Approximate Counting of k-Paths: Deterministic and in Polynomial Space

Andreas Björklund

Lund University, Lund, Sweden. andreas.bjorklund@cs.lth.se

Daniel Lokshtanov

- University of California, Bergen, Santa Barbara, USA. daniello@ucsb.edu
- Saket Saurabh
- The Institute of Mathematical Sciences, HBNI, Chennai, India. saket@imsc.res.in

Meirav Zehavi q

Ben-Gurion University, Beersheba, Israel. meiravze@bgu.ac.il 10

– Abstract -11

A few years ago, Alon et al. [ISMB 2008] gave a simple randomized $\mathcal{O}((2e)^k m \epsilon^{-2})$ -time exponential-12 space algorithm to approximately compute the number of paths on k vertices in a graph G up to 13 a multiplicative error of $1 \pm \epsilon$. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010] 14 gave a deterministic exponential-space algorithm with running time $(2e)^{k+\mathcal{O}(\log^3 k)} m \log n$ whenever 15 $\epsilon^{-1} = k^{\mathcal{O}(1)}$. Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing 16 randomization. Specifically, they gave a randomized $\mathcal{O}(4^k m \epsilon^{-2})$ -time exponential-space algorithm. 17 In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their 18 work, and with a novel twist, obtain the following results. 19

- We present a deterministic $4^{k+\mathcal{O}(\sqrt{k}(\log^2 k + \log^2 e^{-1}))} m \log n$ -time polynomial-space algorithm. This 20 matches the running time of the best known deterministic polynomial-space algorithm for deciding 21 whether a given graph G has a path on k vertices. 22
- Additionally, we present a randomized $4^{k+\mathcal{O}(\log k(\log k + \log e^{-1}))} m \log n$ -time polynomial-space al-23 gorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very 24
- simple; we only make elementary use of the probabilistic method. 25 Thus, the algorithm by Brand et al. runs in time $4^{k+o(k)}m$ whenever $\epsilon^{-1} = 2^{o(k)}$, while our 26
- deterministic and randomized algorithms run in time $4^{k+o(k)}m\log n$ whenever $\epsilon^{-1} = 2^{o(k^{\frac{1}{4}})}$ and 27
- $\epsilon^{-1} = 2^{o(\frac{k}{\log k})}$, respectively. Prior to our work, no $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ -time polynomial-space algorithm was 28
- known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence 29

it immediately extends to approximate counting of graphs of bounded *treewidth*; in comparison, 30

Brand et al. note that their approach is limited to graphs of bounded *pathwidth*. 31

- 2012 ACM Subject Classification Theory of computation \rightarrow Fixed parameter tractability 32
- Keywords and phrases Parameterized Complexity, Approximate Counting, k-Path 33
- Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23 34

Funding Saket Saurabh: This work is supported by the European Research Council (ERC) via grant 35

LOPPRE, reference 819416.

Meirav Zehavi: This work is supported by the Israel Science Foundation individual research grant 37 no. 1176/18. 38

1 Introduction 39

The objective of the #k-PATH problem is to compute the number of k-paths—that is, (simple) 40

paths on k vertices—in a given graph G. Unfortunately, this problem is #W[1]-hard [21], 41

- which means that it is unlikely to be solvable in time $f(k)n^{\mathcal{O}(1)}$ for any computable function 42
- f of k. Nevertheless, this problem is long known to admit an FPT-approximation scheme 43

42nd Conference on Very Important Topics (CVIT 2016). Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:16 Leibniz International Proceedings in Informatics LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

23:2 Approximate Counting of *k*-Paths

(FPT-AS), that is, an $f(k, \epsilon^{-1})n^{\mathcal{O}(1)}$ -time algorithm that approximately computes the number 44 of k-paths in a given graph G up to a multiplicative error of $1 \pm \epsilon$. More than 15 years ago, 45 Arvind and Raman [7] utilized the classic method of color coding [6] to design a randomized 46 exponential-space FPT-AS for #k-PATH with running time $k^{\mathcal{O}(k)}n^{\mathcal{O}(1)}$ whenever $\epsilon^{-1} \leq k^{\mathcal{O}(k)}$. 47 A few years afterwards, the development and use of applications in computational biology to 48 detect and analyze network motifs have already become common practice [36, 39, 38, 20, 26]. 49 Roughly speaking, a network motif is a small pattern whose number of occurrences in a 50 given network is substantially larger than its number of occurrences in a random network. 51 Due to their tight relation to network motifs, #k-PATH and other cases of the #SUBGRAPH52 ISOMORPHISM problem became highly relevant to the study of gene transcription networks, 53 protein-protein interaction (PPI) networks, neural networks and social networks [33]. In light 54 of these developments, Alon et al. [2] revisited the method of color coding to attain a running 55 time whose dependency on k is single-exponential rather than slightly super-exponential. 56 Specifically, they designed a simple randomized $\mathcal{O}((2e)^k m \epsilon^{-2})$ -time exponential-space FPT-57 AS for #k-PATH, which they employed to analyze PPI networks of unicellular organisms. In 58 particular, their algorithm has running time $2^{\mathcal{O}(k)}m$ whenever $\epsilon^{-1} \leq 2^{\mathcal{O}(k)}$. 59

The first *deterministic* FPT-AS for #k-PATH was found in 2007 by Alon and Gutner [4]; 60 this algorithm has an exponential space complexity and running time $2^{\mathcal{O}(k \log \log k)} m \log n$ 61 whenever $\epsilon^{-1} = 2^{o(\log k)}$. Shortly afterwards, Alon and Gutner [3] improved upon their previ-62 ous work, and designed a deterministic exponential-space FPT-AS for #k-PATH with running 63 time $(2e)^{k+\mathcal{O}(\log^3 k)} m \log n$ whenever $e^{-1} = k^{\mathcal{O}(1)}$. For close to a decade, this algorithm has 64 remained the state-of-the-art. In contrast, during this decade, the k-PATH problem (the 65 decision version of #k-PATH) has seen several improvements that were considered to be 66 breakthroughs at their time [15, 28, 9, 11, 23]. In 2016, Koutis and Williams [29] conjectured 67 that #k-PATH admits an FPT-AS with running time $2^k n^{\mathcal{O}(1)}$. Recently, at the cost of 68 reintroducing randomization, Brand et al. [14] provided a speed-up towards the resolution of 69 this conjecture. Specifically, they gave an algebraic randomized $\mathcal{O}(4^k m \epsilon^{-2})$ -time exponential-70 space algorithm. In the context of Parameterized Complexity in general, and the k-PATH 71 problem in particular, the power of randomization is an issue of wide interest [1]. Specifically 72 for the k-PATH problem, an algebraic randomized $2^k n^{\mathcal{O}(1)}$ -time algorithm has been found 73 already a decade ago [40], and since then, the existence of a deterministic algorithm that 74 exhibits the same time complexity has been repeatedly posed as a major open problem in 75 the field. Both Koutis and Williams conjectured this question to have an affirmative answer 76 in several venues [40, 30, 29]. Clearly, this question is simpler than the one of the design of a 77 deterministic FPT-AS for #k-PATH with running time $2^k n^{\mathcal{O}(1)}$. 78

⁷⁹ In this article, we modify the foundation of the work of Alon and Gutner [4, 3], and with ⁸⁰ a novel twist, obtain the following results (see Theorem 21 and Corollary 10).

First, we present a randomized $4^{k+\mathcal{O}(\log k(\log k + \log e^{-1}))}m \log n$ -time polynomial-space algorithm. While Brand et al. [14] make non-trivial use of exterior algebra, our randomized algorithm is very simple: we only make elementary use of the probabilistic method.¹

Additionally, we present a deterministic $4^{k+\mathcal{O}(\sqrt{k}(\log^2 k + \log^2 e^{-1}))}m \log n$ -time polynomialspace algorithm. In particular, without compromising time complexity, we attain both the properties of having a polynomial space complexity and being deterministic simultaneously. In fact, even though we deal with #k-PATH, the running time of our algorithm matches the best known running time of a deterministic polynomial-space algorithm for k-PATH (the decision version of #k-PATH) [15].

¹ Of course, simplicity is a subjective matter, which may depend on the background of the reader.

Thus, the algorithm by Brand et al. [14] runs in time $4^{k+o(k)}m$ whenever $\epsilon^{-1} = 2^{o(k)}$, while our deterministic and randomized algorithms run in time $4^{k+o(k)}m\log n$ whenever $\epsilon^{-1} = 2^{o(k^{\frac{1}{4}})}$ and $\epsilon^{-1} = 2^{o(\frac{k}{\log k})}$, respectively.

Prior to our work, no $c^k n^{\mathcal{O}(1)}$ -time polynomial-space (even randomized) algorithm for 93 #k-PATH was known for any constant c. The design of polynomial-space parameterized 94 algorithms is an active research area in Parameterized Complexity. Even (sometimes) at a 95 notable compromise of time complexity, the property of having polynomial space complexity 96 is sought (see, e.g., [22, 32, 31, 8, 25]). Indeed, algorithms with high space complexity are 97 in practice more constrained because the amount of memory is not easily scaled beyond 98 hardware constraints whereas time complexity can be alleviated by allowing for more time 99 for the algorithm to finish. Furthermore, algorithms with low space complexity are typically 100 easier to parallelize and more cache-friendly. 101

Additionally, our approach is embeddable in the classic framework of divide-and-color, hence it immediately extends to approximate counting of graphs of bounded treewidth; comparison, Brand et al. [14] note that their approach is limited to graphs of bounded pathwidth. Similarly, we can approximately count various other objects such as q-dimensional p-matchings, q-set p-packings, graph motifs, and more:

▶ **Theorem 1.** The following problems admit deterministic $4^{k+\mathcal{O}(\sqrt{k}(\log^2 k + \log^2 \frac{1}{\epsilon}))}n^{\mathcal{O}(1)}$ -time (resp. randomized $4^{k+\mathcal{O}(\log^2 k)}(\frac{1}{\epsilon})^{\mathcal{O}(\log k)}n^{\mathcal{O}(1)}$ -time) FPT-ASs with polynomial space complexity: (i) #SUBGRAPH ISOMORPHISM for k-vertex subgraphs of treewidth $\mathcal{O}(1)$; (ii) #q-DIMENSIONAL p-MATCHING with k = (q-1)p; (iii) #q-SET p-PACKING with k = qp; (iv) #GRAPH MOTIF and #MODULE MOTIF with k = 2p where p is the motif size; (v) #p-INTERNAL OUT-BRANCHING with k = 2p; (vi) #PARTIAL COVER for k-element solutions.²

Towards the design of our algorithms, our first conceptual contribution is the introduction 113 of the notion of an *approximate parsimonious splitter*. While a randomized construction of 114 such an object is simple, we do not know how (or whether it is even possible) to compute it 115 deterministically within the size and time bounds that we require. We believe that this gap 116 in knowledge of derandomization is the main reason why, for close to a decade, no progress 117 has been made upon the result by Alon and Gutner [4, 3]. Here, our second conceptual 118 contribution comes into play. We show that for recursive procedures, a weaker object that 119 can only split so called nice sets suffices, since the recursion itself can keep track on the 120 "niceness" of sets. We believe that both the concept of approximate parsimonious splitters 121 as well as our approach of how to weaken a randomized object (to efficiently compute it 122 deterministically) at the cost of simple bookkeeping might find further applications in the 123 future. Our ideas and methods are discussed in more detail in Section 3. 124

Related Work. The algorithms by Alon et al. [2] and Alon and Gutner [4, 3], just like our algorithms, extend to approximate counting of graphs of bounded treewidth. (This remark is also made by Alon and Gutner [4, 3].) In what follows, we briefly review works related to exact counting and decision from the viewpoint of Parameterized Complexity. Since these topics are not the focus of our work, the survey is illustrative rather than comprehensive.

The problem of counting the number of subgraphs of a graph G that are isomorphic to a 131 graph H—that is, #SUBGRAPH ISOMORPHISM WITH PATTERN H—admits a dichotomy: If

² For problems (i) and (iv), the basis 4 is replaced by the basis 4.001 (or, more precisely, $4 + \delta$ for any fixed constant $\delta > 0$).

23:4 Approximate Counting of *k*-Paths

Ref.	Time	Counting	Deterministic	Poly. Space	Extension
[15]	$4^{k+o(k)}n^{\mathcal{O}(1)}$	No	Yes	Yes	Treewidth $\mathcal{O}(1)$
[43]	$2.597^k n^{\mathcal{O}(1)}$	No	Yes	No	Treewidth $\mathcal{O}(1)$
[40]	$2^k n^{\mathcal{O}(1)}$	No	No	Yes	Treewidth $\mathcal{O}(1)$
[11]	$1.657^k n^{\mathcal{O}(1)}$	No	No	Yes	No Extension
[3]	$(2e)^{k+o(k)}n^{\mathcal{O}(1)}$	Yes	Yes	No	Treewidth $\mathcal{O}(1)$
[14]	$4^k n^{\mathcal{O}(1)}$	Yes	No	No	Pathwidth $\mathcal{O}(1)$
This Paper	$4^{k+o(k)}n^{\mathcal{O}(1)}$	Yes	Yes	Yes	Treewidth $\mathcal{O}(1)$

Table 1 State-of-the-art of #k-PATH and k-PATH.

the vertex cover number of H is bounded, then it is FPT [41], and otherwise it is #W[1]-132 hard [18]. The #W[1]-hardness of #k-PATH, originally shown by Flum and Grohe [21], 133 follows from this dichotomy. By using the "meet in the middle" approach, the #k-PATH 134 problem and, more generally, #SUBGRAPH ISOMORPHISM WITH PATTERN H where H has 135 bounded *pathwidth* and k vertices, was shown to admit an $n^{\frac{k}{2}+\mathcal{O}(1)}$ -time algorithm [10]. Later, 136 Björklund et al. [13] showed that $\frac{k}{2}$ is not a barrier (which was considered to be the case 137 at that time) by designing an $n^{0.455k+\mathcal{O}(1)}$ -time algorithm. Recently, a breakthrough that 138 resulted in substantially faster running times took place: Curticapean et al. [17] showed that 139 #SUBGRAPH ISOMORPHISM WITH PATTERN H is solvable in time $\ell^{\mathcal{O}(\ell)} n^{0.174\ell}$ where ℓ is the 140 number of edges in H; in particular, this algorithm solves #k-PATH in time $k^{\mathcal{O}(k)}n^{0.174k}$. 141

The k-PATH problem (on both directed and undirected graphs) is among the most 142 extensively studied parameterized problems [19, 24]. After a long sequence of works in 143 the past three decades, the current best known parameterized algorithms for k-PATH have 144 running times $1.657^k n^{\mathcal{O}(1)}$ (randomized, polynomial space, undirected only) [11, 9] (extended 145 in [12]), $2^k n^{\mathcal{O}(1)}$ (randomized, polynomial space) [40], $2.597^k n^{\mathcal{O}(1)}$ (deterministic, exponential 146 space) [43, 23, 37], and $4^{k+o(k)}n^{\mathcal{O}(1)}$ (deterministic, polynomial space) [15]. The 1.657^kn^{\mathcal{O}(1)}-147 time algorithm of Björklund et al. [11, 9] crucially relies on the symmetric structure of 148 undirected k-paths. However, all other algorithms above directly extend to the detection 149 of subgraphs of bounded treewidth. In particular, if the running time of the algorithm is 150 $c^k n^{\mathcal{O}(1)}$, then the running time of the extension is $c^k n^{t+\mathcal{O}(1)}$ where t is the treewidth of the 151 sought graph. To ensure that the constant c remains the same when dealing with the two 152 deterministic algorithms (of [43, 23, 37] and [15]), the "division into small trees" trick by 153 Fomin et al. [23] can be used; for the randomized algorithm (of [40]), no trick is required. 154

155 2 Preliminaries

For the sake of readability, we ignore ceiling and floor signs. Given a graph G, we let V(G)and E(G) denote the vertex set and edge set of G, respectively. For a positive integer k, a k-path in G is a (simple) path on k vertices in G; in case G is directed, the path is directed as well. We let n = |V(G)| and m = |E(G)|. For a subset $U \subseteq V(G)$, G[U] denotes the subgraph of U induced by G, and $G - U = G[V(G) \setminus U]$.

For a function $f: A \to B$ and subsets $A' \subseteq A$ and $B' \subseteq B$, define $f(A') = \{f(a) : a \in A'\}$ and $f^{-1}(B') = \{a \in A : f(a) \in B'\}$. For two functions $f: A \to B$ and $g: B \to C$, the notation $g \circ f: A \to C$ refers to function composition. For two tuples $X = (x_1, x_2, \dots, x_p)$ and $Y = (y_1, y_2, \dots, y_q)$, denote their concatenation by $X \diamond Y = (x_1, x_2, \dots, x_p, y_1, y_2, \dots, y_q)$. By standard Chernoff bounds, we have the following bounds. ¹⁶⁶ ► Proposition 2 ([34]). Let $X_1, ..., X_n$ be independent random variables, each assigned a ¹⁶⁷ value in {0,1}. Let $X = \sum_{i=1}^{n} X_i$, and let $\mu = E[X]$ denote the expected value of X. Then, for ¹⁶⁸ any $0 \le \delta \le 1$, it holds that (i) $\Pr(X \le (1 - \delta)\mu) \le e^{-\frac{\delta^2 \mu}{2}}$, and (ii) $\Pr(X \ge (1 + \delta)\mu) \le e^{-\frac{\delta^2 \mu}{3}}$.

Universal Families. For any $k \in \mathbb{N}$, a *k*-set is a set of size *k*. Given a universe *U*, denote $\begin{pmatrix} U \\ k \end{pmatrix} = \{S \subseteq U : |S| = k\}$. Given a family \mathcal{F} over *U* and two subsets $A, B \subseteq U$, denote $\mathcal{F}[A, B] = \{F \in \mathcal{F} : A \subseteq F, B \cap F = \emptyset\}$. Next, we present the definition of a universal family.

▶ Definition 3 (Universal Family [35, 23]). Let $n, p, q \in \mathbb{N}$. A family \mathcal{F} of sets over a universe U of size n is an (n, p, q)-universal family if for each pair of disjoint sets $A \in \binom{U}{p}$ and $B \in \binom{U}{q}$, there is a set $F \in \mathcal{F}$ that contains A and is disjoint from B, that is, $\mathcal{F}[A, B] \neq \emptyset$.

In the classic setting by Naor et al. [35], p = q. However, as shown by Fomin et al. [23], cases where $p \neq q$ are also of interest. Specifically, the following well-known proposition asserts that small representative families can be computed efficiently.

▶ Proposition 4 ([35, 23]). Let $n, p, q \in \mathbb{N}$, and k = p + q. Let U be a universe of size n. Then, an (n, p, q)-universal family \mathcal{F} of sets over U of size $\mathcal{O}(\binom{k}{p} \log n)$ can be computed with success probability 1 - 1/n in time $\mathcal{O}(\binom{k}{p} n \log n)$. Additionally, an (n, p, q)-universal family \mathcal{F} of sets over U of size $\binom{k}{p} 2^{o(k)} \log n$ can be computed (deterministically) in time $\binom{k}{p} 2^{o(k)} n \log n$. Both computations can enumerate the sets in \mathcal{F} with polynomial delay.

Observe that the constructions above are essentially optimal since any (n, p, q)-universal family must be of size at least $\binom{k}{p}$. We later extend Definition 3 to be approximately parsimonious, and show how to compute approximate parsimonious universal families.

¹⁸⁶ **3** Overview of Our Ideas and Methods

In this section, we discuss our main ideas and methods. Additionally, we present a simplified
 version of one of our applications in detail.

¹⁸⁹ 3.1 Approx. Parsimonious Universal Family: Randomized Construction

For any pair of disjoint sets $A \in {\binom{U}{p}}$ and $B \in {\binom{U}{q}}$, Definition 3 guarantees that $\mathcal{F}[A, B] \neq \emptyset$. However, the number of sets in $\mathcal{F}[A, B]$ can be arbitrary. In our applications, the number of sets in $\mathcal{F}[A, B]$ will be tightly linked to the number of solutions whose "first half" is in Aand whose "second half" is in B; thus, to avoid over-counting some solutions, we need all families $\mathcal{F}[\cdot, \cdot]$ to be *roughly* of the same size. For this purpose, let us first extend Definition 3 to be approximately parsimonious.

▶ Definition 5 (δ-Parsimonious Universal Family). Let $n, p, q \in \mathbb{N}$ and $0 < \delta < 1$. Denote k = p+q. A family \mathcal{F} of sets over a universe U of size n is a δ-parsimonious (n, p, q)-universal family if there exists $T = T(n, p, q, \delta) > 0$ such that for each pair of disjoint sets $A \in \binom{U}{p}$ and $B \in \binom{U}{q}$, it holds that $(1 - \delta) \cdot T \leq |\mathcal{F}[A, B]| \leq (1 + \delta) \cdot T$.

We call the value T above a *correction factor*, and suppose it to be given along with the family \mathcal{F} . Our randomized computation of a δ -parsimonious (n, p, q)-universal family is based on the probabilistic method, inspired by [35, 23]. Specifically, we prove the following.

Theorem 6. Let $n, p, q \in \mathbb{N}$ and $0 < \delta < 1$, and denote k = p + q. Let U be a universe of size n. A δ -parsimonious (n, p, q)-universal family \mathcal{F} of sets over U of size

 $t = \mathcal{O}\left(\frac{k^k}{p^p q^q} \cdot k \log n \cdot \frac{1}{\delta^2}\right),^3 \text{ can be computed with success probability at least } 1 - 1/n^{100k} \text{ in } 1 - 1/$ 205 time $\mathcal{O}(t \cdot n)$. In particular, the sets in \mathcal{F} can be enumerated with delay $\mathcal{O}(n)$. 206

We note that the choice of 100 is arbitrary; it can be replaced by the choice of any fixed 207 constant c. Crucially, we gain the extra property of being δ -parsimonious while essentially 208 having the same time complexity and upper bound on the size of the output as in the 209 non-parsimonious construction. 210

Warm Up Application: Simple Randomized FPT-AS for #k-PATH 3.2 211

Before we delve into more technical and less intuitive definitions related to our deterministic 212 construction, we find it important to understand the relation between Definition 5 and 213 #k-PATH. For this purpose, we present a simple randomized polynomial-space FPT-AS for 214 #k-PATH. The dependency of the time complexity on n is made almost linear in Section 215 3.3). While the improved algorithm is still short and simple, it is somewhat less intuitive and 216 hence presented separately later. For the sake of illustration, suppose that G is undirected. 217

Algorithm. Let $\hat{\epsilon} = \ln(1+\epsilon)$ and $\epsilon' = \hat{\epsilon}/(k-1)$. Our algorithm is a recursive algorithm, 218 denoted by \mathcal{A} . Each call to \mathcal{A} is of the form $\mathcal{A}(G',k')$ where G' is an induced subgraph of G 219 and $k' \in \{1, \ldots, k\}$. For all $u, v \in V(G')$, the call $\mathcal{A}(G', k')$ should output an integer $a_{u,v}$ 220 that approximates the number of k'-paths with endpoints u and v in G'. The initial call to 221 the algorithm is with G' = G and k' = k, and the final output is $(\sum_{u,v \in V(G)} a_{u,v})/2$. 222

We turn to describe a call $\mathcal{A}(G', k')$. In the basis, where k' = 1, we return $a_{v,v} = 1$ for 223 all $v \in V(G')$, and $a_{u,v} = 0$ for all $u, v \in V(G')$ (with $u \neq v$). 224

Now, suppose that $k' \ge 2$. By Theorem 6, for an ϵ' -parsimonious (n, k'/2, k'/2)-universal 225 family \mathcal{F} of sets over V(G), we can enumerate the sets $F \in \mathcal{F}$ with delay $\mathcal{O}(n)$. For each 226 set $F \in \mathcal{F}$, we proceed as follows. We first perform two recursive calls: (i) we call \mathcal{A} with 227 (G'[F], k'/2); (ii) we call \mathcal{A} with (G' - F, k'/2). For any $u, v \in F \cap V(G')$, let $b_{u,v}^F$ denote 228 the number returned by the first call. Similarly, for any $u, v \in V(G') \setminus F$, let $c_{u,v}^F$ denote 229 the number returned by the second call. Then, for all $u \in F$ and $v \in V(G') \setminus F$, define 230 $a_{u,v}^F = \sum$ $b_{u,p}^F \cdot c_{q,v}^F$. 231

$$\begin{array}{c} {}_{\{p,q\}\in E(G')} \\ {}_{\text{s.t. } p\in F, q\notin F} \\ \text{Let } T \text{ be the correction factor} \end{array}$$

Let T be the correction factor of \mathcal{F} . After all sets $F \in \mathcal{F}$ were enumerated, for all $u, v \in V(G')$, we output $a_{u,v}$ calculated as follows: $a_{u,v} = \frac{1}{T} \cdot \sum_{\substack{F \in \mathcal{F} \\ \text{s.t. } u \in F, v \notin F}} a_{u,v}^F$. Note that we 232 233

do not store all the values $a_{u,v}^F$ simultaneously, but we merely store one such value at a time 234 and delete it immediately after $a_{u,v}^F/T$ is added. This completes the description of \mathcal{A} . 235

Analysis. The main part of the analysis is done in the proof of the following lemma. 236

▶ Lemma 7. For some fixed constant $\eta > 0$, any call $\mathcal{A}(G',k')$ has polynomial space 237 complexity and running time $\eta^{\log k'} 4^{k'} k'^{\log k'} (\log n)^{\log k'} mn^2(\frac{1}{\epsilon'^2})^{\log k'}$. Additionally, if all 238 constructions of approximate universal families were successful, then for all $u, v \in V(G')$, the 239 number $a_{u,v}$ returned by $\mathcal{A}(G',k')$ satisfies $(1-\epsilon')^{k'-1}x_{u,v} \leq a_{u,v} \leq (1+\epsilon')^{k'-1}x_{u,v}$ where 240 $x_{u,v}$ is the number of k'-paths with endpoints u and v in G'. 241

³ Note that as p+q=k, the value $\frac{k^k}{n^p a^q}$ is upper bounded by 2^k rather than being of the magnitude of k^k .

Proof. Let $k' = k/2^d$. We choose $\eta = 10 \max\{\lambda, \tau\}$, where λ and τ are fixed constants 242 defined later. The proof is by backwards induction of d. In the basis (k' = 1), the claim 243 is trivial. Now, let $d \leq \log_2 k - 1$, and suppose that the claim holds for d + 1. Clearly, 244 $\mathcal{A}(G',k')$ has a polynomial space complexity. By Theorem 6, for a fixed constant $\lambda > 0$ (that 245 is independent of η), 246

$$|\mathcal{F}| \le \lambda \cdot \frac{{k'}^{k'}}{(k'/2)^{k'/2} (k'/2)^{k'/2}} \cdot k' \log n \cdot \frac{1}{{\epsilon'}^2} = \lambda \cdot 2^{k'} \cdot k' \log n \cdot \frac{1}{{\epsilon'}^2}.$$

Moreover, by the inductive hypothesis, for a fixed constant $\tau > 0$, the running time of $\mathcal{A}(G', k')$ 248 is upper bounded by $|\mathcal{F}| \cdot \left(2 \cdot \eta^{\log \frac{k'}{2}} 4^{\frac{k'}{2}} (\frac{k'}{2})^{\log \frac{k'}{2}} (\log n)^{\log \frac{k'}{2}} mn^2 (\frac{1}{\epsilon'^2})^{\log \frac{k'}{2}} + \tau mn^2 \right)$. Note 249 that τ is independent of η . By choosing $\eta = 10 \max\{\lambda, \tau\}$, this means that the running time 250 of $\mathcal{A}(G', k')$ is upper bounded by 251

$$\begin{aligned} |\mathcal{F}| \cdot \left(2 \cdot \eta^{\log \frac{k'}{2}} 4^{\frac{k'}{2}} (\frac{k'}{2})^{\log \frac{k'}{2}} (\log n)^{\log \frac{k'}{2}} mn^2 (\frac{1}{\epsilon'^2})^{\log \frac{k'}{2}} + \tau mn^2 \right) \\ &\leq \frac{\eta}{10} 2^{k'} k' \log n \frac{1}{\epsilon'^2} \cdot \left(2 \cdot \eta^{\log k' - 1} 2^{k'} k'^{\log k' - 1} (\log n)^{\log k' - 1} mn^2 (\frac{1}{\epsilon'^2})^{\log k' - 1} + \frac{\eta}{10} mn^2 \right) \\ &\leq \eta^{\log k'} 4^{k'} k'^{\log k'} (\log n)^{\log k'} mn^2 (\frac{1}{\epsilon'^2})^{\log k'}. \end{aligned}$$

2

This completes the proof of the first item of the claim. 253

Towards the proof of the second item of the claim, suppose that all constructions of 254 approximate universal families were successful, and consider some $u, v \in V(G')$. Let $x_{p,q}^{G}$ 255 denote the number of k'/2-paths with endpoints p and q in \widehat{G} . By the inductive hypothesis, 256 we have that 257

$$\begin{aligned} a_{u,v} &= \frac{1}{T} \cdot \sum_{\substack{F \in \mathcal{F} \\ \text{s.t. } u \in F, v \notin F}} a_{u,v}^F = \frac{1}{T} \cdot \sum_{\substack{F \in \mathcal{F} \\ \text{s.t. } u \in F, v \notin F}} \left(\sum_{\substack{\{p,q\} \in E(G') \\ \text{s.t. } p \in F, q \notin F}} b_{u,p}^F \cdot c_{q,v}^F \right) \\ &\leq \frac{1}{T} \cdot \sum_{\substack{F \in \mathcal{F} \\ \text{s.t. } u \in F, v \notin F}} \left(\sum_{\substack{\{p,q\} \in E(G') \\ \text{s.t. } p \in F, q \notin F}} (1 + \epsilon')^{\frac{k'}{2} - 1} x_{u,p}^{G'[F]} \cdot (1 + \epsilon')^{\frac{k'}{2} - 1} x_{q,v}^{G' - F} \right) \\ &= \frac{1}{T} \cdot (1 + \epsilon')^{k' - 2} \cdot \sum_{\substack{F \in \mathcal{F} \\ \text{s.t. } u \in F, v \notin F}} \left(\sum_{\substack{\{p,q\} \in E(G') \\ \text{s.t. } p \in F, q \notin F}} x_{u,p}^{G'[F]} \cdot x_{q,v}^{G' - F} \right) \end{aligned}$$

258

Let
$$\mathcal{P}_{u,v}$$
 denote the set of k'-paths in G' with endpoints u and v. In addition, for any subset
 $F \subseteq V(G')$, let $\mathcal{P}_{u,v}[F]$ denote the set of paths $P \in \mathcal{P}_{u,v}$ where the $k'/2$ vertices on P closest
to u (including u) belong to F and the other $k'/2$ vertices on P do not belong to F. Thus,

$$a_{u,v} \le (1+\epsilon')^{k'-2} \cdot \frac{\sum_{F \in \mathcal{F}} |\mathcal{P}_{u,v}[F]|}{T}$$

Since \mathcal{F} is an ϵ' -parsimonious (n, k'/2, k'/2)-universal family, for any path $P \in \mathcal{P}_{u,v}$ it holds 263 that the number of sets $F \in \mathcal{F}$ such that $P \in \mathcal{P}_{u,v}[F]$ is upper bounded by $(1 + \epsilon')T$. Thus, 264

$$a_{u,v} \le (1+\epsilon')^{k'-2} \cdot \frac{(1+\epsilon')T|\mathcal{P}_{u,v}|}{T} = (1+\epsilon')^{k'-1}x_{u,v}.$$

Symmetrically, we derive that $(1 - \epsilon')^{k'-1} x_{u,v} \leq a_{u,v}$. This completes the proof. 266

23:8 Approximate Counting of *k*-Paths

²⁶⁷ We now conclude the following theorem.

▶ **Theorem 8.** There is a randomized $(4^{k+o(k)}mn^2 + mn^{2+o(1)})(\frac{1}{\epsilon})^{\mathcal{O}(\log k)}$ -time polynomialspace algorithm that, given a graph G, a positive integer k and an accuracy value $0 < \epsilon < 1$, outputs a number y that (with high probability, say, at least 9/10) satisfies $(1-\epsilon)x \leq y \leq$ $(1+\epsilon)x$ where x is the number of k-paths in G. In particular, if $\frac{1}{\epsilon} = 2^{o(k/\log k)}$, then the running time is $4^{k+o(k)}mn^2 + mn^{2+o(1)}$.

Proof. By Lemma 7 with G' = G and k' = k, we know that the total running time of $\mathcal{A}(G, k)$ is bounded by $4^{k+\mathcal{O}(\log^2 k)}(\log n)^{\log k}mn^2(\frac{1}{\epsilon'})^{\log k}$ and uses polynomial space. Additionally, if all constructions of approximate universal families were successful, then for all $u, v \in V(G)$, the number $a_{u,v}$ computed by $\mathcal{A}(G, k)$ satisfies $(1-\epsilon')^{k-1}x_{u,v} \leq a_{u,v} \leq (1+\epsilon')^{k-1}x_{u,v}$ where $x_{u,v}$ is the number of k-paths with endpoints u and v in G.

If $\log n \leq 2^{\sqrt{k}}$, then $(\log n)^{\log k} \leq 2^{o(k)}$. Otherwise, when $\log n > 2^{\sqrt{k}}$, it holds that $k < \log^2 \log n$. It follows that $4^{k+\mathcal{O}(\log^2 k)}(\log n)^{\log k} \leq 4^{\log^2 \log n+\mathcal{O}(\log \log \log n)}(\log n)^{2\log \log \log n} \leq n^{\mathcal{O}(\frac{\log^2 \log n}{\log n})} \leq n^{o(1)}$. In addition, by Taylor series $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$, it follows that $\epsilon/2 \leq \epsilon - \epsilon^2/2 \leq \ln(1+\epsilon) = \hat{\epsilon} \leq \epsilon$, which means that $(\frac{1}{\epsilon'})^{\log k} = 2^{\mathcal{O}(\log^2 k)}(\frac{1}{\epsilon})^{\mathcal{O}(\log k)}$. Thus, $4^{k+\mathcal{O}(\log^2 k)}(\log n)^{\log k} mn^2(\frac{1}{\epsilon'})^{\log k} = (4^{k+o(k)}mn^2 + mn^{2+o(1)})(\frac{1}{\epsilon})^{\mathcal{O}(\log k)}$.

We now claim that with high probability, all constructions of approximate universal 283 families were successful. By Theorem 6, the probability that a single construction is successful 284 is at least $1 - 1/n^{100k}$. Thus, the probability that all constructions are successful is at least 285 $(1-1/n^{100k})^{\mu}$ where μ is the number of constructions. Clearly, the number of constructions 286 is upper bounded by the running time of \mathcal{A} . In turn, we can assume w.l.o.g. that the upper 287 bound proven on this running time is, in itself, upper bounded by n^k , since otherwise the 288 problem can be solved exactly by brute force within it. Thus, $\mu \leq n^k$. From this, we know 289 that the probability that all constructions are successful is at least $(1 - 1/n^{100k})^{n^k}$. As n 290 grows larger, this value approaches 1. In particular, the success probability can be assumed 291 to be at least 9/10 (otherwise n is a fixed constant), which proves our claim. 292

Thus, we know that for all $u, v \in V(G)$, it holds that $(1 - \epsilon')^{k-1}x_{u,v} \leq a_{u,v} \leq (1 + \epsilon')^{k-1}x_{u,v}$. Substituting ϵ' by $\hat{\epsilon}$, we have that for all $u, v \in V(G)$, it holds that $(1 - \hat{\epsilon})x_{uv} \leq (1 - \hat{\epsilon})^{k-1}x_{u,v} \leq a_{u,v} \leq (1 + \hat{\epsilon})^{k-1}x_{u,v} \leq e^{\hat{\epsilon}}x_{u,v}$. Since $(1 - \epsilon) \leq (1 - \hat{\epsilon})$ and $e^{\hat{\epsilon}} = (1 + \epsilon)$, we have that for all $u, v \in V(G)$, it holds that $(1 - \epsilon)x_{u,v} \leq a_{u,v} \leq (1 + \epsilon)$, it holds that $(1 - \epsilon)x_{u,v} \leq a_{u,v} \leq (1 + \epsilon)x_{u,v}$. Thus,

$$y = \left(\sum_{u,v \in V(G)} a_{u,v}\right) / 2 \le \left(\sum_{u,v \in V(G)} (1+\epsilon) x_{u,v}\right) / 2 = (1+\epsilon) \left(\sum_{u,v \in V(G)} x_{u,v}\right) / 2 = (1+\epsilon) x_{u,v}$$

Symmetrically, we obtain that $(1 - \epsilon)x \leq y$. This completes the proof.

²⁹⁹ **3.3 Improved Randomized FPT-AS for** #k-PATH

As our improved randomized FPT-AS is less intuitive, we first discuss the intuition behind it. 300 Here, in addition to G' and k', every call to the recursive algorithm \mathcal{A} is given an assignment 301 $\alpha': V(G) \setminus V(G') \to \mathbb{N}_0$ of a non-negative integer to each vertex outside G'. Roughly 302 speaking, for each vertex $v \in V(G) \setminus V(G')$, the value $\alpha'(v)$ is an approximation of the 303 number of k-paths that end at v and are completely contained in G - U for a certain integer 304 $k \in \{1, 2, \dots, k-k'\}$ and a subset $U \subseteq V(G)$ that contains V(G'). In particular, given that 305 now the goal of each call is to output such an assignment for $G - (U \setminus V(G'))$ (a precise 306 definition of the goal of a call is given in the formal description of the algorithm), we do not 307 need to consider every pair of vertices $u, v \in V(G')$ and compute a value $a_{u,v}$; instead, we 308

only compute one value per vertex. Additionally, recall that in the previous algorithm in 309 order to compute $a_{u,v}$, we considered every edge $\{p,q\} \in E(G')$ while computing $a_{u,v}^F$ and 310 hence divided our task into the computation of k'/2-paths between u and p in one recursive 311 call and k'/2-paths between q and u in the other. Here, we do not store the two endpoints of 312 paths, but their "middle". More precisely, the flow of information differs: to compute the 313 assignment we need to output in the current call, we perform one recursive call to which the 314 assignment α' is given as input; this call will return an assignment that "handles" the first 315 k + k'/2 vertices on the paths being counted, and be sent as input to the second recursive 316 call to handle the next k'/2 vertices. 317

Algorithm. Let $\hat{\epsilon} = \ln(1+\epsilon)$ and $\epsilon' = \hat{\epsilon}/(k-1)$. We add a new vertex s to G and connect it to all vertices in G. Thus, rather than counting the number of k-paths in the former graph G, we can count the number of (k+1)-paths with s as an endpoint in the new graph G. In what follows, we focus on this goal.

Our algorithm is a recursive algorithm, denoted by \mathcal{A} . Each call to \mathcal{A} is of the form $\mathcal{A}(G', k', \alpha')$ where G' is an induced subgraph of $G, k' \in \{1, \ldots, k\}$, and $\alpha' : V(G) \setminus V(G') \rightarrow \mathbb{N}_{24}$ \mathbb{N}_0 . The call $\mathcal{A}(G', k', \alpha')$ should output an assignment $\alpha : V(G') \rightarrow \mathbb{N}_0$ with the following property: For each vertex $v \in V(G')$, it holds that $\alpha(v)$ approximates the following number:

326
$$\sum_{\substack{\{p,q\}\in E(G)\\ \text{s.t. } p\notin V(G'), q\in V(G')}} \alpha'(p) \cdot x_{q,v},$$

where $x_{q,v}$ is the number of k'-paths in G' between q and v.

The initial call to the algorithm is with $G' = G - \{s\}$, k' = k, and $\alpha'(s) = 1$. The final output is $\sum_{v \in V(G) \setminus \{s\}} \alpha(v)$.

We turn to describe a call $\mathcal{A}(G', k', \alpha')$. In the basis, where k' = 1, we return an assignment $\alpha : V(G') \to \mathbb{N}_0$ defined as follows: For each vertex $v \in V(G')$, define

$$_{332} \qquad \alpha(v) = \sum_{\substack{u \notin V(G')\\ \text{s.t. } \{u,v\} \in E(G)}} \alpha'(u).$$

Now, suppose that $k' \geq 2$. By Theorem 6, for an ϵ' -parsimonious (n, k'/2, k'/2)-universal family \mathcal{F} of sets over V(G), we can enumerate the sets $F \in \mathcal{F}$ with delay $\mathcal{O}(n)$. For each set $F \in \mathcal{F}$, we proceed as follows. We first recursively call \mathcal{A} with $(G'[F], k'/2, \alpha')$ where α' is extended to assign 0 to every vertex in $V(G') \setminus F$. Let $\widehat{\alpha}_F$ be the output of this call, and extend it to assign 0 to every vertex in $V(G) \setminus V(G')$. Then, we recursively call \mathcal{A} with $(G' - F, k'/2, \widehat{\alpha}_F)$. Let α_F be the output of this recursive call.

Let T be the correction factor of \mathcal{F} . After all sets $F \in \mathcal{F}$ were enumerated, the output $\alpha: V(G') \to \mathbb{N}_0$ is computed as follows. For all $v \in V(G')$, we calculate

$$_{341} \qquad \alpha(v) = \left(\sum_{F \in \mathcal{F} \\ \text{s.t. } v \notin F} \alpha_F(v)\right) / T$$

Note that we do not store all the assignments α_F simultaneously, but we merely store one such assignment at a time and delete it immediately after $\alpha_F(v)/T$, for every $v \in V(G')$, is added. This completes the description of \mathcal{A} .

³⁴⁵ Correctness. The proof of correctness of our algorithm roughly follows the same lines as ³⁴⁶ the proof of correctness of Theorem 8. Due to space constraints, we omit the details, and ³⁴⁷ conclude this section with the statement of our result.

23:10 Approximate Counting of *k*-Paths

Theorem 9. There is a randomized $(4^{k+o(k)}m + mn^{o(1)})(\frac{1}{\epsilon})^{\mathcal{O}(\log k)}$ -time polynomial-space algorithm that, given a graph G, a positive integer k and an accuracy value $0 < \epsilon < 1$, outputs a number y that (with high probability) satisfies $(1-\epsilon)x \leq y/2 \leq (1+\epsilon)x$ where x is the number of k-paths in G. In particular, if $\frac{1}{\epsilon} = 2^{o(k/\log k)}$, then the running time is $4^{k+o(k)}mn^{o(1)}$.

Additionally, we can obtain the following corollary. (This corollary does not follow directly from Theorem 9, but requires a simple preliminary step to shrink the universe; due to space constraints, the details are omitted.)

Corollary 10. There is a randomized $4^{k+\mathcal{O}(\log^2 k)}m\log n(\frac{1}{\epsilon})^{\mathcal{O}(\log k)}$ -time polynomial-space algorithm that, given a graph G, a positive integer k and an accuracy value $0 < \epsilon < 1$, 'outputs a number y that (with high probability) satisfies $(1-\epsilon)x \leq y/2 \leq (1+\epsilon)x$ where x is the number of k-paths in G. In particular, if $\frac{1}{\epsilon} = 2^{o(k/\log k)}$, then the running time is $4^{k+o(k)}m\log n$.

359 3.4 Approx. Parsimonious Universal Family: Deterministic Construction

We do not know how to deterministically construct small δ -parsimonious universal families. 360 Indeed, the best construction that we are aware of is the one based on bipartite Paley graphs 361 (see Theorem 11.9 in the book by Jukna [27] and the historical notes behind the result). 362 This construction leads to families of size $4^{k+o(k)}$ for $p = q = \frac{k}{2}$, whereas we would like size 363 $2^{k+o(k)}$. Instead, we provide an efficient deterministic computation of a small δ -parsimonious 364 universal family that is suitable for handling so called "nice pairs". The crucial point is 365 that with respect to our applications, this relaxed construction suffices. In this section, we 366 present the definition of this relaxation, its construction and main property. Due to space 367 constraints, the proofs of the two lemmas and the theorem stated in this section are omitted. 368 To simplify the following definitions, we introduce the following notation. To see the 360 intuition behind this notation in the context of applications, throughout this section h can be 370 thought of as a function that reduces the size of the universe from n to z, f can be thought 371 of as a function that splits the reduced universe into t parts, and $\overline{\mathbf{p}}$ can be thought of as a 372 function that tells us that each part has k/t "useful" elements (e.g., vertices of paths to be 373 counted in a certain recursive call) among which either p_i or $(k/t) - p_i$ were "exhausted". 374

▶ Definition 11. Let $n, p, q, t, z \in \mathbb{N}$, and k = p+q. Let U be a universe of size n. A function $\overline{\mathbf{p}}: \{1, 2, \dots, t\} \rightarrow \{0, 1, \dots, k/t\}$ such that $\sum_{i=1}^{t} p_i = p$, is called (p, q, t)-compatible. When $\overline{\mathbf{p}}$ is clear from context, for each $i \in \{1, 2, \dots, t\}$, denote $p_i = \overline{\mathbf{p}}(i)$ and $q_i = (k/t) - p_i$.

 $A triple (h, f, \overline{\mathbf{p}}) is called (n, p, q, t, z) - \text{compatible if } h : U \to \{1, 2, \dots, z\}, f : \{1, 2, \dots, z\} \to (1, 2, \dots, z)$

 $\{1, 2, \ldots, t\}$, and $\overline{\mathbf{p}}$ is (p, q, t)-compatible. (The universe U will be clear from context.)

We begin by defining what is a nice pair.

▶ Definition 12 (Nice Pair). Let $n, p, q, t, z \in \mathbb{N}$. Let U be a universe of size n. Let $(h, f, \overline{\mathbf{p}})$ be (n, p, q, t, z)-compatible. A pair (A, B) is nice (with respect to $(h, f, \overline{\mathbf{p}})$) if $A \in {U \choose p}$ and $B \in {U \choose q}$ are disjoint sets, and the following conditions hold.

1. The function h is injective when restricted to $A \cup B$.

2. For each $i \in \{1, 2, ..., t\}$, it holds that $|\{u \in A : f(h(u)) = i\}| = p_i$ and $|\{u \in B : f(h(u)) = i\}| = (k/t) - p_i$.

Towards the definition of a δ -parsimonious universal family for nice pairs, we first present a weaker definition of this notion where we have a triple $(h, f, \overline{\mathbf{p}})$ at hand.

▶ Definition 13 (Specific δ -Parsimonious Universal Family for Nice Pairs). Let $n, p, q, t, z \in \mathbb{N}$. 130 Let U be a universe of size n. Let $(h, f, \overline{\mathbf{p}})$ be (n, p, q, t, z)-compatible. Let $0 < \delta < 1$.

23:11

³⁹¹ A family \mathcal{F} of sets over $\{1, \ldots, z\}$ is a δ -parsimonious $(h, f, \overline{\mathbf{p}})$ -universal family (for nice ³⁹² pairs) if there exists $T = T(h, f, \overline{\mathbf{p}}, \delta) > 0$ such that for every nice pair (A, B), it holds that ³⁹³ $(1-\delta) \cdot T \leq |\mathcal{F}[h(A), h(B)]| \leq (1+\delta) \cdot T.$

Before we show how to extend Definition 13 to the notion useful for applications, we argue that small δ -parsimonious $(h, f, \overline{\mathbf{p}})$ -universal families can be computed "efficiently".

³⁹⁶ ► Lemma 14. Let $p, q, t, z \in \mathbb{N}$, and denote k = p + q and s = k/t. Let $(h, f, \overline{\mathbf{p}})$ be ³⁹⁷ (n, p, q, t, z)-compatible. Let $0 < \delta < 1$. A δ-parsimonious $(h, f, \overline{\mathbf{p}})$ -universal family \mathcal{F} of sets ³⁹⁸ over $\{1, \ldots, z\}$ of size $\ell = \mathcal{O}\left(\binom{k}{p} \cdot (k \cdot \log z \cdot \frac{\mathcal{O}(1)}{\delta})^{2t}\right)$ can be computed in time $\ell \cdot z^{s+1}s^{\mathcal{O}(1)}t$. ³⁹⁹ In particular, the sets in \mathcal{F} can be enumerated with delay $z^{s+1}s^{\mathcal{O}(1)}t$.

Towards the definition of our general construction, we need to present the definitions of a balanced splitter and a balanced hash family. Constructions of such a splitter and a family were given by Alon and Gutner [4, 3].

▶ Definition 15 (Definition 2.2 [4]). Suppose that $1 \le \ell \le k \le n$ and $0 < \epsilon < 1$, and let H be a family of functions from $\{1, ..., n\}$ to $\{1, ..., \ell\}$. For a set $S \in \binom{\{1, ..., n\}}{k}$, let $\operatorname{split}_H(S)$ denote the number of functions $h \in H$ that split H into equal size parts, that is, $|h^{-1}(i) \cap S| = k/\ell$. Then, H is an ϵ -balanced (n, k, ℓ) -splitter if there exists $T = T(n, k, \ell, \epsilon) > 0$ such that for every set $S \in \binom{\{1, ..., n\}}{k}$, we have $(1 - \epsilon)T \le \operatorname{split}_H(S) \le (1 - \epsilon)T$.

▶ Definition 16 (Definition 2.1 [4]). Suppose that $1 \le k \le \ell \le n$ and $0 < \epsilon < 1$. A family H of functions from $\{1, ..., n\}$ to $\{1, ..., \ell\}$ is an (ϵ, k) -balanced family of hash functions if there exists $T = T(n, k, \ell, \epsilon) > 0$ such that for every set $S \in \binom{\{1, ..., n\}}{k}$, the number of functions in H that are injective when restricted to S is between $(1 - \epsilon)T$ and $(1 + \epsilon)T$.

412 We are now ready to define our general derandomization tool.

▶ Definition 17 ((General) δ -Parsimonious Universal Family for Nice Pairs). Let $n, p, q \in \mathbb{N}$ and $0 < \delta < 1$, and denote k = p + q, $z = \frac{2k^2}{\epsilon}$, $t = \sqrt{k}$, $s = k/t = \sqrt{k}$, and $\epsilon = \delta/3$. Let U be a universe of size n. A δ -parsimonious (n, p, q)-universal tuple (for nice pairs) is a tuple $(H, S, \{\mathcal{F}^{h, f, \overline{\mathbf{p}}}\}|_{h \in H, f \in S, \overline{\mathbf{p}}})^4$ that satisfies the following conditions.

⁴¹⁷ = H is an (ϵ, k) -balanced family of hash functions from $\{1, \ldots, n\}$ to $\{1, \ldots, z\}$ (with ⁴¹⁸ correction factor T_H).

419 \blacksquare S is an ϵ -balanced (z, k, t)-splitter (with correction factor T_S).

For every hash function $h \in H$, splitter $f \in S$ and (p,q,t)-compatible function $\overline{\mathbf{p}}$, it holds that $\mathcal{F}^{h,f,\overline{\mathbf{p}}}$ is a δ -parsimonious $(h, f, \overline{\mathbf{p}})$ -universal family (with correction factor $T_{\overline{\mathbf{p}}}$).

By enumerating the quadruples of $(H, S, \{\mathcal{F}^{h,f,\overline{\mathbf{p}}}\}|_{h\in H,f\in S,\overline{\mathbf{p}}})$, we refer to the enumeration of every quadruple $(h, f, \overline{\mathbf{p}}, F)$ such that $h \in H$, $f \in S$ and $F \in \mathcal{F}^{h,f,\overline{\mathbf{p}}}$. We remark that below, for the sake of brevity, when we write $k, z, t, s, \epsilon, T_H, T_S$ and $T_{\overline{\mathbf{p}}}$, we refer to the notations given in Definition 17. Let us now state our construction.

▶ Theorem 18. Let $n, p, q \in \mathbb{N}$ and $0 < \delta < 1$. Denote k = p + q. Let U be a universe of size n. A δ-parsimonious (n, p, q)-universal tuple $(H, S, \{\mathcal{F}^{h, f, \overline{\mathbf{p}}}\}|_{h \in H, f \in S, \overline{\mathbf{p}}})$ with ℓ quadruples can be computed in time $\frac{k^{\mathcal{O}(1)} n \log n}{\delta^{\mathcal{O}(1)}} + \ell \cdot \Delta$. In particular, after preprocessing time $\frac{k^{\mathcal{O}(1)} n \log n}{\delta^{\mathcal{O}(1)}}$, the quadruples of $(H, S, \{\mathcal{F}^{h, f, \overline{\mathbf{p}}}\}|_{h \in H, f \in S, \overline{\mathbf{p}}})$ can be enumerated with delay Δ . Here,

$$\ell = \binom{k}{p} \cdot 2^{\mathcal{O}(\sqrt{k}(\log^2 k + \log^2 \frac{1}{\delta}))} \cdot \log n, \text{ and}$$
$$\Delta = 2^{\mathcal{O}(\sqrt{k}(\log k + \log \frac{1}{\delta}))}.$$

⁴ The enumeration is over every (p, q, t)-compatible $\overline{\mathbf{p}}$.

23:12 Approximate Counting of *k*-Paths

In order to state the property of a δ -parsimonious (n, p, q)-universal tuple that makes it useful for applications, we need one last definition.

⁴³³ ► Definition 19. Let $n, p, q \in \mathbb{N}$ and $0 < \delta < 1$. Let U be a universe of size n. Furthermore, ⁴³⁴ let $(H, S, \{\mathcal{F}^{h, f, \overline{\mathbf{p}}}\}|_{h \in H, f \in S, \overline{\mathbf{p}}})$ be a δ-parsimonious (n, p, q)-universal tuple. Finally, let $A \in \binom{U}{p}$ and $B \in \binom{U}{q}$ be disjoint sets. We say that the pair (A, B) fits a quadruple $(h, f, \overline{\mathbf{p}}, F)$ ⁴³⁶ of $(H, S, \{\mathcal{F}^{h, f, \overline{\mathbf{p}}}\}|_{h \in H, f \in S, \overline{\mathbf{p}}})$ if (A, B) is nice with respect to $(h, f, \overline{\mathbf{p}})$, and $h(A) \subseteq F$ and ⁴³⁷ $f \cap h(B) = \emptyset$.

⁴³⁸ Finally, we state the promised property.

⁴³⁹ ► Lemma 20. Let $n, p, q \in \mathbb{N}$ and $0 < \delta < 1$. Let U be a universe of size n. Furthermore, ⁴⁴⁰ let $(H, S, \{\mathcal{F}^{h,f,\overline{\mathbf{p}}}\}|_{h\in H, f\in S,\overline{\mathbf{p}}})$ be a δ-parsimonious (n, p, q)-universal tuple. Then, there exist ⁴⁴¹ $T = T(n, p, q, \delta) > 0$ and for every $\overline{\mathbf{p}}$ that is (p, q, t)-compatible, $T_{\overline{\mathbf{p}}} = T_{\overline{\mathbf{p}}}(n, p, q, \delta) > 0$, such ⁴⁴² that for any $A \in {U \choose p}$ and $B \in {U \choose q}$ that are disjoint, the following conditions hold.

1. The number of triples $(h, f, \mathbf{\bar{p}})$ with respect to whom (A, B) is nice, where $h \in H$, $f \in S$ and $\mathbf{\bar{p}}$ is (p, q, t)-compatible, is between $(1 - \delta)T$ and $(1 + \delta)T$.

2. For any triple $(h, f, \overline{\mathbf{p}})$ with respect to whom (A, B) is nice, where $h \in H$, $f \in S$ and $\overline{\mathbf{p}}$

⁴⁴⁶ is (p,q,t)-compatible, the number of quadruples $(h, f, \overline{\mathbf{p}}, F)$ of $(H, S, \{\mathcal{F}^{h,f,\overline{\mathbf{p}}}\}|_{h\in H, f\in S,\overline{\mathbf{p}}})$ ⁴⁴⁷ that fit (A, B) is between $(1 - \delta)T_{\overline{\mathbf{p}}}$ and $(1 + \delta)T_{\overline{\mathbf{p}}}$.

448 **3.5 Deterministic FPT-AS for** #k-PATH

⁴⁴⁹ Our deterministic FPT-AS builds upon the scheme of our second randomized FPT-AS, but it ⁴⁵⁰ is more technical. Due to space constraints, the full details of the description of the algorithm ⁴⁵¹ and its proof of correctness is omitted. Here, we only discuss the main idea that underlies ⁴⁵² the design of this algorithm. Like our previous algorithm, this algorithm (denoted by \mathcal{A}) is ⁴⁵³ recursive. However, in addition to G', k' and α' , every call to \mathcal{A} is also given two tuples \mathcal{R} ⁴⁵⁴ and \mathcal{W} . The number of elements in \mathcal{R} and \mathcal{W} equals the depth d of the current recursive ⁴⁵⁵ call in the recursion tree.

Roughly speaking, every element in \mathcal{R} is a quadruple $(h_i, f_i, \overline{\mathbf{p}}_i, \sigma_i)$ where (i) the 456 triple $(h_i, f_i, \overline{\mathbf{p}}_i)$ corresponds to the interpretation preceding Definition 11, and (ii) $\sigma_i \in$ 457 {left, right} indicates whether we should count paths that consist of $\overline{\mathbf{p}}_i(j)$ (in case 458 $\sigma_i = \text{left}$ or $s_i - \overline{\mathbf{p}}_i(j)$ (in case $\sigma_i = \text{right}$) vertices of the *j*-th part of the reduced 459 universe split by f_i . Thus, we "keep track" of all triples considered along the current re-460 cursion branch. The reason why we have to store this information is to ensure that, in the 461 current recursive call, we only count paths P whose vertex set has the following property: 462 when we will return to the *i*-th recursive call, the partition (A, B) of V(P) where A consists 463 of the first k vertices of P (for a certain $k \in \{1, 2, \ldots, k\}$ that depends on the location of 464 this *i*-th call in the recursion tree) is nice with respect to $(h_i, f_i, \overline{\mathbf{p}}_i)$, see Definition 12. This 465 simple (though perhaps slightly tedious) bookkeeping sidesteps the fact that Lemma 20 only 466 suits nice pairs. 467

The tuple \mathcal{W} is meant to keep track of how many vertices the paths that we currently count have used "so far" from the *j*-th part of the universe split by f_i for every choice of *i* and *j*. For this purpose, \mathcal{W} is defined to have the form $(\overline{\mathbf{w}}_1, \overline{\mathbf{w}}_2, \ldots, \overline{\mathbf{w}}_d)$ such that for each $i \in \{1, 2, \ldots, d\}$, the following condition holds: For each $j \in \{1, 2, \ldots, t_i\}$, if $\sigma_i = \texttt{left}$ then $\overline{\mathbf{w}}_i(j) \leq \overline{\mathbf{p}}_i(j)$, and otherwise $\overline{\mathbf{w}}_i(j) \leq s_i - \overline{\mathbf{p}}_i(j)$. Here, $s_i = \sqrt{(k/2^i)}$ is the number of vertices the paths that we currently count should use (in total) from each part split by f_i .

Accordingly, the objective of a call $\mathcal{A}(G', k', \alpha', \mathcal{R}, \mathcal{W})$ is to output an assignment $\alpha : V(G') \to \mathbb{N}_0$ with the following property: For each vertex $v \in V(G')$, it holds that

23:13

476 $\alpha(v)$ approximates $\sum_{\substack{\{p,q\}\in E(G)\\ \text{s.t. } p\notin V(G'),q\in V(G')\\ \text{s.t. } p\notin V(G'),q\in V(G')}} \alpha'(p) \cdot |\mathcal{P}_{q,v}^{G',k',\mathcal{R},\mathcal{W}}|.$ Roughly speaking, $\mathcal{P}_{q,v}^{G',k',\mathcal{R},\mathcal{W}}$ is the

collection of all k'-paths in G' with endpoints q and v that "comply" with the constraints imposed by \mathcal{R} and \mathcal{W} . (Due to space constraints, the formal definition is omitted.)

479 We conclude this section with the formal statement of our main result.

▶ **Theorem 21.** There is a deterministic $4^{k+\mathcal{O}(\sqrt{k}(\log^2 k + \log^2 \frac{1}{\epsilon}))}m \log n$ -time polynomial-space algorithm that, given a graph G, a positive integer k and an accuracy value $0 < \epsilon < 1$, outputs a number y that satisfies $(1 - \epsilon)x \le y/2 \le (1 + \epsilon)x$ where x is the number of k-paths in G. In particular, if $\frac{1}{\epsilon} = 2^{o(k^{\frac{1}{4}})}$, then the running time is $4^{k+o(k)}m \log n$.

⁴⁸⁴ Due to space constraints, the discussion on extensions and other applications is omitted.

⁴⁸⁵ — References

- Randomization in parameterized complexity. www.dagstuhl.de/de/programm/kalender/
 semhp/?semnr=17041.
- Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and Süleyman Cenk
 Sahinalp. Biomolecular network motif counting and discovery by color coding. In Proceed *ings 16th International Conference on Intelligent Systems for Molecular Biology (ISMB)*,
 Toronto, Canada, July 19-23, 2008, pages 241-249, 2008. URL: https://doi.org/10.1093/
 bioinformatics/btn163, doi:10.1093/bioinformatics/btn163.
- An Noga Alon and Shai Gutner. Balanced hashing, color coding and approximate counting. In
 Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copen hagen, Denmark, September 10-11, 2009, Revised Selected Papers, pages 1–16, 2009. URL:
 https://doi.org/10.1007/978-3-642-11269-0_1, doi:10.1007/978-3-642-11269-0_1.
- 497 4 Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their applications.
 498 ACM Trans. Algorithms, 6(3):54:1-54:12, 2010. URL: http://doi.acm.org/10.1145/1798596.
 499 1798607, doi:10.1145/1798596.1798607.
- ⁵⁰⁰ 5 Noga Alon and Joel H. Spencer. *The Probabilistic Method*. Wiley Publishing, 4th edition, 2016.

- Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some parameterized counting problems. In Algorithms and Computation, 13th International Symposium, ISAAC 2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings, pages 453-464, 2002. URL: https://doi.org/10.1007/3-540-36136-7_40, doi:10.1007/3-540-36136-7_40.
- André Berger, László Kozma, Matthias Mnich, and Roland Vincze. A time- and space-optimal algorithm for the many-visits TSP. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019*, pages 1770–1782, 2019. URL: https://doi.org/10.1137/1.9781611975482.106, doi:10.1137/1.9781611975482.106.
- Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput.,
 43(1):280-299, 2014. URL: https://doi.org/10.1137/110839229, doi:10.1137/110839229.
- Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting paths and packings in halves. In Algorithms - ESA 2009, 17th Annual European Symposium, *Copenhagen, Denmark, September 7-9, 2009. Proceedings*, pages 578–586, 2009. URL: https: //doi.org/10.1007/978-3-642-04128-0_52, doi:10.1007/978-3-642-04128-0_52.
- Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves
 for parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017. URL:
 https://doi.org/10.1016/j.jcss.2017.03.003, doi:10.1016/j.jcss.2017.03.003.

 ⁵⁰² 6 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995. URL:
 ⁵⁰³ https://doi.org/10.1145/210332.210337, doi:10.1145/210332.210337.

23:14 Approximate Counting of *k*-Paths

- Andreas Björklund, Vikram Kamat, Lukasz Kowalik, and Meirav Zehavi. Spotting trees with
 few leaves. SIAM J. Discrete Math., 31(2):687–713, 2017. URL: https://doi.org/10.1137/
 15M1048975, doi:10.1137/15M1048975.
- Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Counting thin subgraphs via packings
 faster than meet-in-the-middle time. ACM Trans. Algorithms, 13(4):48:1-48:26, 2017. URL:
 http://doi.acm.org/10.1145/3125500, doi:10.1145/3125500.
- Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 151-164, 2018. URL: http://doi.acm.org/10.1145/3188745.
 3188902, doi:10.1145/3188745.3188902.
- J. Chen, J. Kneis, S. Lu, D. Mölle, S. Richter, P. Rossmanith, S. Sze, and F. Zhang. Randomized divide-and-conquer: Improved path, matching, and packing algorithms. *SIAM Journal on Computing*, 38(6):2526-2547, 2009.
- Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Molle, Stefan Richter, Peter Rossmanith,
 Sing-Hoi Sze, and Fenghui Zhang. Randomized divide-and-conquer: Improved path, matching,
 and packing algorithms. SIAM Journal on Computing, 38(6):2526-2547, 2009.
- Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for counting small subgraphs. In *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2017, pages 210–223, New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3055399.3055502, doi:10.1145/3055399.3055502.
- Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the boundedness
 of the vertex-cover number counts. In 55th IEEE Annual Symposium on Foundations of
 Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 130–139, 2014. URL: https://doi.org/10.1109/F0CS.2014.22, doi:10.1109/F0CS.2014.22.
- Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
 Pilipczuk, Michal Pilipczuk, and Saket Saurabh. *Parameterized Algorithms*. Springer, 2015.
 URL: https://doi.org/10.1007/978-3-319-21275-3, doi:10.1007/978-3-319-21275-3.
- Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna, and Roded Sharan. Qnet: A tool for querying protein interaction networks. *Journal of Computational Biology*, 15(7):913– 925, 2008. URL: https://doi.org/10.1089/cmb.2007.0172, doi:10.1089/cmb.2007.0172.
- ⁵⁵² **21** Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. *SIAM J.* ⁵⁵³ *Comput.*, 33(4):892–922, 2004.
- Fedor V. Fomin, Petteri Kaski, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh.
 Parameterized single-exponential time polynomial space algorithm for steiner tree. In Automata,
 Languages, and Programming 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
 July 6-10, 2015, Proceedings, Part I, pages 494–505, 2015. URL: https://doi.org/10.1007/
 978-3-662-47672-7_40, doi:10.1007/978-3-662-47672-7_40.
- Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
 of representative families with applications in parameterized and exact algorithms. J. ACM,
 63(4):29:1-29:60, 2016. URL: http://doi.acm.org/10.1145/2886094, doi:10.1145/2886094.
- Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory
 of Parameterized Preprocessing. Cambridge University Press, 2018.
- Gregory Z. Gutin, Felix Reidl, Magnus Wahlström, and Meirav Zehavi. Designing deterministic
 polynomial-space algorithms by color-coding multivariate polynomials. J. Comput. Syst.
 Sci., 95:69-85, 2018. URL: https://doi.org/10.1016/j.jcss.2018.01.004, doi:10.1016/
 j.jcss.2018.01.004.
- Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm engineering for color-coding
 with applications to signaling pathway detection. *Algorithmica*, 52(2):114–132, 2008. URL:
 https://doi.org/10.1007/s00453-007-9008-7, doi:10.1007/s00453-007-9008-7.
- Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science. Springer
 Publishing Company, Incorporated, 1st edition, 2010.

573	28	Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Automata,
574		land July 7 11 2008 Proceedings Part I: Tack A: Algorithms Astomata Complemity
575		and Camer pages 575 586 2008 URL: https://doi.org/10.1007/078-2-540-70575-8.47
570		doi:10 1007/078-3-540-70575-8 47
577	20	$\frac{1}{101} \frac{1}{1007} \frac{1}{910} \frac{1}{5} \frac{1}{$
578	29	Ioannis Koutis and Ryan Williams. Algebraic ingerprints for faster algorithms. Commun. ACM,
579		59(1):98-105, 2016. URL: http://doi.acm.org/10.1145/2/42544, doi:10.1145/2/42544.
580	30	Ioannis Koutis and Ryan Williams. LIMITS and applications of group algebras for
581		parameterized problems. ACM Trans. Algorithms, 12(3):31:1-31:18, 2016. URL: http:
582		//doi.acm.org/10.1145/2885499, doi:10.1145/2885499.
583	31	Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. Planar k-path in subexponen-
584		tial time and polynomial space. In Graph-Theoretic Concepts in Computer Science - 37th
585		International Workshop, WG 2011, Teplá Monastery, Czech Republic, June 21-24, 2011. Re-
586		vised Papers, pages 262–270, 2011. URL: https://doi.org/10.1007/978-3-642-25870-1_24,
587		doi:10.1007/978-3-642-25870-1_24.
588	32	Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Proceedings of
589		the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
590		USA, 5-8 June 2010, pages 321-330, 2010. URL: https://doi.org/10.1145/1806689.1806735,
591		doi:10.1145/1806689.1806735.
592	33	R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-
593		work motifs: Simple building blocks of complex networks. Science, 298(5594):824-
594		827, 2002. URL: http://science.sciencemag.org/content/298/5594/824, arXiv:http:
595		<pre>//science.sciencemag.org/content/298/5594/824.full.pdf, doi:10.1126/science.298.</pre>
596		5594.824.
597	34	Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algorithms and
598		probabilistic analysis. Cambridge University Press, 2005.
599	35	Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
600		derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
601		Wisconsin, 23-25 October 1995, pages 182-191, 1995. URL: https://doi.org/10.1109/SFCS.
602		1995.492475, doi:10.1109/SFCS.1995.492475.
603	36	Jacob Scott, Trey Ideker, Richard M. Karp, and Roded Sharan. Efficient algorithms for
604		detecting signaling pathways in protein interaction networks. Journal of Computational
605		<i>Biology</i> , 13(2):133-144, 2006. URL: https://doi.org/10.1089/cmb.2006.13.133, doi:10.
606		1089/cmb.2006.13.133.
607	37	Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based approach.
608		J. Comput. Syst. Sci., 82(3):488-502, 2016. URL: https://doi.org/10.1016/j.jcss.2015.
609		11.008, doi:10.1016/j.jcss.2015.11.008.
610	38	Roded Sharan and Trey Ideker. Modeling cellular machinery through biological network
611		comparison. nat. biotechnol. 24, 427-433. Nature biotechnology, 24:427-33, 05 2006.
612	39	Tomer Shlomi, Daniel Segal, Eytan Ruppin, and Roded Sharan. Qpath: a method for querying
613		pathways in a protein-protein interaction network. BMC Bioinformatics, 7:199, 2006. URL:
614		https://doi.org/10.1186/1471-2105-7-199, doi:10.1186/1471-2105-7-199.
615	40	Ryan Williams, Finding paths of length k in $o^{*}(2^{k})$ time, Inf. Process, Lett., 109(6):315–318.
616		2009. URL: https://doi.org/10.1016/j.jpl.2008.11.004. doi:10.1016/j.jpl.2008.11.
617		004.
619	41	Virginia Vassilevska Williams and Rvan Williams. Finding minimizing and counting weighted
610	• •	subgraphs SIAM J Comput 42(3):831-854 2013 URL: https://doi.org/10.1137/
620		09076619X. doi:10.1137/09076619X
621	42	Gerhard I Woeginger Open problems around exact algorithms Discrete Applied Mathematics
622	14	156(3):397-405, 2008. URL: https://doi org/10 1016/i dam 2007 03 023 doi:10 1016/
623		i.dam.2007.03.023.

23:16 Approximate Counting of *k*-Paths

43 Meirav Zehavi. Mixing color coding-related techniques. In Algorithms - ESA 2015 - 23rd
 Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages

 626
 1037-1049, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_86, doi:10.1007/

 627
 978-3-662-48350-3_86.