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Abstract18

In this paper we study recently introduced conflict version of the classical Feedback Vertex19

Set (FVS) problem. Let F be a family of graphs. Then, for every family F , we get F-CF-20

Feedback Vertex Set (F-CF-FVS, for short). The problem F-CF-FVS takes as an input21

a graph G, a graph H ∈ F , and an integer k, and the objective is to decide if there is a set22

S ⊆ V (G) of size at most k such that G−S is a forest and S is an independent set in H. Observe23

that if we instantiate F to be the family of edgeless graphs then we get the classical FVS problem.24

Jain, Kanish and Misra [CSR 2018] showed that in contrast to FVS, F-CF-FVS is W[1]-hard25

on general graphs and admits an FPT algorithm if F is a family of d-degenerate graphs. In26

this paper we relate F-CF-FVS to the Independent Set problem on special classes of graphs27

and obtain a complete dichotomy result on the Parameterized Complexity of the problem F-28

CF-FVS. In particular, we show that F-CF-FVS is FPT parameterized by the solution size if29

and only if F+Cluster IS is FPT parameterized by the solution size. Here, F+Cluster IS30

is the Independent Set problem in the (edge) union of a graph G ∈ F and a cluster graph31

H (G and H are explicitly given). Next we exploit this characterization to obtain new FPT32

results as well as intractability results for F-CF-FVS. In particular, we give FPT algorithms for33

F+Cluster IS when F is the family of Ki,j-free graphs. Finally, we consider for each 0 < ε < 1,34

the family of graphs Fε, which comprise of graphs G such that |E(G)| ≤ |V (G)|2−ε and show that35

Fε+Cluster IS is W[1]-hard, when parameterized by the solution size, for every 0 < ε < 1.36

2012 ACM Subject Classification Dummy classification37

Keywords and phrases Dummy keyword38
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1 Introduction40

Feedback Vertex Set (FVS) is one of the classical NP-hard problems that has been41

subjected to intensive study in algorithmic paradigms that are meant for coping with NP-hard42
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problems, and particularly in the realm of Parameterized Complexity. In this problem, given43

a graph G and an integer k, the objective is to decide if there is S ⊆ V (G) of size at most k44

such that G−S is a forest. FVS has received a lot of attention in the realm of Parameterized45

Complexity. This problem is known to be in FPT, and the best known algorithm for it runs46

in time O(3.618knO(1)) [7, 14]. Several variant and generalizations of Feedback Vertex47

Set such as Weighted Feedback Vertex Set [2, 6], Independent Feedback Vertex48

Set [1, 16], Connected Feedback Vertex Set [17], and Simultaneous Feedback49

Vertex Set [3, 5] have been studied from the viewpoint of Parameterized Complexity.50

Recently, Jain et al. [13] defined an interesting generalization of well-studied vertex51

deletion problems – in particular for FVS. The CF-Feedback Vertex Set (CF-FVS,52

for short) problem takes as input graphs G and H, and an integer k, and the objective is53

to decide if there is a set S ⊆ V (G) of size at most k such that G− S is a forest and S is54

an independent set in H. The graph H is also called a conflict graph. Observe that the55

CF-FVS problem generalizes many classical graph problems such as Feedback Vertex56

Set, Independent Feedback Vertex Set, etc. Among other results, Jain et al. [13]57

showed that CF-FVS is W[1]-hard on general graphs. Also, they designed FPT algorithms58

when the input graph H is from the family of d-degenerate graphs and the family of nowhere59

dense graphs.60

A natural way of defining CF-FVS will be by fixing a family F from which the conflict61

graph H is allowed to belong. Thus, for every fixed F we get a new CF-FVS problem. In62

particular we get the following problem.63

F-CF-Feedback Vertex Set (F-CF-FVS) Parameter: k

Input: A graph G, a graph H ∈ F (where V (G) = V (H)), and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that G− S is a forest and S
is an independent set in H?

64

Jain et al. [13] showed that F-CF-FVS is W[1]-hard when F is family of all graphs and65

admits FPT algorithm when the input graph H is from the family of d-degenerate graphs66

and the family of nowhere dense graphs. The most natural question that arises here is the67

following.68

Question 1: For which graph families F, F-CF-FVS is FPT?69

Our Results. Starting point of our research is Question 1. We obtain a complete dichotomy70

result on the Parameterized Complexity of the problem F-CF-FVS in terms of another71

well-studied problem, namely, the Independent Set problem – the wall of intractability.72

Towards stating our results, we start by defining the problem F+Cluster IS, which is of73

independent interest. A cluster graph is a graph formed from the disjoint union of complete74

graphs (or clique).75

F+Cluster Independent Set (F+Cluster IS) Parameter: k

Input: A graph G ∈ F , a cluster graph H (where V (G) = V (H)), and an integer k,
such that H has exactly k connected components.
Question: Is there a set S ⊆ V (G) of size k such that S is an independent set in both
G and in H?

76

We note that F+Cluster IS is the Independent Set problem on the edge union of two77

graphs, where one of the graphs is from a family of graphs F and the other one is a cluster78

graph. Here, additionally we know the partition of edges into two sets E1 and E2 such that79

the graph induced on E1 is in F and the graph induced on E2 is a cluster graph. We note80



A. Agrawal and P. Jain and L. Kanesh and D. Lokshtanov and S. Saurabh 23:3

that F+Cluster IS has been studied in the literature for F being the family of interval81

graphs (with no restriction on the number of clusters) [21]. They showed the problem to82

be FPT. Recently, Bentert et al. [?] generalized the result from interval graphs to chordal83

graphs. This problem arises naturally in the study of scheduling problems. We refer the84

readers to [21, ?] for more details on the application of F+Cluster IS.85

We are now ready to state our results. We show that F -CF-FVS is in FPT if and only if86

F+Cluster IS is in FPT. This gives a complete characterization of when the F-CF-FVS87

problem is in FPT. To prove the forward direction, i.e., showing that F+Cluster IS is in88

FPT implies F-CF-FVS is in FPT, we design a branching based algorithm, which at the89

base case generates instances of F+Cluster IS, which is solved using the assumed FPT90

algorithm for F+Cluster IS. Thus, we give “fpt-turing-reduction” from F-CF-FVS to91

F+Cluster IS. It is worth to note that there are very known reductions of this nature.92

To show that F-CF-FVS is in FPT implies that F+Cluster IS is in FPT, we give an93

appropriate reduction from F+Cluster IS to F-CF-FVS, which proves the statement.94

Next, we consider two families of graphs. We first design FPT algorithm for the corres-95

ponding F+Cluster IS problem. For the second class we give a hardness result. First, we96

consider the problem Ki,j-free+Cluster IS, which is the F+Cluster IS problem for the97

family of Ki,j-free graphs. We design an FPT algorithm for Ki,j-free+Cluster IS based on98

branching together with solving the base cases using a greedy approach. This adds another99

family of graphs, apart from interval and chordal graphs, such that F+Cluster IS is FPT.100

We note that Ki,j-free graphs have at most n2−ε edges, where n is the number of vertices101

in the input graph and ε = ε(i, j) > 0 [20, 12]. We complement our FPT result on Ki,j-102

free+Cluster IS with the W[1]-hardness result of the F+Cluster IS problem when103

F is the family of graphs with at most n2−ε edges. This result is obtained by giving an104

appropriate reduction from the problem Multicolored Biclique, which is known to be105

W[1]-hard [7, 10]. We also show that the F+Cluster IS problem is W[1]-hard when F is the106

family of bipartite graphs. Again, this result is obtained via a reduction from Multicolored107

Biclique.108
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2 Preliminaries110

In this section, we state some basic definitions and terminologies from Graph Theory that111

are used in this paper. For the graph related terminologies which are not explicitly defined112

here, we refer the reader to the book of Diestel [8].113

Graphs.114

Consider a graph G. By V (G) and E(G) we denote the set of vertices and edges in G,115

respectively. When the graph is clear from the context, we use n and m to denote the116

number of vertices and edges in the graph, respectively. For X ⊆ V (G), by G[X] we denote117

the subgraph of G with vertex set X and edge set {uv ∈ E(G) | u, v ∈ X}. Moreover, by118

G−X we denote graph G[V (G) \X]. For v ∈ V (G), NG(v) denotes the set {u | uv ∈ E(G)},119

and NG[v] denotes the set NG(v) ∪ {v}. By degG(v) we denote the size of NG(v). A path120

P = (v1, . . . , vn) is an ordered collection of vertices, with endpoints v1 and vn, such that121

there is an edge between every pair of consecutive vertices in P . A cycle C = (v1, . . . , vn) is122

a path with the edge v1vn. Consider graphs G and H. We say that G is an H-free graph if123

no subgraph of G is isomorphic to H. For u, v ∈ V (G) ∩ V (H), we say that u and v are in124

conflict in G with respect to H if uv ∈ E(H).125

MFCS 2018
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A clique is a subgraph of an undirected graph such that every two distinct vertices in it126

are adjacent. A connected component of an undirected graph is a (vertex) maximal induced127

subgraph in which every two vertices are connected by a path. If a graph has only one128

connected component then it is called connected graph. A graph is a cluster graph if each of129

its connected components are cliques. For k ∈ N, a k-cluster graph is cluster graph with130

exactly k connected components. Let C be the set of connected components in cluster graph.131

We define vertex set of C as follows: V (C) = ∪C∈C′V (C). A graph G is a complete bipartite132

graph if its vertex set can be partitioned into two disjoint (independent) sets X and Y , such133

that E(G) = {xy | x ∈ X, y ∈ Y }. For x, y ∈ N, by Kxy we denote the complete bipartite134

graph on x+ y vertices which admits a vertex bipartition into sets X and Y of sizes x and y,135

respectively, such that E(Kxy) = {xy | x ∈ X, y ∈ Y }. A graph is a chordal graph if it has136

no induced cycle of length at least 4.137

Sets.138

We denote the set of natural numbers and real numbers by N and R, respectively. For k ∈ N,139

by [k] we denote the set {1, 2, . . . , k}. For a, b ∈ R, a half open interval denoted by (a, b] is140

the set of all real numbers x, such that a < x ≤ b. For a set X, by 2X we denote the power141

set of X, i.e., the set comprising of all subsets of X.142

Parameterized Complexity.143

A parameterized problem Π is a subset of Σ∗ × N, where Σ is a finite alphabet set. An144

instance of a parameterized problem is a tuple (x, k), where x is a classical problem instance145

and k is an integer, called the parameter. A central notion in parameterized complexity is146

fixed-parameter tractability (or in FPT) which means, for a given instance (x, k), decidability147

in time f(k) · poly(|x|), where f(·) is an arbitrary computable function and poly(·) is a148

polynomial function. To prove that a problem is FPT, it is possible to give an explicit149

algorithm, called a parameterized algorithm, which solves it in time f(k) · poly(|x|). On the150

other hand, to show that a problem is unlikely to be in FPT, it is possible to use FPT time151

reductions analogous to the polynomial time reductions employed in Classical Complexity.152

Here, the concept of W[t]-hardness replaces the concept of NP-hardness, and we need not only153

construct an equivalent instance in FPT time, but also ensure that the size of the parameter154

in the new instance depends only on the size of the parameter in the original instance. For155

more details on Parameterized Complexity, we refer the reader to the books of Downey and156

Fellows [9], Flum and Grohe [11], Niedermeier [18], and the recent book by Cygan et al. [7].157

3 W-hardness of F-CF-FVS Problems158

This section is devoted to showing W-hardness results for F-CF-FVS problems for certain159

graph classes, F . In Section 3.1, we show one direction of our dichotomy result. That is, if160

for a family of graphs F , F+Cluster IS is not in FPT when parameterized by the size of161

solution then F -CF-FVS is also not in FPT when parameterized by the size of solution. This162

result is obtained by giving a parameterized reduction from F+Cluster IS to F -CF-FVS.163

Next, we show that the problem F-CF-FVS is W[1]-hard, when parameterized by the size164

of solution, where F is the family of bipartite graphs (Section 3.2) or the family of graphs165

with sub-quadratic number of edges (Section 3.3). These results are obtained by giving an166

appropriate reduction from the problem Multicolored Biclique, which is known to be167

W[1]-hard [7, 10].168
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3.1 F+Cluster IS to F-CF-FVS169

In this section, we show that, for a family of graphs F , if F+Cluster IS is not in FPT,170

then F -CF-FVS is also not in FPT (where the parameters are the solution sizes). To prove171

this result, we give a parameterized reduction from F+Cluster IS to F-CF-FVS.172

Let (G,H, k) be an instance of F+Cluster IS. We construct an instance (G′, H ′, k′)173

of F-CF-FVS as follows. We have H ′ = G, k′ = k, and V (G′) = V (H). Let C be the set174

of connected components in H. Recall that we have |C| = k. For each C ∈ C, we add a175

cycle (in an arbitrarily chosen order) induced on vertices in V (C) in G′. This completes the176

description of the reduction. Next, we show the equivalence between the instance (G,H, k)177

of F+Cluster IS and the instance (G′, H ′, k′) of F-CF-FVS.178

I Lemma 1. (G,H, k) is a yes instance of F+Cluster IS if and only if (G′, H ′, k′) is a179

yes instance of F-CF-FVS.180

Proof. In the forward direction, let (G,H, k) be a yes instance of F+Cluster IS, and S181

be one of its solution. Since H ′ = G, therefore, S is an independent set in H ′. Let C be the182

set of connected components in H. As S is a solution, it must contain exactly one vertex183

from each C ∈ C. Moreover, G′ comprises of vertex disjoint cycles for each C ∈ C. Thus S184

intersects every cycle in G′. Therefore, S is a solution to F-CF-FVS in (G′, H ′, k′).185

In the reverse direction, let (G′, H ′, k′) be a yes instance of F -CF-FVS, and S be one of186

its solution. Recall that G′ comprises of k vertex disjoint cycles, each corresponding to a187

connected component C ∈ C, where C is the set of connected components in H. Therefore,188

S contains exactly one vertex from each C ∈ C. Also, H ′ = G, and therefore, S is an189

independent set in G. This implies that S is a solution to F+Cluster IS in (G,H, k).190

J191

I Theorem 2. For a family of graphs F , if F+Cluster IS is not in FPT when parameterized192

by the solution size, then F-CF-FVS is also not in FPT when parameterized by the solution193

size.194

Proof. Follows from the construction of instance (G′, H ′, k′) of F-CF-FVS for the given195

instance (G,H, k) of F+Cluster IS with H ′ = G and Lemma 1. J196

3.2 W[1]-hardness on Bipartite Graphs197

In this section, we show that for the family of bipartite graphs, B, the B-CF-FVS problem is198

W[1]-hard, when parameterized by the solution size. Throughout this section, B will denote199

the family of bipartite graphs. To prove our result, we give a parameterized reduction from200

the problem Multicolored Biclique to B-CF-FVS. In the following, we formally define201

the problem Multicolored Biclique.202

Multicolored Biclique (MBC) Parameter: k

Input: A bipartite graph G, a partition of A into k sets A1, A2, · · · , Ak, and a partition
of B into k sets B1, B2, · · · , Bk, where A and B are a vertex bipartition of G.
Question: Is there a set S ⊆ V (G) such that for each i ∈ [k] we have |S ∩Ai| = 1 and
|S ∩Bi| = 1, and G[S] is isomorphic to Kk,k?

203

Let (G,A1, · · · , Ak, B1, · · · , Bk) be an instance of Multicolored Biclique. We con-204

struct an instance (G′, H ′, k′) of B-CF-FVS as follows. We have V (G′) = V (H ′) = V (G),205

and E(H ′) = {uv | u ∈ ∪i∈[k]Ai, v ∈ ∪i∈[k]Bi, and uv /∈ E(G)}. Next, for each i ∈ [k], we206

add a cycle (in an arbitrary order) induced on vertices in Ai in G′. Similarly, we add for207

MFCS 2018
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each i ∈ [k], a cycle induced on vertices in Bi in G′. Notice that G′ is comprises of 2k vertex208

disjoint cycles, and H ′ is a bipartite graph. Finally, we set k′ = 2k. This completes the209

description of the reduction.210

I Lemma 3. (G,A1, · · · , Ak, B1, · · · , Bk) is a yes instance of Multicolored Biclique if211

and only if (G′, H ′, k′) is a yes instance of B-CF-FVS.212

Proof. In the forward direction, let (G,A1, · · · , Ak, B1, · · · , Bk) be a yes instance of Multi-213

colored Biclique, and S be one of its solution. We will show that S is a solution214

to B-CF-FVS in (G′, H ′, k′). Since S is a solution to Multicolored Biclique in215

(G,A1, · · · , Ak, B1, · · · , Bk), therefore for each i ∈ [k], |S ∩ Ai| = 1 and |S ∩ Bi| = 1.216

Since G′ comprises of vertex disjoint cycles corresponding to sets in Ai and Bi, therefore, S217

intersects every cycle in G′. By the construction of H ′ it follows that S is an independent218

set in H ′. This concludes the proof of forward direction.219

In the reverse direction, let (G′, H ′, k′) be a yes instance of B-CF-FVS, and S be one of220

its solution. By construction of G′, for each i ∈ [k] we have |S ∩ Ai| = 1 and |S ∩ Bi| = 1221

and by the construction of H ′, we have that S is isomorphic to Kk,k in G. Therefore, S is a222

solution to Multicolored Biclique in (G,A1, · · · , Ak, B1, · · · , Bk).223

J224

Now we are ready to prove the main theorem of this section.225

I Theorem 4. B-CF-FVS parameterized by the solution size is W[1]-hard, where B is the226

family of bipartite graphs.227

Proof. Follows from the construction, Lemma 3, and W[1]-hardness of Multicolored228

Biclique [7, 10].229

J230

3.3 W[1]-hardness on Graphs with Sub-quadratic Edges231

In this section, we show that F -CF-FVS is W[1]-hard, when parameterized by the solution232

size, where F is the family of graphs with sub-quadratic edges. To formalize the family of233

graphs with subquadratic edges, we define the following. For 0 < ε < 1, we define Fε to234

be the family comprising of graphs G, such that |E(G)| ≤ |V (G)|2−ε. We show that for235

every 0 < ε < 1, the Fε-CF-FVS problem is W[1]-hard, when parameterized by the solution236

size. Towards this, for each (fixed) 0 < ε < 1, we give a parameterized reduction from237

Multicolored Biclique to Fε-CF-FVS.238

Let (G,A1, · · · , Ak, B1, · · · , Bk) be an instance of Multicolored Biclique. We con-239

struct an instance (G′, H ′, k′) of Fε-CF-FVS as follows. Let n = |V (G)|, m = |E(G)|, and240

X be a set comprising of n
2

2−ε − n (new) vertices. The vertex set of G′ and H ′ is X ∪ V (G).241

For each i ∈ [k], we add a cycle (in arbitrary order) induced on vertices in Ai in G′. Similarly,242

we add for each i ∈ [k], a cycle induced on vertices in Bi in G′. Also, we add a cycle induced243

on vertices in X to G′. We have E(H ′) = {uv | u ∈ ∪i∈[k]Ai, v ∈ ∪i∈[k]Bi, and uv /∈ E(G)}.244

Finally, we set k′ = 2k + 1. Notice that since |V (H ′)| = n
2

2−ε , and |E(H ′)| < n2, therefore,245

H ∈ Fε.246

I Lemma 5. (G,A1, · · · , Ak, B1, · · · , Bk) is a yes instance of Multicolored Biclique if247

and only if (G′, H ′, k′) is a yes instance of Fε-CF-FVS.248

Proof. In the forward direction, let (G,A1, · · · , Ak, B1, · · · , Bk) be a yes instance of Mul-249

ticolored Biclique, and S be one of its solution. Let x ∈ X be an arbitrarily chosen250
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vertex from X. We will show that S ∪ {x} is a solution to Fε-CF-FVS in (G′, H ′, k′). Since251

S is a solution to Multicolored Biclique in (G,A1, · · · , Ak, B1, · · · , Bk), therefore for252

each i ∈ [k], |S ∩ Ai| = 1 and |S ∩ Bi| = 1. Since G′ comprises of vertex disjoint cycles253

corresponding to sets in Ai and Bi, and a cycle induced on vertices in X therefore, S ∪ {x}254

intersects every cycle in G′. By the construction of H ′ it follows that S∪{x} is an independent255

set in H ′. This concludes the proof of forward direction.256

In the reverse direction, let (G′, H ′, k′) be a yes instance of Fε-CF-FVS, and S be one257

of its solution. Let S′ = S \X. By construction of G′, for each i ∈ [k] we have |S′ ∩Ai| = 1258

and |S′ ∩ Bi| = 1, and by construction of H ′, we have that S′ is isomorphic to Kk,k in G.259

Therefore, S′ is a solution to Multicolored Biclique in (G,A1, · · · , Ak, B1, · · · , Bk). J260

Now we are ready to prove the main theorem of this section.261

I Theorem 6. For 0 < ε < 1, Fε-CF-FVS parameterized by the solution size is W[1]-hard.262

Proof. Follows from the construction, Lemma 5, and W[1]-hardness of Multicolored263

Biclique [7, 10]. J264

4 FPT algorithms for F-CF-FVS for Restricted Conflict Graphs265

For a hereditary (closed under taking induced subgraphs) family of graphs F , we show that266

if F+Cluster IS is FPT, then F-CF-FVS is FPT. Throughout this section, whenever we267

refer to a family of graphs, it will refer to a hereditary family of graphs. To prove our result,268

for a family of graphs F , for which F+Cluster IS is FPT, we will design an FPT algorithm269

for F-CF-FVS, using the (assumed) FPT algorithm for F+Cluster IS. Our algorithm270

will use the technique of compression together with branching. We note that the method271

of iterative compression was first introduced by Reed, Smith, and Vetta [19], and in our272

algorithm, we (roughly) use only the compression procedure from it.273

In the following, we let F to be a (hereditary) family graphs, for which F+Cluster274

IS is in FPT. Towards designing an algorithm for F-CF-FVS, we define another problem,275

which we call F -Disjoint Conflict Free Feedback Vertex Set (to be defined shortly).276

Firstly, we design an FPT algorithm for F-CF-FVS using an assumed FPT algorithm for277

F -Disjoint Conflict Free Feedback Vertex Set. Secondly, we give an FPT algorithm278

for F -Disjoint Conflict Free Feedback Vertex Set using the assumed algorithm for279

F+Cluster IS. In the following, we formally define the problem F-Disjoint Conflict280

Free Feedback Vertex Set (F-DCF-FVS, for short)281

F-Disjoint Conflict Free Feedback Vertex Set (F-DCF-FVS) Parameter: k

Input: A graph G, a graph H ∈ F , an integer k, a set W ⊆ V (G), a set R ⊆ V (H) \W ,
and a set C, such that the following conditions are satisfied: 1) V (G) ⊆ V (H), 2) G−W
is a forest, 3) the number of connected components in G[W ] is at most k, and 4) C is a
set of vertex disjoint subsets of V (H).
Question: Is there a set S ⊆ V (H) \ (W ∪ R) of size at most k, such that G− S is a
forest, S is an independent set in H, and for each C ∈ C, we have |S ∩ C| 6= ∅?

282

We note that in the definition of F -DCF-FVS, there are two (additional) inputs namely,283

the set R and the set C. The purpose and need for these sets will become clear when we284

describe the algorithm for F -DCF-FVS. In Section 4.1, we will prove the following theorem.285

I Theorem 7. Let F be a hereditary family of graphs for which there is an FPT algorithm286

for F+Cluster IS running in time f(k)nO(1), where n is the number of vertices in the287
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input graph. Then, there is an FPT algorithm for F-DCF-FVS running in time f(k)dknO(1),288

where n is the (total) number of vertices in the input graphs, and d is a fixed constant.289

In the rest of the section, we show how we can use the FPT algorithm for F-DCF-FVS290

to obtain an FPT algorithm for F-CF-FVS.291

Algorithm for F-CF-FVS using algorithm for F-DCF-FVS. Let I = (G,H, k) be an292

instance of F -CF-FVS. We start by checking whether or not G has a feedback vertex set of293

size at most k, i.e. a set Z of size at most k, such that G− Z is a forest. For this we employ294

the algorithm for Feedback Vertex Set running in time O(3.619knO(1)) of Kociumaka295

and Pilipczuk [14]. Here, n is the number of vertices in the input graph. Notice that if G does296

not have a feedback vertex set of size at most k, then (G,H, k) is a no instance of F -CF-FVS,297

and we can output a trivial no instance of F-DCF-FVS. Therefore, we assume that (G, k)298

is a yes instance of Feedback Vertex Set, and let Z be one of its solution. We note that299

such a set Z can be computed using the algorithm presented in [14]. We generate an instance300

IY of F-DCF-FVS, for each Y ⊆ Z, where Y is the guessed (exact) intersection of the set301

Z with an assumed (hypothetical) solution to F-CF-FVS in I. We now formally describe302

the construction of IY . Consider a set Y ⊆ Z, such that Y is an independent set in H. Let303

GY = G − Y , HY = H − Y , kY = k − |Y |, WY = Z \ Y , RY = (NH(Y ) \WY ) ∩ V (HY ),304

and CY = ∅. Furthermore, let IY = (GY , HY , kY ,WY , RY , CY ), and notice that IY is a305

(valid) instance of F -DCF-FVS. Now we resolve IY using the (assumed) FPT algorithm for306

F-DCF-FVS, for each Y ⊆ Z, where Y is an independent set in H. It is easy to see that307

I is a yes instance of F-CF-FVS if and only if there is an independent set Y ⊆ Z in H,308

such that IY is a yes instance of F-DCF-FVS. From the above discussions, we obtain the309

following theorem.310

I Lemma 8. Let F be a family of graphs for which F-DCF-FVS admits an FPT algorithm311

running in time f(k)nO(1), where n is the (total) number of vertices in the input graph. Then312

F-CF-FVS admits an FPT algorithm running in time g(k)2knO(1), where n is the number313

of vertices in the input graphs.314

Using Theorem 7 and Lemma 8, we obtain the main theorem of this section.315

I Theorem 9. Let F be a hereditary family of graphs for which there is an FPT algorithm for316

F+Cluster IS running in time f(k)nO(1), where n is the number of vertices in the input317

graph. Then, there is an FPT algorithm for F-CF-FVS running in time f(k)dknO(1), where318

n is the number of vertices in the input graphs of F-CF-FVS, and d is a fixed constant.319

4.1 FPT Algorithm for F-DCF-FVS320

The goal of this section is to prove Theorem 7. Let F be a (fixed) hereditary family of321

graphs, for which F+Cluster IS admits an FPT algorithm. We design a branching based322

FPT algorithm for F-DCF-FVS, using the (assumed) FPT algorithm for F+Cluster IS.323

Let I = (G,H, k,W,R, C) be an instance of F-DCF-FVS. In the following we describe324

some reduction rules, which the algorithm applies exhaustively, in the order in which they325

are stated.326

I Reduction Rule 1. Return that (G,H, k,W,R, C) is a no instance of F -DCF-FVS if one of327

the following conditions are satisfied:328

1. if k < 0,329

2. if k = 0 and G has a cycle,330

3. k = 0 and C 6= ∅,331
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4. G[W ] has a cycle;332

5. if |C| > k; or333

6. there is C ∈ C, such that C ⊆ R.334

I Reduction Rule 2. If k = 0, G is acyclic, and C = ∅ then, return that (G,H, k,W,R, C) is a335

yes instance of F-DCF-FVS.336

In the following, we state a lemma, which is useful in resolving those instances where the337

graph G has no vertices.338

I Lemma 10. Let (G,H, k,W,R, C) be an instance of F-DCF-FVS, where Reduction Rules 1339

is not applicable and G −W has no vertices. Then, in polynomial time, we can generate340

an instance (G′, H ′, k′) of F+Cluster IS, such that (G,H, k,W,R, C) is a yes instance of341

F-DCF-FVS if and only if (G′, H ′, k′) is a yes instance of F+Cluster IS.342

Proof. Let VC = (∪C∈CC) \ R. We have V (G′) = V (H ′) = VC. For each C ∈ C, we make343

C \ R a clique in H ′. We set G′ = H[VC], and k′ = |C|. In the following we show that344

(G,H, k,W,R, C) is a yes instance of F -DCF-FVS if and only if (G′, H ′, k′) is a yes instance345

of F+Cluster IS.346

In the forward direction, let (G,H, k,W,R, C) be a yes instance of F -DCF-FVS, and let347

S be one of its solution. By construction, S is an independent set in G′ and H ′ of size C.348

In the reverse direction, let (G′, H ′, k′) be a yes instance of F+Cluster IS, and S be349

one of its solution. Since Reduction Rule 1 (item 4) is not applicable on (G,H, k,W,R, C), we350

have |C| ≤ k. Therefore, S is of size at most k. By non-applicability of item 6 of Reduction351

Rule 1, we have S ∩ R = ∅. By construction, |S ∩ C| = 1, for each C ∈ C, and S is an352

independent set in H. From the above discussions, together with the fact that G = G[W ] is353

acyclic, implies that S is a solution to F-DCF-FVS in (G,H, k,W,R, C). This concludes354

the proof. J355

Lemma 10 leads us to the following reduction rule.356

I Reduction Rule 3. If G − W has no vertices, then return the output of algorithm for357

F+Cluster IS with the instance generated by Lemma 10.358

I Reduction Rule 4. If there is a vertex v ∈ V (G) of degree at most one in G, then return359

(G− {v}, H, k,W \ {v}, R, C).360

The safeness of Reduction Rule 4 follows from the fact that a vertex of degree at most one361

does not participate in any cycle.362

I Reduction Rule 5. Let uv ∈ E(G) be an edge of multiplicity greater than 2 in G, and G′363

be the graph obtained from G by reducing the multiplicity of uv in G to 2. Then, return364

(G′, H, k,W,R, C).365

The safeness of Reduction Rule 5 follows from the fact that for an edge, multiplicity of 2 is366

enough to capture multiplicities of size larger than 2.367

I Reduction Rule 6. Let v ∈ R be a degree 2 vertex in G with u and w being its neighbors in368

G. Furthermore, let G′ be the graph obtained from G by deleting v and adding the (multi)369

edge uw. Then, return (G′, H − {v}, k,W,R \ {v}, C).370

The safeness of Reduction Rule 6 follows from the fact that a vertex in R cannot be part of371

any solution and any cycle (in G) containing v must contain both u and w.372

I Reduction Rule 7. If there is v ∈ (V (G) ∩R) \W , such that v has at least two neighbors373

in the same connected component of W , then return that (G,H, k,W,R, C) is a no instance374

of F-DCF-FVS.375
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I Reduction Rule 8. If there is v ∈ V (G) \ (W ∪R), such that v has at least two neighbors in376

the same connected component of W , then return (G−{v}, H −{v}, k− 1,W,R∪NH(v), C).377

I Reduction Rule 9. Let v ∈ V (G)∩R, such that NG(v)∩W 6= ∅. Then, return (G,H, k,W ∪378

{v}, R \ {v}, C).379

Let η be the number of connected components in G[W ]. In the following, we define the380

measure we use to compute the running time of our algorithm.381

µ(I) = µ((G,H, k,W,R, C)) = k + η − |C|

Observe that none of the reduction rules that we described increases the measure, and a382

reduction rule can be applied only polynomially many time. When none of the reduction383

rules are applicable, the degree of each vertex in G is at least two, multiplicity of each edge384

in G is at most two, degree two vertices in G do not belong to the set R, and G[W ] and385

G[V (G) \W ] are forests. Furthermore, for each v ∈ V (G) \W , v has at most 1 neighbor (in386

G) in a connected component of G[W ].387

In the following, we state the branching rules used by the algorithm. We assume that388

none of the reduction rules are applicable, and the branching rules are applied in the order389

in which they are stated. The algorithm will branch on vertices in V (G) \W .390

I Branching Rule 1. If there is v ∈ V (G) \W that has at least two neighbors (in G), say391

w1, w2 ∈W . Since Reduction Rule 7 and 8 are not applicable, w1 and w2 belong to different392

connected components of G[W ]. Also, since Reduction Rule 9 is not applicable, we have393

v /∈ R. In this case, we branch as follows.394

(i) v belongs to the solution. In this branch, we return (G− {v}, H − {v}, k − 1,W,R ∪395

NH(v), C).396

(ii) v does not belongs to the solution. In this branch, we return (G,H, k,W ∪ {v}, R, C).397

In one branch when v belongs to the solution, k decreases by 1, and η and |C| do not change.398

Hence, µ decreases by 1. In other branch when v is moved to W , number of components in399

η decreases by at least one, and k and |C| do not change. Therefore, µ decreases by at least400

1. The resulting branching vector for the above branching rule is (1, 1).401

If Branching Rule 1 is not applicable, then each v ∈ V (G) \W has at most one neighbor402

(in G) in the set W . Moreover, since Reduction Rule 4 is not applicable, each leaf in G−W403

has a neighbor in W .404

In the following, we introduce some notations, which will be used in the description of405

our branching rules. Recall that G−W is a forest. Consider a connected component T in406

G−W . A path Puv from a vertex u to a vertex v in T is nice if u and v are of degree at407

least 2 in G, all internal vertices (if they exist) of Puv are of degree exactly 2 in G, and v is a408

leaf in T . In the following, we state an easy proposition, which will be used in the branching409

rules that we design.410

I Proposition 1. Let (G,H, k,W,R, C) be an instance of F-DCF-FVS, where none of411

Reduction Rule 1 to 9 or Branching Rule 1 apply. Then there are vertices u, v ∈ V (G) \W ,412

such that the unique path Puv in G−W is a nice path.413

Consider u, v ∈ V (G)\W , for which there is a nice path Puv in T , where T is a connected414

component of G−W . Since Reduction Rule 4 is not applicable, either u has a neighbor in415

W , or u has degree at least 2 in T . From the above discussions, together with Proposition 1,416

we design the remaining branching rules used by the algorithm. We note that the branching417

rules that we describe next is similar to the one given in [3].418
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I Branching Rule 2. Let v ∈ V (G) \W be a leaf in G[V (G) \W ] for which the following419

holds. There is u ∈ V (G) \W , such that NG(u) ∩W 6= ∅ and there is a nice path Puv from420

u to v in G[V (G) \W ]. Let C = V (Puv) \ {u}, u′ and v′ be the neighbors (in G) of u and v421

in W , respectively. Observe that since Reduction Rule 9 is not applicable, we have u, v /∈ R.422

We further consider the following cases, based on whether or not u′ and v′ are in the same423

connected component of G[W ].424

Case 2.A. u′ and v′ are in the same connected component of G[W ]. In this case, G[V (Puv)∪W ]425

contains exactly one cycle, and this cycle contains all vertices of V (Puv) (consecutively).426

Since vertices in W cannot be part of any solution, either u belongs to the solution or a427

vertex from C belongs to the solution. Moreover, any cycle in G containing v must contain428

all vertices in V (Puv), consecutively. This leads to the following branching rule.429

(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u}, k − 1,W,R ∪430

NH(u), C).431

(ii) u does not belong to the solution. In this branch, we return (G−C,H, k,W,R, C∪{C}).432

In the first branch k decreases by one, and η and |C| do not change. Therefore, µ decreases433

by 1. On the second branch |C| increases by 1, and k and η do not change, and therefore, µ434

decreases by 1. The resulting branching vector for the above branching rule is (1, 1).435

Case 2.B. u′ and v′ are in different connected component of G[W ]. In this case, we branch as436

follows.437

(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u},W, k − 1, R ∪438

NH(u), C).439

(ii) A vertex from C is in the solution. In this branch, we return (G−C,H, k,W,R, C∪{C}).440

(iii) No vertex in {u} ∪ C is in the solution. In this branch, we add all vertices in {u} ∪ C441

to W . That is, we return (G,H, k,W ∪ ({u} ∪ C), R \ ({u} ∪ C), C).442

In the first branch k decreases by one, and η and |C| do not change. Therefore, µ decreases443

by 1. On the second branch |C| increases by 1, and k and η do not change, and therefore, µ444

decreases by 1. In the third branch, η decreases by one, and k and |C| do not change. The445

resulting branching vector for the above branching rule is (1, 1, 1).446

I Branching Rule 3. There is u ∈ V (G) \W which has (at least) two nice paths, say Puv1 and447

Puv2 to leaves v1 and v2 (in G−W ). Let C1 = V (Puv1) \ {u} and C2 = V (Puv2) \ {u}. We448

further consider the following cases depending on whether or not v1 and v2 have neighbors449

(in G) in the same connected component of G[W ] and u ∈ R.450

Case 3.A. v1 and v2 have neighbors (in G) in the same connected component of G[W ] and451

u ∈ R. In this case, G[W ∪ {u} ∪C1 ∪C2] contains (at least) one cycle, and u cannot belong452

to any solution. Therefore, we branch as follows.453

(i) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R, C∪454

{C1}).455

(ii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R, C∪456

{C2}).457

Notice that in both the branches µ decreases by 1, and therefore, the resulting branching458

vector is (1, 1).459

Case 3.B. v1 and v2 have neighbors (in G) in the same connected component of G[W ] and460

u /∈ R. In this case, G[W ∪{u}∪C1 ∪C2] contains (at least) one cycle. We branch as follows.461

(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u}, k − 1,W,R ∪462

NH(u), C).463

(ii) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R, C∪464

{C1}).465
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(iii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R, C∪466

{C2}).467

Notice that in all the three branches µ decreases by 1, and therefore, the resulting branching468

vector is (1, 1, 1).469

Case 3.C. If v1 and v2 have neighbors in different connected components of G[W ] and u ∈ R.470

In this case, we branch as follows.471

(i) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R, C∪472

{C1}).473

(ii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R, C∪474

{C2}).475

(iii) No vertex from C1 ∪ C2 belongs to the solution. In this case, we add all vertices in476

{u}∪C1∪C2 to W . That is, the resulting instance is (G,H, k,W ∪ ({u}∪C1∪C2), R \477

({u} ∪ C1 ∪ C2), C).478

Notice that in all the three branches µ decreases by 1, and therefore, the resulting branching479

vector is (1, 1, 1).480

Case 3.D. If v1 and v2 have neighbors in different connected components of G[W ] and u /∈ R.481

In this case, we branch as follows.482

(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u}, k − 1,W,R ∪483

NH(u), C).484

(ii) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R, C∪485

{C1}).486

(iii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R, C∪487

{C2}).488

(iv) No vertex from {u} ∪ C1 ∪ C2 belongs to the solution. In this case, we add all vertices489

in {u} ∪ C1 ∪ C2 to W . That is, the resulting instance is (G,H, k,W ∪ ({u} ∪ C1 ∪490

C2), R \ ({u} ∪ C1 ∪ C2), C).491

Notice that in all the four branches µ decreases by 1, and therefore, the resulting branching492

vector is (1, 1, 1, 1).493

This completes the description of the algorithm. We are now ready to prove Theorem 7.494

Proof of Theorem 7. Let I = (G,H, k,W,R, C) be an instance of F-DCF-FVS, and n be495

the (total) number of vertices in G and H. We prove the correctness of our algorithm by496

induction on µ.497

When µ ≤ 0, then Reduction Rule 1 or Reduction Rule 2, correctly resolve the given498

instance of F-DCF-FVS. This forms the base case of our induction. For the induction499

hypothesis, we assume that for some δ ∈ N, for each µ ≤ δ, the algorithm can correctly500

resolve the instance. The algorithm either applies one of Reduction Rule 1 to 9 or one of501

Branching Rule 1 to 3. Proposition 10 implies that either one of Reduction Rule 1 to 9502

or Branching Rule 1 is applicable, or one of Branching Rule 2 to 3 is applicable. Each of503

the reduction rules are safe, they do not increase the measure, and can be applied only504

polynomially many times. Each of our branching rules are exhaustive, and in each of the505

branches, the measure strictly decreases. If we apply the reduction rules (exhaustively),506

either we completely resolve the instance correctly, or eventually apply a branching rule (in507

polynomial number of application of reduction rules). If one of the branching rules apply,508

then the measure strictly decreases, and then the induction hypothesis implies the correctness509

of the algorithm. This concludes the proof of correctness of the algorithm.510

In the following, we prove the claimed running time bound for the algorithm for F -DCF-511

FVS. We note that the worst case branching vector is (1, 1, 1, 1) (Branching Rule 3.D). And,512
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whenever the measure drops below zero, we immediately resolve the instance using one of513

our reduction rules in time bounded by f(k) · nO(1). The time required to execute any of the514

reduction rules is bounded by f(k) · nO(1). From the above discussions, the running time of515

our algorithm is bounded by the following expression.516

T (µ, n) ≤ 4T (µ− 1, n) + f(µ)nO(1)

From the above expression, we obtain that the running time of our algorithm is bounded517

by O(4kf(k) · nO(1)). This concludes the proof. J518

5 FPT Algorithm for Ki,j-free+Cluster IS519

In this section, we give an FPT algorithm forKi,j-free+Cluster IS, which is the F+Cluster520

IS where F is family of Ki,j-free graphs. Here, i, j ∈ N, 1 ≤ i ≤ j. In the following we521

consider a (fixed) family of Ki,j-free graphs. To design an FPT algorithm for F+Cluster522

IS, we define another problem called Large Ki,j-free+Cluster IS. The problem Large523

Ki,j-free+Cluster IS is formally defined below.524

Large Ki,j-free+Cluster IS Parameter: k

Input: A Ki,j-free graph G, a cluster graph H (G and H are on the same vertex set),
and an integer k, such that the following conditions are satisfied: 1) H has exactly k
connected components, and 2) each connected component of H has at least kk vertices.
Question: Is there a set S ⊆ V (G) of size k such that S is an independent set in both
G and in H?

525

In Section 5.1, we design a polynomial time algorithm for the problem Large Ki,j-526

free+Cluster IS. In the rest of this section, we show how to use the polynomial time al-527

gorithm for LargeKi,j-free+Cluster IS to obtain an FPT algorithm forKi,j-free+Cluster528

IS.529

I Theorem 11. Ki,j-free+Cluster IS admits an FPT algorithm running in time O(kk2
530

nO(1)), where n is the number of vertices is the input graph.531

Proof. Let (G,H, k) be an instance of Ki,j-free+Cluster IS, and let C = {C1, C2, · · · , Ck}532

be the set of connected components in H. If k ≤ 0, we can correctly resolve the instance533

in polynomial time (by appropriately outputting yes or no answer). Therefore, we assume534

k ≥ 1. If for each C ∈ C, we have |V (C)| ≥ kk, then (G,H, k) is also an instance of Large535

Ki,j-free+Cluster IS, and therefore we resolve it in polynomial time using the algorithm536

for Large Ki,j-free+Cluster IS (Section 5.1). Otherwise, there is C ∈ C, such that537

|V (C)| < kk. Any solution to Ki,j-free+Cluster IS in (G,H, k) must contain exactly one538

vertex from C. Moreover, if a vertex v ∈ V (C) is in the solution, then none of its neighbors539

in G and in H can belong to the solution. Therefore, we branch on vertices in C as follows.540

For each v ∈ V (C), create an instance Iv(G− (NH(v)∪NG(v)), H − (NH(v)∪NG(v)), k− 1)541

of Ki,j-free+Cluster IS. If number of connected components in H − N [C] is less than542

k − 1, then we call such an instance Iv as invalid instance, otherwise the instance is a valid543

instance. Notice that for v ∈ V (C), if Iv is an invalid instance, then v cannot belong to any544

solution. Thus, we branch on valid instances of Iv, for v ∈ V (C). Observe that (G,H, k)545

is a yes instance of Ki,j-free+Cluster IS if and only if there is a valid instance Iv, for546

v ∈ V (C), which is a yes instance of Ki,j-free+Cluster IS. Therefore, we output the OR547

of results obtained by resolving valid instances Iv, for v ∈ V (C).548
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In the above we have designed a recursive algorithm for the problem Ki,j-free+Cluster549

IS. In the following, we prove the correctness and claimed running time bound of the550

algorithm. We show this by induction on the measure µ = k. For µ ≤ 0, the algorithm551

correctly resolve the instance in polynomial time. This forms the base case of our induction552

hypothesis. We assume that the algorithm correctly resolve the instance for each µ ≤ δ,553

for some δ ∈ N. Next, we show that the correctness of the algorithm for µ = δ + 1. We554

assume that k > 0, otherwise, the algorithm correctly outputs the answer. The algorithm555

either correctly resolves the instance in polynomial time using the algorithm for Large556

Ki,j-free+Cluster IS, or applies the branching step. When the algorithm resolves the557

instance in polynomial time using the algorithm for Large Ki,j-free+Cluster IS, then558

the correctness of the algorithm follows from the correctness of the algorithm for Large559

Ki,j-free+Cluster IS. Otherwise, the algorithm applies the branching step. The branching560

is exhaustive, and the measure strictly decreases in each of the branches. Therefore, the561

correctness of the algorithm follows form the induction hypothesis. This completes the proof562

of correctness of the algorithm.563

For the proof of claimed running time notice that the the worst case branching vector is564

is given by the kk vector of all 1s, and at the leaves we resolve the instances in polynomial565

time. Thus, the claimed bound on the running time of the algorithm follows. J566

5.1 Polynomial Time Algorithm for Large Ki,j-free+Cluster IS567

Consider a (fixed) family of Ki,j-free graphs, where 1 ≤ i ≤ j. The goal of this section is to568

design a polynomial time algorithm for Large Ki,j-free+Cluster IS. Let (G,H, k) be an569

instance of Large Ki,j-free+Cluster IS, where G is a Ki,j-free graph and H is a cluster570

graph with k connected components. We assume that k > max{i+ j, 5}, as otherwise, we571

can resolve the instance in polynomial time (using brute-force). Let C = {C1, C2, · · · , Ck}572

be the set of connected components in H, such that |V (C1)| ≥ |V (C2)| ≥ · · · |V (Ck)|.573

We start by stating/proving some lemmata, which will be helpful is designing the574

algorithm.575

I Lemma 12. [4] The number of edges in a Ki,j-free graph are bounded by n2−ε, where576

ε ∈ (0, 1].577

I Lemma 13. Let (G,H, k) be an instance of Large Ki,j-free+Cluster IS. There exists578

v ∈ V (C1), such that for each C ∈ C \ {C1}, we have |NG(v) ∩ C| ≤ 2j|C′|
k .579

Proof. Consider a connected component C ∈ C \ {C1}, and let x = |C1| and y = |C|.580

Furthermore, let E(C1, C) = {uv ∈ E(G) | u ∈ C1, v ∈ C}. In the following, we prove some581

claims which will be used to obtain the proof of the lemma.582

I Claim 14. |E(C1, C)| ≤ jyi + jx.583

Proof. Consider the partition of V (C1) in two parts, namely, C1
h and C1

` , where C1
h = {v ∈584

V (C1) | |NG(v) ∩ V (C)| ≥ i} and C1
` = V (C1) \ C1

h.585

|E(C1, Ck)| =
∑
v∈C1

|NG(v) ∩ V (C)| =
∑
v∈C1

h

|NG(v) ∩ V (C)|+
∑
v∈C1

h

|NG(v) ∩ V (C)|.586

587

By construction of C1
` , we have

∑
v∈C1

`
|NG(v) ∩ V (C)| < ix. In the following, we bound588 ∑

v∈C1
h
|NG(v) ∩ V (C)|. Since G is a Ki,j-free graph, therefore, any set of i vertices in589

V (C) can have at most j − 1 common neighbors (in G) from V (C1), and in particular590

from C1
h. Moreover, every v ∈ C1

h has at least i neighbors in NG(v) ∩ V (C). Therefore,591
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∑
v∈C1

h
|NG(v)∩V (C)| ≤ i(j−1)

(
y
i

)
. Hence, |E(C1, Ck)| ≤ i(j−1)

(
y
i

)
+ix ≤ i(j−1)y

i

i! +ix ≤592

jyi + jx593

J594

Let AdegC1,Ck
denote average degree of vertices in set C1 into set Ck. Formally, AdegC1,Ck

=595

|E(C1,Ck)|
|C1| . We give following upper bound on AdegC1,Ck

.596

I Claim 15. AdegC1,Ck
≤ 2jy

k2597

Proof. Since |E(C1, Ck)| ≤ jyi + jx,598

AdegC1,Ck
≤ j + jyi

x
(1)599

600

Using Lemma 12, we give the following bound on AdegC1,Ck
.601

AdegC1,Ck
≤ (x+ y)2−ε

x
≤ 4x1−ε (2)602

603

To prove the lemma, let us assume the following cases:604

Case 1: x ≥ k2yi−1
605

By substituting x in (1) we get the following bound:606

AdegC1,Ck
≤ j + jy

k2607
608

Since y > k2,609

AdegC1,Ck
≤ 2jy

k2610
611

Case 2: x < k2yi−1
612

By substituting x in (2) we get the following bound:613

AdegC1,Ck
< 4k2(1−ε)y(i−1)(1−ε) <

4k2y

y(2−i)+ε(i−1)614

615

Since y ≥ kk, y(2−i)+ε(i−1) > 2k4

j , thus we have following equation:616

AdegC1,Ck
<

2jy
k2617

618

J619

Let degCk(vC1) denote degree of a vertex v ∈ C1 in Ck. Since AdegC1,Ck
≤ 2jy

k2 , using620

Markov’s Inequality we get following upper bound on the probability that degree of a vertex621

v ∈ C1 in Ck is greater than or equal to 2jy
k .622

P
(
degCk(vC1) ≥ 2jy

k

)
≤ 1
k

623
624

Similarly, we can prove that the probability that degree of a vertex v ∈ C1 in any Cp ∈ C,625

p ∈ {2, 3, . . . , k} is greater than or equal to 2j|Cp|
k is at most 1

k . Using Boole’s inequality, we626

get following upper bound on the probability that degree of a vertex v ∈ C1 is greater than627

or equal to 2j|Cp|
k for at least one Cp.628

P
( ⋃
p∈{2,3,··· ,k}

degCp(vC1) ≥ 2j|Cp|
k

)
≤ 1
k
.(k − 1) < 1629

630

This implies that probability that degree of a vertex v ∈ C1 is less than 2j|Cp|
k in all Cp ∈ C631

is greater than 0. This completes the proof. J J632
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We are now ready to describe our algorithm. Let (G,H, k) be an instance of Ki,j-633

free+Cluster IS such that size of all connected components in H is at least kk then we use634

Algorithm 1 to find independent set S ⊆ V (G) such that S contains exactly one vertex from635

each connected component in H. Let S be initially ∅.

Algorithm 1 Greedy algorithm for F+Cluster IS when size of all clusters is at least kk

1: i = k

2: while i > 0 do
3: Let C1, · · · , Ci be clusters sorted in decreasing order of their size.
4: Delete a vertex v in C1 which satisfy condition in Lemma 13 and add to solution S,

decrease i. Delete C1 and N(v).
5: end while

636

637

I Lemma 16. Algorithm 1 finds solution for F+Cluster IS where F is the family of Ki,j638

free graphs and size of each cluster is at least kk in polynomial time.639

Proof. We first prove the correctness of algorithm using induction on the number of clusters640

in the graph.641

Base case: t = 1. We have exactly one connected component in C say, C1. Since k ≥ 1,642

|C1| ≥ 1, we can pick a vertex in C1 which gives an independent set of G.643

Inductive step: Let us assume that the algorithm returns correct solution for t ≤ d− 1.644

Induction: t = d. Let C1, · · · , Cd be set of connected components sorted in decreasing order.645

By Lemma 13, there exists a vertex v ∈ C1 such that degree of v in any Cp, p ∈ {2, 3, · · · , d},646

is at most 2j|Cp|
d . We delete such vertex v, C1 and N(v) from each Cp ∈ C. Observe that647

from each Cp, p ∈ {2, 3, · · · , d} we have deleted at most 2j|Cp|
d vertices, which are neighbors648

of v. Let C ′p be the cluster after deleting neighbors of v from Cp. It is enough to show that649

|Cp|′ ≥ (d− 1)(d−1).650

|Cp|′ ≥ |Cp| −
2j|Cp|
d

651

652
653

Without loss of generality, let us assume that d > 2j, else we have a polynomial time654

algorithm that runs in time O(n2j). Hence,655

|Cp|′ ≥ |Cp|
(

1− 2j
d

)
656

≥ dd
(

1− 2j
d

)
657

≥ dd−1(d− 2j)658

≥ (d− 1)(d−1)
659

660
661

This proves the correctness of algorithm.662

In the algorithm, at each step we either sort the components on the basis of their size or find663

a vertex of lower degree which can be carried out in polynomial time. Since, the algorithm664

terminates after at most k iterations, Ki,j-free+Cluster IS can be solved in polynomial665

time when size of each cluster is at least kk. J J666
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