
Approximate Counting of k-Paths: Deterministic1

and in Polynomial Space2

Andreas Björklund3

Lund University, Lund, Sweden. andreas.bjorklund@cs.lth.se4

Daniel Lokshtanov5

University of California, Bergen, Santa Barbara, USA. daniello@ucsb.edu6

Saket Saurabh7

The Institute of Mathematical Sciences, HBNI, Chennai, India. saket@imsc.res.in8

Meirav Zehavi9

Ben-Gurion University, Beersheba, Israel. meiravze@bgu.ac.il10

Abstract11

A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2e)kmε−2)-time exponential-12

space algorithm to approximately compute the number of paths on k vertices in a graph G up to13

a multiplicative error of 1± ε. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010]14

gave a deterministic exponential-space algorithm with running time (2e)k+O(log3 k)m logn whenever15

ε−1 = kO(1). Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing16

randomization. Specifically, they gave a randomized O(4kmε−2)-time exponential-space algorithm.17

In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their18

work, and with a novel twist, obtain the following results.19

We present a deterministic 4k+O(
√
k(log2 k+log2 ε−1))m logn-time polynomial-space algorithm. This20

matches the running time of the best known deterministic polynomial-space algorithm for deciding21

whether a given graph G has a path on k vertices.22

Additionally, we present a randomized 4k+O(log k(log k+log ε−1))m logn-time polynomial-space al-23

gorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very24

simple; we only make elementary use of the probabilistic method.25

Thus, the algorithm by Brand et al. runs in time 4k+o(k)m whenever ε−1 = 2o(k), while our26

deterministic and randomized algorithms run in time 4k+o(k)m logn whenever ε−1 = 2o(k
1
4) and27

ε−1 = 2o(k
log k), respectively. Prior to our work, no 2O(k)nO(1)-time polynomial-space algorithm was28

known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence29

it immediately extends to approximate counting of graphs of bounded treewidth; in comparison,30

Brand et al. note that their approach is limited to graphs of bounded pathwidth.31

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability32

Keywords and phrases Parameterized Complexity, Approximate Counting, k-Path33

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2334

Funding Saket Saurabh: This work is supported by the European Research Council (ERC) via grant35

LOPPRE, reference 819416.36

Meirav Zehavi: This work is supported by the Israel Science Foundation individual research grant37

no. 1176/18.38

1 Introduction39

The objective of the #k-Path problem is to compute the number of k-paths—that is, (simple)40

paths on k vertices—in a given graph G. Unfortunately, this problem is #W[1]-hard [21],41

which means that it is unlikely to be solvable in time f(k)nO(1) for any computable function42

f of k. Nevertheless, this problem is long known to admit an FPT-approximation scheme43

© A. Björklund, D. Lokshtanov, S. Saurabh and M. Zehavi;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Approximate Counting of k-Paths

(FPT-AS), that is, an f(k, ε−1)nO(1)-time algorithm that approximately computes the number44

of k-paths in a given graph G up to a multiplicative error of 1± ε. More than 15 years ago,45

Arvind and Raman [7] utilized the classic method of color coding [6] to design a randomized46

exponential-space FPT-AS for #k-Path with running time kO(k)nO(1) whenever ε−1 ≤ kO(k).47

A few years afterwards, the development and use of applications in computational biology to48

detect and analyze network motifs have already become common practice [36, 39, 38, 20, 26].49

Roughly speaking, a network motif is a small pattern whose number of occurrences in a50

given network is substantially larger than its number of occurrences in a random network.51

Due to their tight relation to network motifs, #k-Path and other cases of the #Subgraph52

Isomorphism problem became highly relevant to the study of gene transcription networks,53

protein-protein interaction (PPI) networks, neural networks and social networks [33]. In light54

of these developments, Alon et al. [2] revisited the method of color coding to attain a running55

time whose dependency on k is single-exponential rather than slightly super-exponential.56

Specifically, they designed a simple randomized O((2e)kmε−2)-time exponential-space FPT-57

AS for #k-Path, which they employed to analyze PPI networks of unicellular organisms. In58

particular, their algorithm has running time 2O(k)m whenever ε−1 ≤ 2O(k).59

The first deterministic FPT-AS for #k-Path was found in 2007 by Alon and Gutner [4];60

this algorithm has an exponential space complexity and running time 2O(k log log k)m logn61

whenever ε−1 = 2o(log k). Shortly afterwards, Alon and Gutner [3] improved upon their previ-62

ous work, and designed a deterministic exponential-space FPT-AS for #k-Path with running63

time (2e)k+O(log3 k)m logn whenever ε−1 = kO(1). For close to a decade, this algorithm has64

remained the state-of-the-art. In contrast, during this decade, the k-Path problem (the65

decision version of #k-Path) has seen several improvements that were considered to be66

breakthroughs at their time [15, 28, 9, 11, 23]. In 2016, Koutis and Williams [29] conjectured67

that #k-Path admits an FPT-AS with running time 2knO(1). Recently, at the cost of68

reintroducing randomization, Brand et al. [14] provided a speed-up towards the resolution of69

this conjecture. Specifically, they gave an algebraic randomized O(4kmε−2)-time exponential-70

space algorithm. In the context of Parameterized Complexity in general, and the k-Path71

problem in particular, the power of randomization is an issue of wide interest [1]. Specifically72

for the k-Path problem, an algebraic randomized 2knO(1)-time algorithm has been found73

already a decade ago [40], and since then, the existence of a deterministic algorithm that74

exhibits the same time complexity has been repeatedly posed as a major open problem in75

the field. Both Koutis and Williams conjectured this question to have an affirmative answer76

in several venues [40, 30, 29]. Clearly, this question is simpler than the one of the design of a77

deterministic FPT-AS for #k-Path with running time 2knO(1).78

In this article, we modify the foundation of the work of Alon and Gutner [4, 3], and with79

a novel twist, obtain the following results (see Theorem 21 and Corollary 10).80

First, we present a randomized 4k+O(log k(log k+log ε−1))m logn-time polynomial-space al-81

gorithm. While Brand et al. [14] make non-trivial use of exterior algebra, our randomized82

algorithm is very simple: we only make elementary use of the probabilistic method.183

Additionally, we present a deterministic 4k+O(
√
k(log2 k+log2 ε−1))m logn-time polynomial-84

space algorithm. In particular, without compromising time complexity, we attain both the85

properties of having a polynomial space complexity and being deterministic simultaneously.86

In fact, even though we deal with #k-Path, the running time of our algorithm matches87

the best known running time of a deterministic polynomial-space algorithm for k-Path88

(the decision version of #k-Path) [15].89

1 Of course, simplicity is a subjective matter, which may depend on the background of the reader.

A. Björklund, D. Lokshtanov, S. Saurabh and M. Zehavi 23:3

Thus, the algorithm by Brand et al. [14] runs in time 4k+o(k)m whenever ε−1 = 2o(k),90

while our deterministic and randomized algorithms run in time 4k+o(k)m logn whenever91

ε−1 = 2o(k
1
4) and ε−1 = 2o(k

log k), respectively.92

Prior to our work, no cknO(1)-time polynomial-space (even randomized) algorithm for93

#k-Path was known for any constant c. The design of polynomial-space parameterized94

algorithms is an active research area in Parameterized Complexity. Even (sometimes) at a95

notable compromise of time complexity, the property of having polynomial space complexity96

is sought (see, e.g., [22, 32, 31, 8, 25]). Indeed, algorithms with high space complexity are97

in practice more constrained because the amount of memory is not easily scaled beyond98

hardware constraints whereas time complexity can be alleviated by allowing for more time99

for the algorithm to finish. Furthermore, algorithms with low space complexity are typically100

easier to parallelize and more cache-friendly.101

Additionally, our approach is embeddable in the classic framework of divide-and-color,102

hence it immediately extends to approximate counting of graphs of bounded treewidth;in103

comparison, Brand et al. [14] note that their approach is limited to graphs of bounded104

pathwidth. Similarly, we can approximately count various other objects such as q-dimensional105

p-matchings, q-set p-packings, graph motifs, and more:106

I Theorem 1. The following problems admit deterministic 4k+O(
√
k(log2 k+log2 1

ε))nO(1)-time107

(resp. randomized 4k+O(log2 k)(1
ε)
O(log k)nO(1)-time) FPT-ASs with polynomial space com-108

plexity: (i) #Subgraph Isomorphism for k-vertex subgraphs of treewidth O(1); (ii) #q-109

Dimensional p-Matching with k = (q − 1)p; (iii) #q-Set p-Packing with k = qp; (iv)110

#Graph Motif and #Module Motif with k = 2p where p is the motif size; (v) #p-111

Internal Out-Branching with k = 2p; (vi) #Partial Cover for k-element solutions.2112

Towards the design of our algorithms, our first conceptual contribution is the introduction113

of the notion of an approximate parsimonious splitter. While a randomized construction of114

such an object is simple, we do not know how (or whether it is even possible) to compute it115

deterministically within the size and time bounds that we require. We believe that this gap116

in knowledge of derandomization is the main reason why, for close to a decade, no progress117

has been made upon the result by Alon and Gutner [4, 3]. Here, our second conceptual118

contribution comes into play. We show that for recursive procedures, a weaker object that119

can only split so called nice sets suffices, since the recursion itself can keep track on the120

“niceness” of sets. We believe that both the concept of approximate parsimonious splitters121

as well as our approach of how to weaken a randomized object (to efficiently compute it122

deterministically) at the cost of simple bookkeeping might find further applications in the123

future. Our ideas and methods are discussed in more detail in Section 3.124

Related Work. The algorithms by Alon et al. [2] and Alon and Gutner [4, 3], just like our125

algorithms, extend to approximate counting of graphs of bounded treewidth. (This remark126

is also made by Alon and Gutner [4, 3].) In what follows, we briefly review works related to127

exact counting and decision from the viewpoint of Parameterized Complexity. Since these128

topics are not the focus of our work, the survey is illustrative rather than comprehensive.129

The problem of counting the number of subgraphs of a graph G that are isomorphic to a130

graph H—that is, #Subgraph Isomorphism with Pattern H—admits a dichotomy: If131

2 For problems (i) and (iv), the basis 4 is replaced by the basis 4.001 (or, more precisely, 4 + δ for any
fixed constant δ > 0).

CVIT 2016

23:4 Approximate Counting of k-Paths

Table 1 State-of-the-art of #k-Path and k-Path.

Ref. Time Counting Deterministic Poly. Space Extension

[15] 4k+o(k)nO(1) No Yes Yes Treewidth O(1)
[43] 2.597knO(1) No Yes No Treewidth O(1)
[40] 2knO(1) No No Yes Treewidth O(1)
[11] 1.657knO(1) No No Yes No Extension
[3] (2e)k+o(k)nO(1) Yes Yes No Treewidth O(1)
[14] 4knO(1) Yes No No Pathwidth O(1)

This Paper 4k+o(k)nO(1) Yes Yes Yes Treewidth O(1)

the vertex cover number of H is bounded, then it is FPT [41], and otherwise it is #W[1]-132

hard [18]. The #W[1]-hardness of #k-Path, originally shown by Flum and Grohe [21],133

follows from this dichotomy. By using the “meet in the middle” approach, the #k-Path134

problem and, more generally, #Subgraph Isomorphism with Pattern H where H has135

bounded pathwidth and k vertices, was shown to admit an n k2 +O(1)-time algorithm [10]. Later,136

Björklund et al. [13] showed that k
2 is not a barrier (which was considered to be the case137

at that time) by designing an n0.455k+O(1)-time algorithm. Recently, a breakthrough that138

resulted in substantially faster running times took place: Curticapean et al. [17] showed that139

#Subgraph Isomorphism with Pattern H is solvable in time `O(`)n0.174` where ` is the140

number of edges in H; in particular, this algorithm solves #k-Path in time kO(k)n0.174k.141

The k-Path problem (on both directed and undirected graphs) is among the most142

extensively studied parameterized problems [19, 24]. After a long sequence of works in143

the past three decades, the current best known parameterized algorithms for k-Path have144

running times 1.657knO(1) (randomized, polynomial space, undirected only) [11, 9] (extended145

in [12]), 2knO(1) (randomized, polynomial space) [40], 2.597knO(1) (deterministic, exponential146

space) [43, 23, 37], and 4k+o(k)nO(1) (deterministic, polynomial space) [15]. The 1.657knO(1)-147

time algorithm of Björklund et al. [11, 9] crucially relies on the symmetric structure of148

undirected k-paths. However, all other algorithms above directly extend to the detection149

of subgraphs of bounded treewidth. In particular, if the running time of the algorithm is150

cknO(1), then the running time of the extension is cknt+O(1) where t is the treewidth of the151

sought graph. To ensure that the constant c remains the same when dealing with the two152

deterministic algorithms (of [43, 23, 37] and [15]), the “division into small trees” trick by153

Fomin et al. [23] can be used; for the randomized algorithm (of [40]), no trick is required.154

2 Preliminaries155

For the sake of readability, we ignore ceiling and floor signs. Given a graph G, we let V (G)156

and E(G) denote the vertex set and edge set of G, respectively. For a positive integer k, a157

k-path in G is a (simple) path on k vertices in G; in case G is directed, the path is directed158

as well. We let n = |V (G)| and m = |E(G)|. For a subset U ⊆ V (G), G[U] denotes the159

subgraph of U induced by G, and G− U = G[V (G) \ U].160

For a function f : A→ B and subsets A′ ⊆ A and B′ ⊆ B, define f(A′) = {f(a) : a ∈ A′}161

and f−1(B′) = {a ∈ A : f(a) ∈ B′}. For two functions f : A → B and g : B → C, the162

notation g ◦ f : A→ C refers to function composition. For two tuples X = (x1, x2, . . . , xp)163

and Y = (y1, y2, . . . , yq), denote their concatenation by X �Y = (x1, x2, . . . , xp, y1, y2, . . . , yq).164

By standard Chernoff bounds, we have the following bounds.165

A. Björklund, D. Lokshtanov, S. Saurabh and M. Zehavi 23:5

I Proposition 2 ([34]). Let X1, . . . , Xn be independent random variables, each assigned a166

value in {0, 1}. Let X =
∑n
i=1 Xi, and let µ = E[X] denote the expected value of X. Then, for167

any 0 ≤ δ ≤ 1, it holds that (i) Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ

2 , and (ii) Pr(X ≥ (1 + δ)µ) ≤ e−
δ2µ

3 .168

Universal Families. For any k ∈ N, a k-set is a set of size k. Given a universe U , denote169 (
U
k

)
= {S ⊆ U : |S| = k}. Given a family F over U and two subsets A,B ⊆ U , denote170

F [A,B] = {F ∈ F : A ⊆ F,B ∩F = ∅}. Next, we present the definition of a universal family.171

I Definition 3 (Universal Family [35, 23]). Let n, p, q ∈ N. A family F of sets over a universe172

U of size n is an (n, p, q)-universal family if for each pair of disjoint sets A ∈
(
U
p

)
and173

B ∈
(
U
q

)
, there is a set F ∈ F that contains A and is disjoint from B, that is, F [A,B] 6= ∅.174

In the classic setting by Naor et al. [35], p = q. However, as shown by Fomin et al. [23],175

cases where p 6= q are also of interest. Specifically, the following well-known proposition176

asserts that small representative families can be computed efficiently.177

I Proposition 4 ([35, 23]). Let n, p, q ∈ N, and k = p + q. Let U be a universe of size n.178

Then, an (n, p, q)-universal family F of sets over U of size O(
(
k
p

)
logn) can be computed179

with success probability 1 − 1/n in time O(
(
k
p

)
n logn). Additionally, an (n, p, q)-universal180

family F of sets over U of size
(
k
p

)
2o(k) logn can be computed (deterministically) in time181 (

k
p

)
2o(k)n logn. Both computations can enumerate the sets in F with polynomial delay.182

Observe that the constructions above are essentially optimal since any (n, p, q)-universal183

family must be of size at least
(
k
p

)
. We later extend Definition 3 to be approximately184

parsimonious, and show how to compute approximate parsimonious universal families.185

3 Overview of Our Ideas and Methods186

In this section, we discuss our main ideas and methods. Additionally, we present a simplified187

version of one of our applications in detail.188

3.1 Approx. Parsimonious Universal Family: Randomized Construction189

For any pair of disjoint sets A ∈
(
U
p

)
and B ∈

(
U
q

)
, Definition 3 guarantees that F [A,B] 6= ∅.190

However, the number of sets in F [A,B] can be arbitrary. In our applications, the number of191

sets in F [A,B] will be tightly linked to the number of solutions whose “first half” is in A192

and whose “second half” is in B; thus, to avoid over-counting some solutions, we need all193

families F [·, ·] to be roughly of the same size. For this purpose, let us first extend Definition194

3 to be approximately parsimonious.195

I Definition 5 (δ-Parsimonious Universal Family). Let n, p, q ∈ N and 0 < δ < 1. Denote196

k = p+q. A family F of sets over a universe U of size n is a δ-parsimonious (n, p, q)-universal197

family if there exists T = T (n, p, q, δ) > 0 such that for each pair of disjoint sets A ∈
(
U
p

)
198

and B ∈
(
U
q

)
, it holds that (1− δ) · T ≤ |F [A,B]| ≤ (1 + δ) · T .199

We call the value T above a correction factor, and suppose it to be given along with200

the family F . Our randomized computation of a δ-parsimonious (n, p, q)-universal family is201

based on the probabilistic method, inspired by [35, 23]. Specifically, we prove the following.202

I Theorem 6. Let n, p, q ∈ N and 0 < δ < 1, and denote k = p + q. Let U be a203

universe of size n. A δ-parsimonious (n, p, q)-universal family F of sets over U of size204

CVIT 2016

23:6 Approximate Counting of k-Paths

t = O
(
kk

ppqq
· k logn · 1

δ2

)
,3 can be computed with success probability at least 1− 1/n100k in205

time O(t · n). In particular, the sets in F can be enumerated with delay O(n).206

We note that the choice of 100 is arbitrary; it can be replaced by the choice of any fixed207

constant c. Crucially, we gain the extra property of being δ-parsimonious while essentially208

having the same time complexity and upper bound on the size of the output as in the209

non-parsimonious construction.210

3.2 Warm Up Application: Simple Randomized FPT-AS for #k-Path211

Before we delve into more technical and less intuitive definitions related to our deterministic212

construction, we find it important to understand the relation between Definition 5 and213

#k-Path. For this purpose, we present a simple randomized polynomial-space FPT-AS for214

#k-Path. The dependency of the time complexity on n is made almost linear in Section215

3.3). While the improved algorithm is still short and simple, it is somewhat less intuitive and216

hence presented separately later. For the sake of illustration, suppose that G is undirected.217

Algorithm. Let ε̂ = ln(1 + ε) and ε′ = ε̂/(k − 1). Our algorithm is a recursive algorithm,218

denoted by A. Each call to A is of the form A(G′, k′) where G′ is an induced subgraph of G219

and k′ ∈ {1, . . . , k}. For all u, v ∈ V (G′), the call A(G′, k′) should output an integer au,v220

that approximates the number of k′-paths with endpoints u and v in G′. The initial call to221

the algorithm is with G′ = G and k′ = k, and the final output is (
∑
u,v∈V (G) au,v)/2.222

We turn to describe a call A(G′, k′). In the basis, where k′ = 1, we return av,v = 1 for223

all v ∈ V (G′), and au,v = 0 for all u, v ∈ V (G′) (with u 6= v).224

Now, suppose that k′ ≥ 2. By Theorem 6, for an ε′-parsimonious (n, k′/2, k′/2)-universal225

family F of sets over V (G), we can enumerate the sets F ∈ F with delay O(n). For each226

set F ∈ F , we proceed as follows. We first perform two recursive calls: (i) we call A with227

(G′[F], k′/2); (ii) we call A with (G′ − F, k′/2). For any u, v ∈ F ∩ V (G′), let bFu,v denote228

the number returned by the first call. Similarly, for any u, v ∈ V (G′) \ F , let cFu,v denote229

the number returned by the second call. Then, for all u ∈ F and v ∈ V (G′) \ F , define230

aFu,v =
∑

{p,q}∈E(G′)
s.t. p∈F,q/∈F

bFu,p · cFq,v.231

Let T be the correction factor of F . After all sets F ∈ F were enumerated, for all232

u, v ∈ V (G′), we output au,v calculated as follows: au,v = 1
T
·

∑
F∈F

s.t. u∈F,v/∈F

aFu,v. Note that we233

do not store all the values aFu,v simultaneously, but we merely store one such value at a time234

and delete it immediately after aFu,v/T is added. This completes the description of A.235

Analysis. The main part of the analysis is done in the proof of the following lemma.236

I Lemma 7. For some fixed constant η > 0, any call A(G′, k′) has polynomial space237

complexity and running time ηlog k′4k′k′log k′(logn)log k′mn2(1
ε′2

)log k′ . Additionally, if all238

constructions of approximate universal families were successful, then for all u, v ∈ V (G′), the239

number au,v returned by A(G′, k′) satisfies (1− ε′)k′−1xu,v ≤ au,v ≤ (1 + ε′)k′−1xu,v where240

xu,v is the number of k′-paths with endpoints u and v in G′.241

3 Note that as p+ q = k, the value kk

ppqq is upper bounded by 2k rather than being of the magnitude of kk.

A. Björklund, D. Lokshtanov, S. Saurabh and M. Zehavi 23:7

Proof. Let k′ = k/2d. We choose η = 10 max{λ, τ}, where λ and τ are fixed constants242

defined later. The proof is by backwards induction of d. In the basis (k′ = 1), the claim243

is trivial. Now, let d ≤ log2 k − 1, and suppose that the claim holds for d + 1. Clearly,244

A(G′, k′) has a polynomial space complexity. By Theorem 6, for a fixed constant λ > 0 (that245

is independent of η),246

|F| ≤ λ · k′
k′

(k′/2)k
′/2(k′/2)k

′/2 · k
′ logn · 1

ε′2
= λ · 2k

′
· k′ logn · 1

ε′2
.247

Moreover, by the inductive hypothesis, for a fixed constant τ > 0, the running time ofA(G′, k′)248

is upper bounded by |F| ·
(

2 · ηlog k′
2 4 k

′
2 (k

′

2)log k′
2 (logn)log k′

2 mn2(1
ε′2

)log k′
2 + τmn2

)
. Note249

that τ is independent of η. By choosing η = 10 max{λ, τ}, this means that the running time250

of A(G′, k′) is upper bounded by251

|F| ·
(

2 · ηlog k′
2 4 k

′
2 (k

′

2)log k′
2 (logn)log k′

2 mn2(1
ε′2

)log k′
2 + τmn2

)
≤ η

102k
′
k′ logn 1

ε′2
·
(

2 · ηlog k′−12k
′
k′

log k′−1(logn)log k′−1mn2(1
ε′2

)log k′−1 + η

10mn
2
)

≤ ηlog k′4k
′
k′

log k′(logn)log k′mn2(1
ε′2

)log k′ .

252

This completes the proof of the first item of the claim.253

Towards the proof of the second item of the claim, suppose that all constructions of254

approximate universal families were successful, and consider some u, v ∈ V (G′). Let xĜp,q255

denote the number of k′/2-paths with endpoints p and q in Ĝ. By the inductive hypothesis,256

we have that257

au,v = 1
T
·

∑
F∈F

s.t. u∈F,v/∈F

aFu,v = 1
T
·

∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

bFu,p · cFq,v

≤ 1
T
·

∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

(1 + ε′) k
′

2 −1xG
′[F]

u,p · (1 + ε′) k
′

2 −1xG
′−F

q,v

= 1
T
· (1 + ε′)k

′−2 ·
∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

xG
′[F]

u,p · xG
′−F

q,v

258

Let Pu,v denote the set of k′-paths in G′ with endpoints u and v. In addition, for any subset259

F ⊆ V (G′), let Pu,v[F] denote the set of paths P ∈ Pu,v where the k′/2 vertices on P closest260

to u (including u) belong to F and the other k′/2 vertices on P do not belong to F . Thus,261

au,v ≤ (1 + ε′)k
′−2 ·

∑
F∈F |Pu,v[F]|

T
.262

Since F is an ε′-parsimonious (n, k′/2, k′/2)-universal family, for any path P ∈ Pu,v it holds263

that the number of sets F ∈ F such that P ∈ Pu,v[F] is upper bounded by (1 + ε′)T . Thus,264

au,v ≤ (1 + ε′)k
′−2 · (1 + ε′)T |Pu,v|

T
= (1 + ε′)k

′−1xu,v.265

Symmetrically, we derive that (1− ε′)k′−1xu,v ≤ au,v. This completes the proof. J266

CVIT 2016

23:8 Approximate Counting of k-Paths

We now conclude the following theorem.267

I Theorem 8. There is a randomized (4k+o(k)mn2 +mn2+o(1))(1
ε)O(log k)-time polynomial-268

space algorithm that, given a graph G, a positive integer k and an accuracy value 0 < ε < 1,269

outputs a number y that (with high probability, say, at least 9/10) satisfies (1− ε)x ≤ y ≤270

(1 + ε)x where x is the number of k-paths in G. In particular, if 1
ε = 2o(k/ log k), then the271

running time is 4k+o(k)mn2 +mn2+o(1).272

Proof. By Lemma 7 with G′ = G and k′ = k, we know that the total running time of A(G, k)273

is bounded by 4k+O(log2 k)(logn)log kmn2(1
ε′)

log k and uses polynomial space. Additionally, if274

all constructions of approximate universal families were successful, then for all u, v ∈ V (G),275

the number au,v computed by A(G, k) satisfies (1− ε′)k−1xu,v ≤ au,v ≤ (1+ ε′)k−1xu,v where276

xu,v is the number of k-paths with endpoints u and v in G.277

If logn ≤ 2
√
k, then (logn)log k ≤ 2o(k). Otherwise, when logn > 2

√
k, it holds that k <278

log2 logn. It follows that 4k+O(log2 k)(logn)log k ≤ 4log2 logn+O(log log logn)(logn)2 log log logn ≤279

nO(log2 logn
logn) ≤ no(1). In addition, by Taylor series ln(1 + x) =

∑∞
n=1(−1)n+1 xn

n , it follows280

that ε/2 ≤ ε − ε2/2 ≤ ln(1 + ε) = ε̂ ≤ ε, which means that (1
ε′)

log k = 2O(log2 k)(1
ε)
O(log k).281

Thus, 4k+O(log2 k)(logn)log kmn2(1
ε′)

log k = (4k+o(k)mn2 +mn2+o(1))(1
ε)O(log k).282

We now claim that with high probability, all constructions of approximate universal283

families were successful. By Theorem 6, the probability that a single construction is successful284

is at least 1− 1/n100k. Thus, the probability that all constructions are successful is at least285

(1− 1/n100k)µ where µ is the number of constructions. Clearly, the number of constructions286

is upper bounded by the running time of A. In turn, we can assume w.l.o.g. that the upper287

bound proven on this running time is, in itself, upper bounded by nk, since otherwise the288

problem can be solved exactly by brute force within it. Thus, µ ≤ nk. From this, we know289

that the probability that all constructions are successful is at least (1− 1/n100k)nk . As n290

grows larger, this value approaches 1. In particular, the success probability can be assumed291

to be at least 9/10 (otherwise n is a fixed constant), which proves our claim.292

Thus, we know that for all u, v ∈ V (G), it holds that (1 − ε′)k−1xu,v ≤ au,v ≤ (1 +293

ε′)k−1xu,v. Substituting ε′ by ε̂, we have that for all u, v ∈ V (G), it holds that (1− ε̂)xuv ≤294

(1− ε̂
k−1)k−1xu,v ≤ au,v ≤ (1+ ε̂

k−1)k−1xu,v ≤ eε̂xu,v. Since (1− ε) ≤ (1− ε̂) and eε̂ = (1+ ε),295

we have that for all u, v ∈ V (G), it holds that (1− ε)xu,v ≤ au,v ≤ (1 + ε)xu,v. Thus,296

y =

 ∑
u,v∈V (G)

au,v

/2 ≤
 ∑
u,v∈V (G)

(1 + ε)xu,v

 /2 = (1 + ε)

 ∑
u,v∈V (G)

xu,v

 /2 = (1+ε)x.297

Symmetrically, we obtain that (1− ε)x ≤ y. This completes the proof. J298

3.3 Improved Randomized FPT-AS for #k-Path299

As our improved randomized FPT-AS is less intuitive, we first discuss the intuition behind it.300

Here, in addition to G′ and k′, every call to the recursive algorithm A is given an assignment301

α′ : V (G) \ V (G′) → N0 of a non-negative integer to each vertex outside G′. Roughly302

speaking, for each vertex v ∈ V (G) \ V (G′), the value α′(v) is an approximation of the303

number of k̂-paths that end at v and are completely contained in G−U for a certain integer304

k̂ ∈ {1, 2, . . . , k − k′} and a subset U ⊆ V (G) that contains V (G′). In particular, given that305

now the goal of each call is to output such an assignment for G − (U \ V (G′) (a precise306

definition of the goal of a call is given in the formal description of the algorithm), we do not307

need to consider every pair of vertices u, v ∈ V (G′) and compute a value au,v; instead, we308

A. Björklund, D. Lokshtanov, S. Saurabh and M. Zehavi 23:9

only compute one value per vertex. Additionally, recall that in the previous algorithm in309

order to compute au,v, we considered every edge {p, q} ∈ E(G′) while computing aFu,v and310

hence divided our task into the computation of k′/2-paths between u and p in one recursive311

call and k′/2-paths between q and u in the other. Here, we do not store the two endpoints of312

paths, but their “middle”. More precisely, the flow of information differs: to compute the313

assignment we need to output in the current call, we perform one recursive call to which the314

assignment α′ is given as input; this call will return an assignment that “handles” the first315

k̂ + k′/2 vertices on the paths being counted, and be sent as input to the second recursive316

call to handle the next k′/2 vertices.317

Algorithm. Let ε̂ = ln(1 + ε) and ε′ = ε̂/(k − 1). We add a new vertex s to G and connect318

it to all vertices in G. Thus, rather than counting the number of k-paths in the former graph319

G, we can count the number of (k + 1)-paths with s as an endpoint in the new graph G. In320

what follows, we focus on this goal.321

Our algorithm is a recursive algorithm, denoted by A. Each call to A is of the form322

A(G′, k′, α′) where G′ is an induced subgraph of G, k′ ∈ {1, . . . , k}, and α′ : V (G)\V (G′)→323

N0 . The call A(G′, k′, α′) should output an assignment α : V (G′)→ N0 with the following324

property: For each vertex v ∈ V (G′), it holds that α(v) approximates the following number:325 ∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

α′(p) · xq,v,326

where xq,v is the number of k′-paths in G′ between q and v.327

The initial call to the algorithm is with G′ = G− {s}, k′ = k, and α′(s) = 1. The final328

output is
∑
v∈V (G)\{s} α(v).329

We turn to describe a call A(G′, k′, α′). In the basis, where k′ = 1, we return an330

assignment α : V (G′)→ N0 defined as follows: For each vertex v ∈ V (G′), define331

α(v) =
∑

u/∈V (G′)
s.t. {u,v}∈E(G)

α′(u).332

Now, suppose that k′ ≥ 2. By Theorem 6, for an ε′-parsimonious (n, k′/2, k′/2)-universal333

family F of sets over V (G), we can enumerate the sets F ∈ F with delay O(n). For each334

set F ∈ F , we proceed as follows. We first recursively call A with (G′[F], k′/2, α′) where335

α′ is extended to assign 0 to every vertex in V (G′) \ F . Let α̂F be the output of this call,336

and extend it to assign 0 to every vertex in V (G) \ V (G′). Then, we recursively call A with337

(G′ − F, k′/2, α̂F). Let αF be the output of this recursive call.338

Let T be the correction factor of F . After all sets F ∈ F were enumerated, the output339

α : V (G′)→ N0 is computed as follows. For all v ∈ V (G′), we calculate340

α(v) =

 ∑
F∈F

s.t. v/∈F

αF (v)

 /T .341

Note that we do not store all the assignments αF simultaneously, but we merely store one342

such assignment at a time and delete it immediately after αF (v)/T , for every v ∈ V (G′), is343

added. This completes the description of A.344

Correctness. The proof of correctness of our algorithm roughly follows the same lines as345

the proof of correctness of Theorem 8. Due to space constraints, we omit the details, and346

conclude this section with the statement of our result.347

CVIT 2016

23:10 Approximate Counting of k-Paths

I Theorem 9. There is a randomized (4k+o(k)m+mno(1))(1
ε)O(log k)-time polynomial-space348

algorithm that, given a graph G, a positive integer k and an accuracy value 0<ε<1, outputs a349

number y that (with high probability) satisfies (1− ε)x ≤ y/2 ≤ (1+ ε)x where x is the number350

of k-paths in G. In particular, if 1
ε = 2o(k/ log k), then the running time is 4k+o(k)mno(1).351

Additionally, we can obtain the following corollary. (This corollary does not follow directly352

from Theorem 9, but requires a simple preliminary step to shrink the universe; due to space353

constraints, the details are omitted.)354

I Corollary 10. There is a randomized 4k+O(log2 k)m logn(1
ε)O(log k)-time polynomial-space355

algorithm that, given a graph G, a positive integer k and an accuracy value 0<ε<1,‘outputs a356

number y that (with high probability) satisfies (1− ε)x ≤ y/2 ≤ (1+ ε)x where x is the number357

of k-paths in G. In particular, if 1
ε = 2o(k/ log k), then the running time is 4k+o(k)m logn.358

3.4 Approx. Parsimonious Universal Family: Deterministic Construction359

We do not know how to deterministically construct small δ-parsimonious universal families.360

Indeed, the best construction that we are aware of is the one based on bipartite Paley graphs361

(see Theorem 11.9 in the book by Jukna [27] and the historical notes behind the result).362

This construction leads to families of size 4k+o(k) for p = q = k
2 , whereas we would like size363

2k+o(k). Instead, we provide an efficient deterministic computation of a small δ-parsimonious364

universal family that is suitable for handling so called “nice pairs”. The crucial point is365

that with respect to our applications, this relaxed construction suffices. In this section, we366

present the definition of this relaxation, its construction and main property. Due to space367

constraints, the proofs of the two lemmas and the theorem stated in this section are omitted.368

To simplify the following definitions, we introduce the following notation. To see the369

intuition behind this notation in the context of applications, throughout this section h can be370

thought of as a function that reduces the size of the universe from n to z, f can be thought371

of as a function that splits the reduced universe into t parts, and p can be thought of as a372

function that tells us that each part has k/t “useful” elements (e.g., vertices of paths to be373

counted in a certain recursive call) among which either pi or (k/t)− pi were “exhausted”.374

I Definition 11. Let n, p, q, t, z ∈ N, and k = p+q. Let U be a universe of size n. A function375

p : {1, 2, . . . , t} → {0, 1, . . . , k/t} such that
∑t
i=1 pi = p, is called (p, q, t)-compatible. When376

p is clear from context, for each i ∈ {1, 2, . . . , t}, denote pi = p(i) and qi = (k/t)− pi.377

A triple (h, f,p) is called (n, p, q, t, z)-compatible if h : U → {1, 2, . . . , z}, f : {1, 2, . . . , z} →378

{1, 2, . . . , t}, and p is (p, q, t)-compatible. (The universe U will be clear from context.)379

We begin by defining what is a nice pair.380

I Definition 12 (Nice Pair). Let n, p, q, t, z ∈ N. Let U be a universe of size n. Let (h, f,p)381

be (n, p, q, t, z)-compatible. A pair (A,B) is nice (with respect to (h, f,p)) if A ∈
(
U
p

)
and382

B ∈
(
U
q

)
are disjoint sets, and the following conditions hold.383

1. The function h is injective when restricted to A ∪B.384

2. For each i ∈ {1, 2, . . . , t}, it holds that |{u ∈ A : f(h(u)) = i}| = pi and |{u ∈ B :385

f(h(u)) = i}| = (k/t)− pi.386

Towards the definition of a δ-parsimonious universal family for nice pairs, we first present387

a weaker definition of this notion where we have a triple (h, f,p) at hand.388

I Definition 13 (Specific δ-Parsimonious Universal Family for Nice Pairs). Let n, p, q, t, z ∈ N.389

Let U be a universe of size n. Let (h, f,p) be (n, p, q, t, z)-compatible. Let 0 < δ < 1.390

A. Björklund, D. Lokshtanov, S. Saurabh and M. Zehavi 23:11

A family F of sets over {1, . . . , z} is a δ-parsimonious (h, f,p)-universal family (for nice391

pairs) if there exists T = T (h, f,p, δ) > 0 such that for every nice pair (A,B), it holds that392

(1− δ) · T ≤ |F [h(A), h(B)]| ≤ (1 + δ) · T .393

Before we show how to extend Definition 13 to the notion useful for applications, we394

argue that small δ-parsimonious (h, f,p)-universal families can be computed “efficiently”.395

I Lemma 14. Let p, q, t, z ∈ N, and denote k = p + q and s = k/t. Let (h, f,p) be396

(n, p, q, t, z)-compatible. Let 0 < δ < 1. A δ-parsimonious (h, f,p)-universal family F of sets397

over {1, . . . , z} of size ` = O
((
k
p

)
· (k · log z · O(1)

δ)2t
)
can be computed in time ` · zs+1sO(1)t.398

In particular, the sets in F can be enumerated with delay zs+1sO(1)t.399

Towards the definition of our general construction, we need to present the definitions of a400

balanced splitter and a balanced hash family. Constructions of such a splitter and a family401

were given by Alon and Gutner [4, 3].402

I Definition 15 (Definition 2.2 [4]). Suppose that 1 ≤ ` ≤ k ≤ n and 0 < ε < 1, and let H be403

a family of functions from {1, . . . , n} to {1, . . . , `}. For a set S ∈
({1,...,n}

k

)
, let splitH(S)404

denote the number of functions h ∈ H that split H into equal size parts, that is, |h−1(i)∩S| =405

k/`. Then, H is an ε-balanced (n, k, `)-splitter if there exists T = T (n, k, `, ε) > 0 such that406

for every set S ∈
({1,...,n}

k

)
, we have (1− ε)T ≤ splitH(S) ≤ (1− ε)T .407

I Definition 16 (Definition 2.1 [4]). Suppose that 1 ≤ k ≤ ` ≤ n and 0 < ε < 1. A family408

H of functions from {1, . . . , n} to {1, . . . , `} is an (ε, k)-balanced family of hash functions409

if there exists T = T (n, k, `, ε) > 0 such that for every set S ∈
({1,...,n}

k

)
, the number of410

functions in H that are injective when restricted to S is between (1− ε)T and (1 + ε)T .411

We are now ready to define our general derandomization tool.412

I Definition 17 ((General) δ-Parsimonious Universal Family for Nice Pairs). Let n, p, q ∈ N413

and 0 < δ < 1, and denote k = p+ q, z = 2k2

ε , t =
√
k, s = k/t =

√
k, and ε = δ/3. Let U414

be a universe of size n. A δ-parsimonious (n, p, q)-universal tuple (for nice pairs) is a tuple415

(H,S, {Fh,f,p}|h∈H,f∈S,p)4 that satisfies the following conditions.416

H is an (ε, k)-balanced family of hash functions from {1, . . . , n} to {1, . . . , z} (with417

correction factor TH).418

S is an ε-balanced (z, k, t)-splitter (with correction factor TS).419

For every hash function h ∈ H, splitter f ∈ S and (p, q, t)-compatible function p, it holds420

that Fh,f,p is a δ-parsimonious (h, f,p)-universal family (with correction factor Tp).421

By enumerating the quadruples of (H,S, {Fh,f,p}|h∈H,f∈S,p), we refer to the enumeration422

of every quadruple (h, f,p, F) such that h ∈ H, f ∈ S and F ∈ Fh,f,p. We remark that423

below, for the sake of brevity, when we write k, z, t, s, ε, TH , TS and Tp, we refer to the424

notations given in Definition 17. Let us now state our construction.425

I Theorem 18. Let n, p, q ∈ N and 0 < δ < 1. Denote k = p+ q. Let U be a universe of size426

n. A δ-parsimonious (n, p, q)-universal tuple (H,S, {Fh,f,p}|h∈H,f∈S,p) with ` quadruples427

can be computed in time kO(1)n logn
δO(1) + ` ·∆. In particular, after preprocessing time kO(1)n logn

δO(1) ,428

the quadruples of (H,S, {Fh,f,p}|h∈H,f∈S,p) can be enumerated with delay ∆. Here,429

` =
(
k

p

)
· 2O(

√
k(log2 k+log2 1

δ)) · logn, and

∆ = 2O(
√
k(log k+log 1

δ)).

430

4 The enumeration is over every (p, q, t)-compatible p.

CVIT 2016

23:12 Approximate Counting of k-Paths

In order to state the property of a δ-parsimonious (n, p, q)-universal tuple that makes it431

useful for applications, we need one last definition.432

I Definition 19. Let n, p, q ∈ N and 0 < δ < 1. Let U be a universe of size n. Furthermore,433

let (H,S, {Fh,f,p}|h∈H,f∈S,p) be a δ-parsimonious (n, p, q)-universal tuple. Finally, let A ∈434 (
U
p

)
and B ∈

(
U
q

)
be disjoint sets. We say that the pair (A,B) fits a quadruple (h, f,p, F)435

of (H,S, {Fh,f,p}|h∈H,f∈S,p) if (A,B) is nice with respect to (h, f,p), and h(A) ⊆ F and436

f ∩ h(B) = ∅.437

Finally, we state the promised property.438

I Lemma 20. Let n, p, q ∈ N and 0 < δ < 1. Let U be a universe of size n. Furthermore,439

let (H,S, {Fh,f,p}|h∈H,f∈S,p) be a δ-parsimonious (n, p, q)-universal tuple. Then, there exist440

T = T (n, p, q, δ) > 0 and for every p that is (p, q, t)-compatible, Tp = Tp(n, p, q, δ) > 0, such441

that for any A ∈
(
U
p

)
and B ∈

(
U
q

)
that are disjoint, the following conditions hold.442

1. The number of triples (h, f,p) with respect to whom (A,B) is nice, where h ∈ H, f ∈ S443

and p is (p, q, t)-compatible, is between (1− δ)T and (1 + δ)T .444

2. For any triple (h, f,p) with respect to whom (A,B) is nice, where h ∈ H, f ∈ S and p445

is (p, q, t)-compatible, the number of quadruples (h, f,p, F) of (H,S, {Fh,f,p}|h∈H,f∈S,p)446

that fit (A,B) is between (1− δ)Tp and (1 + δ)Tp.447

3.5 Deterministic FPT-AS for #k-Path448

Our deterministic FPT-AS builds upon the scheme of our second randomized FPT-AS, but it449

is more technical. Due to space constraints, the full details of the description of the algorithm450

and its proof of correctness is omitted. Here, we only discuss the main idea that underlies451

the design of this algorithm. Like our previous algorithm, this algorithm (denoted by A) is452

recursive. However, in addition to G′, k′ and α′, every call to A is also given two tuples R453

and W. The number of elements in R and W equals the depth d of the current recursive454

call in the recursion tree.455

Roughly speaking, every element in R is a quadruple (hi, fi,pi, σi) where (i) the456

triple (hi, fi,pi) corresponds to the interpretation preceding Definition 11, and (ii) σi ∈457

{left, right} indicates whether we should count paths that consist of pi(j) (in case458

σi = left) or si − pi(j) (in case σi = right) vertices of the j-th part of the reduced459

universe split by fi. Thus, we “keep track” of all triples considered along the current re-460

cursion branch. The reason why we have to store this information is to ensure that, in the461

current recursive call, we only count paths P whose vertex set has the following property:462

when we will return to the i-th recursive call, the partition (A,B) of V (P) where A consists463

of the first k̂ vertices of P (for a certain k̂ ∈ {1, 2, . . . , k} that depends on the location of464

this i-th call in the recursion tree) is nice with respect to (hi, fi,pi), see Definition 12. This465

simple (though perhaps slightly tedious) bookkeeping sidesteps the fact that Lemma 20 only466

suits nice pairs.467

The tuple W is meant to keep track of how many vertices the paths that we currently468

count have used “so far” from the j-th part of the universe split by fi for every choice of469

i and j. For this purpose, W is defined to have the form (w1,w2, . . . ,wd) such that for470

each i ∈ {1, 2, . . . , d}, the following condition holds: For each j ∈ {1, 2, . . . , ti}, if σi = left471

then wi(j) ≤ pi(j), and otherwise wi(j) ≤ si − pi(j). Here, si =
√

(k/2i) is the number of472

vertices the paths that we currently count should use (in total) from each part split by fi.473

Accordingly, the objective of a call A(G′, k′, α′,R,W) is to output an assignment474

α : V (G′) → N0 with the following property: For each vertex v ∈ V (G′), it holds that475

A. Björklund, D. Lokshtanov, S. Saurabh and M. Zehavi 23:13

α(v) approximates
∑

{p,q}∈E(G)
s.t. p/∈V (G′),q∈V (G′)

α′(p) · |PG
′,k′,R,W

q,v |. Roughly speaking, PG′,k′,R,Wq,v is the476

collection of all k′-paths in G′ with endpoints q and v that “comply” with the constraints477

imposed by R and W. (Due to space constraints, the formal definition is omitted.)478

We conclude this section with the formal statement of our main result.479

I Theorem 21. There is a deterministic 4k+O(
√
k(log2 k+log2 1

ε))m logn-time polynomial-space480

algorithm that, given a graph G, a positive integer k and an accuracy value 0 < ε < 1, outputs481

a number y that satisfies (1− ε)x ≤ y/2 ≤ (1 + ε)x where x is the number of k-paths in G.482

In particular, if 1
ε = 2o(k

1
4), then the running time is 4k+o(k)m logn.483

Due to space constraints, the discussion on extensions and other applications is omitted.484

References485

1 Randomization in parameterized complexity. www.dagstuhl.de/de/programm/kalender/486

semhp/?semnr=17041.487

2 Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and Süleyman Cenk488

Sahinalp. Biomolecular network motif counting and discovery by color coding. In Proceed-489

ings 16th International Conference on Intelligent Systems for Molecular Biology (ISMB),490

Toronto, Canada, July 19-23, 2008, pages 241–249, 2008. URL: https://doi.org/10.1093/491

bioinformatics/btn163, doi:10.1093/bioinformatics/btn163.492

3 Noga Alon and Shai Gutner. Balanced hashing, color coding and approximate counting. In493

Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copen-494

hagen, Denmark, September 10-11, 2009, Revised Selected Papers, pages 1–16, 2009. URL:495

https://doi.org/10.1007/978-3-642-11269-0_1, doi:10.1007/978-3-642-11269-0_1.496

4 Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their applications.497

ACM Trans. Algorithms, 6(3):54:1–54:12, 2010. URL: http://doi.acm.org/10.1145/1798596.498

1798607, doi:10.1145/1798596.1798607.499

5 Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition,500

2016.501

6 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995. URL:502

https://doi.org/10.1145/210332.210337, doi:10.1145/210332.210337.503

7 Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some parameterized504

counting problems. In Algorithms and Computation, 13th International Symposium, ISAAC505

2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings, pages 453–464, 2002. URL:506

https://doi.org/10.1007/3-540-36136-7_40, doi:10.1007/3-540-36136-7_40.507

8 André Berger, László Kozma, Matthias Mnich, and Roland Vincze. A time- and space-optimal508

algorithm for the many-visits TSP. In Proceedings of the Thirtieth Annual ACM-SIAM509

Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-510

9, 2019, pages 1770–1782, 2019. URL: https://doi.org/10.1137/1.9781611975482.106,511

doi:10.1137/1.9781611975482.106.512

9 Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput.,513

43(1):280–299, 2014. URL: https://doi.org/10.1137/110839229, doi:10.1137/110839229.514

10 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting paths515

and packings in halves. In Algorithms - ESA 2009, 17th Annual European Symposium,516

Copenhagen, Denmark, September 7-9, 2009. Proceedings, pages 578–586, 2009. URL: https:517

//doi.org/10.1007/978-3-642-04128-0_52, doi:10.1007/978-3-642-04128-0_52.518

11 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves519

for parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017. URL:520

https://doi.org/10.1016/j.jcss.2017.03.003, doi:10.1016/j.jcss.2017.03.003.521

CVIT 2016

www.dagstuhl.de/de/programm/kalender/semhp/?semnr=17041
www.dagstuhl.de/de/programm/kalender/semhp/?semnr=17041
www.dagstuhl.de/de/programm/kalender/semhp/?semnr=17041
https://doi.org/10.1093/bioinformatics/btn163
https://doi.org/10.1093/bioinformatics/btn163
https://doi.org/10.1093/bioinformatics/btn163
http://dx.doi.org/10.1093/bioinformatics/btn163
https://doi.org/10.1007/978-3-642-11269-0_1
http://dx.doi.org/10.1007/978-3-642-11269-0_1
http://doi.acm.org/10.1145/1798596.1798607
http://doi.acm.org/10.1145/1798596.1798607
http://doi.acm.org/10.1145/1798596.1798607
http://dx.doi.org/10.1145/1798596.1798607
https://doi.org/10.1145/210332.210337
http://dx.doi.org/10.1145/210332.210337
https://doi.org/10.1007/3-540-36136-7_40
http://dx.doi.org/10.1007/3-540-36136-7_40
https://doi.org/10.1137/1.9781611975482.106
http://dx.doi.org/10.1137/1.9781611975482.106
https://doi.org/10.1137/110839229
http://dx.doi.org/10.1137/110839229
https://doi.org/10.1007/978-3-642-04128-0_52
https://doi.org/10.1007/978-3-642-04128-0_52
https://doi.org/10.1007/978-3-642-04128-0_52
http://dx.doi.org/10.1007/978-3-642-04128-0_52
https://doi.org/10.1016/j.jcss.2017.03.003
http://dx.doi.org/10.1016/j.jcss.2017.03.003

23:14 Approximate Counting of k-Paths

12 Andreas Björklund, Vikram Kamat, Lukasz Kowalik, and Meirav Zehavi. Spotting trees with522

few leaves. SIAM J. Discrete Math., 31(2):687–713, 2017. URL: https://doi.org/10.1137/523

15M1048975, doi:10.1137/15M1048975.524

13 Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Counting thin subgraphs via packings525

faster than meet-in-the-middle time. ACM Trans. Algorithms, 13(4):48:1–48:26, 2017. URL:526

http://doi.acm.org/10.1145/3125500, doi:10.1145/3125500.527

14 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Proceedings of the 50th528

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,529

USA, June 25-29, 2018, pages 151–164, 2018. URL: http://doi.acm.org/10.1145/3188745.530

3188902, doi:10.1145/3188745.3188902.531

15 J. Chen, J. Kneis, S. Lu, D. Mölle, S. Richter, P. Rossmanith, S. Sze, and F. Zhang. Randomized532

divide-and-conquer: Improved path, matching, and packing algorithms. SIAM Journal on533

Computing, 38(6):2526–2547, 2009.534

16 Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Molle, Stefan Richter, Peter Rossmanith,535

Sing-Hoi Sze, and Fenghui Zhang. Randomized divide-and-conquer: Improved path, matching,536

and packing algorithms. SIAM Journal on Computing, 38(6):2526––2547, 2009.537

17 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for538

counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on539

Theory of Computing, STOC 2017, pages 210–223, New York, NY, USA, 2017. ACM. URL:540

http://doi.acm.org/10.1145/3055399.3055502, doi:10.1145/3055399.3055502.541

18 Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the boundedness542

of the vertex-cover number counts. In 55th IEEE Annual Symposium on Foundations of543

Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 130–139,544

2014. URL: https://doi.org/10.1109/FOCS.2014.22, doi:10.1109/FOCS.2014.22.545

19 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin546

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.547

URL: https://doi.org/10.1007/978-3-319-21275-3, doi:10.1007/978-3-319-21275-3.548

20 Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna, and Roded Sharan. Qnet:549

A tool for querying protein interaction networks. Journal of Computational Biology, 15(7):913–550

925, 2008. URL: https://doi.org/10.1089/cmb.2007.0172, doi:10.1089/cmb.2007.0172.551

21 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM J.552

Comput., 33(4):892–922, 2004.553

22 Fedor V. Fomin, Petteri Kaski, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh.554

Parameterized single-exponential time polynomial space algorithm for steiner tree. In Automata,555

Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,556

July 6-10, 2015, Proceedings, Part I, pages 494–505, 2015. URL: https://doi.org/10.1007/557

978-3-662-47672-7_40, doi:10.1007/978-3-662-47672-7_40.558

23 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation559

of representative families with applications in parameterized and exact algorithms. J. ACM,560

63(4):29:1–29:60, 2016. URL: http://doi.acm.org/10.1145/2886094, doi:10.1145/2886094.561

24 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory562

of Parameterized Preprocessing. Cambridge University Press, 2018.563

25 Gregory Z. Gutin, Felix Reidl, Magnus Wahlström, and Meirav Zehavi. Designing deterministic564

polynomial-space algorithms by color-coding multivariate polynomials. J. Comput. Syst.565

Sci., 95:69–85, 2018. URL: https://doi.org/10.1016/j.jcss.2018.01.004, doi:10.1016/566

j.jcss.2018.01.004.567

26 Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm engineering for color-coding568

with applications to signaling pathway detection. Algorithmica, 52(2):114–132, 2008. URL:569

https://doi.org/10.1007/s00453-007-9008-7, doi:10.1007/s00453-007-9008-7.570

27 Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science. Springer571

Publishing Company, Incorporated, 1st edition, 2010.572

https://doi.org/10.1137/15M1048975
https://doi.org/10.1137/15M1048975
https://doi.org/10.1137/15M1048975
http://dx.doi.org/10.1137/15M1048975
http://doi.acm.org/10.1145/3125500
http://dx.doi.org/10.1145/3125500
http://doi.acm.org/10.1145/3188745.3188902
http://doi.acm.org/10.1145/3188745.3188902
http://doi.acm.org/10.1145/3188745.3188902
http://dx.doi.org/10.1145/3188745.3188902
http://doi.acm.org/10.1145/3055399.3055502
http://dx.doi.org/10.1145/3055399.3055502
https://doi.org/10.1109/FOCS.2014.22
http://dx.doi.org/10.1109/FOCS.2014.22
https://doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1089/cmb.2007.0172
http://dx.doi.org/10.1089/cmb.2007.0172
https://doi.org/10.1007/978-3-662-47672-7_40
https://doi.org/10.1007/978-3-662-47672-7_40
https://doi.org/10.1007/978-3-662-47672-7_40
http://dx.doi.org/10.1007/978-3-662-47672-7_40
http://doi.acm.org/10.1145/2886094
http://dx.doi.org/10.1145/2886094
https://doi.org/10.1016/j.jcss.2018.01.004
http://dx.doi.org/10.1016/j.jcss.2018.01.004
http://dx.doi.org/10.1016/j.jcss.2018.01.004
http://dx.doi.org/10.1016/j.jcss.2018.01.004
https://doi.org/10.1007/s00453-007-9008-7
http://dx.doi.org/10.1007/s00453-007-9008-7

A. Björklund, D. Lokshtanov, S. Saurabh and M. Zehavi 23:15

28 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Automata,573

Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Ice-574

land, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity,575

and Games, pages 575–586, 2008. URL: https://doi.org/10.1007/978-3-540-70575-8_47,576

doi:10.1007/978-3-540-70575-8_47.577

29 Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Commun. ACM,578

59(1):98–105, 2016. URL: http://doi.acm.org/10.1145/2742544, doi:10.1145/2742544.579

30 Ioannis Koutis and Ryan Williams. LIMITS and applications of group algebras for580

parameterized problems. ACM Trans. Algorithms, 12(3):31:1–31:18, 2016. URL: http:581

//doi.acm.org/10.1145/2885499, doi:10.1145/2885499.582

31 Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. Planar k-path in subexponen-583

tial time and polynomial space. In Graph-Theoretic Concepts in Computer Science - 37th584

International Workshop, WG 2011, Teplá Monastery, Czech Republic, June 21-24, 2011. Re-585

vised Papers, pages 262–270, 2011. URL: https://doi.org/10.1007/978-3-642-25870-1_24,586

doi:10.1007/978-3-642-25870-1_24.587

32 Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Proceedings of588

the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,589

USA, 5-8 June 2010, pages 321–330, 2010. URL: https://doi.org/10.1145/1806689.1806735,590

doi:10.1145/1806689.1806735.591

33 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-592

work motifs: Simple building blocks of complex networks. Science, 298(5594):824–593

827, 2002. URL: http://science.sciencemag.org/content/298/5594/824, arXiv:http:594

//science.sciencemag.org/content/298/5594/824.full.pdf, doi:10.1126/science.298.595

5594.824.596

34 Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algorithms and597

probabilistic analysis. Cambridge University Press, 2005.598

35 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal599

derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,600

Wisconsin, 23-25 October 1995, pages 182–191, 1995. URL: https://doi.org/10.1109/SFCS.601

1995.492475, doi:10.1109/SFCS.1995.492475.602

36 Jacob Scott, Trey Ideker, Richard M. Karp, and Roded Sharan. Efficient algorithms for603

detecting signaling pathways in protein interaction networks. Journal of Computational604

Biology, 13(2):133–144, 2006. URL: https://doi.org/10.1089/cmb.2006.13.133, doi:10.605

1089/cmb.2006.13.133.606

37 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based approach.607

J. Comput. Syst. Sci., 82(3):488–502, 2016. URL: https://doi.org/10.1016/j.jcss.2015.608

11.008, doi:10.1016/j.jcss.2015.11.008.609

38 Roded Sharan and Trey Ideker. Modeling cellular machinery through biological network610

comparison. nat. biotechnol. 24, 427-433. Nature biotechnology, 24:427–33, 05 2006.611

39 Tomer Shlomi, Daniel Segal, Eytan Ruppin, and Roded Sharan. Qpath: a method for querying612

pathways in a protein-protein interaction network. BMC Bioinformatics, 7:199, 2006. URL:613

https://doi.org/10.1186/1471-2105-7-199, doi:10.1186/1471-2105-7-199.614

40 Ryan Williams. Finding paths of length k in o*(2k) time. Inf. Process. Lett., 109(6):315–318,615

2009. URL: https://doi.org/10.1016/j.ipl.2008.11.004, doi:10.1016/j.ipl.2008.11.616

004.617

41 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted618

subgraphs. SIAM J. Comput., 42(3):831–854, 2013. URL: https://doi.org/10.1137/619

09076619X, doi:10.1137/09076619X.620

42 Gerhard J. Woeginger. Open problems around exact algorithms. Discrete Applied Mathematics,621

156(3):397–405, 2008. URL: https://doi.org/10.1016/j.dam.2007.03.023, doi:10.1016/622

j.dam.2007.03.023.623

CVIT 2016

https://doi.org/10.1007/978-3-540-70575-8_47
http://dx.doi.org/10.1007/978-3-540-70575-8_47
http://doi.acm.org/10.1145/2742544
http://dx.doi.org/10.1145/2742544
http://doi.acm.org/10.1145/2885499
http://doi.acm.org/10.1145/2885499
http://doi.acm.org/10.1145/2885499
http://dx.doi.org/10.1145/2885499
https://doi.org/10.1007/978-3-642-25870-1_24
http://dx.doi.org/10.1007/978-3-642-25870-1_24
https://doi.org/10.1145/1806689.1806735
http://dx.doi.org/10.1145/1806689.1806735
http://science.sciencemag.org/content/298/5594/824
http://arxiv.org/abs/http://science.sciencemag.org/content/298/5594/824.full.pdf
http://arxiv.org/abs/http://science.sciencemag.org/content/298/5594/824.full.pdf
http://arxiv.org/abs/http://science.sciencemag.org/content/298/5594/824.full.pdf
http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1126/science.298.5594.824
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
http://dx.doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1089/cmb.2006.13.133
http://dx.doi.org/10.1089/cmb.2006.13.133
http://dx.doi.org/10.1089/cmb.2006.13.133
http://dx.doi.org/10.1089/cmb.2006.13.133
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1016/j.jcss.2015.11.008
http://dx.doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1186/1471-2105-7-199
http://dx.doi.org/10.1186/1471-2105-7-199
https://doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1137/09076619X
https://doi.org/10.1137/09076619X
https://doi.org/10.1137/09076619X
http://dx.doi.org/10.1137/09076619X
https://doi.org/10.1016/j.dam.2007.03.023
http://dx.doi.org/10.1016/j.dam.2007.03.023
http://dx.doi.org/10.1016/j.dam.2007.03.023
http://dx.doi.org/10.1016/j.dam.2007.03.023

23:16 Approximate Counting of k-Paths

43 Meirav Zehavi. Mixing color coding-related techniques. In Algorithms - ESA 2015 - 23rd624

Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages625

1037–1049, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_86, doi:10.1007/626

978-3-662-48350-3_86.627

https://doi.org/10.1007/978-3-662-48350-3_86
http://dx.doi.org/10.1007/978-3-662-48350-3_86
http://dx.doi.org/10.1007/978-3-662-48350-3_86
http://dx.doi.org/10.1007/978-3-662-48350-3_86

	Introduction
	Preliminaries
	Overview of Our Ideas and Methods
	Approx. Parsimonious Universal Family: Randomized Construction
	Warm Up Application: Simple Randomized FPT-AS for #k-Path
	Improved Randomized FPT-AS for #k-Path
	Approx. Parsimonious Universal Family: Deterministic Construction
	Deterministic FPT-AS for #k-Path

