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Abstract. A vertex subset S in a graph G is a dominating set if every vertex not contained in S4
has a neighbor in S. A dominating set S is a connected dominating set if the subgraph G[S] induced5
by S is connected. A connected dominating set S is a minimal connected dominating set if no proper6
subset of S is also a connected dominating set. We prove that there exists a constant ε > 10−50 such7
that every graph G on n vertices has at most O(2(1−ε)n) minimal connected dominating sets. For8
the same ε we also give an algorithm with running time 2(1−ε)n · nO(1) to enumerate all minimal9
connected dominating sets in an input graph G.10
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1. Introduction. In the field of enumeration algorithms, the following setting13

is commonly considered. Suppose we have some universe U and some property Π of14

subsets of U . For instance, U can be the vertex set of a graph G, whereas Π may be15

the property of being an independent set in G, or a dominating set of G, etc. Let16

F be the family of all solutions: subsets of U satisfying Π. Then we would like to17

find an algorithm that enumerates all solutions quickly, optimally in time |F| · nO(1),18

where n is the size of the universe. Such an enumeration algorithm may be used as a19

subroutine for more general problems. For instance, if one looks for an independent set20

of maximum possible weight in a vertex-weighted graph, it suffices to iterate through21

all inclusion-wise maximal independent sets (disregarding the weights) and pick the22

one with the largest weight.23

The other motivation for enumeration algorithms stems from extremal problems24

for graph properties. Suppose we would like to know what is, say, the maximum25

possible number of inclusion-wise maximal independent sets in a graph on n vertices.26

Then it suffices to find an enumeration algorithm for maximal independent sets, and27

bound its (exponential) running time in terms of n. The standard approach for the28

design of such an enumeration algorithm is to construct a smart branching procedure.29

The run of such a branching procedure can be viewed as a tree where the nodes30

correspond to moments when the algorithm branches into two or more subprocedures,31

fixing different choices for the shape of a solution. Then the leaves of such a search32

tree correspond to the discovered solutions. By devising smart branching rules one33

can limit the number of leaves of the search tree, which both estimates the running34

time of the enumeration algorithm, and provides a combinatorial upper bound on the35

number of solutions. For instance, the classic proof of Moon and Moser [11] that the36

number of maximal independent sets in an n-vertex graph is at most 3n/3, can be37
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easily turned into an algorithm enumerating this family in time 3n/3 · nO(1).38

However, the analysis of branching algorithms is often quite nontrivial. The39

technique usually used, called Measure&Conquer, involves assigning auxiliary potential40

measures to subinstances obtained during branching, and analyzing how the potentials41

change during performing the branching rules. Perhaps the most well-known result42

obtained using Measure&Conquer is the O(1.7159n)-time algorithm of Fomin et al. [6]43

for enumerating minimal dominating sets. Note that in particular this implies an44

O(1.7159n) upper bound on the number of minimal dominating sets. We refer to the45

book of Fomin and Kratsch [7] for a broader discussion of branching algorithms and46

the Measure&Conquer technique.47

The main limitation of such branching strategies is that, without any closer48

insight, they can only handle properties that are somehow local. This is because49

pruning unnecessary branches is usually done by analyzing specific local configurations50

in the graph. For this reason, it is difficult to add requirements of global nature51

to the framework. One example of a well-studied combinatorial notion with global52

requirements is the concept of a minimal connected dominating set: a subset of53

vertices S is a minimal connected dominating set if it induces a connected subgraph, is54

a dominating set, and none of its proper subset has both these properties. While the55

number of minimal dominating sets of an n-vertex graph is bounded by O(1.7159n)56

by the result of Fomin et al. [6], for the number of minimal connected dominating sets57

no upper bound of the form O(cn) for any c < 2 was known prior to this work. The58

question about the existence of such an upper bound was asked by Golovach et al. [8],59

and then re-iterated by Kratsch [2] during the recent Lorentz workshop “Enumeration60

Algorithms using Structure.”61

We remark that the problem of finding a minimum-size connected dominating62

set was also intensively studied in the community working on exponential-time al-63

gorithms. Fomin et al. [5] gave an algorithm with running time O(1.9407n), which64

was subsequently improved to O(1.8966n) by Fernau et al. [4] and to O(1.8619n) by65

Abu-Khzam et al. [1]. Unfortunately, none of these algorithms can be generalized66

to an enumeration algorithm for minimal connected dominating sets due to multiple67

greedy steps applied.68

Our contribution. We resolve the abovementioned question about the asymptotic69

number of minimal connected dominating sets in an n-vertex graph by proving the70

following theorem.71

Theorem 1.1. There is a constant ε > 10−50 such that every graph G on n72

vertices has at most O(2(1−ε)n) minimal connected dominating sets. Further, there is73

an algorithm that given as input a graph G, lists all minimal connected dominating74

sets of G in time 2(1−ε)n · nO(1).75

Note that Theorem 1.1 not only provides an improved combinatorial upper bound,76

but also a corresponding enumeration algorithm. The improvement is minuscule, how-77

ever our main motivation was just to break the trivial 2n upper bound of enumerating78

all subsets. In many places our argumentation could be improved to yield a slightly79

better bound at the cost of more involved analysis. We choose not to do it, as we80

prefer to keep the reasoning as simple as possible, while the improvements would not81

decrease our upper bound drastically anyway. The main purpose of this work is to82

show the possibility of achieving an upper bound exponentially smaller than 2n, and83

thus to investigate what tools could be useful for the treatment of requirements of84

global nature in the setting of extremal problems for graph properties.85
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To the best of our knowledge, the highest known lower bound on the largest possible86

number of minimal connected dominating sets in an n-vertex graph is 3
n−2
3 ≈ 1.4423n;87

this example is due to Golovach et al. [8]. Narrowing down the gap between the88

1.4423n lower bound of [8] and the 2(1−ε)n upper bound provided by Theorem 1.1 is89

an interesting open problem.90

For the proof of Theorem 1.1, clearly it is sufficient to bound the number of91

minimal connected dominating sets of size roughly n/2. The starting point is the92

realization that any vertex u in a minimal connected dominating set S serves one of93

two possible roles. First, u can be essential for domination, which means that there94

is some v not in S such that u is the only neighbor of v in S. Second, u can be95

essential for connectivity, in the sense that after removing u, the subgraph induced by96

S would become disconnected. Therefore, if we suppose that the vertices essential for97

domination form a small fraction of S, we infer that almost every vertex of G[S] is98

a cut-vertex of this graph. It is not hard to convince oneself that then almost every99

vertex of S has degree at most 2 in G[S].100

All in all, regardless whether the number of vertices essential for domination is101

small or large, a large fraction of all the vertices of the graph has at most 2 neighbors102

in S. Intuitively, in an “ordinary” graph the number of sets S with this property103

should be significantly smaller than 2n. We prove that this is the case whenever the104

graph is robustly dense in the following sense: it has a spanning subgraph where105

almost all vertices have degrees not smaller than some constant `, but no vertex has106

degree larger than some (much larger) constant h. Precisely, if this holds, then for107

S sampled at random the probability that many vertices are adjacent to at most 2108

vertices of S is exponentially small. The main tool is Chernoff-like concentration of109

independent random variables.110

The remaining case is when the spanning subgraph as described above cannot be111

found. We attempt at constructing it using a greedy procedure, which in case of failure112

discovers a different structure in the graph. We next show that such a structure can113

be also used to design an algorithm for enumerating minimal connected dominating114

sets faster than 2n, using a more direct branching strategy. The multiple trade-offs115

made in this part of the proof are the main reason for why our improvement over the116

trivial 2n upper bound is so small.117

2. Preliminaries. All graphs considered in this paper are simple, i.e., they do118

not have self-loops or multiple edges connecting the same pair of vertices. For a119

graph G, by V (G) and E(G) we denote the vertex and edge sets of G, respectively.120

The neighborhood of a vertex v in a graph G is denoted by NG(v), and consists of121

vertices adjacent to v. The degree of v, denoted by d(v), is defined the cardinality122

of its neighborhood. For a subset S ⊆ V (G) and vertex v ∈ V (G) the S-degree of v,123

denoted dS(v), is defined to be the number of vertices in S adjacent to v. A proper124

coloring of a graph G with c colors is a function φ : V (G)→ {1, . . . , c} such that for125

every edge uv ∈ E(G) we have φ(u) 6= φ(v). For a proper coloring φ of G and integer126

i ≤ c, the i-th color class of φ is the set Vi = φ−1(i). The subgraph of G induced by a127

vertex subset S ⊆ V (G) is denoted by G[S] and defined to be the graph with vertex128

set S and edge set {uv ∈ E(G) : u, v ∈ S}. For a vertex v ∈ V (G), the graph G− v is129

simply G[V (G) \ {v}]. A subset I of vertices is independent if it induced an edgeless130

graph, that is, a graph with no edges. A cutvertex in a connected graph G is a vertex131

v such that G− v is disconnected.132

We denote exp(t) = et. The probability of an event A is denoted by Pr[A] and133

the expected value of a random variable X is denoted by E[X]. We use standard134
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concentration bounds for sums of independent random variables. In particular, the135

following variant of the Hoeffding’s bound [10], given by Grimmett and Stirzaker [9, p.136

476], will be used.137

Theorem 2.1 (Hoeffding’s bound). Suppose X1, X2, . . . , Xn are independent
random variables such that ai ≤ Xi ≤ bi for all i. Let X = Σni=1Xi. Then:

Pr[X − E[X] ≥ t] ≤ exp

(
−2t2

Σni=1 (bi − ai)2

)
.

For enumeration, we need the following folklore claim.138

Lemma 2.2. Let U be a universe of size n and let F ⊆ 2U be a family of its subsets139

that is closed under taking subsets (X ⊆ Y and Y ∈ F implies X ∈ F), and given a140

set X it can be decided in polynomial time whether X ∈ F . Then F can be enumerated141

in time |F| · nO(1).142

Proof. Order the elements of U arbitrarily as e1, e2, . . . , en, and process them in143

this order while keeping some set X ∈ F , initially set to be the empty set. When144

considering the next ei, check if X ∪ {ei} ∈ F . If this is not the case, just proceed145

further with X kept. Otherwise, output X ∪ {ei} as the next discovered set from F ,146

and execute two subprocedures: in the first proceed with X, and in the second proceed147

with X ∪ {ei}. It can be easily seen that every set of F is discovered by the procedure,148

and that some new set of F is always discovered within a polynomial number of steps149

(i.e., this is a polynomial-delay enumeration algorithm). Thus, the total running time150

is |F| · nO(1).151

Finally, we will also use standard entropy bounds on binomial coefficients. Recall
that for p ∈ [0, 1], the entropy function is defined as follows:

H(p) = −p log2 p− (1− p) log2(1− p).

Lemma 2.3 (Lemma 3.13 in [7]). Let n be an integer and α ∈ [0, 1/2]. Then

bαnc∑
i=0

(
n

i

)
≤ 2H(α)·n.

3. Main case distinction. The first step in our proof is to try to find a spanning152

subgraph of the considered graph G, which has constant maximum degree, but where153

only a small fraction of vertices have really small degrees. This is done by performing154

a greedy construction procedure. Obviously, such a spanning subgraph may not155

exist, but then we argue that the procedure uncovers some other structure in the156

graph, which may be exploited by other means. The form of the output of the greedy157

procedure constitutes the main case distinction in our proof.158

Lemma 3.1. There is an algorithm that given as input a graph G, together with159

integers ` and h such that 1 ≤ ` ≤ h, and a real δ with 0 ≤ δ ≤ 1, runs in polynomial160

time and outputs one of the following two objects:161

1. A subgraph G′ of G with V (G′) = V (G), such that162

• every vertex in G′ has degree at most h, and163

• less than δ · n vertices in G′ have degree less than `.164

2. A partition of V (G) into subsets L, H and R such that165

• |L| ≥ δ · n,166
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• every vertex in L has strictly less than ` neighbors outside H, and167

• |H| ≤ 2`
h · n.168

Proof. The algorithm takes as input `, h and δ and computes a subgraph G′ of169

G as follows. Initially V (G′) = V (G) and E(G′) = ∅. As long as there is an edge170

uv ∈ E(G) \ E(G′) such that (a) both u and v have degree strictly less than h in G′,171

and (b) at least one of u and v has degree strictly less than ` in G′, the algorithm adds172

the edge uv to E(G′). When the algorithm terminates, G′ is a subgraph of G with173

V (G′) = V (G), such that every vertex in G′ has degree at most h. Let L be the set of174

vertices that have degree strictly less than ` in G′. If |L| < δ · n then the algorithm175

outputs G′, as G′ satisfies the conditions of case 1.176

Suppose now that |L| ≥ δ · n. Let H be the set of vertices of degree exactly h177

in G′, and let R be V (G) \ (L ∪H). Clearly L, H, and R form a partition of V (G).178

Consider any vertex u ∈ L. There can not exist an edge uv ∈ E(G) \ E(G′) with179

v /∈ H, since such an edge would be added to E(G′) by the algorithm. Thus every180

vertex v ∈ NG(u) \H is also a neighbor of u in G′. Since the degree of u in G′ is less181

than `, we conclude that |NG(u) \H| < `.182

Finally, we show that |H| ≤ 2`
h · n. To that end, we first upper bound |E(G′)|.183

Consider the potential function184

φ(G′) =
∑

v∈V (G′)

max(`− dG′(v), 0).185

At the beginning of the algorithm the potential function has value n`. Each time an186

edge is added to G′ by the algorithm, the potential function decreases by (at least)187

1, because at least one endpoint of the added edge has degree less than `. Further,188

when the potential function is 0, there are no vertices of degree less than `, and so189

the algorithm terminates. Thus, the algorithm terminates after at most n` iterations,190

yielding |E(G′)| ≤ n`. Hence, the sum of the degrees of all vertices in G′ is at most191

2n`. Since every vertex in H has degree h, it follows that |H| ≤ 2`
h · n.192

To prove Theorem 1.1, we apply Lemma 3.1 with ` = 14, h = 3 · 105 and δ = 1
60 .193

There are two possible outcomes. In the first case we obtain a subgraph G′ of G with194

V (G′) = V (G), such that every vertex in G′ has degree at most 3 · 105, and at most195
1
60 · n vertices in G′ have degree less than 14. We handle this case using the following196

lemma, proved in Section 4.197

Lemma 3.2. Let G be a graph on n vertices that has a subgraph G′ with V (G′) =198

V (G) and the following properties: every vertex in G′ has degree at most 3·105, and less199

than 1
60 ·n vertices in G′ have degree less than 14. Then G has at most O(2n·(1−10

−26))200

minimal connected dominating sets. Further, there is an algorithm that given as input201

G and G′, enumerates the family of all minimal connected dominating sets of G in202

time 2n·(1−10
−26) · nO(1).203

In the second case we obtain a partition of V (G) into L, H, and R such that204

|L| ≥ 1
60 · n, every vertex in L has strictly less than 14 neighbors outside H, and205

|H| ≤ 1
104 · n. This case is handled by the following Lemma 3.3, which we prove in206

Section 5.207

Lemma 3.3. Let G be a graph on n vertices that has a partition of V (G) into L,208

H and R such that |L| ≥ 1
60 · n, every vertex in L has strictly less than 14 neighbors209

outside H, and |H| ≤ 1
104 · n. Then G has at most 2n·(1−10

−50) minimal connected210

dominating sets. Further, there is an algorithm that given as input G together with the211
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partition (L,H,R), enumerates the family of all minimal connected dominating sets212

of G in time 2n·(1−10
−50) · nO(1).213

Together, Lemmas 3.2 and 3.3 complete the proof of Theorem 1.1.214

4. Robustly dense graphs. In this section we bound the number of minimal215

connected dominating sets in a graph G that satisfies case 1 of Lemma 3.1, that is, we216

prove Lemma 3.2. In particular, we assume that G has a subgraph G′ such that all217

vertices of G′ have degree at most h = 3 · 105, and less than δn = 1
60n vertices of G′218

have degree less than ` = 14. For a set S, we say that a vertex v has low S-degree if219

dS(v) ≤ 2. We define the set L(S) = {v ∈ V (G) : dS(v) ≤ 2} to be the set of vertices220

in G of low S-degree. Our bound consists of two main parts. In the first part we give221

an upper bound on the number of sets S in G such that |L(S)| ≥ 1
20 · n. In the second222

part we show that for any minimal connected dominating set S of G of size at least 4
10n,223

we have |L(S)| ≥ 1
20 · n. Together the two parts immediately yield an upper bound on224

the number of (and an enumeration algorithm for) minimal connected dominating sets225

in G. We begin by proving the first part using a probabilistic argument.226

Lemma 4.1. Let H be a graph on n vertices of maximum degree at most h, such227

that at most 1
60 · n vertices have degree less than ` ≥ 14. Then there are at most228

h2 · 2n · e−
n

1800h4 subsets S of V (H) such that |L(S)| ≥ 1
20 · n.229

Proof. To prove the lemma, it is sufficient to show that if S ⊆ V (H) is selected230

uniformly at random, then the probability that |L(S)| is at least 1
20 ·n is upper bounded231

as follows.232

Pr

[
|L(S)| ≥ 1

20
· n
]
≤ h2 · exp

(
− n

1800h4

)
(4.1)233

234

Let H2 be the graph constructed from H by adding an edge between every pair235

of vertices in H that share a common neighbor. Since H has maximum degree at236

most h, H2 has maximum degree at most h(h− 1) ≤ h2 − 1, and therefore H2 can be237

properly colored with h2 colors [3]. Let φ : V (H)→ {1, . . . , h2} be a proper coloring238

of H2, and let V1, V2, . . . , Vh2 be the color classes of φ. Two vertices in the same color239

class of φ have empty intersection of neighborhoods in H. Thus, when S ⊆ V (H) is240

picked at random, we have that dS(u) and dS(v) are independent random variables241

whenever u and v are in the same color class of φ.242

Let Q be the set of vertices of H of degree at least `. We have that |Q| ≥ (1− 1
60 )·n243

by assumption. For each i ≤ h2 we set V Qi = Vi ∩Q. Next we upper bound, for each244

i ≤ h2, the probability that |L(S)∩ V Qi | > 1
40h2 · n. For every vertex v ∈ V (H), define245

the indicator variable Xv which is set to 1 if dS(v) ≤ 2 and Xv is set to 0 otherwise.246

We have that247

Pr[Xv = 1] =

(
d(v)
0

)
+
(
d(v)
1

)
+
(
d(v)
2

)
2d(v)

.248
249

The right hand side is non-increasing with increasing d(v), so for v ∈ Q we have that

Pr[Xv = 1] ≤
(
`
0

)
+
(
`
1

)
+
(
`
2

)
2`

≤ `2

2`
.

Thus, for every i ≤ h2 we have that |L(S)∩ V Qi | =
∑
v∈V Q

i
Xv — that is, |L(S)∩ V Qi |250

is a sum of |V Qi | independent indicator variables, each taking value 1 with probability251
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at most `2

2`
. Thus, Hoeffding’s inequality (Theorem 2.1) yields252

Pr

[
|L(S) ∩ V Qi | ≥

`2

2`
· |V Qi |+

n

60h2

]
≤ exp

(
− 2n2

3600h4|V Qi |

)
(4.2)253

≤ exp
(
− n

1800h4

)
.254

255

The union bound over the h2 color classes of φ, coupled with equation (4.2), yields256

that257

Pr

[
|L(S) ∩Q| ≥ `2

2`
|Q|+ 1

60
· n
]
≤ h2 · exp

(
− n

1800h4

)
.258

259

Hence, with probability at least 1− h2 · exp
(
− n

1800h4

)
we have that260

|L(S) ∩Q| ≤ `2

2`
|Q|+ 1

60
· n < 2

60
· n,261

262

where the last inequality holds due to ` ≥ 14. Since |L(S)| ≤ |L(S) ∩Q|+ |V (H) \Q|263

and |V (H) \ Q| ≤ 1
60n it follows that in this case, |L(S)| < 1

20 · n. This proves264

equation (4.1) and the statement of the Lemma.265

Note that the statement of Lemma 4.1 requires that H has maximum degree at266

most h and at most 1
60 · n of its vertices may have degree smaller than `. What we267

obtain from Lemma 3.1 is a subgraph G′ of the input graph G with these properties.268

We will apply Lemma 4.1 to H = G′ and transfer the conclusion to G, since G′ is a269

subgraph of G.270

We now turn to proving the second part, that for any minimal connected domi-271

nating set S of G of size at least 4
10n, we have |L(S)| ≥ 1

20 · n. The first step of the272

proof is to show that any graph where almost every vertex is a cut vertex must have273

many vertices of degree 2.274

Lemma 4.2. Let α > 0 be a constant. Suppose that H is a connected graph on n275

vertices in which at least (1 − α)n vertices are cutvertices. Then at least (1 − 7α)n276

vertices of H have degree equal to 2.277

Proof. Let X be the set of those vertices of H that are not cutvertices. By the278

assumption we have |X| ≤ αn. Let T be any spanning tree in H, and let L1 be the279

set of leaves of T . No leaf of T is a cutvertex of H, hence L1 ⊆ X. Let L3 be the set280

of those vertices of T that have degree at least 3 in T . It is well-known that in any281

tree, the number of vertices of degree at least 3 is smaller than the number of leaves.282

Therefore, we have the following:283

(4.3) |L3| < |L1| ≤ |X| ≤ αn.284

Let R be the closed neighborhood of L1 ∪ L3 ∪X in T , that is, the set consisting285

of L1 ∪ L3 ∪X and all vertices that have neighbors in L1 ∪ L3 ∪X. Since T is a tree,286

it can be decomposed into a set of paths P, where each path connects two vertices287

of L1 ∪ L3 and all its internal vertices have degree 2 in T . Contracting each of these288

paths into a single edge yields a tree on the vertex set L1 ∪ L3, which means that the289

number of the paths in P is less than |L1 ∪ L3|. Note that the closed neighborhood290

of L1 ∪ L3 in T contains at most 2 of the internal vertices on each of the paths from291

P: the first and the last one. Moreover, each vertex of X \ (L1 ∪ L3) introduces at292
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most 3 vertices to R: itself, plus its two neighbors on the path from P on which it lies.293

Consequently, by equation (4.3) we have:294

(4.4) |R| ≤ |L1|+ |L3|+ 2|L1 ∪ L3|+ 3|X| ≤ 7αn.295

We now claim that every vertex u that does not belong to R, in fact has degree 2296

in H. By the definition of R we have that u has degree 2 in T , both its neighbors v1297

and v2 in T also have degree 2 in T , and moreover u, v1, and v2 are all cutvertices in H.298

Aiming towards a contradiction, suppose u has some other neighbor w in H, different299

than v1 and v2. Then the unique path from u to w in T passes either through v1 or300

through v2; say, through v1. However, the removal of v1 from H would not result in301

disconnecting H. This is because the removal of v1 from T breaks T into 2 connected302

components, as the degree of v1 in T is equal to 2, and these connected components303

are adjacent in H due to the existence of the edge uw. This is a contradiction with304

the assumption that v1 and v2 are cutvertices.305

From equation (4.4) and the claim proved above it follows that at least (1− 7α)n306

vertices of G have degree equal to 2.307

We apply Lemma 4.2 to subgraphs induced by minimal connected dominating sets.308

Lemma 4.3. Let S be a minimal connected dominating set of a graph G on n309

vertices, such that |S| ≥ 4
10n. Then |L(S)| ≥ 1

20n.310

Proof. For n ≤ 2 the claim is trivial, so assume n ≥ 3; in particular |S| ≥ 2.311

Aiming towards a contradiction, suppose |L(S)| < 1
20n. By minimality, we have that312

for every vertex v, the set S \ {v} is not a connected dominating set of G. Let313

Scut = {v ∈ S : G[S]− v is disconnected}.314

Consider a vertex v in S \ Scut. We have that S \ {v} can not dominate all of V (G)315

because otherwise S \ {v} would be a connected dominating set. Let u be a vertex316

of G not dominated by S \ {v}. Because G[S] is connected and |S| ≥ 2, vertex v317

has a neighbor in S, so in particular u 6= v and hence u /∈ S. Further, since S is a318

connected dominating set, u has a neighbor in S, and this neighbor can only be v.319

Hence dS(u) = 1 and so u ∈ L(S). Re-applying this argument for every v ∈ S \ Scut320

yields |L(S)| ≥ |S \ Scut|.321

From the argument above and the assumption |L(S)| < 1
20n, it follows that322

|S \ Scut| ≤ 1
20n. Since |S| ≥ 4

10n, we have that |S \ Scut| ≤ 1
8 |S|. It follows that323

|Scut| ≥ (1− 1
8 )|S|. By Lemma 4.2 applied to G[S], the number of degree 2 vertices324

in G[S] is at least (1 − 7
8 )|S| = 1

8 |S| ≥
1
20n. Each of these vertices belongs to L(S),325

which yields the desired contradiction.326

We are now in position to wrap up the first case, giving a proof of Lemma 3.2.327

Proof of Lemma 3.2. By Lemma 2.3, there are at most

b 4n10 c∑
i=0

(
n

i

)
≤ 2H(4/10)·n ≤ 2n(1−

1
100 )

subsets of V (G) of size at most 4
10 · n. Thus, the family of all minimal connected328

dominating sets of size at most 4
10 · n can be enumerated in time 2n(1−

1
100 ) · nO(1) by329

enumerating all sets of size at most 4
10 · n, and checking for each set in polynomial330

time whether it is a minimal connected dominating set.331
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Consider now any minimal connected dominating set S in G with |S| ≥ 4
10 · n. By332

Lemma 4.3, we have that |L(S)| ≥ 1
20n. Since every vertex of degree at most 2 in G333

has degree at most 2 in G′, it follows that |L(S)| ≥ 1
20n holds also in G′. However, by334

Lemma 4.1 applied to G′, there are at most 2n · e−
n

1800h4 subsets S of V (G′) = V (G)335

such that |L(S)| ≥ 1
20 · n (in G′). Substituting h = 3 · 105 in the above upper bound336

yields that there are at most 2n·(1−10
−26) minimal connected dominating sets of size337

at least 4
10n, yielding the claimed upper bound on the number of minimal connected338

dominating sets.339

To enumerate all minimal connected dominating sets of G of size at least 4
10n in340

time 2n·(1−10
−26) · nO(1), it is sufficient to list all sets S such that |L(S)| ≥ 1

20 · n, and341

for each such set determine in polynomial time whether it is a minimal connected342

dominating set. Note that the family of sets S such that |L(S)| ≥ 1
20 · n is closed343

under subsets: if |L(S)| ≥ 1
20 · n and S′ ⊆ S then |L(S′)| ≥ 1

20 · n. Since it can be344

tested in polynomial time for a set S whether |L(S)| ≥ 1
20 · n, the family of all sets345

with |L(S)| ≥ 1
20 · n can be enumerated in time 2n·(1−10

−26)nO(1) by the algorithm of346

Lemma 2.2, completing the proof.347

5. Large sparse induced subgraph. In this section we bound the number of348

minimal connected dominating sets in any graph G for which case 2 of Lemma 3.1349

occurs, i.e., we prove Lemma 3.3. Let us fix some integer ` ≥ 1.350

Our enumeration algorithm will make decisions that some vertices are in the351

constructed connected dominating set, and some are not. We incorporate such352

decisions in the notion of extensions. For disjoint vertex sets I and O (for in and out),353

we define an (I,O)-extension to be a vertex set S that is disjoint from I ∪O and such354

that I ∪ S is a connected dominating set in G. An (I,O)-extension S is said to be355

minimal if no proper subset of it is also an (I,O)-extension. The following simple fact356

will be useful.357

Lemma 5.1. There is a polynomial-time algorithm that, given a graph G and358

disjoint vertex subsets I, O, and S, determines whether S is a minimal (I,O)-extension359

in G.360

Proof. The algorithm checks whether I ∪ S is a connected dominating set in G361

and returns “no” if not. Then, for each v ∈ S the algorithm tests whether I ∪ (S \ {v})362

is a connected dominating set of G. If it is a connected dominating set for any choice363

of v, the algorithm returns “no”. Otherwise, the algorithm returns that S is a minimal364

(I,O)-extension. The algorithm clearly runs in polynomial time, and if the algorithm365

returns that S is not a minimal (I,O)-extension in G, then this is correct, as the366

algorithm also provides a certificate.367

We now prove that if S is not a minimal (I,O) extension in G, then the algorithm368

returns “no.” If S is not an (I,O)-extension, the algorithm detects it when testing369

whether I ∪ S is a connected dominating set in G, and reports no accordingly. If it370

is an (I,O)-extension, but not a minimal one, then there exists an (I,O)-extension371

S′ ( S. Let v be any vertex in S \ S′. We claim that X = I ∪ (S \ {v}) is a connected372

dominating set of G. Indeed, X dominates V (G) because I ∪ S′ does. Furthermore,373

G[X] is connected because G[I ∪ S′] is connected and every vertex in X \ (I ∪ S′) has374

a neighbor in (I ∪ S′). Hence I ∪ (S \ {v}) is a connected dominating set of G and the375

algorithm correctly reports “no.” This concludes the proof.376

Observe that for any minimal connected dominating set X, and any I ⊆ X and O377

disjoint from X, we have that X \ I is a minimal (I,O)-extension. Thus one can use378
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an upper bound on the number of minimal extensions to upper bound the number379

of minimal connected dominating sets. Recall that case 2 of Lemma 3.1 provides us380

with a partition (L,H,R) of the vertex set. To upper bound the number of minimal381

connected dominating sets, we will consider each of the 2n−|L| possible partitions of382

H∪R into two sets I and O, and upper bound the number of minimal (I,O)-extensions.383

This is expressed in the following lemma.384

Lemma 5.2. Let G be a graph and (L,H,R) be a partition of the vertex set of385

G such that |L| ≥ 10|H|`, and every vertex in L has less than ` neighbors in L ∪R.386

Then, for every partition (I,O) of H ∪R, there are at most 2|L| · e−
|L|

2−10`·100`3 minimal387

(I,O)-extensions. Furthermore, all minimal (I,O)-extensions can be listed in time388

2|L| · e−
|L|

210`·100`3 · nO(1).389

We now prepare the ground for the proof of Lemma 5.2. The first step is to reduce390

the problem essentially to the case when L is independent. For this, we shall say that391

a partition of V (G) into L, H, and R is a good partition if:392

• |L| ≥ 10|H|,393

• L is an independent set, and394

• every vertex in L has less than ` neighbors in R.395

Towards proving Lemma 5.2, we first prove the statement assuming that the input396

partition of V (G) is a good partition.397

Lemma 5.3. Let G be a graph and (L,H,R) be a good partition of V (G). Then,398

for every partition (I,O) of H ∪ R, there are at most 2|L| · e−
|L|

210`·100`2 minimal399

(I,O)-extensions. Furthermore, all minimal (I,O)-extensions can be listed in time400

2|L| · e−
|L|

210`·100`2 · nO(1).401

We will prove Lemma 5.3 towards the end of this section, now let us first prove402

Lemma 5.2 assuming the correctness of Lemma 5.3.403

Proof of Lemma 5.2 assuming Lemma 5.3. Observe that we may find an indepen-404

dent set L′ in G[L] of size at least |L|` . Indeed, since every vertex of L has less than `405

neighbors in L ∪R, any inclusion-wise maximal independent set L′ in G[L] has size at406

least |L|` . Therefore |L′| ≥ |L|` ≥ 10|H|, and hence (L′, H,R′ = R ∪ (L \ L′)) is a good407

partition of V (G).408

Further, for a fixed partition of R ∪H into I and O, consider each of the 2|L\L
′|409

partitions of H ∪ R′ into I ′ and O′ such that I ⊆ I ′ and O ⊆ O′. For every410

minimal (I,O)-extension S, we have that S ∩L′ is a minimal (I ′, O′)-extension, where411

I ′ = I ∪ (S \ L′) and O′ = O ∪ (L \ (L′ ∪ S)). Thus, by Lemma 5.3 applied to the412

good partition (L′, H,R′) of V (G), and the partition (I ′, O′) of H ∪R′, we have that413

the number of minimal (I,O)-extensions is upper bounded by414

2|L\L
′| · 2|L

′| · e−
|L′|

210`100`2 ≤ 2|L| · e−
|L|

210`100`3 .415

Further, by the same argument, the minimal (I,O)-extensions can be enumerated416

within the claimed running time, using the enumeration provided by Lemma 5.3 as a417

subroutine.418

The next step of the proof of Lemma 5.3 is to make a further reduction, this time419

to the case when also H ∪R is independent. Since the partition into vertices taken and420

excluded from the constructed connected dominating set is already fixed on H ∪R,421

this amounts to standard cleaning operations within H ∪R. We shall say that a good422

partition (L,H,R) of V (G) is an excellent partition if G[H ∪R] is edgeless.423
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Lemma 5.4. There exists an algorithm that given as input a graph G, together424

with a good partition (L,R,H) of V (G), and a partition (I,O) of R ∪ H, runs in425

polynomial time, and outputs a graph G′ with V (G)∩V (G′) ⊇ L, an excellent partition426

(L,R′, H ′) of V (G′), and a partition (I ′, O′) of R′ ∪H ′, with the following property.427

For every set S ⊆ L, S is a minimal (I,O)-extension in G if and only if S is a minimal428

(I ′, O′)-extension in G′.429

Proof. The algorithm begins by setting G′ = G, H ′ = H, R′ = R, I ′ = I and430

O′ = O. It then proceeds to modify G′, at each step maintaining the following431

invariants: (i) (L,H ′, R′) is a good partition of the vertex set of G′, and (ii) for432

every set S ⊆ L, S is a minimal (I,O)-extension in G if and only if S is a minimal433

(I ′, O′)-extension in G′.434

If there exists an edge uv with u ∈ O′ and v ∈ I ′, the algorithm removes u from435

G′, from O′, and from R′ or H ′ depending on which of the two sets it belongs to. Since436

u is anyway dominated by I ′ and removing u can only decrease |H ′| (while keeping437

|L| the same), the invariants are maintained. If there exists an edge uv with both u438

and v in O′, the algorithm removes the edge uv from G′. Since neither u nor v are439

part of I ′ ∪ S for any S ⊆ L, it follows that the invariants are preserved.440

Finally, if there exists an edge uv with both u and v in I ′, the algorithm contracts441

the edge uv. Let w be the vertex resulting from the contraction. The algorithm442

removes u and v from I ′ and from R′ or H ′, depending on which of the two sets the443

vertices are in, and adds w to I ′. If at least one of u and v was in H ′, w is put into444

H ′, otherwise w is put into R′. Note that |H ′| may decrease, but can not increase in445

such a step. Thus (L,R′, H ′) remains a good partition and invariant (i) is preserved.446

Further, since u and v are always in the same connected component of G′[I ′ ∪ S] for447

any S ⊆ L, invariant (ii) is preserved as well.448

The algorithm proceeds by performing one of the three steps above as long as449

there exists at least one edge in G′[R′ ∪H ′]. When the algorithm terminates no such450

edge exists, thus (L,H ′, R′) forms an excellent partition of V (G′).451

Lemma 5.4 essentially allows us to assume in the proof of Lemma 5.3 that (L,H,R)452

is an excellent partition of V (G). To complete the proof, we distinguish between453

two subcases: either there are at most |L|10 vertices in R of degree less than 10`, or454

there are more than |L|
10 such vertices. Let us shortly explain the intuition behind455

this case distinction. If there are at most |L|10 vertices in R of degree less than 10`,456

then it is possible to show that H ∪ R is small compared to L, in particular that457

|H ∪R| ≤ 3|L|
10 . We then show that any minimal (I,O)-extension can not pick more458

than |H ∪ R| vertices from L. This gives a
( |L|
0.3|L|

)
upper bound for the number of459

minimal (I,O)-extensions, which is smaller than 2|L| by an exponential multiplicative460

factor.461

On the other hand, if there are more than |L|10 vertices in R of degree less than462

10`, then one can find a large subset R′ of R of vertices of degree at most 10`, such463

that no two vertices in R′ have a common neighbor. For each vertex v ∈ R′, every464

minimal (I,O)-extension must contain at least one neighbor of v. Thus, there are only465

2d(v) − 1, rather than 2d(v) possibilities for how a minimal (I,O)-extension intersects466

the neighborhood of v. Since all vertices in R′ have disjoint neighborhoods, this gives467

an upper bound of 2|L| ·
(

210`−1
210`

)|R′|
on the number of minimal (I,O)-extensions.468

We now give a formal treatment of the two cases. We begin with the case that469

there are at most |L|10 vertices in R of degree less than 10`.470
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Lemma 5.5. Let G be a graph, and I and O be disjoint vertex sets such that I471

is nonempty and both G[I ∪ O] and G − (I ∪ O) are edgeless. Then every minimal472

(I,O)-extension S satisfies |S| ≤ |I ∪O|.473

Proof. We will need the following simple observation about the maximum size of474

an independent set of internal nodes in a tree.475

Claim 5.6. Let T be a tree and S be a set of non-leaf nodes of T such that S is476

independent in T . Then |S| ≤ |V (T ) \ S|.477

Proof. Root the tree T at an arbitrary vertex. Construct a vertex set Z by picking,478

for every s ∈ S, any child z of s and inserting z into Z; this is possible since no vertex479

of S is a leaf. Every vertex in T has a unique parent, so no vertex is inserted into Z480

twice, and hence |Z| = |S|. Further, since S is independent, Z ⊆ V (T ) \ S. The claim481

follows.482

We proceed with the proof of the lemma. Let X = V (G) \ (I ∪O) and let S ⊆ X483

be a minimal (I,O)-extension. Since I ∪ S is a connected dominating set and I ∪O is484

independent, it follows that every vertex in O has a neighbor in S. Hence G[I ∪S ∪O]485

is connected. Let T be a spanning tree of G[I ∪S ∪O]. We claim that every node in S486

is a non-leaf node of T . Suppose not, then G[I ∪ S \ {v}] is connected, every vertex in487

O has a neighbor in S \ {v}, v has a neighbor in I (since G[I ∪ S] is connected and I488

is nonempty), and every vertex in X \ S has a neighbor in I. Hence S \ {v} would be489

an (I,O)-extension, contradicting the minimality of S. We conclude that every node490

in S is a non-leaf node of T . Applying Claim 5.6 to S in T concludes the proof.491

The next lemma resolves the first subcase, when there are at most |L|10 vertices492

in R of degree less than 10`. The crucial observation is that in this case, a minimal493

(I,O)-extension S must be of size significantly smaller than |L|/2, due to Lemma 5.5.494

Lemma 5.7. Let G be a graph, (L,H,R) be an excellent partition of V (G), and495

(I,O) be a partition of H ∪R. If at most |L|10 vertices in R have degree less than 10` in496

G, then there are at most 2|L| · 2−
|L|
10 minimal (I,O)-extensions. Further, the family497

of all minimal (I,O)-extensions can be enumerated in time 2|L| · 2−
|L|
10 · nO(1).498

Proof. First, note that |H| ≤ |L|
10 , because (L,H,R) is an excellent partition.499

Partition R into Rbig and Rsmall according to the degrees: Rbig contains all vertices in500

R of degree at least 10`, while Rsmall contains the vertices in R of degree less than 10`.501

Since every vertex in L has at most ` neighbors in R, it follows that |Rbig| ≤ |L|10 . By502

assumption |Rsmall| ≤ |L|10 . It follows that |R ∪H| ≤ 3|L|
10 . Now, I ∪O = R ∪H, and503

therefore, by Lemma 5.5 every minimal (I,O)-extension has size at most |I ∪O| ≤ 3|L|
10 .504

By Lemma 2.3, the number of different minimal (I,O)-extensions is at most505

b 3|L|10 c∑
i=0

(
|L|
i

)
≤ 2H(3/10)·|L| ≤ 29|L|/10 = 2|L| · 2−

|L|
10 .506

To enumerate the sets within the given time bound it is sufficient to go through all507

subsets S of L of size at most 3|L|
10 and check whether S is a minimal (I,O)-extension508

in polynomial time using the algorithm of Lemma 5.1.509

We are left with the case when at least |L|10 vertices in R have degree smaller than510

10` in G.511
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Lemma 5.8. Let G be a graph, (L,H,R) be an excellent partition of V (G), and512

(I,O) be a partition of H ∪R. If at least |L|10 vertices in R have degree less than 10` in513

G, then there are at most 2|L| · e−
|L|

210`·100`2 minimal (I,O)-extensions. The family of514

all minimal (I,O)-extensions can be enumerated in time 2|L| · e−
|L|

210`·100`2 · nO(1).515

Proof. We assume that |I ∪O| ≥ 2, since otherwise the claim holds trivially. Let516

Rsmall be the set of vertices in R of degree less than 10`; by assumption we have517

|Rsmall| ≥ |L|10 . Recall that vertices in R have only neighbors in L, and every vertex of518

L has less than ` neighbors in R. Hence, for each vertex r in Rsmall there are at most519

10` · (`− 1) other vertices in Rsmall that share a common neighbor with r. Compute520

a subset R′ of Rsmall as follows. Initially R′ is empty and all vertices in Rsmall are521

unmarked. As long as there is an unmarked vertex r ∈ Rsmall, add r to R′ and mark522

r as well as all vertices in Rsmall that share a common neighbor with r. Terminate523

when all vertices in Rsmall are marked.524

Clearly, no two vertices in the set R′ output by the procedure described above525

can share any common neighbors. Further, for each vertex added to R′, at most526

10` · (`− 1) + 1 ≤ 10`2 vertices are marked. Hence, |R′| ≥ |Rsmall|
10`2 ≥ |L|

100`2 .527

Observe that if a subset S of L is an (I,O)-extension, then every vertex in I ∪O528

must have a neighbor in S. This holds for every vertex in O, because I ∪ S needs to529

dominate this vertex, but there are no edges between O and I. For every vertex in I530

this holds because G[I ∪ S] has to be connected, and I ∪O is an independent set of531

size at least 2.532

Consider now a subset S of L picked uniformly at random. We upper bound the533

probability that every vertex in I ∪O has a neighbor in S. This probability is upper534

bounded by the probability that every vertex in R′ has a neighbor in S. For each535

vertex r in R′, the probability that none of its neighbors is in S is 2−d(r) ≥ 2−10`.536

Since no two vertices in R′ share a common neighbor, the events “r has a neighbor in537

S” for r ∈ R′ are independent. Therefore, the probability that every vertex in R′ has538

a neighbor in S is upper bounded by539

(1− 2−10`)|R
′| ≤ e−2

−10`· |L|
100`2 = e−

|L|
210`·100`2 .540

The upper bound on the number of minimal (I,O)-extensions follows. To enumerate541

all the minimal (I,O)-extensions within the claimed time bound, it is sufficient to542

enumerate all sets S ⊆ L such that every vertex in R′ has at least one neighbor543

in S, and to check in polynomial time using Lemma 5.1 whether S is a minimal544

(I,O)-extension. The family of such subsets of L is closed under taking supersets, so to545

enumerate them we can use the algorithm of Lemma 2.2 applied to their complements.546

We can now wrap up the proof of Lemma 5.3.547

Proof of Lemma 5.3. Let G be a graph and (L,H,R) be a good partition of V (G).548

Consider a partition of H ∪R into two sets I and O. By Lemma 5.4, we can obtain in549

polynomial time a graph G′ with V (G) ∩ V (G′) ⊇ L, as well as an excellent partition550

(L,R′, H ′) of V (G′), and a partition (I ′, O′) of R′ ∪H ′, such that every subset S of L551

is a minimal (I,O)-extension in G if and only if it is a minimal (I ′, O′)-extension in552

G′. Thus, from now on, we may assume without loss of generality that L, H and R is553

an excellent partition of V (G).554

We distinguish between two cases: either there are at most |L|10 vertices in R of555

degree less than 10`, or there are more than |L|10 such vertices. In the first case, by556
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Lemma 5.7, there are at most 2|L| · 2−
|L|
10 minimal (I,O)-extensions. Further, the557

family of all minimal (I,O)-extensions can be enumerated in time 2|L| · 2−
|L|
10 · nO(1).558

In the second case, by Lemma 5.8, there are at most 2|L| · e−
|L|

210`·100`2 minimal (I,O)-559

extensions, and the family of all minimal (I,O)-extensions can be enumerated in560

time 2|L| · e−
|L|

210`·100`2 · nO(1). Since e−
|L|

210`·100`2 ≥ 2−
|L|
10 , the statement of the lemma561

follows.562

As argued before, establishing Lemma 5.3 concludes the proof of Lemma 5.2. We563

can now use Lemma 5.2 to complete the proof of Lemma 3.3, and hence also of our564

main result.565

Proof of Lemma 3.3. To list all minimal connected dominating sets of G it is566

sufficient to iterate over each of the 2n−|L| partitions of H ∪ R into I and O, for567

each such partition enumerate all minimal (I,O)-extensions S using Lemma 5.2 with568

` = 14, and for each minimal extension S check whether I ∪ S is a minimal connected569

dominating set of G. Observe that570

|L| ≥ 1

60
· n ≥ 10 · 14 · 1

104
· n ≥ 10 · 14 · |H|,571

and that therefore Lemma 5.2 is indeed applicable with ` = 14. Hence, the total572

number of minimal connected dominating sets in G is upper bounded by573

2n−|L| · 2|L| · e−
|L|

210`100`3 ≤ 2n · 2−
n

60·210`100`3 ≤ 2n(1−10
−50).574

The running time bound for the enumeration algorithm follows from the running time575

bound of the enumeration algorithm of Lemma 5.2 in exactly the same way.576
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