BELOW ALL SUBSETS FOR MINIMAL CONNECTED
DOMINATING SET*

DANIEL LOKSHTANOV', MICHAL PILIPCZUK}, AND SAKET SAURABH?

Abstract. A vertex subset S in a graph G is a dominating set if every vertex not contained in S
has a neighbor in S. A dominating set S is a connected dominating set if the subgraph G[S] induced
by S is connected. A connected dominating set S is a minimal connected dominating set if no proper
subset of S is also a connected dominating set. We prove that there exists a constant € > 10~°0 such
that every graph G on n vertices has at most (9(2(1_5)") minimal connected dominating sets. For
the same ¢ we also give an algorithm with running time 2(1=e)n . nO) to enumerate all minimal
connected dominating sets in an input graph G.
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1. Introduction. In the field of enumeration algorithms, the following setting
is commonly considered. Suppose we have some universe U and some property II of
subsets of U. For instance, U can be the vertex set of a graph G, whereas II may be
the property of being an independent set in GG, or a dominating set of G, etc. Let
F be the family of all solutions: subsets of U satisfying II. Then we would like to
find an algorithm that enumerates all solutions quickly, optimally in time |F| - n®™M),
where n is the size of the universe. Such an enumeration algorithm may be used as a
subroutine for more general problems. For instance, if one looks for an independent set
of maximum possible weight in a vertex-weighted graph, it suffices to iterate through
all inclusion-wise maximal independent sets (disregarding the weights) and pick the
one with the largest weight.

The other motivation for enumeration algorithms stems from extremal problems
for graph properties. Suppose we would like to know what is, say, the maximum
possible number of inclusion-wise maximal independent sets in a graph on n vertices.
Then it suffices to find an enumeration algorithm for maximal independent sets, and
bound its (exponential) running time in terms of n. The standard approach for the
design of such an enumeration algorithm is to construct a smart branching procedure.
The run of such a branching procedure can be viewed as a tree where the nodes
correspond to moments when the algorithm branches into two or more subprocedures,
fixing different choices for the shape of a solution. Then the leaves of such a search
tree correspond to the discovered solutions. By devising smart branching rules one
can limit the number of leaves of the search tree, which both estimates the running
time of the enumeration algorithm, and provides a combinatorial upper bound on the
number of solutions. For instance, the classic proof of Moon and Moser [11] that the
number of maximal independent sets in an n-vertex graph is at most 3"/3, can be
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easily turned into an algorithm enumerating this family in time 37/3 . n©@,

However, the analysis of branching algorithms is often quite nontrivial. The
technique usually used, called MeasureédConquer, involves assigning auxiliary potential
measures to subinstances obtained during branching, and analyzing how the potentials
change during performing the branching rules. Perhaps the most well-known result
obtained using Measure&Conquer is the O(1.7159™)-time algorithm of Fomin et al. [6]
for enumerating minimal dominating sets. Note that in particular this implies an
O(1.7159™) upper bound on the number of minimal dominating sets. We refer to the
book of Fomin and Kratsch [7] for a broader discussion of branching algorithms and
the Measure&Conquer technique.

The main limitation of such branching strategies is that, without any closer
insight, they can only handle properties that are somehow local. This is because
pruning unnecessary branches is usually done by analyzing specific local configurations
in the graph. For this reason, it is difficult to add requirements of global nature
to the framework. One example of a well-studied combinatorial notion with global
requirements is the concept of a minimal connected dominating set: a subset of
vertices S is a minimal connected dominating set if it induces a connected subgraph, is
a dominating set, and none of its proper subset has both these properties. While the
number of minimal dominating sets of an n-vertex graph is bounded by O(1.7159™)
by the result of Fomin et al. [6], for the number of minimal connected dominating sets
no upper bound of the form O(c") for any ¢ < 2 was known prior to this work. The
question about the existence of such an upper bound was asked by Golovach et al. [8],
and then re-iterated by Kratsch [2] during the recent Lorentz workshop “Enumeration
Algorithms using Structure.”

We remark that the problem of finding a minimum-size connected dominating
set was also intensively studied in the community working on exponential-time al-
gorithms. Fomin et al. [5] gave an algorithm with running time O0(1.9407™), which
was subsequently improved to O(1.8966™) by Fernau et al. [4] and to O(1.8619™) by
Abu-Khzam et al. [1]. Unfortunately, none of these algorithms can be generalized
to an enumeration algorithm for minimal connected dominating sets due to multiple
greedy steps applied.

Our contribution. We resolve the abovementioned question about the asymptotic
number of minimal connected dominating sets in an n-vertex graph by proving the
following theorem.

THEOREM 1.1. There is a constant € > 107 such that every graph G on n
vertices has at most O(21=5)™) minimal connected dominating sets. Further, there is
an algorithm that given as input a graph G, lists all minimal connected dominating
sets of G in time 21— . nOM)

Note that Theorem 1.1 not only provides an improved combinatorial upper bound,
but also a corresponding enumeration algorithm. The improvement is minuscule, how-
ever our main motivation was just to break the trivial 2” upper bound of enumerating
all subsets. In many places our argumentation could be improved to yield a slightly
better bound at the cost of more involved analysis. We choose not to do it, as we
prefer to keep the reasoning as simple as possible, while the improvements would not
decrease our upper bound drastically anyway. The main purpose of this work is to
show the possibility of achieving an upper bound exponentially smaller than 2", and
thus to investigate what tools could be useful for the treatment of requirements of
global nature in the setting of extremal problems for graph properties.
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To the best of our knowledge, the highest known lower bound on the largest possible
number of minimal connected dominating sets in an n-vertex graph is 355 & 1.4423™;
this example is due to Golovach et al. [8]. Narrowing down the gap between the
1.4423™ lower bound of [8] and the 2(1=¢)7 ypper bound provided by Theorem 1.1 is
an interesting open problem.

For the proof of Theorem 1.1, clearly it is sufficient to bound the number of
minimal connected dominating sets of size roughly n/2. The starting point is the
realization that any vertex v in a minimal connected dominating set S serves one of
two possible roles. First, u can be essential for domination, which means that there
is some v not in S such that u is the only neighbor of v in S. Second, u can be
essential for connectivity, in the sense that after removing u, the subgraph induced by
S would become disconnected. Therefore, if we suppose that the vertices essential for
domination form a small fraction of S, we infer that almost every vertex of G[S] is
a cut-vertex of this graph. It is not hard to convince oneself that then almost every
vertex of S has degree at most 2 in G[S].

All in all, regardless whether the number of vertices essential for domination is
small or large, a large fraction of all the vertices of the graph has at most 2 neighbors
in S. Intuitively, in an “ordinary” graph the number of sets S with this property
should be significantly smaller than 2. We prove that this is the case whenever the
graph is robustly dense in the following sense: it has a spanning subgraph where
almost all vertices have degrees not smaller than some constant ¢, but no vertex has
degree larger than some (much larger) constant h. Precisely, if this holds, then for
S sampled at random the probability that many vertices are adjacent to at most 2
vertices of S is exponentially small. The main tool is Chernoff-like concentration of
independent random variables.

The remaining case is when the spanning subgraph as described above cannot be
found. We attempt at constructing it using a greedy procedure, which in case of failure
discovers a different structure in the graph. We next show that such a structure can
be also used to design an algorithm for enumerating minimal connected dominating
sets faster than 2", using a more direct branching strategy. The multiple trade-offs
made in this part of the proof are the main reason for why our improvement over the
trivial 2™ upper bound is so small.

2. Preliminaries. All graphs considered in this paper are simple, i.e., they do
not have self-loops or multiple edges connecting the same pair of vertices. For a
graph G, by V(G) and E(G) we denote the vertex and edge sets of G, respectively.
The neighborhood of a vertex v in a graph G is denoted by Ng(v), and consists of
vertices adjacent to v. The degree of v, denoted by d(v), is defined the cardinality
of its neighborhood. For a subset S C V(G) and vertex v € V(G) the S-degree of v,
denoted dg(v), is defined to be the number of vertices in S adjacent to v. A proper
coloring of a graph G with ¢ colors is a function ¢: V(G) — {1,..., ¢} such that for
every edge uv € E(G) we have ¢(u) # ¢(v). For a proper coloring ¢ of G and integer
i < c, the i-th color class of ¢ is the set V; = ¢~1(i). The subgraph of G induced by a
vertex subset S C V(G) is denoted by G[S] and defined to be the graph with vertex
set S and edge set {uv € E(G): u,v € S}. For a vertex v € V(G), the graph G — v is
simply G[V(G) \ {v}]. A subset I of vertices is independent if it induced an edgeless
graph, that is, a graph with no edges. A cutvertezr in a connected graph G is a vertex
v such that G — v is disconnected.

We denote exp(t) = e!. The probability of an event A is denoted by Pr[A] and
the expected value of a random variable X is denoted by E[X]. We use standard
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concentration bounds for sums of independent random variables. In particular, the
following variant of the Hoeffding’s bound [10], given by Grimmett and Stirzaker [9, p.
476], will be used.

THEOREM 2.1 (Hoeffding’s bound). Suppose X1, Xs,..., X, are independent
random variables such that a; < X; < b; for alli. Let X =37, X;. Then:

Pr[X — E[X] > t] <exp <2t2)2> .

For enumeration, we need the following folklore claim.

LEMMA 2.2. Let U be a universe of size n and let F C 2V be a family of its subsets
that is closed under taking subsets (X CY and Y € F implies X € F), and given a
set X it can be decided in polynomial time whether X € F. Then F can be enumerated
in time |F|-n®W.

Proof. Order the elements of U arbitrarily as e, es,...,e,, and process them in
this order while keeping some set X € F, initially set to be the empty set. When
considering the next e;, check if X U{e;} € F. If this is not the case, just proceed
further with X kept. Otherwise, output X U {e;} as the next discovered set from F,
and execute two subprocedures: in the first proceed with X, and in the second proceed
with X U{e;}. It can be easily seen that every set of F is discovered by the procedure,
and that some new set of F is always discovered within a polynomial number of steps
(i.e., this is a polynomial-delay enumeration algorithm). Thus, the total running time
is | F| - nCM, O

Finally, we will also use standard entropy bounds on binomial coefficients. Recall
that for p € [0, 1], the entropy function is defined as follows:

H(p) = —plogyp — (1 — p) logy(1 — p).

LEMMA 2.3 (Lemma 3.13 in [7]). Let n be an integer and « € [0,1/2]. Then

Lan]
Z (”) < gH(a)n
i) s

=0

3. Main case distinction. The first step in our proof is to try to find a spanning
subgraph of the considered graph G, which has constant maximum degree, but where
only a small fraction of vertices have really small degrees. This is done by performing
a greedy construction procedure. Obviously, such a spanning subgraph may not
exist, but then we argue that the procedure uncovers some other structure in the
graph, which may be exploited by other means. The form of the output of the greedy
procedure constitutes the main case distinction in our proof.

LEMMA 3.1. There is an algorithm that given as input a graph G, together with
integers £ and h such that 1 <€ < h, and a real § with 0 < § < 1, runs in polynomial
time and outputs one of the following two objects:

1. A subgraph G' of G with V(G') = V(G), such that
e cvery vertex in G' has degree at most h, and
e less than & - n vertices in G' have degree less than (.
2. A partition of V(G) into subsets L, H and R such that
o |L|>6-n,
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o cvery vertex in L has strictly less than ¢ neighbors outside H, and
o |[HI< 2% -n.

Proof. The algorithm takes as input £, h and § and computes a subgraph G’ of
G as follows. Initially V(G') = V(G) and E(G’') = 0. As long as there is an edge
wv € E(G) \ E(G’) such that (a) both u and v have degree strictly less than h in G,
and (b) at least one of u and v has degree strictly less than ¢ in G, the algorithm adds
the edge uv to E(G’). When the algorithm terminates, G’ is a subgraph of G with
V(G') = V(G), such that every vertex in G’ has degree at most h. Let L be the set of
vertices that have degree strictly less than ¢ in G'. If |L| < 6 - n then the algorithm
outputs G’, as G’ satisfies the conditions of case 1.

Suppose now that |L| > § - n. Let H be the set of vertices of degree exactly h
in G', and let R be V(G) \ (LU H). Clearly L, H, and R form a partition of V(G).
Consider any vertex v € L. There can not exist an edge uwv € E(G) \ E(G’) with
v ¢ H, since such an edge would be added to E(G’) by the algorithm. Thus every
vertex v € Ng(u) \ H is also a neighbor of w in G’. Since the degree of u in G is less
than ¢, we conclude that |Ng(u) \ H| < £.

Finally, we show that |H| < 2£.n. To that end, we first upper bound |E(G’)|.
Consider the potential function

$(G) = > max(l—de(v),0).

VeV (G)

At the beginning of the algorithm the potential function has value nf. Each time an
edge is added to G’ by the algorithm, the potential function decreases by (at least)
1, because at least one endpoint of the added edge has degree less than ¢. Further,
when the potential function is 0, there are no vertices of degree less than ¢, and so
the algorithm terminates. Thus, the algorithm terminates after at most n/ iterations,
yielding |E(G")| < nf. Hence, the sum of the degrees of all vertices in G’ is at most
2nf. Since every vertex in H has degree h, it follows that |H| < % ‘. d

To prove Theorem 1.1, we apply Lemma 3.1 with £ = 14, h = 3-10° and § = 6—10.
There are two possible outcomes. In the first case we obtain a subgraph G’ of G with
V(G') = V(G), such that every vertex in G’ has degree at most 3 - 105, and at most
% -n vertices in G’ have degree less than 14. We handle this case using the following
lemma, proved in Section 4.

LEMMA 3.2. Let G be a graph on n vertices that has a subgraph G’ with V(G') =
V(G) and the following properties: every vertex in G' has degree at most 3-10°, and less

than & -n vertices in G' have degree less than 14. Then G has at most (’)(2"'(1’10_26))
minimal connected dominating sets. Further, there is an algorithm that given as input
G and G’, enumerates the family of all minimal connected dominating sets of G in

time 27 (1-107%) L o).

In the second case we obtain a partition of V(G) into L, H, and R such that
|L| > GL - n, every vertex in L has strictly less than 14 neighbors outside H, and
|H| < 357 - n. This case is handled by the following Lemma 3.3, which we prove in
Section 5.

LEMMA 3.3. Let G be a graph on n vertices that has a partition of V(G) into L,

H and R such that |L| > 6—10 -n, every vertex in L has strictly less than 14 neighbors

outside H, and |H| < 14z -n. Then G has at most on-(1=107") 1 inimal connected
dominating sets. Further, there is an algorithm that given as input G together with the

5
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partition (L, H, R), enumerates the family of all minimal connected dominating sets
of G in time gn-(1-107%) 00
Together, Lemmas 3.2 and 3.3 complete the proof of Theorem 1.1.

4. Robustly dense graphs. In this section we bound the number of minimal
connected dominating sets in a graph G that satisfies case 1 of Lemma 3.1, that is, we
prove Lemma 3.2. In particular, we assume that G has a subgraph G’ such that all
vertices of G’ have degree at most h = 3 - 10°, and less than dn = 6—1071 vertices of G’
have degree less than ¢ = 14. For a set .S, we say that a vertex v has low S-degree if
ds(v) < 2. We define the set L(S) = {v € V(G) : ds(v) < 2} to be the set of vertices
in G of low S-degree. Our bound consists of two main parts. In the first part we give
an upper bound on the number of sets S in G such that |L(S)| > 55 - n. In the second
part we show that for any minimal connected dominating set .S of G of size at least %n,
we have |L(S)| > % -n. Together the two parts immediately yield an upper bound on
the number of (and an enumeration algorithm for) minimal connected dominating sets
in G. We begin by proving the first part using a probabilistic argument.

LEMMA 4.1. Let H be a graph on n vertices of maximum degree at most h, such
that at most & - n vertices have degree less than ¢ > 14. Then there are at most

h2 . 2" . ¢~ Tmoont subsets S of V(H) such that |L(S)| > 35 M.

Proof. To prove the lemma, it is sufficient to show that if S C V(H) is selected
uniformly at random, then the probability that |L(S)] is at least 5 -n is upper bounded
as follows.

(4.1) Pr [|L(5)| > 1 n] < h? - exp (—L)
' 20 - 1800Ah*

Let H? be the graph constructed from H by adding an edge between every pair
of vertices in H that share a common neighbor. Since H has maximum degree at
most h, H? has maximum degree at most h(h — 1) < h? — 1, and therefore H? can be
properly colored with h? colors [3]. Let ¢: V(H) — {1,...,h?} be a proper coloring
of H?, and let V4, Vs, ..., V}2 be the color classes of ¢. Two vertices in the same color
class of ¢ have empty intersection of neighborhoods in H. Thus, when S C V(H) is
picked at random, we have that ds(u) and dg(v) are independent random variables

whenever v and v are in the same color class of ¢.
Let Q be the set of vertices of H of degree at least £. We have that |Q] > (1—g5)-n

by assumption. For each i < h? we set V;Q = V; N Q. Next we upper bound, for each
i < h2, the probability that |L(S) N V2| > o7z - n- For every vertex v € V/(H), define
the indicator variable X, which is set to 1 if dg(v) < 2 and X, is set to 0 otherwise.
We have that

("0 + () + (*Y)
2d(v) ’

Pr[X, =1] =
The right hand side is non-increasing with increasing d(v), so for v € @ we have that

¢ ‘ ¢ 2
Pr[XU — 1] < M < é
2t 2!
Thus, for every i < h? we have that [L(S) N V2| = Y veve Xo — that is, [L(S) N Ve
is a sum of |V1Q| independent indicator variables, each taking value 1 with probability
6
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at most §~ Thus, Hoeffding’s inequality (Theorem 2.1) yields

(42) P DL(S)nVﬂ > 2 vers "2} cep|o_ 2
2 6On 3600R4|V,°|
n
<exp(—romr).
<exp ( 1800h4)

The union bound over the h? color classes of ¢, coupled with equation (4.2), yields
that

EQ 1 9 n
> Q|+ —-n| <h®. - :
Pr [L(S)NQI Z 2e| | 60 ”] <h eXp( 1800h4>

Hence, with probability at least 1 — A% - exp ( ) we have that

__mn
1800h%

< 3 n

60
where the last inequality holds due to £ > 14. Since |L(S)| < |L(S) N Q|+ |V(H) \ Q|
and |V(H)\ Q| < &n it follows that in this case, |L(S)| < o - n. This proves

60 20
equation (4.1) and the statement of the Lemma. O

L) nQ < Lo+
= o 60 "

Note that the statement of Lemma 4.1 requires that H has maximum degree at
most h and at most % -n of its vertices may have degree smaller than ¢. What we
obtain from Lemma 3.1 is a subgraph G’ of the input graph G with these properties.
We will apply Lemma 4.1 to H = G’ and transfer the conclusion to G, since G’ is a
subgraph of G.

We now turn to proving the second part, that for any minimal connected domi-
nating set S of G of size at least 51, we have |L(S)| > 55 - n. The first step of the
proof is to show that any graph where almost every vertex is a cut vertex must have
many vertices of degree 2.

LEMMA 4.2. Let a > 0 be a constant. Suppose that H is a connected graph on n
vertices in which at least (1 — a)n vertices are cutvertices. Then at least (1 — Ta)n
vertices of H have degree equal to 2.

Proof. Let X be the set of those vertices of H that are not cutvertices. By the
assumption we have |X| < an. Let T be any spanning tree in H, and let Ly be the
set of leaves of T'. No leaf of T' is a cutvertex of H, hence Iy C X. Let L3 be the set
of those vertices of T' that have degree at least 3 in T'. It is well-known that in any
tree, the number of vertices of degree at least 3 is smaller than the number of leaves.
Therefore, we have the following:

(4.3) ILs| < |Li] < |X| < an.

Let R be the closed neighborhood of L; U L3 U X in T, that is, the set consisting
of L1 U L3 U X and all vertices that have neighbors in L; U L3 U X. Since T is a tree,
it can be decomposed into a set of paths P, where each path connects two vertices
of L1 U Ls and all its internal vertices have degree 2 in T'. Contracting each of these
paths into a single edge yields a tree on the vertex set Ly U Lz, which means that the
number of the paths in P is less than |L; U L3|. Note that the closed neighborhood
of L1 U L3 in T contains at most 2 of the internal vertices on each of the paths from
P: the first and the last one. Moreover, each vertex of X \ (L; U L3) introduces at

7
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most 3 vertices to R: itself, plus its two neighbors on the path from P on which it lies.
Consequently, by equation (4.3) we have:

We now claim that every vertex u that does not belong to R, in fact has degree 2
in H. By the definition of R we have that v has degree 2 in T, both its neighbors vy
and vy in T also have degree 2 in T, and moreover u, v1, and vy are all cutvertices in H.
Aiming towards a contradiction, suppose u has some other neighbor w in H, different
than v, and vy. Then the unique path from u to w in T passes either through vy or
through vs; say, through v;. However, the removal of v; from H would not result in
disconnecting H. This is because the removal of v; from T breaks T" into 2 connected
components, as the degree of v, in T is equal to 2, and these connected components
are adjacent in H due to the existence of the edge uw. This is a contradiction with
the assumption that vy and vy are cutvertices.

From equation (4.4) and the claim proved above it follows that at least (1 — 7a)n
vertices of G have degree equal to 2. 0

We apply Lemma 4.2 to subgraphs induced by minimal connected dominating sets.

LEMMA 4.3. Let S be a minimal connected dominating set of a graph G on n
vertices, such that |S| > %n. Then |L(S)| > %n.

Proof. For n < 2 the claim is trivial, so assume n > 3; in particular |S| > 2.
Aiming towards a contradiction, suppose |L(S)| < %n. By minimality, we have that
for every vertex v, the set S\ {v} is not a connected dominating set of G. Let

Seut = {v € S: G[S] — v is disconnected}.

Consider a vertex v in S\ Scyi. We have that S\ {v} can not dominate all of V(G)
because otherwise S\ {v} would be a connected dominating set. Let u be a vertex
of G not dominated by S\ {v}. Because G[S] is connected and |S| > 2, vertex v
has a neighbor in S, so in particular u # v and hence u ¢ S. Further, since S is a
connected dominating set, u has a neighbor in S, and this neighbor can only be v.
Hence dg(u) = 1 and so u € L(S). Re-applying this argument for every v € S\ Scut
yields |L(S)| > |S'\ Scut|-

From the argument above and the assumption |L(S)| < %n, it follows that
|5\ Scut| < on. Since |S| > stn, we have that [S\ Sew| < £[S|. It follows that
|Seut| = (1 = $)[S|. By Lemma 4.2 applied to G[S], the number of degree 2 vertices
in G[S] is at least (1 — 1)|S| = £|S| > 55n. Each of these vertices belongs to L(S5),
which yields the desired contradiction. 0

We are now in position to wrap up the first case, giving a proof of Lemma 3.2.

Proof of Lemma 3.2. By Lemma 2.3, there are at most

IS
S

15

Z (”) < 9H(4/10)n < gn(1-1i5)
i) S <

=0

ol

subsets of V(G) of size at most ;& - n. Thus, the family of all minimal connected
dominating sets of size at most % -n can be enumerated in time 271~ 10) . n@1) by
enumerating all sets of size at most 14—0 -n, and checking for each set in polynomial
time whether it is a minimal connected dominating set.

8
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Consider now any minimal connected dominating set S in G with |S| > 5 - n. By
Lemma 4.3, we have that |L(S)| > 55n. Since every vertex of degree at most 2 in G
has degree at most 2 in G, it follows that |L(S)| > 557 holds also in G’. However, by
Lemma 4.1 applied to G’, there are at most 2" - ¢~ s00r% subsets S of V(G') = V(QG)
such that |L(S)| > 5 - n (in G’). Substituting h = 3-10° in the above upper bound

yields that there are at most 97 (1-107*) Ininimal connected dominating sets of size
at least %n, yielding the claimed upper bound on the number of minimal connected
dominating sets.

To enumerate all minimal connected dominating sets of G of size at least 1%71 in
time 27 (1-107%%) -nPW it is sufficient to list all sets S such that [L(S)| > 3 - n, and
for each such set determine in polynomial time whether it is a minimal connected
dominating set. Note that the family of sets S such that |L(S)| > 55 - n is closed
under subsets: if |[L(S)| > 55 -n and S' C S then |L(S’)| > 55 - n. Since it can be
tested in polynomial time for a set S whether |L(S)| > 55 - n, the family of all sets

with |L(S)| > 55 - n can be enumerated in time gn-(1=107%) ,O0(1) |y the algorithm of

Lemma 2.2, completing the proof. ]

5. Large sparse induced subgraph. In this section we bound the number of
minimal connected dominating sets in any graph G for which case 2 of Lemma 3.1
occurs, i.e., we prove Lemma 3.3. Let us fix some integer ¢ > 1.

Our enumeration algorithm will make decisions that some vertices are in the
constructed connected dominating set, and some are not. We incorporate such
decisions in the notion of extensions. For disjoint vertex sets I and O (for in and out),
we define an (I, O)-extension to be a vertex set S that is disjoint from I U O and such
that I U S is a connected dominating set in G. An (I, O)-extension S is said to be
minimal if no proper subset of it is also an (I, O)-extension. The following simple fact
will be useful.

LEMMA 5.1. There is a polynomial-time algorithm that, given a graph G and
disjoint vertex subsets I, O, and S, determines whether S is a minimal (I, O)-extension
n G.

Proof. The algorithm checks whether I U S is a connected dominating set in G
and returns “no” if not. Then, for each v € S the algorithm tests whether 7 U (S\ {v})
is a connected dominating set of G. If it is a connected dominating set for any choice
of v, the algorithm returns “no”. Otherwise, the algorithm returns that S is a minimal
(I, O)-extension. The algorithm clearly runs in polynomial time, and if the algorithm
returns that S is not a minimal (I, O)-extension in G, then this is correct, as the
algorithm also provides a certificate.

We now prove that if S is not a minimal (I, O) extension in G, then the algorithm
returns “no.” If S is not an (I, O)-extension, the algorithm detects it when testing
whether I U S is a connected dominating set in G, and reports no accordingly. If it
is an (I, O)-extension, but not a minimal one, then there exists an (I, O)-extension
S’ C S. Let v be any vertex in S\ S’. We claim that X = T U (S '\ {v}) is a connected
dominating set of G. Indeed, X dominates V(G) because I U S’ does. Furthermore,
G[X] is connected because G[I U S’] is connected and every vertex in X \ (I U S’) has
a neighbor in (I US"). Hence TU (S '\ {v}) is a connected dominating set of G and the
algorithm correctly reports “no.” This concludes the proof. ]

Observe that for any minimal connected dominating set X, and any I C X and O
disjoint from X, we have that X \ I is a minimal (I, O)-extension. Thus one can use
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an upper bound on the number of minimal extensions to upper bound the number
of minimal connected dominating sets. Recall that case 2 of Lemma 3.1 provides us
with a partition (L, H, R) of the vertex set. To upper bound the number of minimal
connected dominating sets, we will consider each of the 2"~ |l possible partitions of
HUR into two sets I and O, and upper bound the number of minimal (7, O)-extensions.
This is expressed in the following lemma.

LEMMA 5.2. Let G be a graph and (L, H, R) be a partition of the vertex set of
G such that |L| > 10|H|¢, and every vertex in L has less than £ neighbors in L U R.

_ P21 .
Then, for every partition (I,0) of HU R, there are at most 2/F! . ¢” 271010065 minimal

(I,0)-extensions. Furthermore, all minimal (I,0)-extensions can be listed in time
9Ll . ¢~ 51015055 . (1)

We now prepare the ground for the proof of Lemma 5.2. The first step is to reduce
the problem essentially to the case when L is independent. For this, we shall say that
a partition of V(G) into L, H, and R is a good partition if:

e |L| > 10|H|,

e [ is an independent set, and

e every vertex in L has less than ¢ neighbors in R.
Towards proving Lemma 5.2, we first prove the statement assuming that the input
partition of V(G) is a good partition.

LEMMA 5.3. Let G be a graph and (L, H, R) be a good partition of V(G). Then,

R P71 S L
for every partition (I,0) of H U R, there are at most 2ILl . 73T 3007 minimal
(I,0)-extensions. Furthermore, all minimal (I,O)-extensions can be listed in time
oLl . ¢~ 510000z . )

We will prove Lemma 5.3 towards the end of this section, now let us first prove
Lemma 5.2 assuming the correctness of Lemma 5.3.

Proof of Lemma 5.2 assuming Lemma 5.5. Observe that we may find an indepen-
dent set L’ in G[L] of size at least %‘ Indeed, since every vertex of L has less than ¢
neighbors in L U R, any inclusion-wise maximal independent set L’ in G[L] has size at
least %. Therefore |L'| > % > 10|H|, and hence (L', H,R' = RU(L\ L')) is a good
partition of V(G).

Further, for a fixed partition of RU H into I and O, consider each of the 2ILAL]
partitions of H U R’ into I' and O’ such that I € I’ and O € O’. For every
minimal (I, O)-extension S, we have that SN L’ is a minimal (I’, O’)-extension, where
I'=TU(S\L)and O' =0U(L\ (L'US)). Thus, by Lemma 5.3 applied to the
good partition (L', H, R') of V(G), and the partition (I’,0") of H U R’, we have that
the number of minimal (I, O)-extensions is upper bounded by

’
|

’ ’ _ | L — [L]
2|L\L ‘ . 2|L | . e 2108100¢2 S 2|L| . e 210010063 |

Further, by the same argument, the minimal (I, O)-extensions can be enumerated
within the claimed running time, using the enumeration provided by Lemma 5.3 as a
subroutine. ]

The next step of the proof of Lemma 5.3 is to make a further reduction, this time
to the case when also H U R is independent. Since the partition into vertices taken and
excluded from the constructed connected dominating set is already fixed on H U R,
this amounts to standard cleaning operations within H U R. We shall say that a good
partition (L, H, R) of V(G) is an excellent partition if G[H U R] is edgeless.

10
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LEMMA 5.4. There exists an algorithm that given as input a graph G, together
with a good partition (L,R,H) of V(QG), and a partition (I,0) of RU H, runs in
polynomial time, and outputs a graph G' with V(G)NV (G') 2 L, an excellent partition
(L,R',H') of V(G"), and a partition (I',0") of R' U H', with the following property.
For every set S C L, S is a minimal (I,0)-extension in G if and only if S is a minimal
(I',O")-extension in G'.

Proof. The algorithm begins by setting G' = G, H = H, R" = R, I’ = I and
O’ = O. Tt then proceeds to modify G’, at each step maintaining the following
invariants: (i) (L, H', R') is a good partition of the vertex set of G’, and (ii) for
every set S C L, S is a minimal (I, O)-extension in G if and only if S is a minimal
(I, O")-extension in G'.

If there exists an edge uv with u € O’ and v € I’, the algorithm removes u from
G’ from O’, and from R’ or H' depending on which of the two sets it belongs to. Since
u is anyway dominated by I’ and removing u can only decrease |H’| (while keeping
|L| the same), the invariants are maintained. If there exists an edge uv with both u
and v in O’, the algorithm removes the edge uv from G’. Since neither u nor v are
part of I’ U S for any S C L, it follows that the invariants are preserved.

Finally, if there exists an edge uv with both u and v in I’, the algorithm contracts
the edge uv. Let w be the vertex resulting from the contraction. The algorithm
removes ¢ and v from I’ and from R’ or H’, depending on which of the two sets the
vertices are in, and adds w to I’. If at least one of v and v was in H’, w is put into
H', otherwise w is put into R’. Note that |H’'| may decrease, but can not increase in
such a step. Thus (L, R', H') remains a good partition and invariant (i) is preserved.
Further, since u and v are always in the same connected component of G'[I"' U S] for
any S C L, invariant (ii) is preserved as well.

The algorithm proceeds by performing one of the three steps above as long as
there exists at least one edge in G'[R’ U H']. When the algorithm terminates no such
edge exists, thus (L, H', R") forms an excellent partition of V(G’). d

Lemma 5.4 essentially allows us to assume in the proof of Lemma 5.3 that (L, H, R)
is an excellent partition of V(G). To complete the proof, we distinguish between

. L
two subcases: either there are at most lTo‘
|L]|

there are more than 5 such vertices. Let us shortly explain the intuition behind
|L]

this case distinction. If there are at most 15 vertices in R of degree less than 10¢,
then it is possible to show that H U R is small compared to L, in particular that

|HUR| < %. We then show that any minimal (I, O)-extension can not pick more

vertices in R of degree less than 104, or

than |H U R| vertices from L. This gives a (o.l?ﬁ‘u) upper bound for the number of

minimal (I, O)-extensions, which is smaller than 2/%l by an exponential multiplicative
factor.

On the other hand, if there are more than % vertices in R of degree less than
104, then one can find a large subset R’ of R of vertices of degree at most 104, such
that no two vertices in R’ have a common neighbor. For each vertex v € R/, every
minimal (I, O)-extension must contain at least one neighbor of v. Thus, there are only
24(v) _ 1, rather than 2%") possibilities for how a minimal (I, O)-extension intersects
the neighborhood of v. Since all vertices in R’ have disjoint neighborhoods, this gives

|R|
an upper bound of 2% . 212012021 on the number of minimal (I, O)-extensions.

We now give a formal treatment of the two cases. We begin with the case that
there are at most & vertices in R of degree less than 10¢.

10
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LEMMA 5.5. Let G be a graph, and I and O be disjoint vertex sets such that I
is nonempty and both G[I UO] and G — (I UO) are edgeless. Then every minimal
(I,0)-extension S satisfies |S| < [T U O|.

Proof. We will need the following simple observation about the maximum size of
an independent set of internal nodes in a tree.

CLAIM 5.6. Let T be a tree and S be a set of non-leaf nodes of T such that S is
independent in T'. Then |S| < |V(T)\ S].

Proof. Root the tree T at an arbitrary vertex. Construct a vertex set Z by picking,
for every s € S, any child z of s and inserting z into Z; this is possible since no vertex
of S is a leaf. Every vertex in T has a unique parent, so no vertex is inserted into Z
twice, and hence |Z] = |S|. Further, since S is independent, Z C V(T') \ S. The claim
follows. O

We proceed with the proof of the lemma. Let X = V(G)\ (JUO) and let S C X
be a minimal (I, O)-extension. Since I U S is a connected dominating set and I U O is
independent, it follows that every vertex in O has a neighbor in S. Hence G| U S U O]
is connected. Let T be a spanning tree of G[I U.SUO]. We claim that every node in S
is a non-leaf node of T. Suppose not, then G[I U S\ {v}] is connected, every vertex in
O has a neighbor in S\ {v}, v has a neighbor in I (since G[I U S] is connected and I
is nonempty), and every vertex in X \ S has a neighbor in I. Hence S\ {v} would be
an (I, O)-extension, contradicting the minimality of S. We conclude that every node
in S is a non-leaf node of T'. Applying Claim 5.6 to S in T concludes the proof. 0O

The next lemma resolves the first subcase, when there are at most lTo‘ vertices

in R of degree less than 10¢. The crucial observation is that in this case, a minimal
(I, 0)-extension S must be of size significantly smaller than |L|/2, due to Lemma 5.5

LEMMA 5.7. Let G be a graph, (L, H, R) be an excellent partition of V(G), and

(I,0) be a partition of HU R. If at most H vertices in R have degree less than 104 in

Ll 9- Y5

G, then there are at most 2 10 mzmmal (I,0)-extensions. Further the family

of all minimal (I,0)-extensions can be enumerated in time 2/F! - 9= . pOM),

Proof. First, note that |H| < 1%, because (L, H, R) is an excellent partition.
Partition R into Rpig and Rsman according to the degrees: Ry, contains all vertices in
R of degree at least 10¢, while Rg,,11 contains the vertices in R of degree less than 10¢.
Since every vertex in L has at most ¢ neighbors in R, it follows that |Rpig| < ‘Ll . By
assumption |Rgman| < £ It follows that |[RU H| < 3‘L‘ . Now, TUO=RU H and
therefore, by Lemma 5 every minimal (I, O)- extensmn has size at most [TUO| < 3‘L‘ .
By Lemma 2.3, the number of different minimal (I, O)-extensions is at most

S

Z <| ) > < 9H(B/10)|L] < 99ILI/10 _ 9|L] —%.

iz !

To enumerate the sets within the given time bound it is sufficient to go through all
subsets S of L of size at most 3{5' and check whether S is a minimal (I, O)-extension
in polynomial time using the algorithm of Lemma 5.1. O

We are left with the case when at least Il—%‘ vertices in R have degree smaller than

104 in G.
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LEMMA 5.8. Let G be a graph, (L, H, R) be an excellent partition of V(G), and
(I,0) be a partition of HU R. If at least % vertices in R have degree less than 10£ in

G, then there are at most 271 'B_W minimal (I,O)-extensions. The family of
all minimal (I,0)-extensions can be enumerated in time 2171 - 672102-% O,

Proof. We assume that |I U O| > 2, since otherwise the claim holds trivially. Let
Rqman be the set of vertices in R of degree less than 10¢; by assumption we have
| Rsman| > Il—LO‘. Recall that vertices in R have only neighbors in L, and every vertex of
L has less than ¢ neighbors in R. Hence, for each vertex r in Rgyan there are at most
104 - (£ — 1) other vertices in Rgman that share a common neighbor with . Compute
a subset R’ of Rgnan as follows. Initially R’ is empty and all vertices in Rgpay are
unmarked. As long as there is an unmarked vertex r € Rgpay, add 7 to R’ and mark
r as well as all vertices in Rgpan that share a common neighbor with r. Terminate
when all vertices in Rgn,1 are marked.

Clearly, no two vertices in the set R’ output by the procedure described above
can share any common neighbors. Further, for each vertex added to R’, at most
104 - (¢ — 1) + 1 < 10¢? vertices are marked. Hence, |R'| > MESO%“' > 1%‘[2.

Observe that if a subset S of L is an (I, O)-extension, then every vertex in I U O
must have a neighbor in S. This holds for every vertex in O, because I U .S needs to
dominate this vertex, but there are no edges between O and I. For every vertex in I
this holds because G[I U S| has to be connected, and I U O is an independent set of
size at least 2.

Consider now a subset S of L picked uniformly at random. We upper bound the
probability that every vertex in I U O has a neighbor in S. This probability is upper
bounded by the probability that every vertex in R’ has a neighbor in S. For each
vertex r in R, the probability that none of its neighbors is in § is 274" > 2-10¢,
Since no two vertices in R’ share a common neighbor, the events “r has a neighbor in
S” for r € R’ are independent. Therefore, the probability that every vertex in R’ has
a neighbor in S is upper bounded by

_o—10¢, _|L]| _ |L]|
10002 = g 210.100¢2 ,

(1 . 2—10€)|R/| <e
The upper bound on the number of minimal (I, O)-extensions follows. To enumerate
all the minimal (I, O)-extensions within the claimed time bound, it is sufficient to
enumerate all sets S C L such that every vertex in R’ has at least one neighbor
in S, and to check in polynomial time using Lemma 5.1 whether S is a minimal
(I, O)-extension. The family of such subsets of L is closed under taking supersets, so to
enumerate them we can use the algorithm of Lemma 2.2 applied to their complements.0

We can now wrap up the proof of Lemma 5.3.

Proof of Lemma 5.3. Let G be a graph and (L, H, R) be a good partition of V(G).
Consider a partition of H U R into two sets I and O. By Lemma 5.4, we can obtain in
polynomial time a graph G’ with V(G) NV (G’) 2 L, as well as an excellent partition
(L,R',H") of V(G"), and a partition (I',0’) of R'U H’, such that every subset S of L
is a minimal (I, O)-extension in G if and only if it is a minimal (I’, O)-extension in
G’. Thus, from now on, we may assume without loss of generality that L, H and R is

an excellent partition of V(G).
|L]

We distinguish between two cases: either there are at most T3 vertices in R of
degree less than 10¢, or there are more than % such vertices. In the first case, by

13

This manuscript is for review purposes only.



wt

[
3

(ARG B
[*2)
e}

wt

ot
3 3
N oo

ot ot

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

1 minimal (I, 0)-extensions. Further, the

Lemma 5.7, there are at most 2171 . 2

family of all minimal (I, O)-extensions can be enumerated in time 2/ - 218 O,
71 B
In the second case, by Lemma 5.8, there are at most 27! . ¢~ 2771002 minimal (I, O)-

extensions, and the family of all minimal (I, O)-extensions can be enumerated in
1Ll . Ll
time 2121 . e 721071002 . n©M) | Since e~ 2071002 > 2_%, the statement of the lemma

follows. a

As argued before, establishing Lemma 5.3 concludes the proof of Lemma 5.2. We
can now use Lemma 5.2 to complete the proof of Lemma 3.3, and hence also of our
main result.

Proof of Lemma 3.3. To list all minimal connected dominating sets of G it is
sufficient to iterate over each of the 2" !Xl partitions of H U R into I and O, for
each such partition enumerate all minimal (I, O)-extensions S using Lemma 5.2 with
¢ =14, and for each minimal extension S check whether I U S is a minimal connected
dominating set of GG. Observe that

1 1

and that therefore Lemma 5.2 is indeed applicable with ¢ = 14. Hence, the total
number of minimal connected dominating sets in G is upper bounded by

e _ n —50
on—ILl . 9lLl | o~ 3T0t1003 < 2™ . 27 G0a001008 < on(1-107"7)

The running time bound for the enumeration algorithm follows from the running time
bound of the enumeration algorithm of Lemma 5.2 in exactly the same way. O
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