposium on Algorithms and Computation, pages
517–526. Springer Verlag, 2006. LNCS 4288.

[39] Y. Villanger. Improved exponential-time algorithms for treewidth and minimum fill-in. In Proceedings

of LATIN 2006 - 7th Latin American Theoretical Informatics Symposium, pages 800–811, 2006. LNCS
3887.

[40] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth., 2:77–79,
1981.

16

