
Kernelization Lower Bounds through Colors and IDs∗

Michael Dom† Daniel Lokshtanov‡ Saket Saurabh§

Abstract

In parameterized complexity each problem instance comes with a parameter k, and a
parameterized problem is said to admit a polynomial kernel if there are polynomial time
preprocessing rules that reduce the input instance to an instance with size polynomial in k.
Many problems have been shown to admit polynomial kernels, but it is only recently that
a framework for showing the non-existence of polynomial kernels for specific problems has
been developed by Bodlaender et al. [6] and Fortnow and Santhanam [17]. With few excep-
tions, all known kernelization lower bounds result have been obtained by directly applying
this framework. In this paper we show how to combine these results with combinatorial re-
ductions which use colors and IDs in order to prove kernelization lower bounds for a variety
of basic problems. Below we give a summary of our main results. All results are under the
assumption that the polynomial hierarchy does not collapse to the third level.

• We show that the STEINER TREE problem parameterized by the number of terminals
and solution size k, and the CONNECTED VERTEX COVER and CAPACITATED VERTEX

COVER problems do not admit a polynomial kernel. The two latter results are surpris-
ing because the closely related VERTEX COVER problem admits a kernel of with at most
2k vertices.

• Alon and Gutner obtain a kpoly(h) kernel for DOMINATING SET IN H -MINOR FREE

GRAPHS parameterized by h = |H| and solution size k, and ask whether kernels of
smaller size exist [3]. We partially resolve this question by showing that DOMINATING

SET IN H -MINOR FREE GRAPHS does not admit a kernel with size polynomial in k+ h.

• Harnik and Naor obtain a “compression algorithm” for the SPARSE SUBSET SUM prob-
lem [21]. We show that their algorithm is essentially optimal by showing that the
instances cannot be compressed further.

• The HITTING SET and SET COVER problems are among the most studied problems
in algorithmics. Both problems admit a kernel of size kO(d) when parameterized by
solution size k and maximum set size d. We show that neither of them, along with the
UNIQUE COVERAGE and BOUNDED RANK DISJOINT SETS problems, admits a polynomial
kernel.

The existence of polynomial kernels for several of the problems mentioned above were open
problems explicitly stated in the literature [3, 4, 19, 20, 26]. Many of our results also rule
out the existence of compression algorithms, a notion similar to kernelization defined by
Harnik and Naor [21], for the problems in question.

1 Introduction

Polynomial time preprocessing to reduce instance size is one of the most widely used approaches
to tackle computationally hard problems. A natural question in this regard is how to measure

∗A preliminary version of this paper appaered in the proceedings of ICALP 2009.
†Friedrich-Schiller-Universität Jena, 07743 Jena, Germany. michael.dom@uni-jena.de
‡University of Bergen, 5020 Bergen, Norway. daniello@ii.uib.no
§The Institute of Mathematical Sciences, Chennai 600 113, India. saket@imsc.res.in

1



the quality of preprocessing rules proposed for a specific problem. Parameterized complexity
provides a natural mathematical framework to give performance guarantees of preprocessing
rules. In parameterized complexity each problem instance comes with a parameter k and the
parameterized problem is said to admit a polynomial kernel if there is a polynomial time al-
gorithm, called a kernelization algorithm, that reduces the input instance down to an instance
with size bounded by a polynomial p(k) in k, while preserving the answer. This reduced in-
stance is called a p(k) kernel for the problem. We refer to [13, 15, 27] for further introduction
to parameterized complexity and kernelization.

Kernelization has been extensively studied, resulting in polynomial kernels for a variety of
problems. Notable examples include a 2k vertex kernel for VERTEX COVER [9], a 355k vertex
kernel for DOMINATING SET in planar graphs [2], which later was improved to a 67k vertex
kernel [8], and a O(k2) kernel for FEEDBACK VERTEX SET [28] parameterized by the solution
size. While positive kernelization results have appeared regularly over the last two decades, the
first results establishing infeasibility of polynomial kernels for specific problems have appeared
only recently. In particular, Bodlaender et al. [6] and Fortnow and Santhanam [17] have de-
veloped a framework for showing that a problem does not admit a polynomial kernel unless
the polynomial hierarchy collapses to the third level (PH = Σ3

p), a collapse which is deemed
unlikely.

Previous Results. Bodlaender et al. [6] observed that their framework can be directly applied
to show kernelization lower bounds for many parameterized problems, including LONGEST PATH

and LONGEST CYCLE. To the authors’ best knowledge, the only non-trivial applications of this
framework are in a recent result of Fernau et al. [14] showing that the DIRECTED MAX LEAF OUT-
BRANCHING problem does not have a polynomial kernel, and a result by Bodlaender et al. [7]
showing that the DISJOINT PATHS and DISJOINT CYCLES problems do not admit a polynomial
kernel unless PH = Σ3

p.

Our Results & Techniques. At present, there are two ways of showing that a particular prob-
lem does not admit a polynomial kernel unless PH = Σ3

p. One is to give a “composition al-
gorithm” for the problem in question. The other is to reduce from a problem for which a
kernelization lower bound is known to the problem in question, such that a polynomial kernel
for the considered problem would transfer to a polynomial kernel for the problem we reduced
from. Such a reduction is called a polynomial parameter transformation and was introduced by
Bodlaender et al. [7]. In order to show our results, we apply both methods. First, we present
a “cookbook” approach for showing kernelization lower bounds by using composition algo-
rithms together with polynomial parameter transformations. We apply our approach to show
that UNIQUE COVERAGE parameterized by solution size k and HITTING SET and SET COVER pa-
rameterized by solution size k and universe size |U | do not admit polynomial kernels unless
PH = Σ3

p. These problems turn out to be useful starting points for polynomial parameter trans-
formations. By reducing from these problems, we show that a variety of basic problems do not
have a polynomial kernel. Below, we give a summary of our main results. All our results are
under the assumption that PH 6= Σ3

p and unless explicitly stated otherwise, all the problems
considered are parameterized by the solution size.

Connectivity and Covering Problems: We show that the SET COVER problem parameterized by
solution size k and the size |U | of the universe does not have a polynomial kernel. Using this
result, we prove that STEINER TREE parameterized by the number of terminals and solution
size k does not have a polynomial kernel, resolving an open problem stated in [4]. We proceed
to show that the CONNECTED VERTEX COVER and CAPACITATED VERTEX COVER problems do not
admit a polynomial kernel for the parameter k. The existence of polynomial kernels for these

2



problems was an open problem explicitly stated in the literature [19, 20], and the negative
answer to these questions is bit unexpected because the closely related VERTEX COVER problem
admits a vertex kernel of size 2k. Finally, we show that the BOUNDED RANK DISJOINT SETS and
UNIQUE COVERAGE problems do not admit a polynomial kernel. The latter result resolves an
open problem of Moser et al. [26].

Domination and Transversals: We show that the HITTING SET problem parameterized by solution
size k and the size |U | of the universe does not have a polynomial kernel. This implies that the
DOMINATING SET problem parameterized by solution size k and the size of a minimum vertex
cover of the input graph does not admit a polynomial kernel. The latter result in turn implies
that DOMINATING SET IN H -MINOR FREE GRAPHS parameterized by h = |H| and k does not
admit kernel with size polynomial in k + h, partially resolving an open problem by Alon and
Gutner [3], who obtain a kpoly(h) kernel for DOMINATING SET IN H -MINOR FREE GRAPHS and
ask whether kernels of smaller size exist. Another implication of our results is that the HITTING

SET and SET COVER problems parameterized by solution size k and maximum set size d do not
have a kernel polynomial in k, d. Both HITTING SET and SET COVER admit a kO(d) kernel [1],
and our results can help drawing the tractability borderline for these basic problems.

Numeric Problems: Harnik and Naor obtain a “compression algorithm” for the SPARSE SUBSET

SUM problem [21]. Essentially, Harnik and Naor show that if the input instance to SUBSET SUM

is a relatively small set of huge numbers, the instance can be reduced. We show that in contrast,
if the input instance is a huge set of relatively small numbers, the instance cannot be reduced.

It is implicit from the discussion in [17] that for a large class of parameterized problems
the notions of kernelization and compression algorithms, defined by Harnik and Naor [21], are
equivalent. This result, together with our results about the non-existence of polynomial kernels,
rule out the existence of compression algorithms for many problems. These include STEINER

TREE, CONNECTED VERTEX COVER, CAPACITATED VERTEX COVER and UNIQUE COVERAGE, among
others.

Finally, we would like to point out that HITTING SET and SET COVER are among the basic
hard problems in parameterized complexity, and that many W -hardness reductions start from
these problems. In order to obtain our results we give several polynomial parameter transforma-
tions starting from the bounded universe version of these problems. It seems like the bounded
universe version of these problems could turn out to be as useful for showing kernelization
lower bounds, as their unrestricted counterparts have been to show W -hardness.

Organization of the paper: The paper is organized as follows. In the next section we col-
lect all the definitions and results which we make use of in the paper. In Section 3 we give
a systematic approach to prove kernelization and compressibility lower bounds using compo-
sition algorithms. Sections 4, 5 and 6 form the main technical part of the paper where we
show the non-existence of polynomial kernels for many different problems, either by taking the
approach described in Section 3 or by showing a polynomial parameter transformation. Our
results are thematically organized under connectivity and covering problems, domination and
transversals and numeric problems. In Section 7, we show a connection between compression
algorithms and kernelization and rule out compression algorithms for various problems. Finally
we conclude with some remarks and open problems in Section 8. Our appendix includes a com-
pendium of the problems considered in the paper. There one can find definitions, known results
and our contributions.

3



2 Preliminaries

A parameterized problem L is a subset of Σ∗ × N for some finite alphabet Σ. An instance of a
parameterized problem consists of (x, k), where k is called the parameter. A central notion in
parameterized complexity is fixed parameter tractability (FPT), which means for a given instance
(x, k) solvability in time f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial
in the input size. The notions of kernelization and composition are formally defined as follows.

Definition 2.1. A kernelization algorithm, or in short, a kernel for a parameterized problem
Q ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs in time polynomial in |x|+ k a
pair (x′, k′) ∈ Σ∗ × N such that (a) (x, k) ∈ Q if and only if (x′, k′) ∈ Q and (b) |x′|+ k′ ≤ g(k),
where g is an arbitrary computable function. The function g is referred to as the size of the
kernel. If g is a polynomial function then we say that Q admits a polynomial kernel.

Definition 2.2 (Composition [6]). A composition algorithm for a parameterized problem L ⊆
Σ∗ × N is an algorithm that receives as input a sequence ((x1, k), . . . , (xt, k)), with (xi, k) ∈
Σ∗×N+ for each 1 ≤ i ≤ t, uses time polynomial in

∑t
i=1 |xi|+k, and outputs (x′, k′) ∈ Σ∗×N+

with (a) (x′, k′) ∈ L ⇐⇒ (xi, k) ∈ L for some 1 ≤ i ≤ t and (b) k′ is polynomial in k. A
parameterized problem is compositional if there is a composition algorithm for it.

A composition algorithm as described in Definition 2.2 is also called an “Or-Composition”.
We utilize a recent result of Bodlaender et al. [6] and Fortnow and Santhanam [17] that states
that any compositional parameterized problem does not have a polynomial kernel unless the
polynomial hierarchy collapses to the third level. We define the unparameterized version L̃ of
a parameterized problem L as the language L̃ = {x#1k | (x, k) ∈ L}, that is, the mapping of
parameterized problems to unparameterized problems is done by mapping an instance (x, k) to
the string x#1k, where 1 is an arbitrary fixed letter in Σ and # /∈ Σ.

Theorem 2.1 ([6, 17]). Let L be a compositional parameterized problem whose unparameterized
version L̃ is NP-complete. Then, unless PH=Σ3

p, there is no polynomial kernel for L.

Finally we define the notion of polynomial parameter transformations.

Definition 2.3 ([7]). Let P and Q be parameterized problems. We say that P is polynomial
parameter reducible to Q, written P ≤ppt Q, if there exists a polynomial time computable
function f : Σ∗×N → Σ∗×N and a polynomial p, such that for all (x, k) ∈ Σ∗×N (a) (x, k) ∈ P
if and only (x′, k′) = f(x, k) ∈ Q and (b) k′ ≤ p(k). The function f is called polynomial
parameter transformation.

Proposition 2.1 ([7]). Let P and Q be the parameterized problems and P̃ and Q̃ be the unparam-
eterized versions of P and Q respectively. Suppose that P̃ is NP-hard and Q̃ is in NP. Furthermore
if there is a polynomial parameter transformation from P to Q, then if Q has a polynomial kernel
then P also has a polynomial kernel.

Proposition 2.1 shows how to use polynomial parameter transformations to show kerneliza-
tion lower bounds. A notion similar to polynomial parameter transformation was independently
used by Fernau et al. [14] albeit without being explicitly defined.

We close with some definitions from graph theory. Let G = (V,E) be a graph. For a vertex v
in G, we write NG(v) to denote the set of v’s neighbors in G, and we write degG(v) to denote
the degree of v, that is, the number of v’s neighbors in G. If it is clear from the context which
graph is meant, we write N(v) and deg(v), respectively, for short. A graph G′ = (V ′, E′) is a
subgraph of G if V ′ ⊆ V and E′ ⊆ E. The subgraph G′ is called an induced subgraph of G
if E′ = {{u, v} ∈ E | u, v ∈ V ′}, in this case, G′ is also called the subgraph induced by V ′ and
denoted with G[V ′]. A vertex v dominates a vertex u if u ∈ N(v).

4



3 A Systematic Approach to Prove Kernelization Lower Bounds

In this section we describe a “cookbook” for showing kernelization lower bounds. To show that
a problem does not admit a polynomial size kernel we go through the following steps.

1. Find a suitable parameterization of the problem considered. Quite often parameteriza-
tions that impose extra structure make it easier to give a composition algorithm.

2. Define a suitable colored version of the problem. This is in order to get more control over
how solutions to problem instances can look.

3. Show that the unparameterized version of the considered problem is in NP and that the
unparameterized version of the colored version of the problem is NP-hard.

4. Give a polynomial parameter transformation from the colored to the uncolored version.
This will imply that if the uncolored version has a polynomial kernel then so does the
colored version. Hence kernelization lower bounds for the colored version directly transfer
to the original problem.

5. Show that the colored version parameterized by k is solvable in time 2k
c · nO(1) for a fixed

constant c.

6. Finally, show that the colored version is compositional and thus has no polynomial kernel.
To do so, proceed as follows.

(a) If the number of instances in the input to the composition algorithm is at least 2k
c

then running the parameterized algorithm on each instance takes time polynomial in
input size. This automatically yields a composition algorithm.

(b) If the number of instances is less than 2k
c
, every instance receives a unique identifier.

Notice that in order to uniquely code the identifiers (ID) of all instances, kc bits per
instance is sufficient. The IDs are coded either as an integer, or as a subset of a
poly(k) sized set.

(c) Use the coding power provided by colors and IDs to complete the composition algo-
rithm.

In the following sections we show how to apply this approach to show kernelization lower
bounds for a variety of problems.

4 Connectivity and Covering Problems

4.1 Set cover, Steiner Tree, and Variants of Vertex Cover

The problems STEINER TREE, CONNECTED VERTEX COVER (CONVC), CAPACITATED VERTEX COVER

(CAPVC), and SMALL UNIVERSE SET COVER are defined as follows. In STEINER TREE we are
given a graph G = (T ∪ N,E) and an integer k and asked for a vertex set N ′ ⊆ N of size at
most k such that G[T ∪ N ′] is connected. In CONVC we are given a graph G = (V,E) and an
integer k and asked for a vertex cover of size at most k that induces a connected subgraph in G.
A vertex cover is a set C ⊆ V such that each edge in E has at least one endpoint in C. The
problem CAPVC takes as input a graph G = (V,E), a capacity function cap : V → N+ and an
integer k, and the task is to find a vertex cover C and a mapping from E to C in such a way that
at most cap(v) edges are mapped to every vertex v ∈ C. Finally, an instance of SMALL UNIVERSE

SET COVER consists of a set family F over a universe U with |U | ≤ d and a positive integer k.

5



The task is to find a subfamily F ′ ⊆ F of size at most k such that ∪S∈F ′S = U . All four problems
are known to be NP-complete (e.g., see [18] and the proof of Theorem 4.1); in this section, we
show that the problems do not admit polynomial kernels for the parameter (|T |, k) (in the case
of STEINER TREE), k (in the case of CONVC and CAPVC), and (d, k) (in the case of SMALL UNI-
VERSE SET COVER), respectively. To this end, we first use the framework presented in Section 3
to prove that another problem, which is called RBDS, does not have a polynomial kernel. Then,
by giving polynomial parameter transformations from RBDS to the above problems, we show
the non-existence of polynomial kernels for these problems.

In RED-BLUE DOMINATING SET (RBDS) we are given a bipartite graph G = (T ∪ N,E)
and an integer k and asked whether there exists a vertex set N ′ ⊆ N of size at most k such
that every vertex in T has at least one neighbor in N ′. We show that RBDS parameterized
by (|T |, k) does not have a polynomial kernel. In the literature, the sets T and N are called
“blue vertices” and “red vertices”, respectively. In this paper we will call the vertices “terminals”
and “nonterminals” in order to avoid confusion with the colored version of the problem that we
are going to introduce. RBDS is equivalent to SET COVER and HITTING SET and is, therefore,
NP-complete [18].

In the colored version of RBDS, denoted by COLORED RED-BLUE DOMINATING SET (COL-
RBDS), the vertices of N are colored with colors chosen from {1, . . . , k}, that is, we are addi-
tionally given a function col : N → {1, . . . , k}, and N ′ is required to contain exactly one vertex
of each color. We will now follow the framework described in Section 3.

Lemma 4.1. (1) The unparameterized version of RBDS is in NP, and the unparameterized version
of COL-RBDS is NP-hard. (2) There is a polynomial parameter transformation from COL-RBDS
to RBDS. (3) COL-RBDS is solvable in 2|T |+k · |T ∪N |O(1) time.

Proof. (1) RBDS is known to be NP-complete. To prove the NP-hardness of COL-RBDS,
we reduce RBDS to COL-RBDS: Given an instance (G = (T ∪ N,E), k) of RBDS, we con-
struct an instance (G′ = (T ∪ N ′, E′), k, col) of COL-RBDS where the vertex set N ′ consists of
k copies v1, . . . , vk of every vertex v ∈ V , one copy of each color. That is, N ′ =

⋃
a∈{1,...,k}{va |

v ∈ N}, and the color of every vertex va ∈ Na is col(va) = a. The edge set E′ is given by

E′ =
⋃

a∈{1,...,k}

{{u, va} | u ∈ T ∧ a ∈ {1, . . . , k} ∧ {u, v} ∈ E} .

We omit the proof for the correctness of the construction, which is easy to see.

(2) Given an instance (G = (T ∪N,E), k, col) of COL-RBDS, we construct an instance (G′ =
(T ′ ∪ N,E′), k) of RBDS. Thereby, the set T ′ consists of all vertices from T plus k additional
vertices z1, . . . , zk. The edge set E′ consists of all edges from E plus the edges

{{za, v} | a ∈ {1, . . . , k} ∧ v ∈ N ∧ col(v) = a}.

We omit the proof for the correctness of the construction.

(3) To solve COL-RBDS in the claimed running time, we first use the reduction given in (2)
from COL-RBDS to RBDS. The number |T ′| of terminals in the constructed instance of RBDS
is |T |+k. Next, we transform the RBDS instance (G′, k) into an instance (F , U, k) of SET COVER

where the elements in U one-to-one correspond to the vertices in T ′ and the sets in F one-to-one
correspond to the vertices in N . Since SET COVER can be solved in O(2|U | · |U | · |F|) time [16,
Lemma 2], statement (3) follows.

Lemma 4.2. COL-RBDS parameterized by (|T |, k) is compositional.

6



Proof. Given a sequence

(G1 = (T1 ∪N1, E1), k, col1), . . . , (Gt = (Tt ∪Nt, Et), k, colt)

of instances of COL-RBDS with |T1| = |T2| = . . . = |Tt| = p, we show how to construct a
COL-RBDS instance (G = (T ∪N,E), k, col) as described in Definition 2.2.

For i ∈ {1, . . . , t}, let Ti := {ui1, . . . , uip} and Ni := {vi1, . . . , viqi}. We start with adding p ver-
tices u1, . . . , up to the set T of terminals to be constructed. (We will add more vertices to T later.)
Next, we add to the set N of nonterminals all vertices from the vertex sets N1, . . . , Nt, preserv-
ing the colors of the vertices. That is, we set N =

⋃
i∈{1,...,t}Ni, and for every vertex vij ∈ N we

define col(vij) = coli(vij). Now, we add the edge set
⋃

i∈{1,...,t}

{
{uj1 , vij2} | {uij1 , v

i
j2
} ∈ Ei

}
to G

(see Figure 1). The graph G and the coloring col constructed so far have the following prop-
erty: If at least one of the COL-RBDS instances (G1, k, col1), . . . , (Gt, k, colt) is a yes-instance,
then (G, k, col) is also a yes-instance because if for any i ∈ {1, . . . , t} a size-k subset from Ni

dominates all vertices in Ti, then the same vertex set selected from N also dominates all ver-
tices in T . However, (G, k, col) may even be a yes-instance in the case where all instances
(G1, k, col1), . . . , (Gt, k, colt) are no-instances, because in G one can select vertices into the solu-
tion that originate from different instances of the input sequence.

To ensure the correctness of the composition, we add more vertices and edges to G. We
define for every graph Gi of the input sequence a unique identifier ID(Gi), which consists of a
(p+ k)-bit binary number. Since we can assume that the input sequence does not contain more
than 2p+k instances, (p + k) bits are enough to assign unique identifiers to all instances of the
input sequence. (Note that if there are more than 2p+k instances, then we can solve all these
instances in

∑t
i=1 2

p+k · (p + qi)
O(1) ≤ t ·

∑t
i=1(p + qi)

O(1) time, which yields a composition
algorithm.) For each color pair (a, b) ∈ {1, . . . , k} × {1, . . . , k} with a 6= b, we add a vertex
set W(a,b) = {w(a,b)

1 , . . . , w
(a,b)
p+k } to T , and we add to E the edge set

⋃
i ∈ {1, . . . , t},
j1 ∈ {1, . . . , qi}

{vij1 , w
(a,b)
j2

}

∣∣∣∣∣∣
a = col(vij1) ∧
b ∈ {1, . . . , k} \ {a} ∧
the j2th bit in ID(Gi) is 1

 ∪

⋃
i ∈ {1, . . . , t},
j1 ∈ {1, . . . , qi}

{vij1 , w
(a,b)
j2

}

∣∣∣∣∣∣
b = col(vij1) ∧
a ∈ {1, . . . , k} \ {b} ∧
the j2th bit in ID(Gi) is 0


(see Figure 1).

Note that the construction conforms to the definition of a composition algorithm; in particu-
lar, k remains unchanged and the size of T is polynomial in p, k because |T | = p+k(k−1)·(p+k).
To prove the correctness of the construction, we show that (G, k, col) has a solution N ′ ⊆ N if
and only if at least one instance (Gi, k, coli) from the input sequence has a solution N ′

i ⊆ Ni.
In one direction, if N ′

i ⊆ Ni is a solution for (Gi, k, coli), then the same vertex set chosen
from N forms a solution for (G, k, col). To see this, first note that the vertices u1, . . . , up are
dominated by the chosen vertices. Moreover, for every color pair (a, b) ∈ {1, . . . , k}× {1, . . . , k}
with a 6= b, each vertex from W(a,b) is either connected to all vertices v from Ni with col(v) = a
or to all vertices v from Ni with col(v) = b. Since N ′

i contains one vertex of each color class
from Ni, each vertex in W(a,b) is dominated by a vertex from N chosen into the solution.

In the other direction, to show that any solution N ′ ⊆ N for (G, k, col) is a solution for
at least one instance (Gi, k, coli), we prove that N ′ cannot contain vertices originating from
different instances of the input sequence. To this end, first note that each two vertices in N ′

7



��
��
��
��
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
�
�
�
�

�
�
�
�

�
�
�
�

N1

N1

T1

N2

N2

T2

W(white,black)

. . .. . .
w

(white,black)
1 . . . w

(white,black)
4 . . . w

(white,black)
7

ID(G1) =

11001010

ID(G2) =

01000111

N

Figure 1: Example for the composition algorithm for COL-RBDS. The upper part of the figure
shows an input sequence consisting of two instances with k = 3 (there are three colors: white,
checkered, and black). The lower part of the figure shows the output of the composition algo-
rithm. For the sake of clarity, only the vertex set W(white,black) is displayed, whereas five other
vertex sets W(a,b) with a, b ∈ {white, checkered, black} are omitted. Since k = 3 and p = 5, each
ID consists of an eight-bit binary number, and W(white,black) contains eight vertices. The order of
the vertices in W(white,black) from left to right corresponds to the order of the bits in the IDs from

left to right, that is, the vertex w
(white,black)
1 corresponds to the leftmost bit in the IDs.

must have different colors. Assume, for the sake of a contradiction, that N ′ contains a vertex vi1j1
with col(vi1j1) = a originating from the instance (Gi1 , k, coli1) and a vertex vi2j2 with col(vi2j2) = b
originating from a different instance (Gi2 , k, coli2). Since ID(Gi1) 6= ID(Gi2), there are vertices
in W(a,b) ∪ W(b,a) (namely, all vertices w

(a,b)
j such that the jth bit in ID(Gi1) is 0 and the jth

bit in ID(Gi2) is 1, and all vertices w
(b,a)
j such that the jth bit in ID(Gi2) is 0 and the jth bit

in ID(Gi1) is 1) that are neither adjacent to vi1j1 nor to vi2j2 . Therefore, N ′ does not dominate all
vertices from T , which is a contradiction to the fact that N ′ is a solution for (G, k, col).

Theorem 4.1. The problems RED-BLUE DOMINATING SET and STEINER TREE, both parameterized
by (|T |, k), the problems CONNECTED VERTEX COVER and CAPACITATED VERTEX COVER, both
parameterized by k, the problem SMALL UNIVERSE SET COVER parameterized by (k, d), and the
problem SET COVER parameterized by solution size k and the maximum size of any set in F do not
admit polynomial kernels unless PH = Σ3

p.

Proof. For RBDS the statement of the theorem follows directly by Theorem 2.1 together with
Lemmata 4.1 and 4.2.

To show that the statement is true for the other four problems, we give polynomial parameter
transformations from RBDS to each of them—due to Proposition 2.1, this suffices to prove the
statement. Let (G = (T ∪ N,E), k) be an instance of RBDS. To transform it into an instance
(G′ = (T ′ ∪ N,E′), k) of STEINER TREE, define T ′ = T ∪ {ũ} where ũ is a new vertex and
let E′ = E ∪ {{ũ, vi} | vi ∈ N}. It is easy to see that every solution for STEINER TREE on (G′, k)
one-to-one corresponds to a solution for RBDS on (G, k).

8



To transform (G, k) into an instance (G′′ = (V ′′, E′′), k′′) of CONVC, first construct the
graph G′ = (T ′ ∪N,E′) as described above. The graph G′′ is then obtained from G′ by attach-
ing a leaf to every vertex in T ′. Now, G′′ has a connected vertex cover of size k′′ = |T ′| + k =
|T | + 1 + k if and only if G′ has a Steiner tree containing k vertices from N if and only if all
vertices from T can be dominated in G by k vertices from N .

Next, we describe how to transform (G, k) into an instance (G′′′ = (V ′′′, E′′′), cap, k′′′) of
CAPVC. First, for each vertex ui ∈ T , add a clique to G′′′ that contains four vertices u0i , u

1
i , u

2
i , u

3
i .

Second, for each vertex vi ∈ N , add a vertex v′′′i to G′′′. Finally, for each edge {ui, vj} ∈ E
with ui ∈ T and vj ∈ N , add the edge {u0i , v′′′j } to G′′′. The capacities of the vertices are
defined as follows: For each vertex ui ∈ T , the vertices u1i , u

2
i , u

3
i ∈ V ′′′ have capacity 1 and the

vertex u0i ∈ V ′′′ has capacity degG′′′(u0i ) − 1. Each vertex v′′′i has capacity degG′′′(v′′′i ). Clearly,
in order to cover the edges of the size-4 cliques inserted for the vertices of T , every capacitated
vertex cover for G′′′ must contain all vertices u0i , u

1
i , u

2
i , u

3
i . Moreover, since the capacity of each

vertex u0i is too small to cover all edges incident to u0i , at least one neighbor v′′′j of u0i must be
selected into every capacitated vertex cover for G′′′. Therefore, it is not hard to see that G′′′

has a capacitated vertex cover of size k′′′ = 4 · |T | + k if and only if all vertices from T can be
dominated in G by k vertices from N .

Finally, the results for SMALL UNIVERSE SET COVER and SET COVER follow from the equiv-
alence of SET COVER and RBDS: To transform (G, k) into an instance (F , U, k) of SMALL UNI-
VERSE SET COVER, add one element ei to U for every vertex ui ∈ T . For every vertex vj ∈ N ,
add one set {ei | {ui, vj} ∈ E} to F . The correctness of the construction is obvious; moreover,
since |U | = |T |, every set in F contains at most |T | elements, which shows the claimed result
for SET COVER.

4.2 Unique Coverage

In the UNIQUE COVERAGE problem we are given a universe U , a family of sets F over U and
an integer k. The problem is to find a subfamily F ′ of F and a set S of elements in U such
that |S| ≥ k and every element of S appears in exactly one set in F ′, that is, the number of
elements uniquely covered by F ′ is at least k.

In order to obtain our negative results we have to utilize positive kernelization results for
the problem. In some sense, we have to compress our instances as much as possible in order
to show that what remains is incompressible even though it is big. We utilize the following
well-known and simple reduction rules for the problem:

(a) If any set S ∈ F contains at least k elements, then return yes.

(b) If any element e is not contained in any set in F , then remove e from U .

(c) If none of the above rules can be applied and |U | ≥ k(k − 1), then return yes.

We show that the UNIQUE COVERAGE problem does not have a polynomial kernel unless
PH=Σ3

p. Notice that while the above reduction rules will compress the instance to an instance
with at most O(k2) elements, this is not a polynomial kernel because there is no polynomial
bound on the size of F . Hence, our negative result implies that unless PH=Σ3

p the size of
F cannot be compressed to a polynomial in k in polynomial time. We start by defining the
colorful reduced version COLORED REDUCED UNIQUE COVERAGE (COL-RED-UC) of the UNIQUE

COVERAGE problem which is useful for making the composition algorithm. In this version the
sets of F are colored with colors from the set {1, . . . , k} and F ′ is required to contain exactly
one set of each color. Furthermore, in COL-RED-UC every set S in F has size at most k − 1 and
|U | ≤ k2.

9



Lemma 4.3. (1) The unparameterized version of UNIQUE COVERAGE is in NP, and the unparam-
eterized version of COL-RED-UC is NP-hard. (2) There is a polynomial parameter transformation
from COL-RED-UC to UNIQUE COVERAGE. (3) COL-RED-UC is solvable in time O(k2k

2
).

Proof. (1) To show that that COL-RED-UC is NP-hard we reduce from the UNIQUE COVERAGE

problem. For an instance (F , U, k) of UNIQUE COVERAGE we first apply the reduction rules
above. We now assume that the given instance cannot be reduced any further. Now we make k
copies of F , one copy of each color. This new instance has a colored subfamily uniquely covering
at least k elements if and only if (F , U, k) is a yes instance to UNIQUE COVERAGE. Furthermore,
even in the new instance we have that |U | ≤ k2 and that every set has at most k − 1 elements.

(2) We now prove that there is a polynomial parameter transformation from COL-RED-
UC to UNIQUE COVERAGE. For an instance (F , U, k) of COL-RED-UC we make a new instance
(H, U ′, k′) to UNIQUE COVERAGE. Let k′ = k(k2 + 1) + k and for every color i we add a set Ui of
k2 + 1 new elements to U and make all sets colored with i contain Ui in addition to what they
already contain. Thus we have that U ′ = U ∪

⋃
i∈{1,...,k} Ui. Notice that in order to cover at least

k(k2 + 1) elements uniquely one has to pick exactly one set of each color. This concludes the
polynomial parameter transformation.

(3) Finally, observe that COL-RED-UC can be solved in time O(k2k
2
) because the size of |U |

is bounded by k2.

Lemma 4.4. The COL-RED-UC problem is compositional.

Proof. Given a sequence of COL-RED-UC instances I1 = (U,F1, k), . . . , It = (U,Ft, k), we con-
struct a COL-RED-UC instance I = (U ′,F , k′). If the number of instances t is at least 22k

2 log k

then running the algorithm from Lemma 4.3 on all instances takes time polynomial in the input
size yielding a trivial composition algorithm. Thus we assume that t is at most 22k

2 log k. We now
construct ID’s for for every instance, this is done in two steps. In the first step every instance i
gets a unique small id ID′(Ii) which is a subset of size k3/2 of the set {1, . . . , k3}. The identifier
of instance i is the set ID(Ii) which is defined to be ID(Ii) = {x ∈ N : bx/k3c ∈ ID′(Ii)}. In
other words, ID(Ii) = {k3 ·j+j′ | j ∈ ID′(Ii)∧j′ ∈ {0, . . . , k3−1}}. Notice that the identifier of
every instance is now a subset of size k6/2 of the set {1, . . . , k6} and that the IDs of two different
instances differ in at least k3 places.

We start building the instance I by letting U ′ = U and F = F1 ∪ F2 . . . ∪ Ft. The sets have
the same color as in their respective instance. For every distinct ordered pair of colors i, j ≤ k
we add the set Ui,j = {u1i,j , . . . , uk

6

i,j} to U ′. For every instance Ip we consider the sets colored i
and j respectively in Fp. To every set S with color i in Fp we add the set {uxi,j : x ∈ ID(Ip)}.
Also, to every set S with color j in Fp we add the set {uxi,j : x /∈ ID(Ip)}. Finally we set
k′ = k(k − 1)k6 + k. This concludes the construction.

If some Ip has a colored subfamily F ′ covering k elements uniquely, we show that the same
subfamily covers k′ elements uniquely in I. First note that F ′ covers k elements uniquely in
U . It remains to prove that for every distinct ordered pair i, j of colors, all elements of Ui,j

are covered uniquely by F ′ in I. Consider an element uqi,j ∈ Ui,j and let Si and Sj be the sets
colored i and j respectively in F ′. If q ∈ ID(Ip) then Si contains uqi,j and Sj does not. Similarly
if q /∈ ID(Ip) then Sj contains uqi,j and Si does not. Furthermore no other set of F ′ contains uqi,j
and thus this element is uniquely covered.

In the other direction, suppose I has a colored subfamily F ′ covering k′ elements uniquely.
Suppose for contradiction that there is a color i and a color j such that the set Si ∈ F ′ with color
i and the set Sj ∈ F ′ with color j originate from different instances. Observe that in the set
Ui,j the sets Si and Sj intersect in at least k3 elements, and thus these elements are not covered
uniquely by F ′. Then the total number of elements that can be uniquely covered by F ′ is upper
bounded by k(k− 1)k6 + k2 − k3 < k(k− 1)k6 < k′ yielding a contradiction. Thus all the sets in

10



F ′ come from the same instance Ip and uniquely cover at least k elements in Ip. This concludes
the proof.

Theorem 4.2. The UNIQUE COVERAGE problem parameterized by k does not admit a polynomial
kernel unless PH = Σ3

p.

4.3 Bounded Rank Disjoint Sets

In the BOUNDED RANK DISJOINT SETS problem we are given a family F over a universe U with
every set S ∈ F having size at most d together with a positive integer k. The question is whether
there exists a subfamily F ′ of F with |F ′| ≥ k such that for every pair of sets S1, S2 ∈ F ′ we
have that S1 ∩S2 = ∅. The problem can be solved in time 2O(dk)nO(1) using color-coding and an
application of dk-perfect hash families. We outline a proof which shows that this problem does
not admit a poly(k, d) kernel. To do so we define a variation of the PERFECT CODE problem
on graphs, which we call BIPARTITE REGULAR PERFECT CODE problem. In BIPARTITE REGULAR

PERFECT CODE we are given a bipartite graph G = (T ∪N,E), where every vertex in N has the
same degree, and an integer k and asked whether there exists a vertex set N ′ ⊆ N of size at
most k such that every vertex in T has exactly one neighbor in N ′. The set N ′ is called a bipartite
perfect code. Now we are ready to state the main theorem of this subsection.

Theorem 4.3. BIPARTITE REGULAR PERFECT CODE parameterized by (|T |, k) and BOUNDED RANK

DISJOINT SETS parameterized by (d, k) do not have a polynomial kernel unless PH = Σ3
p.

Proof. We can show that BIPARTITE REGULAR PERFECT CODE parameterized by (|T |, k) does not
have a polynomial kernel along the lines of the proof of Theorem 4.1, which shows that RBDS
parameterized by (|T |, k) does not have a polynomial kernel. BIPARTITE REGULAR PERFECT

CODE is known to be NP-complete even when every vertex in N has degree exactly 3 [22].
The proof showing that the colored version of BIPARTITE REGULAR PERFECT CODE (1) is NP-
complete, (2) has a fixed-parameter algorithm of the desired kind, and (3) has a polynomial
parameter transformation to BIPARTITE REGULAR PERFECT CODE is just a minor modification as
for RBDS. For the composition, it is enough to observe that if the input graphs to the composi-
tion algorithm are one sided regular then the composed graph will remain one sided regular in
Lemma 4.2. This is true as every vertex is made adjacent to the same number of newly added
vertices and newly added vertices are added to T .

Finally, to show that BOUNDED RANK DISJOINT SETS parameterized by (d, k) does not have
a polynomial kernel we give a polynomial parameter transformation from BIPARTITE REGULAR

PERFECT CODE to BOUNDED RANK DISJOINT SETS. To this end, given an instance (G = (T ∪
N,E), k) for BIPARTITE REGULAR PERFECT CODE, we make an instance (U,F , k′, d) for BOUNDED

RANK DISJOINT SETS as follows. Let U = T , F = {Fv | v ∈ N, Fv = N(v)}, k′ = k and d = r
where r is the degree of any vertex in N . Observe that k = |T |/r. From here it easily follows
that G has a bipartite perfect code of size k if and only if (U,F , k, d) has a subfamily F ′ of F of
pairwise disjoint sets.

5 Domination and Transversals

In the SMALL UNIVERSE HITTING SET problem we are given a set family F over a universe U
with |U | ≤ d together with a positive integer k. The question is whether there exists a subset S
in U of size at most k such that every set in F has a non-empty intersection with S. We show
that the SMALL UNIVERSE HITTING SET problem parameterized by the solution size k and the
size d = |U | of the universe does not have a kernel of size polynomial in (k, d) unless PH = Σ3

p.
One should notice that while HITTING SET and SET COVER in fact are the same problem, SMALL

11



UNIVERSE HITTING SET and SMALL UNIVERSE SET COVER are not, because in the former we
are restricting the number of potential dominators while in the later we restrict the number of
objects to be dominated.

We define the colored version of SMALL UNIVERSE HITTING SET, called COL-SUHS as fol-
lows. We are given a set family F over a universe U with |U | ≤ d, and a positive integer k. The
elements of U are colored with colors from the set {1, . . . , k} and the question is whether there
exists a subset S ⊆ U containing exactly one element of each color such that every set in F has
a non-empty intersection with S.

Lemma 5.1. (1) The unparameterized version of SMALL UNIVERSE HITTING SET is in NP, and
the unparameterized version of COL-SUHS is NP-hard. (2) There is a polynomial parameter
transformation from COL-SUHS to SMALL UNIVERSE HITTING SET. (3) COL-SUHS parameterized
by d, k is solvable in time O(2d · nO(1)).

Proof. (1) We show that COL-SUHS is NP-hard by reducing from SMALL UNIVERSE HITTING

SET, which is easily seen to be NP-complete by a reduction from DOMINATING SET. Given an
instance (F , U, d, k) to SMALL UNIVERSE HITTING SET we make an instance (F ′, U ′, d · k, k) of
COL-SUHS by letting U ′ contain k copies of U , with one element of each color. For every set
S in F we make a set S′ in F ′ by letting S′ contain all copies of all elements in S. From
the construction it follows that (F , U, d, k) has a hitting set of size at most k if and only if
(F ′, U ′, d · k, k) has a colored hitting set of size k.

(2) We now give a polynomial parameter transformation from COL-SUHS to SMALL UNI-
VERSE HITTING SET. For an instance (F ′, U, d, k) to COL-SUHS we make an instance (F , U, d, k)
to SMALL UNIVERSE HITTING SET as follows. For every i between 1 and k let Ui be the set of
elements in U colored with i. We construct F by starting with F ′ and for every i adding the
set Ui to F ′. Now, a subset S of U hits every set of F if and only if it hits every set of F ′ and
contains at least one vertex of each color.

(3) Finally, observe that COL-SUHS parameterized by d, k is solvable in time O(2d ·nO(1)) by
enumerating all subsets of U and for each set checking whether it is a hitting set with at least
one vertex of each color.

Lemma 5.2. The problem COL-SUHS is compositional.

Proof. We have to show how, given a sequence of COL-SUHS instances

(F1, U, d, k), (F2, U, d, k), . . . , (Ft, U, d, k)

where |U | ≤ d, to construct a COL-SUHS instance (F , U ′, d′, k′) as described in Definition 2.2.
If the number of instances is at least 2d then running the algorithm from Lemma 5.1 on all

instances takes time polynomial in the input size yielding a trivial composition algorithm. Thus
we can assume that t ≤ 2d. Furthermore, we need the number of instances to be a power of
2. To make this true we add an appropriate number of no-instances. As we never add more
than t extra instances in order to make the number of instances a power of 2 this can be done
in polynomial time and hence we can safely assume that t is a power of 2, say 2l. Observe that
since t ≤ 2d we have that l ≤ d. Now, let every instance be identified by a unique number from
0 to t− 1.

We let k′ = k+ l and start building (F , U ′, d′, k′) from (F1, U, d, k), . . . , (Ft, U, d, k) by letting
U ′ = U and letting elements keep their color. For every i ≤ t we add the family Fi to F . We now
add 2l new elements C = {a1, b1, . . . , al, bl} to U ′ and for every i ≤ l, {ai, bi} comprise a new
color class. We conclude the construction by modifying the sets in F that came from the input
instances to the composition algorithm. For every j ≤ t we consider all sets in Fj . For every
such set S we proceed as follows. Let ID(j) be the identification number of instance number j.

12



For every i ≤ l we look at the i’th bit in the binary representation of ID(j). If this bit is set to 1
we add ai to S and if the bit is set to 0 we add bi to S. This concludes the construction.

Now, if there is a colored hitting set S for Fj with |S| ≤ k we construct a colored hitting set
S′ for F of size k + l as follows. First we add S to S′ and then we consider the identification
number ID(j) of instance j. For every i from 1 to l we consider the i’th bit of ID(j). If this bit is
set to 1 we add bj to S′ else we add aj to S′. Clearly S′ is a hitting set for Fi, has size k + l and
contains one vertex of each color. It remains to show that S′ hits all other sets of F . Consider
any set X ∈ Fq for some q 6= j. Then there is an i such that ID(q) differs from ID(j) in the i’th
bit. If the i’th bit of ID(q) is 1 then the i’th bit of ID(j) is 0 and hence ai ∈ S′. Since the i’th bit
of ID(q) is 1, ai ∈ X.

In the other direction, suppose there is a colored hitting set S′ of size l + k of F . For every
i ≤ l, exactly one out of the vertices ai and bi is in S′. Let p be the number between 0 and
2l − 1 such that for every i the i’th bit of p is 1 if and only if bi ∈ S′. Observe that the sets in F
originating from the family Fj such that ID(j) = p do not contain any of the elements of S′∩C.
Thus S′′ = S′ ∩U is a colored hitting set for Fj containing at most one element from each color
class. S′′ can thus be extended to a colored hitting set S of Fj with |S| = k, concluding the
proof.

Theorem 5.1. SMALL UNIVERSE HITTING SET parameterized by solution size k and universe size
|U | = d does not have a polynomial kernel unless PH = Σ3

p. The DOMINATING SET problem
parameterized by the solution size k and the size c of a minimum vertex cover of the input graph
does not have a polynomial kernel.

Proof. The first part of the theorem follows immediately from Lemmata 5.1 and 5.2. To show
that the DOMINATING SET problem parameterized by the solution size k and the size c of a min-
imum vertex cover of the input graph does not have a polynomial kernel we give a polynomial
parameter transformation from COL-SUHS to DOMINATING SET. On input (F , U, d, k) to COL-
SUHS we make an instance (G, k) to DOMINATING SET as follows. We start by letting G be the
bipartite element-set incidence graph of (F , U). Now we and add one vertex vi for every color
class i and make vi adjacent to every vertex in G corresponding to an element of U with color
i. This concludes the construction.

First, observe that U is a vertex cover of size d of G. Second, observe that if there is a
colored hitting set S with |S| ≤ k of (F , U, d, k) then S is a dominating set of G. Finally, if S is a
dominating set of G then for every i there is a vertex in S ∩N [vi]. Hence, S ∩ U is a hitting set
for F containing at most one element of each color. Thus this set can be extended to a colorful
hitting set of F , concluding the proof.

Theorem 5.1 has some interesting consequences. For instance, it implies that the HITTING

SET problem parameterized by solution size k and the maximum size d of any set in F does not
have a kernel of size poly(k, d) unless PH = Σ3

p. The second part of Theorem 5.1 implies that
the DOMINATING SET problem in graphs excluding a fixed graph H as a minor parameterized by
(k, |H|) does not have a kernel of size poly(k, |H|) unless PH = Σ3

p. This follows from the well-
known fact that every graph with a vertex cover of size c excludes the complete graph Kc+2 as
a minor. Similarly, since every graph with a vertex cover of size c is c-degenerate it follows that
the DOMINATING SET problem in d-degenerate graphs does not have a kernel of size poly(k, d)
unless PH = Σ3

p.

Theorem 5.2. Unless PH = Σ3
p the problems HITTING SET parameterized by solution size k and

the maximum size d of any set in F , DOMINATING SET IN H -MINOR FREE GRAPHS parameterized
by (k, |H|), and DOMINATING SET parameterized by solution size k and degeneracy d of the input
graph do not have a polynomial kernel.

13



6 Numeric Problem: Small Subset Sum

In the SUBSET SUM problem we are given a set S of n integers and a target t and asked whether
there is a subset S′ of S that adds up to exactly t. In the most common parameterization of
this problem one is also given an integer k and asked whether there is a subset S′ of S of
size at most k that adds up to t. This parameterization, however, is W [1]-hard. We consider
a stronger parameterization where in addition to k an extra parameter d is provided and each
of the integers in S is required to have size at most 2d. This version, SMALL SUBSET SUM, is
trivially fixed parameter tractable by dynamic programming. We believe that SMALL SUBSET

SUM is the most restrictive plausible parameterization of the SUBSET SUM problem. We show
that even this version does not admit a polynomial kernel, by giving a polynomial parameter
transformation from the COLORED RED-BLUE DOMINATING SET (COL-RBDS) problem.

Theorem 6.1. SMALL SUBSET SUM parameterized by (d, k) does not admit a kernel polynomial in
(d, k) unless PH = Σ3

p.

Proof. We give a polynomial parameter transformation from the COLORED RED-BLUE DOMINAT-
ING SET (COL-RBDS) problem to SMALL SUBSET SUM. Given an instance (G = (T ∪N,E), k, d)
to COL-RBDS, such that |T | = d and N has been colored with colors from {1, . . . , k}, we build
an instance (S, t, k′, d′) to SMALL SUBSET SUM. For an integer x ∈ S we treat x both as a number
and as a string—the encoding of x in the number system with base k(k + 1).

We let t be a length-(d + 2k) string of digits representing the number 1 + k(k + 1)/2 and
k′ = k(d + 1). Now, order the elements of T in some order, say T = t1, t2, . . . , td. For a vertex
v ∈ N we define the string Z(v) to be a string on d digits, where the i’th digit is set to 1 if
{v, ti} ∈ E and 0 otherwise. For an integer i between 1 and k we define the string B(i) to be a
length-k string with zeroes everywhere, except in the i’th digit, which is 1+k(k+1)/2. For every
vertex x ∈ N we add a string to S: Let i be the color of x. We add the string B(i)Z(x)B(k+1−i)
to S and we will say that this string (or the number it represents) corresponds to x. Even though
the numbers in the SMALL SUBSET SUM are uncolored, we color the string corresponding to x
with the same color as x in order to ease the discussion. Finally we add a set of uncolored
numbers to S: For every i between 1 and d and every j between 1 and k the string ui,j is a string
of length 2k + d with zeroes everywhere except for the k + i’th digit, which is set to j. This
concludes the construction. One should notice that every number is bounded by (k(k + 1))2k+d

and hence we can set d′ = 3(2k + d) log k.
Next, we prove that there is a set N ′ ⊆ N containing one vertex of each color such that

every vertex of T has a neighbor in N ′ if and only if there is a set S′ ⊆ S of at most k′ numbers
that add up to t.

Suppose that there is a set N ′ ⊆ N containing one vertex of each color such that every
vertex of T has a neighbor in N ′. We pick S′ ⊆ S as follows. For every vertex v ∈ N ′ we add the
string corresponding to v to S′. Furthermore, for every i ≤ d, let xi be the number of neighbors
the vertex ti ∈ T has in N ′. We add the set {ui,j : 1 ≤ j ≤ k∧ j 6= xi− 1} to S′. Since we picked
one number of each color, when we add up the numbers in S′ there are no carries. Since every
vertex ti ∈ T sees at least one and at most k vertices in N ′, the k + i’th digit of the sum of all
numbers in S′ is exactly 1 + k(k + 1)/2.

In the other direction, suppose there is a set S′ ⊆ S with at most k′ numbers that add up to t.
If S contains no numbers colored 1, then the last digit of

∑
x∈S′ x must be zero, a contradiction.

If S contains at least two numbers colored 1 then
∑

x∈S′ x > t again yielding a contradiction.
Hence S′ contains exactly one number colored 1. Let s1 be the number in S′ colored 1. Now, if
S′ contains no numbers colored 2 then the second last digit of

∑
x∈S′ x is zero and if S′ contains

at least 2 numbers colored 2 then −s1+
∑

x∈S′ x > t− s1, again contradicting that t =
∑

x∈S′ x.
Repeating the argument for the remaining colors yields that S′ contains exactly one number of

14



each color. For every i ≤ k we let si be the number in S′ colored i. For every i let vi be the
vertex in N corresponding to si. We prove that for every i the vertex ti ∈ T has a neighbor in
N ′. To achieve this we argue that there is a number sj such that the k + i’th digit of sj is 1.
Suppose for contradiction that this is not the case. Notice that since there is at most one number
of each color in S′ there are no carries when we add up the numbers of S′, even if S′ contains
all uncolored numbers. Hence, even if S′ contains all uncolored numbers whose k + i’th digit
is non-zero the k + i’th digit of

∑
x∈S′ x must be strictly less than 1 + k(k + 1)/2, yielding the

desired contradiction, thereby completing the proof.

7 Kernelization and Compression Algorithms

Harnik and Naor [21] define compression, a notion with applications in cryptography and sim-
ilar to kernelization in spirit. In this section we show that for a large class of problems, the
notions of compressibility and polynomial kernels are in fact equivalent. This argument is im-
plicit in [17] where it is observed that the definitions of compression of Harnik and Naor [21]
and Fortnow and Santhanam are equivalent. We choose to include the argument for the sake
of completeness. We follow the definitions given by Fortnow and Santhanam [17] in the realm
of compression. A parametric problem is a subset of {x#1n | x ∈ {0, 1}∗, n ∈ N}. The difference
between parametric problems and parameterized problems is in the interpretation of the pa-
rameter. In a parametric problem the parameter is the size of the “witness string encoding the
solution”, while in a parameterized problem it is typically the cardinality of a solution set. For an
example let us consider the problem CLIQUE. A parametric problem corresponding to CLIQUE

is {G#1k logn | G has a clique of size k} (where n is the size of G), while the parameterized
problem corresponding to CLIQUE is {(G, k) | G has a clique of size k}. The unparameterized
version of the latter is {G#1k | G has a clique of size k}.

Definition 7.1. [Compression [17]] Let L be a parametric problem and A ⊆ {0, 1}∗. L is said
to be compressible within A if there is a polynomial p(·), and a polynomial time computable
function f such that for each x ∈ {0, 1}∗ and n ∈ N, |f(x#1n)| ≤ p(n) and x#1n ∈ L if and
only if f(x#1n) ∈ A. L is compressible if there is some A for which L is compressible within A.

We study subset problems where the objective is to find in a given set a k-sized subset with
specific properties such that if a subset is proposed, one can check in polynomial time whether
this subset indeed is a solution to the problem considered. For such problems, the length of a
witness string of an instance (|I|, k) is k · log |I|. Thus, for a subset problem, the corresponding
parametric problem is L = {I#1k·log(|I|) | I has a solution of size k}, while the corresponding
parameterized problem is L∗ = {(I, k) | I has a solution of size k} and the unparameterized
version of the latter is L̃∗ = {I#1k | I has a solution of size k}.

Theorem 7.1. Let L be the parametric problem corresponding to a subset problem, and let L∗ be
the corresponding parameterized problem. If the unparameterized version of L∗ is NP-complete
and there is an algorithm that decides whether an instance (I, k) belongs to L∗ in time 2k

c · |I|O(1)

for a fixed constant c, then L has a compression to a language A in NP if and only if L∗ admits a
polynomial kernel.

Proof. We first show that if L∗ has a polynomial kernel then L has a compression to a language
A in NP. Given an instance I#1t, we run the kernelization algorithm for L∗ on the instance
(I, k) with k = t/ log |I|. This returns an instance of I ′ of L∗ such that |I ′| ≤ kc for some fixed
constant c. Hence, |I ′| ≤ kc ≤ tc yielding a compression for L in L itself, i.e. self-compression.

In the other direction, given an instance (I, k) we check whether |I| > 2k
c
. If |I| > 2k

c

we solve the problem in time 2k
c |I|O(1) ≤ |I|O(1), which is polynomial in |I|. If, on the other

15



hand, |I| ≤ 2k
c
, then we apply compression on I#1k·log |I| resulting in an instance I ′ to the NP

problem A such that |I ′| ≤ poly(k, log |I|) which is polynomial in k since log |I| ≤ kc. Now since
A is in NP and the unparameterized version L̃∗ of L∗ is NP-complete, there is a polynomial-time
many-one reduction from A to L̃∗. This yields an instance I∗#1k

∗
to L̃∗ such that |I∗| and k∗

are bounded by a polynomial in k and (I, k) ∈ L∗ if and only if (I∗, k∗) ∈ L∗.

Since many of the problems considered in this paper are subset problems, combining Theo-
rem 7.1 with our kernelization lower bounds yields the following corollary.

Corollary 7.1. CONNECTED VERTEX COVER, CAPACITATED VERTEX COVER, STEINER TREE, UNIQUE

COVERAGE, and SMALL SUBSET SUM do not have a compression to any language in NP.

8 Conclusion, Discussions and Further Work

We have shown that several important parameterized problems do not admit polynomial ker-
nels unless the polynomial hierarchy collapses to the third level. In order to do this we gave a
cookbook for how to show composition algorithms, applied the approach to a few basic prob-
lems, and used these problems as starting points for polynomial parameter transformations. We
believe that both the cookbook for showing composition algorithms and the problems we have
shown not to admit polynomial kernels will be useful tools for showing kernelization lower
bounds for many other problems as well.

The approach of bounding the number of instances in the input by 2k
c

(steps 5 and 6a in our
“cookbook”) was already applied by Bodlaender et al. [7] for obtaining a composition algorithm
for a string problem called DISJOINT FACTORS; implicitly, Bodlaender et al. also assigned IDs
to the problem instances: Their composition algorithm constructs one single output string by
concatenating all input strings—the position of each input string in the output string can be
interpreted as the ID of the string. However, we use the IDs in a more systematic way.

Results in this paper have already been used to obtain kernelization lower bound in a few
papers. These include recent results by Kratsch and Wahlström [23], Cygan et al. [10] and
Misra et al. [24] who used UNIQUE COVERAGE, STEINER TREE and CONNECTED VERTEX COVER

and CONNECTED VERTEX COVER respectively as a starting point to obtain polynomial param-
eter transformations. In another development Dell and van Melkebeek [11] have obtained a
strengthening of a result in [17] and using that they are able to show concrete lower bounds
on problems that do admit polynomial kernels. In particular they have shown that HITTING

SET does not admit a kernel of size O(kd−1) when parameterized by the solution size k and
maximum set size d.

References

[1] F. N. Abu-Khzam. Kernelization algorithms for d-hitting set problems. In Proc. 10th WADS,
volume 4618 of LNCS, pages 434–445. Springer, 2007.

[2] J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for dominat-
ing set. J. ACM, 51(3):363–384, 2004.

[3] N. Alon and S. Gutner. Kernels for the dominating set problem on graphs with an excluded
minor. Technical Report TR08-066, Electronic Colloquium on Computational Complexity
(ECCC), 2008.

[4] N. Betzler. Steiner tree problems in the analysis of biological networks. Diploma thesis,
Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany, 2006.

16



[5] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: fast subset
convolution. In Proc. 39th STOC, pages 67–74. ACM Press, 2007.

[6] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without
polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

[7] H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and disjoint
paths. In ESA, volume 5757 of LNCS, pages 635–646, 2009.

[8] J. Chen, H. Fernau, I. A. Kanj, and G. Xia. Parametric duality and kernelization: Lower
bounds and upper bounds on kernel size. SIAM J. Comput., 37(4):1077–1106, 2007.

[9] J. Chen, I. A. Kanj, and W. Jia. Vertex Cover: Further observations and further improve-
ments. J. Algorithms, 41(2):280–301, 2001.

[10] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. Wojtaszczyk. Kernelization hardness of con-
nectivity problems in d-degenerate graphs. In WG, volume 6410 of LNCS, pages 147–158,
2010.

[11] H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. In STOC, pages 251–260, 2010.

[12] M. Dom, D. Lokshtanov, S. Saurabh, and Y. Villanger. Capacitated domination and cov-
ering: A parameterized perspective. In Proc. 3rd IWPEC, volume 5018 of LNCS, pages
78–90. Springer, 2008.

[13] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[14] H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Villanger. Kernel(s) for
problems with no kernel: On out-trees with many leaves. In Proc. 26th STACS, volume 3
of LIPIcs, pages 421–432, 2009.

[15] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[16] F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) algorithms for the dom-
inating set problem. In Proc. 30th WG, volume 3353 of LNCS, pages 245–256. Springer,
2004.

[17] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs
for NP. In Proc. 40th STOC, pages 133–142. ACM Press, 2008.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

[19] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31–45, 2007.

[20] J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of Vertex Cover vari-
ants. Theory Comput. Syst., 41(3):501–520, 2007.

[21] D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applica-
tions. In Proc. 47th FOCS, pages 719–728. IEEE, 2007.

[22] J. Kratochv́ıl and M. Krivánek. On the computational complexity of codes in graphs. In
Proc. 13th MFCS, volume 324 of LNCS, pages 396–404. Springer, 1988.

17



[23] S. Kratsch and M. Wahlström. Preprocessing of min ones problems: A dichotomy. In
ICALP, volume 6198 of LNCS, pages 653–665, 2010.

[24] N. Misra, G. Philip, V. Raman, S. Saurabh, and S. Sikdar. FPT algorithms for connected
feedback vertex set. In WALCOM, volume 5942 of LNCS, pages 269–280, 2010.

[25] D. Mölle, S. Richter, and P. Rossmanith. Enumerate and expand: Improved algorithms for
connected vertex cover and tree cover. Theory Comput. Syst., 43(2):234–253, 2008.

[26] H. Moser, V. Raman, and S. Sikdar. The parameterized complexity of the unique coverage
problem. In Proc. 18th ISAAC, volume 4835 of LNCS, pages 621–631. Springer, 2007.

[27] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

[28] S. Thomassé. A quadratic kernel for feedback vertex set. In Proc. 20th SODA, pages 115–
119. ACM/SIAM, 2009.

18



Problem Compendium

BIPARTITE REGULAR PERFECT CODE

Input: A bipartite graph G = (T ∪ N,E) with every vertex in N having the same
degree and a positive integer k.

Question: Is there a vertex subset N ′ ⊆ N of size at most k such that every vertex in T
has exactly one neighbor in N ′?

Parameter: |T |, k.
Algorithm: O(2(k·|T |) · (|T |+ |N |)O(1).
Best Kernel: O(2|T |); no O((|T |+ k)O(1)) kernel.
Colored Version: N is colored with colors from {1, . . . , k} and N ′ is required to contain one

vertex of each color.

BOUNDED RANK DISJOINT SETS

Input: A set family F over a universe U with every set S ∈ F having size at most d,
and a positive integer k.

Question: Is there a subfamily F ′ of of F of size at most k such that every pair of sets
S1, S2 in F we have S1 ∩ S2 = ∅?

Parameter: k, d.
Algorithm: 2O(kd)(|F|+ |U |)O(1) [13].
Best Kernel: 2O(kd) [13]; no O((k + d)O(1)) kernel.

CAPACITATED VERTEX COVER (CAPVC)
Input: A graph G = (V,E) and a capacity function cap : V → N+ and a positive

integer k.
Question: Is there a vertex subset C ⊆ V of size at most k and a function f : E → C that

maps every edge to one of its endpoints and so that for all v ∈ C, |f−1(v)| ≤
cap(v)

Parameter: k.
Algorithm: O(2k log k · |V |O(1)) [12].
Best Kernel: O(4k · k2) [20]; no O(kO(1)) kernel.

CONNECTED VERTEX COVER (CONVC)
Input: A graph G = (V,E) and a positive integer k.
Question: Is there a vertex subset C ⊆ V of size at most k such that G[C] is connected

and every edge of G has at least one endpoint in C?
Parameter: k.
Algorithm: O(2.7606k · |V |O(1)) [25].
Best Kernel: O(2k + k + 2k2); no O(kO(1)) kernel.

DOMINATING SET IN GRAPHS WITH SMALL VERTEX COVER

19



Input: A graph G = (V,E) with a vertex cover of size t and an integer k.
Question: Is there a vertex set V ′ ⊆ V of size at most k such that every vertex in V \ V ′

has a neighbor in V ′?
Parameter: k, t.
Algorithm: 2t · |V |O(1).
Best Kernel: O(2t); no O((k + t)O(1)) kernel.
Remark: Implies that DOMINATING SET IN H -MINOR FREE GRAPHS parameterized by

solution size k and |H| does not have a O((k + |H|)O(1)) kernel, and that
DOMINATING SET parameterized by k and degeneracy d of the input graph
has no O((k + d)O(1)) kernel.

RED-BLUE DOMINATING SET (RBDS)
Input: A graph G = (T ∪N,E) where both T and N are independent sets in G, and

an integer k.
Question: Is there a vertex subset N ′ ⊆ N of size at most k such that each vertex in T

has at least one neighbor in N ′?
Parameter: |T |, k.
Algorithm: O(2|T | · |T ∪N |O(1)) [16, Lemma 2].
Best Kernel: O(2|T | + |T |); no O(kO(1)) kernel.
Colored Version: N is colored with colors from {1, . . . , k} and N ′ is required to contain one

vertex of each color.
Remark: Equivalent to SMALL UNIVERSE SET COVER.

SMALL SUBSET SUM

Input: An integer k, a set S of integers of size at most 2k and an integer t.
Question: Is there a subset S′ ⊆ S with |S′| ≤ k such that

∑
y∈S′ y = t?

Parameter: k.
Algorithm: O(2k · |S|O(1)).
Best Kernel: O(2k); no O(kO(1)) kernel.

SMALL UNIVERSE HITTING SET

Input: A set family F over a universe U with |U | = d, and a positive integer k.
Question: Is there a subset H ⊆ U of size at most k such that for every set S ∈ F ,

H ∩ S 6= ∅?
Parameter: k, d.
Algorithm: O(2d · (|F|+ |U |)O(1)).
Best Kernel: O(2d); no O((k + d)O(1)) kernel.
Colored Version: U is colored with colors from {1, . . . , k} and H is required to contain one

vertex of each color.
Remark: Implies that HITTING SET parameterized by solution size k and maximum set

size d does not have a O((k + d)O(1)) kernel.

SMALL UNIVERSE SET COVER

20



Input: A set family F over a universe U with |U | = d and a positive integer k.
Question: Is there a subfamily F ′ of F of size at most k such that ∪S∈F ′S = U?
Parameter: k, d.
Algorithm: O(2|T | · (|(T ∪N |)O(1)) [16, Lemma 2].
Best Kernel: O(2|T | + |T |); no O(kO(1)) kernel.
Remark: Equivalent to RED-BLUE DOMINATING SET. Implies that SET COVER pa-

rameterized by solution size k and maximum set size d does not have a
O((k + d)O(1)) kernel.

STEINER TREE

Input: A graph G = (T ∪N,E) and an integer k.
Question: Is there a vertex subset N ′ ⊆ N of size at most k such that G[T ∪ N ′] is

connected?
Parameter: |T |, k.
Algorithm: O(2|T | · |T ∪N |O(1)) [5].
Best Kernel: O(2|T | + |T |); no O(kO(1)) kernel.

UNIQUE COVERAGE

Input: A set family F over a universe U and a positive integer k.
Question: Is there a subfamily F ′ of F such that at least k elements of U are contained

in exactly one set in F ′?
Parameter: k.
Algorithm: O(4k

2
(|F|+ |U |)O(1)) [26].

Best Kernel: 4k [26]; no O(kO(1)) kernel.
Colored Version: Each set in F is colored with a colors from {1, . . . , k} and F ′ is required to

contain exactly one set of each color.

21


