
Algorithmica manuscript No.
(will be inserted by the editor)

On cutwidth parameterized by vertex cover

Marek Cygan · Daniel Lokshtanov ·
Marcin Pilipczuk · Micha l Pilipczuk ·
Saket Saurabh

the date of receipt and acceptance should be inserted later

Abstract We study the Cutwidth problem, where the input is a graph G,
and the objective is find a linear layout of the vertices that minimizes the max-
imum number of edges intersected by any vertical line inserted between two
consecutive vertices. We give an algorithm for Cutwidth with running time
O(2knO(1)). Here k is the size of a minimum vertex cover of the input graph
G, and n is the number of vertices in G. Our algorithm gives an O(2n/2nO(1))
time algorithm for Cutwidth on bipartite graphs as a corollary. This is the
first non-trivial exact exponential time algorithm for Cutwidth on a graph
class where the problem remains NP-complete. Additionally, we show that
Cutwidth parameterized by the size of the minimum vertex cover of the in-
put graph does not admit a polynomial kernel unless NP ⊆ coNP/poly. Our
kernelization lower bound contrasts with the recent results of Bodlaender et
al. [ICALP 2011, SWAT 2012] that both Treewidth and Pathwidth pa-
rameterized by vertex cover do admit polynomial kernels.

Keywords cutwidth · vertex cover parameterization · parameterized
complexity · composition algorithms · polynomial kernel

A preliminary version of this paper appeared at International Symposium on Parameterized
and Exact Computation, IPEC 2011.

Marek Cygan · Marcin Pilipczuk
Institute of Informatics, University of Warsaw, Banacha 2, 02-097, Warsaw, Poland. E-mail:
{cygan,malcin}@mimuw.edu.pl

Daniel Lokshtanov
University of California, San Diego, La Jolla, CA 92093-0404, USA. E-mail: dloksh-
tanov@cs.ucsd.edu

Micha l Pilipczuk
University of Bergen, Bergen, Norway. E-mail: michal.pilipczuk@ii.uib.no

Saket Saurabh
The Institute of Mathematical Sciences, Chennai - 600113, India. E-mail: saket@imsc.res.in

2 Marek Cygan et al.

1 Introduction

In the Cutwidth problem we are given an n-vertex graph G together with
an integer w. The task is to determine whether there exists a linear layout of
the vertices of G such that any vertical line inserted between two consecutive
vertices of the layout intersects with at most w edges (see Section 2 for a for-
mal definition). The cutwidth (cw(G)) of G is the smallest w for which such a
layout exists. The problem has numerous applications [10,23,24,29], ranging
from circuit design [1,27] to protein engineering [4]. Unfortunately Cutwidth
is NP-complete [18], and remains so even when the input is restricted to sub-
cubic planar bipartite graphs [28,13] or split graphs where all independent
set vertices have degree 2 [20]. On the other hand, the problem has a factor
O(log2(n))-approximation on general graphs [26] and is polynomial time solv-
able on trees [32,12], graphs of constant treewidth and constant degree [31],
threshold graphs [20], proper interval graphs [34] and bipartite permutation
graphs [19].

In this article we study the complexity of computing cutwidth exactly
on general graphs, where the running time is measured in terms of the size
of the smallest vertex cover of the input graph G. A vertex cover of G is a
vertex set S such that every edge of G has at least one endpoint in S. We
show that Cutwidth can be solved in time 2knO(1) where k is the size of the
smallest vertex cover of G. An immediate consequence of our algorithm is that
Cutwidth can be solved in time 2n/2nO(1) on bipartite graphs. This is the
first non-trivial exact exponential time algorithm for Cutwidth on a graph
class where the problem is NP-complete. Furthermore, our algorithm improves
considerably over the previous best algorithm for Cutwidth parameterized

by vertex cover [15], whose running time is O(22
O(k)

nO(1)) (however, it was
not the focus of [15] to optimize the running time dependence on k).

Additionally, we show that Cutwidth parameterized by vertex cover does
not admit a polynomial kernel unless NP ⊆ coNP/poly. A polynomial kernel
for Cutwidth parameterized by vertex cover is a polynomial time algorithm
that takes as input a Cutwidth instance (G,w), where G has a vertex cover of
size at most k and outputs an equivalent instance (G′, w′) of Cutwidth such
that G′ has at most kO(1) vertices. We show that unless NP ⊆ coNP/poly such
a kernelization algorithm can not exist. This contrasts with the recent results
of Bodlaender et al. [7,8] that both Treewidth and Pathwidth parameter-
ized by the vertex cover number of the input graph do admit polynomial size
kernels.

Context of our work. The Cutwidth problem is one of many graph layout
problems, where the task is to find a permutation of the vertices of the in-
put graph that optimizes a problem specific objective function. Graph layout
problems, such as Treewidth, Bandwidth and Hamiltonian Path are not
amenable to “branching” techniques, and hence the design of faster exact ex-
ponential time algorithms for these problems has resulted in several new and
useful tools. For example, Karp’s inclusion-exclusion based algorithm [25] for

On cutwidth parameterized by vertex cover 3

Hamiltonian Path was the first application of inclusion-exclusion in exact al-
gorithms. Another example is the introduction of potential maximal cliques as
a tool for the computation of treewidth. Most graph layout problems (with the
exception of Bandwidth) admit an O(2nnO(1)) time dynamic programming
algorithm [2,21]. For several of these problems, faster algorithms with running
time below O(2n) have been found [3,16,30], a stellar example is the recent
algorithm by Björklund [3] for Hamiltonian Path. The Cutwidth problem
is perhaps the best known graph layout problem for which a O(2nnO(1)) time
algorithm is known, yet no better algorithm has been found. Hence, whether
such an improved algorithm exists is a tantalizing open problem. While we do
not resolve this problem in this article, we make considerable progress; hard
instances of Cutwidth cannot contain any independent set of size cn for any
c > 0.

Our choice of the vertex cover number as a relevant parameter for the
Cutwidth problem originates in a recent interest in structural parameters
(see e.g. [6–8,22]), in particular from the study of a very closely related prob-
lems of computing treewidth and pathwidth of the input graph. Note that both
these problems can be easily seen to be AND-compositional when parameter-
ized by the target treewidth or pathwidth of the graph (see [5] for discussion
and relevant definitions) and an AND-composition, together with existence of
a polynomial kernel, is now known to cause a collapse of the polynomial hi-
erarchy [14]. This situation, together with the importance of the Treewidth
and Pathwidth problems, motivated Bodlaender et al. [7,8] to investigate
their other, stronger paramerizations. Among many other results, they have
proven that both these problems admit a polynomial kernel with respect to the
vertex cover of the graph, while such a kernel is unlikely if we parameterize by
the deletion distance to a clique. We show that, although Cutwidth seems
very similar to Pathwidth, these problems behave differently with respect
to polynomial kernelization: Cutwidth does not admit a polynomial kernel
when parameterized by the vertex cover number unless NP ⊆ coNP/poly,
which is known to imply a collapse of the polynomial hierarchy to its third
level [33,11].

Organization of the paper. In Section 2 we present a dynamic programming
algorithm which computes cutwidth in time O(2knO(1)) for a given vertex
cover of size k, whereas in Section 3 we show that Cutwidth parameterized
by vertex cover does not admit a polynomial kernel unless NP ⊆ coNP/poly.
Section 4 is devoted to concluding remarks.

Notation. All graphs in this paper are undirected and simple. For a vertex
v ∈ V we define its neighbourhood NG(v) = {u : uv ∈ E(G)} and closed
neighbourhood NG[v] = NG(v)∪{v}. If G is clear from the context, we might
omit the subscript. For X ⊆ V we denote NG[X] =

⋃
v∈X NG(v) \X.

4 Marek Cygan et al.

2 Faster Cutwidth Parameterized by Vertex Cover

In this section we show that given a graph G = (C ∪ I, E) such that C is
a vertex cover of G of size k, we can compute the cutwidth of G in time
O(2knO(1)), using a dynamic programming approach. We start by showing
that there always exists an optimal ordering of a specific form.

For an ordering σ = v1 . . . vn of V = C ∪ I we define Vi = {vj : j ≤ i}.
For vertices u and v ∈ V we say that u ≤σ v if u occurs before v in σ. Denote
by δ(Vi) the number of edges between Vi and V \ Vi. The cutwidth of the
ordering, cwσ(G), is defined as the maximum of δ(Vi) for i = 1, 2, . . . , |V | − 1,
and the cutwidth of the graph G is the minimum cutwidth over all possible
orderings σ of V . The rank of a vertex vi with respect to an ordering σ is
denoted by rankσ(vi) and it is equal to |N(vi) \Vi| − |N(vi)∩Vi|. Notice that
δ(Vi+1) = δ(Vi) + rankσ(vi+1) and hence δ(Vi) =

∑
j≤i rankσ(vj). Moving a

vertex vp backward to position q with q < p results in the ordering

σ′ = v1v2 . . . vq−2vq−1vpvqvq+1 . . . vp−2vp−1vp+1vp+2 . . . vn.

Moving vp forward to a position q with q > p results in the ordering

σ′ = v1v2 . . . vp−2vp−1vp+1vp+2 . . . vq−2vq−1vpvqvq+1 . . . vn.

Notice that any vertex with odd degree must have (nonzero) odd rank. More-
over, moving a vertex backward cannot decrease its rank, whereas moving a
vertex forward cannot increase its rank.

Lemma 1 If moving vp backward to position q results in an ordering σ′ such
that rankσ′(vp) ≤ 0 then cwσ′(G) ≤ cwσ(G). If moving vp forward to position
q results in an ordering σ′ such that rankσ′(vp) ≥ 0 then cwσ′(G) ≤ cwσ(G).

Proof Suppose moving vp backward to position q results in an ordering σ′ such
that rankσ′(vp) ≤ 0. For every non-negative integer i define V ′i to contain the
first i vertices of σ′. Then, for every i < q and i ≥ p we have V ′i = Vi and hence
δ(V ′i) = δ(Vi). For every i such that q ≤ i < p we have that V ′i = Vi−1 ∪ {vp}.
Observe that for any other vertex vj , j 6= p, rankσ′(vj) ≤ rankσ(vj), while
rankσ′(vp) ≤ 0. Thus δ(V ′i) = rankσ′(vp) +

∑
j≤i−1 rankσ′(vj) ≤ δ(Vi−1) and

cwσ′(G) ≤ cwσ(G). The proof that if moving vp forward to position q results in
an ordering σ′ such that rankσ′(vp) ≥ 0 then cwσ′(G) ≤ cwσ(G) is analogous.

ut

Lemma 1 allows us to rearrange optimal orderings. Let σ be an optimal
cutwidth ordering of G, c1c2 . . . ck be the ordering which σ imposes on C and
Ci = {c1, . . . , ci} for every i. Observe that if u and v are both in I then moving
u does not affect the rank of v. In particular, if moving u yields the ordering
σ′, then rankσ′(v) = rankσ(v). For every vertex u ∈ I with odd degree and
rankσ(u) < 0 we move u backward to the leftmost position where u has rank
−1. For every vertex u ∈ I with odd degree and rankσ(u) > 0 we move u
forward to the rightmost position where u has rank 1. For every vertex of the

On cutwidth parameterized by vertex cover 5

set I with even degree we move it (forward or backward) to the rightmost
position where u has rank 0. This results in an optimal cutwidth ordering σ′

with the following properties.

1. For every vertex v ∈ I of even degree rankσ′(v) = 0 and every vertex v ∈ I
of odd degree rankσ′(v) ∈ {−1, 1}.

2. For every vertex v ∈ I such that rankσ′(v) ≥ 0 and ci ∈ C we have ci ≤σ′ v
if and only if |N(v) ∩ Ci| ≤ |N(v) \ Ci|.

3. For every vertex v ∈ I such that rankσ′(v) < 0 and ci ∈ C we have ci ≤σ′ v
if and only if |N(v) ∩ Ci−1| < |N(v) \ Ci−1|.

Define I ′0 and I ′k to be the set of vertices in I appearing before c1 and after ck
in σ′, respectively. For i between 1 and k−1 we denote I ′i the set of vertices in
I appearing between ci and ci+1 in σ′. For any i, if I ′i contains any vertices of
rank −1, we move them backward to the position right after ci. This results in
an ordering σ′′ where for every i, all the vertices of I ′i with negative rank appear
before all the vertices of I ′i with non-negative rank. By Lemma 1 and the fact
that moving a vertex from independent set does not affect the rank of another
vertex from the independent set we have that σ′′ is still an optimal cutwidth
ordering. Also, σ′′ satisfies the properties 1− 3. We say that an ordering σ is
C-good if it satisfies properties 1−3 and orders the vertices between vertices of
C in such a way that all vertices of negative rank appear before all vertices of
non-negative rank. The construction of σ′′ from an optimal ordering σ proves
the following lemma.

Lemma 2 Let G = (C ∪ I, E) be a graph and C be a vertex cover of G. There
exists an optimal cutwidth ordering σ of G which is C-good.

In a C-good ordering σ, consider a position i such that ci ∈ C. Because of
the properties of a C-good ordering we can essentially deduce Vi∩I from Vi∩C
and the vertex ci. We will now formalize this idea. For a set S ⊆ C and vertex
v ∈ S we define the set X(S, v) ⊆ I as follows. A vertex u ∈ I of even degree is
in X(S, v) if |N(u)∩S| > |N(u)\S|. A vertex u ∈ I of odd degree is in X(S, v)
if |N(u) ∩ (S \ {v})| > |N(u) \ (S \ {v})|. Now we define the set Y (S, v). A
vertex u ∈ I is in Y (S, v) if uv ∈ E and |(N(u)\{v})∩S| = |(N(u)\{v})\S|.
Note that the vertices in Y (S, v) have odd degrees and Y (S, v) is disjoint with
X(S, v). We refer to Figure 1 for an illustration. The following observation
follows directly from the properties of a C-good ordering.

Observation 3 In a C-good ordering σ let i be an integer such that ci ∈ C
and let S = Vi ∩ C. Then X(S, ci) ⊆ Vi ∩ I ⊆ X(S, ci) ∪ Y (S, ci).

A prefix ordering φ is a set Vφ ⊆ C ∪ I together with an ordering of Vφ.
The size of the prefix ordering φ is just |Vφ|. Similarly to normal orderings we

define V φi = {v1 . . . vi}. Let c1c2 . . . c|Vφ∩C| be the ordering imposed on Vφ ∩C
by φ, and for every i ≤ |Vφ∩C| we set Cφi = {c1, . . . , ci}. The rank of a vertex

v ∈ Vφ with respect to φ is defined as rankφ(vi) = |N(vi)\V φi |− |N(vi)∩V φi |.
We now extend the notion of being C-good from orderings of G to prefix

6 Marek Cygan et al.

vS

C

I

∈ X(S, v) ∈ Y (S, v)

Fig. 1 Illustration of the definition of the sets X(S, v) and Y (S, v).

orderings of G in such a way that that the restriction of any C-good ordering
σ of G to the first t vertices, where vt ∈ C, must be C-good. We say that a
prefix ordering φ = v1 . . . vt of size t with vt ∈ C is C-good if the following
conditions are satisfied.

1. For every vertex v ∈ Vφ ∩ I of even degree, rankφ(v) = 0 and for every
vertex v ∈ Vφ ∩ I of odd degree, rankφ(v) ∈ {−1, 1}.

2. X(Vφ ∩ C, vi) ⊆ Vφ ∩ I ⊆ X(Vφ ∩ C, vi) ∪ Y (Vφ ∩ C, vi)
3. For every vertex v ∈ X(Vφ∩C, ci) such that rankφ(v) ≥ 0 and ci ∈ Vφ∩C

we have ci ≤φ v if and only if |N(v) ∩ Cφi | ≤ |N(v) \ Cφi |.
4. For every vertex v ∈ X(Vφ∩C, ci) such that rankφ(v) < 0 and ci ∈ Vφ∩C

we have ci ≤φ v if and only if |N(v) ∩ Cφi−1| < |N(v) \ Cφi−1|.
5. Between two vertices ci, ci+1 ∈ C∩Vφ, all vertices with rankφ(v) < 0 come

before all vertices with rankφ(v) ≥ 0.

Comparing the properties of C-good orderings and C-good prefix orderings
it is easy to see that the following lemma holds.

Lemma 4 Let σ = v1 . . . vn be a C-good ordering and let φ be the restriction
of σ to the first t vertices, such that vt ∈ C. Then φ is a C-good prefix ordering.

For a prefix ordering φ define the cutwidth of G with respect to φ to be
cwφ(G) = maxi≤|Vφ| δ(V

φ
i). For a subset S of C and vertex v ∈ S, define

T (S, v) to be the minimum value of cwφ(G) where the minimum is taken over
all C-good prefix orderings φ with Vφ ∩ C = S and v being the last vertex
of φ. Notice that property 5 of C-good prefix orderings implies that in a C-
good prefix ordering φ there must be some i with vi ∈ C ∩ Vφ such that
cwφ(G) = δ(Vi) or cwφ(G) = δ(Vi−1). Also, notice that for any set S ⊆ C and
vertices u, v ∈ S we have that X(S \ {v}, u) ⊆ X(S, v) and Y (S \ {v}, u) ⊆
X(S, v). Finally, observe that for any set S ⊆ C and vertex v ∈ S, every vertex
u ∈ Y (S, v) is adjacent to v and satisfies |(N(u)\{v})∩S| = |(N(u)\{v})\S|.
Thus, for any set I ′ ⊆ I with X(S, v) ⊆ I ′ ⊆ X(S, v) ∪ Y (S, v) the value of
δ(S ∪ I ′) depends only on |Y (S, v)∩ I ′| and not on Y (S, v)∩ I ′ in general. We
let Yi(S, v) be an arbitrary subset of Y (S, v) of size i. The discussion above
yields that the following recurrence holds for T (S, v), where S ⊆ C and v ∈ S.

T (S, v) = min
u∈S

min
0≤i≤|Y (S,v)|

max

 δ(S ∪X(S, v) ∪ Yi(S, v))
δ((S \ {v}) ∪X(S, v) ∪ Yi(S, v))

T (S \ {v}, u)

 .

On cutwidth parameterized by vertex cover 7

Observe that cw(G) = minv∈C T (S, v) because in any ordering σ all vertices
of I appearing after the last vertex of C must have negative rank. Thus the
recurrence above naturally leads to a dynamic programming algorithm for
Cutwidth running in time O(2knO(1)). This proves the main theorem of this
section.

Theorem 5 There is an algorithm that given a graph G = (C ∪ I, E) such
that C is a vertex cover of G, computes the cutwidth of G in running time
O(2|C|(|C|+ |I|)O(1)). Thus, Minimum Cutwidth on bipartite graphs can be
solved in time O(2n/2nO(1)), where n is the number of vertices of the input
graph.

3 Kernelization Lower Bound

In this section we show that Cutwidth parameterized by vertex cover does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

3.1 The auxiliary problem

We begin by introducing an auxiliary problem, namely Hypergraph Min-
imum Bisection. Let H = (V,E) be a multihypergraph with |V | = n,
where n is even. A bisection of V is a colouring B : V → {0, 1} such that
|B−1(0)| = |B−1(1)| = n/2. For a hyperedge e let us define the cost of e with
respect to a bisection B as cost(e,B) = min

(∣∣e ∩ B−1(0)
∣∣ , ∣∣e ∩ B−1(1)

∣∣). The
cost of a bisection is defined as the sum of the contributions of the hyperedges,
i.e., cost(B) =

∑
e∈E cost(e,B).

Hypergraph Minimum Bisection Parameter: n
Input: Multihypergraph H with n vertices, where n is even; an integer k
Question: Does there exist a bisection of H with cost at most k?

In the case when all the hyperedges are in fact edges (have cardinalities 2)
and there are no multiedges, the problem is equivalent to the classical Mini-
mum Bisection problem. As Minimum Bisection is NP-hard, Hypergraph
Minimum Bisection is also NP-hard, so NP-complete as well.

The goal now is to prove that Cutwidth parameterized by the size of
vertex cover does not admit a polynomial kernel, unless NP ⊆ coNP/poly. We
do it in two steps. First, using the OR-distillation technique of Bodlaender et
al. [5] (with the backbone theorem proven by Fortnow and Santhanam [17]) we
prove that Hypergraph Minimum Bisection does not admit a polynomial
kernel, unless NP ⊆ coNP/poly. Second, we present a parameterized reduction
from Hypergraph Minimum Bisection to Cutwidth parameterized by
vertex cover.

8 Marek Cygan et al.

3.2 No polynomial kernel for Hypergraph Minimum Bisection

We use the OR-distillation technique (first introduced by Bodlaender et al. [5])
put into the framework called cross-composition [6]. Let us recall the crucial
definitions.

Definition 6 (Polynomial equivalence relation [6]) An equivalence rela-
tion R on Σ∗ is called a polynomial equivalence relation if (1) there is an algo-
rithm that given two strings x, y ∈ Σ∗ decides whetherR(x, y) in (|x|+|y|)O(1)

time; (2) for any finite set S ⊆ Σ∗ the equivalence relation R partitions the
elements of S into at most (maxx∈S |x|)O(1) classes.

Definition 7 (Cross-composition [6]) Let L ⊆ Σ∗ and let Q ⊆ Σ∗ × N
be a parameterized problem. We say that L cross-composes into Q if there is
a polynomial equivalence relation R and an algorithm which, given t strings
x1, x2, . . . xt belonging to the same equivalence class of R, computes an in-
stance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that (1)

(x∗, k∗) ∈ Q iff xi ∈ L for some 1 ≤ i ≤ t; (2) k∗ is bounded polynomially in
maxti=1 |xi|+ log t.

Theorem 8 ([6], Theorem 9) If L ⊆ Σ∗ is NP-hard under Karp reductions
and L cross-composes into the parameterized problem Q that has a polynomial
kernel, then NP ⊆ coNP/poly.

Lemma 9 Hypergraph Minimum Bisection, parameterized by the size of
the universe, does not admit a polynomial kernel, unless NP ⊆ coNP/poly.

Proof As Minimum Bisection is NP-hard under Karp reductions, it suffices
to prove that it cross-composes into the Hypergraph Minimum Bisection
problem, parameterized by n — the size of the universe. Let R be an equiva-
lence relation on Σ∗ defined as follows:

– all words that do not correspond to instances of Minimum Bisection form
one equivalence class;

– all the well-formed instances are partitioned into equivalence classes having
the same number of vertices, the same number of edges and the same
demanded cost of the bisection.

It is straightforward that R is a polynomial equivalence relation. Therefore,
we can assume that the composition algorithm is given a sequence of instances
(G0, k), (G1, k), . . . , (Gt−1, k) of Minimum Bisection with |V (Gi)| = n and
|E(Gi)| = m for all i = 0, 1, . . . , t− 1 (n is even). Moreover, by copying some
instances if necessary we can assume without losing generality that t = 2l for
some integer l. Note that in this manner we do not increase the order of log t.

We now proceed to the construction of the composed Hypergraph Min-
imum Bisection instance (H,K). Let N = 2m · ((l+ 2)2l−1− 1) + 2k+ 1 and
M = N(l2− l) +N . We begin by creating two sets of vertices A0 and A1, each
of size 2nl. We introduce each set A0, A1 as a hyperedge of the constructed
hypergraph M times.

On cutwidth parameterized by vertex cover 9

Then, we introduce 2l vertices s0i , s
1
i for i = 0, 1, . . . , l − 1 and denote the

set of all these vertices by S. For every i < j we put N times each hyperedge
{s0i , s0j}, {s0i , s1j}, {s1i , s0j}, {s1i , s1j}. Thus, the hypergraph induced by S is a
clique without a matching, repeated N times. Furthermore, for every p = 0, 1
and i = 0, 1, . . . , l−1 we construct a set Spi of n−1 vertices and put Spi ∪{s

p
i }

as a hyperedge of the constructed hypergraph M times.

A0 A1

s00
S0
0

s01
S0
1

s02
S0
2

s10
S1
0

s11
S1
1

s12
S1
2

W

v1 v2

Fig. 2 The constructed hypergraph H for l = 3; encircled vertices indicate the hyperedge
e0 constructed for e = v51v

5
2 ∈ E(G5).

Now, we construct a set of n vertices v1, v2, . . . , vn and denote it by W .
For every instance Ga we arbitrarily choose an ordering of its vertices and
denote it by va1 , v

a
2 , . . . , v

a
n. Let bl−1bl−2 . . . b1b0 be the binary representation

of a, with trailing zeroes added so that its length is equal to l. For every edge
e = vagv

a
h ∈ E(Ga) we create two hyperedges:

– e0, consisting of vertices vg, vh, sbii for all i = 0, 1, . . . , l − 1 and l vertices
from A1, chosen arbitrarily;

– e1, consisting of vertices vg, vh, s1−bii for all i = 0, 1, . . . , l−1 and l vertices
from A0, chosen arbitrarily.

Finally, we set the expected cost of the bisection to K = M − 1 = N(l2− l) +
2m · ((l + 2)2l−1 − 1) + 2k. We refer to Figure 2 for an illustration.

Assume that some graph Ga has a bisection B having cost at most k. Let
bl−1bl−2 . . . b1b0 be the binary representation of a, as in the previous paragraph.
We now construct a bisection B′ of H as follows:

– for each u ∈ A0 we set B′(u) = 0, for each u ∈ A1 we set B′(u) = 1;

10 Marek Cygan et al.

– for each u ∈ Spi ∪ {s
p
i } for p = 0, 1, i = 0, 1, . . . , l− 1 we set B′(u) = p+ bi

(mod 2);
– for each vj ∈W we set B′(vj) = B(vaj).

Observe that B′ bisects each of the sets A0∪A1, S and W , so it is a bisection.
We now prove that its cost is at most K. Let us count the contribution to the
cost from every hyperedge of H.

Each copy of the hyperedges A0, A1 and Spi ∪ {s
p
i } for p = 0, 1, i =

0, 1, . . . , l−1 has zero contribution, as it is monochromatic. The edges of H[S]
have contribution 0 or 1, depending on whether the endpoints are coloured in
the same or in a different way in B′. There are l vertices spi that map to 0 in
B′ and l that map to 1, so there are l2 pairs of vertices coloured in a different
way. Between every pair of vertices there are N edges, apart from the pairs
(s0i , s

1
i). Note that all these pairs are coloured differently; therefore, there are

exactly N(l2 − l) edges in H[S] contributing 1 to the cost.
Take c ∈ {0, 1, . . . , t− 1} such that c 6= a. Let dl−1dl−2 . . . d0 be the binary

representation of c. For e ∈ E(Gc) let us count the contribution to cost(B′)
of the hyperedges e0 and e1. Suppose that q = |{i : bi 6= di}| > 0. Among
vertices of e0, l from A1 are coloured 1, q from S are coloured 1 as well
and l − q from S are coloured 0. In total, we have l + q vertices coloured
1 and l − q coloured 0, so regardless of the colouring of the remaining two
vertices from W , the contribution is equal to the number of vertices coloured
0 in e0, namely l − q + |e0 ∩W ∩ B′−1(0)|. Analogously, the contribution of
the hyperedge e1 is equal to the number of vertices of e1 coloured 1, namely
l − q + |e1 ∩ W ∩ B′−1(1)|. As there are exactly two vertices in e0 ∩ W =
e1 ∩W , cost(e0,B′) + cost(e1,B′) = 2(l− q) + 2. Thus, the total contribution
of hyperedges e0, e1 for e ∈ E(Gc) is equal to 2m(l − q) + 2m.

Now we count the contribution of the edges e0 and e1 for e ∈ E(Ga).
Analogously as in the previous paragraph, both edges e0, e1 contain l vertices
coloured 0, l vertices coloured 1 plus two vertices from W . If both these vertices
are coloured in the same way, the sum of the contributions of e0 and e1 is equal
to 2l; however, if the vertices are coloured differently, the sum is equal to 2l+2.
As the cost of bisection B was at most k, the total contribution of edges e0,
e1 for e ∈ E(Ga) is at most 2ml + 2k.

Finally, we sum up the contributions:

cost(B′) ≤ N(l2 − l) + 2m

l∑
q=1

(l − q + 1)

(
l

q

)
+ 2ml + 2k

= N(l2 − l) + 2m · (2l − 1) + 2m

l∑
q=0

(l − q)
(
l

q

)
+ 2k

= N(l2 − l) + 2m · (2l − 1) + 2ml2l−1 + 2k

= N(l2 − l) +N − 1 = K.

We proceed to the second direction. Assume that we have a bisection B′
of H such that cost(B′) ≤ K. Observe that as M > K, both the sets A0, A1

On cutwidth parameterized by vertex cover 11

are monochromatic with respect to B′. Moreover, they have to be coloured
differently, as they contain more than half of the vertices of the graph in total.
Without losing generality we can assume that A0 is coloured in colour 0, while
A1 is coloured in colour 1, by flipping the colours if necessary.

Now consider the set Sip∪{sip} for p = 0, 1, i = 0, 1, . . . , l−1. Analogously as

in the previous paragraph, Sip ∪ {sip} has to be monochromatic. Furthermore,
observe that exactly l such sets have to be coloured 0 in B′ and the same
number have to be coloured 1, as every set Sip∪{s

p
i } contains the same number

of vertices as the set W and B′ is a bisection. Therefore, B′ has to bisect each
of the sets A0 ∪A1, S and W .

Exactly l vertices spi are coloured 0 in B′ and exactly l are coloured 1.
Let r be the number of indices i, such that s0i and s1i are coloured differently.
Observe that analogously to our previous arguments, the contribution of the
edges of H[S] to cost(B′) is equal to N(l2− r) = N(l2− l) +N(l− r). If r < l,
then cost(B′) ≥ N(l2 − l) + N > K, a contradiction. Therefore, all the pairs
(s0i , s

1
i) are coloured differently.

Let a be a number with binary representation B′(s0l−1)B′(s1l−2) . . .B′(s10).
Consider a bisection B of Ga defined as follows: B(vai) = B′(vi). We claim that
the cost of B is at most k. Indeed, the same computations as in the previous
part of the proof show that

cost(B′) = N(l2 − l) + 2m((l + 2)2l−1 − 1) + 2cost(B)

Therefore, as cost(B′) ≤ K, then cost(B) ≤ k. ut

3.3 From Hypergraph Minimum Bisection to Cutwidth

Let us briefly recall the notion of polynomial parameter transformations.

Definition 10 ([9]) Let P and Q be parameterized problems. We say that
P is polynomial parameter reducible to Q, written P ≤p Q, if there exists a
polynomial time computable function f : Σ∗×N→ Σ∗×N and a polynomial
p, such that for all (x, k) ∈ Σ∗×N the following holds: (x, k) ∈ P iff (x′, k′) =
f(x, k) ∈ Q and k′ ≤ p(k). The function f is called a polynomial parameter
transformation.

Theorem 11 ([9]) Let P and Q be parameterized problems and P̃ and Q̃ be
the unparameterized versions of P and Q respectively. Suppose that P̃ is NP-
hard and Q̃ is in NP. Assume there is a polynomial parameter transformation
from P to Q. Then if Q admits a polynomial kernel, so does P .

We apply this notion to our case.

Lemma 12 There exists a polynomial-time algorithm that, given an instance
of the Hypergraph Minimum Bisection problem with n vertices, outputs
an equivalent instance of the Cutwidth problem along with its vertex cover
of size n.

12 Marek Cygan et al.

Proof Let (H = (V,E), k) be an instance of Hypergraph Minimum Bisec-
tion given in the input, where |V | = n (n is even) and |E| = m. We construct
a graph G as follows.

Let us denote N = mn+ 1. We begin by taking the whole set V to be the
set of vertices of G. For every distinct u, v ∈ V we introduce N new vertices
xiu,v for i = 1, 2, . . . , N , each connected only to u and v. Then, for every e ∈ E
we introduce a new vertex ye connected to all v ∈ e. Denote the set of all
vertices xiu,v by X and the set of all vertices ye by Y . This concludes the
construction. Observe that V is a vertex cover of G of size n. We now prove
that H has a bisection with cost at most k if and only if G has cutwidth at
most n2N/4 + k.

Assume that H has a bisection B with cost at most k. Let us order the
vertices of the graph G as follows. First, we order the vertices from V : we place
B−1(0) first, in any order, and then B−1(1), in any order. Then, we place every
xiu,v anywhere between u and v. At the end, for every e ∈ E we place ye at
the beginning if at least half of the vertices of e are in B−1(0), and in the end
otherwise. Vertices ye at the beginning and at the end are arranged in any
order.

Now, we prove that the cutwidth of the constructed ordering is at most
n2N/4+k. Consider any cut C, dividing the order on V (G) into a first part V1
and a second part V2. Suppose that |V1∩V | = n/2−l for some −n/2 ≤ l ≤ n/2,
thus |V2 ∩ V | = n/2 + l. Observe that C cuts exactly N(n/2 − l)(n/2 + l) =
n2N/4 − l2N edges between V and X. Note that there are not more than
nm < N edges between V and Y . Therefore, if l 6= 0, then C can cut at most
n2N/4−N + nm < n2N/4 + k edges.

We are left with the case when l = 0. Observe that V1 ∩ V = B−1(0) and
V2 ∩ V = B−1(1). Moreover, the cut C cuts exactly n2N/4 edges between sets
V and X. As far as edges between V and Y are concerned, for every hyperedge
e ∈ E, the cut C cuts exactly cost(e,B) edges incident on ye. As cost(B) ≤ k,
the cut C cuts at most n2N/4 + k edges.

Now assume that there is an ordering of vertices of G that has cutwidth at
most n2N/4 + k. We construct a bisection B of H as follows. Let B(v) = 0 for
every v among the first n/2 vertices from V with respect to the ordering, and
B(v) = 1 for v among the second n/2 vertices. We now prove that the cost of
this bisection is at most k.

Let C be any cut dividing the order into the first part V1 and the second
part V2, such that V1 ∩ V = B−1(0) and V2 ∩ V = B−1(1). As the cutwidth of
the ordering is at most n2N/4 + k, C cuts at most n2N/4 + k edges. Observe
that C needs to cut at least n2N/4 edges between sets V and X, therefore it
cuts at most k edges between sets V and Y . For every hyperedge e ∈ E, C
cuts at least cost(e,B) edges incident to ye, thus cost(B) ≤ k. ut

From Lemmata 9, 12 and Theorem 11 we conclude the following.

Theorem 13 Cutwidth parameterized by the size of vertex cover does not
admit a polynomial kernel, unless NP ⊆ coNP/poly.

On cutwidth parameterized by vertex cover 13

4 Conclusions

In this paper we studied the complexity of computing the cutwidth of a graph
parameterized by the size of a given vertex cover. We have shown an algorithm
with running time O(2knO(1)), where k is the cardinality of the vertex cover
and n is the number of vertices of the graph. Moreover, we have proven that
polynomial kernelization of the problem is unlikely, thus counterpoising the
recent result of Bodlaender et al. [7].

The thrilling and natural question is whether the insight we have given into
the problem can be a starting point to breaking the 2n barrier for an exact
algorithm computing cutwidth. Our result implies that one can assume that
in any hard instance all the independent sets are small, i.e., of size not larger
than cn for an arbitrarily small constant c > 0.

References

1. Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM Journal of Applied Mathe-
matics 25, 403–423 (1973)

2. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. Jour-
nal of the ACM 9(1), 61–63 (1962)

3. Björklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp. 173–182.
IEEE Computer Society (2010)

4. Blin, G., Fertin, G., Hermelin, D., Vialette, S.: Fixed-parameter algorithms for protein
similarity search under mRNA structure constraints. Journal of Discrete Algorithms 6,
618–626 (2008)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without
polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)

6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for
kernelization lower bounds. In: T. Schwentick, C. Dürr (eds.) STACS, LIPIcs, vol. 9,
pp. 165–176. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

7. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: A combina-
torial analysis through kernelization. In: L. Aceto, M. Henzinger, J. Sgall (eds.) ICALP
(1), Lecture Notes in Computer Science, vol. 6755, pp. 437–448. Springer (2011)

8. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for structural param-
eterizations of pathwidth. In: F.V. Fomin, P. Kaski (eds.) SWAT, Lecture Notes in
Computer Science, vol. 7357, pp. 352–363. Springer (2012)

9. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint
paths. Theoretical Computer Science 412(35), 4570–4578 (2011)

10. Botafogo, R.A.: Cluster analysis for hypertext systems. In: R. Korfhage, E.M. Ras-
mussen, P. Willett (eds.) SIGIR, pp. 116–125. ACM (1993)

11. Cai, J., Chakaravarthy, V.T., Hemaspaandra, L.A., Ogihara, M.: Competing provers
yield improved Karp-Lipton collapse results. Information and Computation 198(1),
1–23 (2005)

12. Chung, M., Makedon, F., Sudborough, I., Turner, J.: Polynomial time algorithms for the
min cut problem on degree restricted trees. SIAM Journal on Computing 14, 158–177
(1985)

13. Diaz, J., Penrose, M., Petit, J., Serna, M.: Approximating layout problems on random
geometric graphs. Journal of Algorithms 39, 78–117 (2001)

14. Drucker, A.: New limits to classical and quantum instance compression. In: FOCS (to
appear). IEEE Computer Society (2012)

15. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout
problems parameterized by vertex cover. In: S.H. Hong, H. Nagamochi, T. Fukunaga
(eds.) ISAAC, Lecture Notes in Computer Science, vol. 5369, pp. 294–305. Springer
(2008)

14 Marek Cygan et al.

16. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and
minimum fill-in. SIAM Journal of Computing 38(3), 1058–1079 (2008)

17. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs
for NP. Journal of Computer and System Sciences 77(1), 91–106 (2011)

18. Gavril, F.: Some NP-complete problems on graphs. In: 11th Conference on Information
Sciences and Systems, pp. 91–95 (1977)

19. Heggernes, P., van ’t Hof, P., Lokshtanov, D., Nederlof, J.: Computing the cutwidth of
bipartite permutation graphs in linear time. In: D.M. Thilikos (ed.) WG, Lecture Notes
in Computer Science, vol. 6410, pp. 75–87 (2010)

20. Heggernes, P., Lokshtanov, D., Mihai, R., Papadopoulos, C.: Cutwidth of split graphs
and threshold graphs. SIAM Journal of Discrete Mathematics 25(3), 1418–1437 (2011)

21. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Jour-
nal of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1962)

22. Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. In: O. Owe,
M. Steffen, J.A. Telle (eds.) FCT, Lecture Notes in Computer Science, vol. 6914, pp.
90–101. Springer (2011)

23. Junguer, M., Reinelt, G., Rinaldi, G.: The travelling salesman problem. Handbook on
Operations Research and Management Sciences 7, 225–330 (1995)

24. Karger, D.R.: A randomized fully polynomial time approximation scheme for the all-
terminal network reliability problem. SIAM Journal of Computing 29(2), 492–514
(1999)

25. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion.
Operations Research Letters 1, 49–51 (1982)

26. Leighton, F., Rao, S.: Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM 46, 787–832 (1999)

27. Makedon, F., Sudborough, I.H.: On minimizing width in linear layouts. Discrete Applied
Mathematics 23, 243–265 (1989)

28. Monien, B., Sudborough, I.H.: Min cut is NP-complete for edge weighted trees. Theo-
retical Computer Science 58, 209–229 (1988)

29. Mutzel, P.: A polyhedral approach to planar augmentation and related problems. In:
P.G. Spirakis (ed.) ESA, Lecture Notes in Computer Science, vol. 979, pp. 494–507.
Springer (1995)

30. Suchan, K., Villanger, Y.: Computing pathwidth faster than 2n. In: J. Chen, F.V. Fomin
(eds.) IWPEC, Lecture Notes in Computer Science, vol. 5917, pp. 324–335. Springer
(2009)

31. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth II: Algorithms for partial w-
trees of bounded degree. Journal of Algorithms 56, 24–49 (2005)

32. Yannakakis, M.: A polynomial algorithm for the min cut linear arrangement of trees.
Journal of the ACM 32, 950–988 (1985)

33. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science 26, 287–300 (1983)

34. Yuan, J., Zhou, S.: Optimal labelling of unit interval graphs. Applied Mathematics: A
Journal of Chinese Universities Series B (English edition) 10, 337–344 (1995)

