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Abstract
The Cycle Packing problem asks whether a given undirected graph G = (V,E) contains k
vertex-disjoint cycles. Since the publication of the classic Erdős-Pósa theorem in 1965, this
problem received significant scientific attention in the fields of Graph Theory and Algorithm
Design. In particular, this problem is one of the first problems studied in the framework of
Parameterized Complexity. The non-uniform fixed-parameter tractability of Cycle Packing
follows from the Robertson–Seymour theorem, a fact already observed by Fellows and Langston
in the 1980s. In 1994, Bodlaender showed that Cycle Packing can be solved in time 2O(k2) · |V |
using exponential space. In case a solution exists, Bodlaender’s algorithm also outputs a solution
(in the same time). It has later become common knowledge that Cycle Packing admits a
2O(k log2 k) · |V |-time (deterministic) algorithm using exponential space, which is a consequence
of the Erdős-Pósa theorem. Nowadays, the design of this algorithm is given as an exercise in
textbooks on Parameterized Complexity. Yet, no algorithm that runs in time 2o(k log2 k) · |V |O(1),
beating the bound 2O(k log2 k) · |V |O(1), has been found. In light of this, it seems natural to
ask whether the 2O(k log2 k) · |V |O(1) bound is essentially optimal. In this paper, we answer this
question negatively by developing a 2O( k log2 k

log log k ) · |V |-time (deterministic) algorithm for Cycle
Packing. In case a solution exists, our algorithm also outputs a solution (in the same time).
Moreover, apart from beating the bound 2O(k log2 k) · |V |O(1), our algorithm runs in time linear
in |V |, and its space complexity is polynomial in the input size.
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1 Introduction

The Cycle Packing problem asks whether a given undirected graph G = (V,E) contains k
vertex-disjoint cycles. Since the publication of the classic Erdős-Pósa theorem in 1965 [16],
this problem received significant scientific attention in the fields of Graph Theory and
Algorithm Design. In particular, Cycle Packing is one of the first problems studied in
the framework of Parameterized Complexity. In this framework, each problem instance is
associated with a parameter k that is a non-negative integer, and a problem is said to be
fixed-parameter tractable (FPT) if the combinatorial explosion in the time complexity can be
confined to the parameter k. More precisely, a problem is FPT if it can be solved in time
f(k) · |I|O(1) for some function f , where |I| is the input size. For more information, we refer
the reader to recent monographs such as [15] and [11].

In this paper, we study the Cycle Packing problem from the perspective of Parameter-
ized Complexity. In the standard parameterization of Cycle Packing, the parameter is the
number k of vertex-disjoint cycles. The non-uniform fixed-parameter tractability of Cycle
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Packing follows from the Robertson–Seymour theorem [39],1 a fact already observed by
Fellows and Langston in the 1980s. In 1994, Bodlaender showed that Cycle Packing can
be solved in time 2O(k2) · |V | using exponential space [3]. Notably, in case a solution exists,
Bodlaender’s algorithm also outputs a solution in time 2O(k2) · |V |.

The Erdős-Pósa theorem states that there exists a function f(k) = O(k log k) such that for
each non-negative integer k, every undirected graph either contains k vertex-disjoint cycles or
it has a feedback vertex set consisting of f(k) vertices [16]. It is well known that the treewidth
(tw) of a graph is not larger than its feedback vertex set number (fvs), and that a naive
dynamic programming (DP) scheme solves Cycle Packing in time 2O(tw log tw) · |V | and
exponential space (see, e.g., [11]). Thus, the existence of a 2O(k log2 k) · |V |-time (deterministic)
algorithm that uses exponential space can be viewed as a direct consequence of the Erdős-Pósa
theorem. Nowadays, the design of this algorithm is given as an exercise in textbooks on
Parameterized Complexity such as [15] and [11]. In case a solution exists, this algorithm
does not output a solution (though we remark that with a certain amount of somewhat
non-trivial work, it is possible to modify this algorithm to also output a solution).

Prior to our work, no algorithm that runs in time 2o(k log2 k) · |V |O(1), beating the bound
2O(k log2 k) · |V |O(1), has been found. In light of this, it seemed tempting to ask whether the
2O(k log2 k) · |V |O(1) bound is essentially optimal. In particular, two natural directions to
explore in order to obtain a faster algorithm necessarily lead to a dead end. First, Erdős and
Pósa [16] proved that the bound f(k) = O(k log k) in their theorem is essentially tight as
there exist infinitely many graphs and a constant c such that these graphs do not contain k
vertex-disjoint cycles and yet their feedback vertex set number is larger than ck log k. Second,
Cygan et al. [12] proved that the bound 2O(tw log tw) · |V |O(1) is also likely to be essentially
tight in the sense that unless the Exponential Time Hypothesis (ETH) [21] is false, Cycle
Packing cannot be solved in time 2o(tw log tw) · |V |O(1) (however, it might still be true that
Cycle Packing is solvable in time 2o(fvs log fvs) · |V |O(1)).

1.1 Related Work
The Cycle Packing problem admits a factor O(log |V |) approximation algorithm [31], and
it is quasi-NP-hard to approximate within a factor of O(log

1
2−ε |V |) for any ε > 0 [19]. In the

context of kernelization with respect to the parameter k, Cycle Packing does not admit a
polynomial kernel unless NP ⊆ coNP/Poly [6]. Recently, Lokshtanov et al. [32] obtained a
6-approximate kernel with O((k log k)2) vertices along with a (1 + ε)-approximate kernel with
kO(f(ε) log k) vertices for some function f . We would like to mention that in case one seeks k
edge-disjoint cycles rather than k vertex-disjoint cycles, the problem becomes significantly
simpler in the sense that it admits a kernel with O(k log k) vertices [6].

Focusing on structural parameters, Bodlaender et al. [4] obtained polynomial kernels
with respect to the vertex cover number, vertex-deletion distance to a cluster graph and
the max leaf number. In planar graphs, Bodlaender et al. [5] solved Cycle Packing in
subexponential time 2O(

√
k) · |V |O(1), and showed that this problem admits a linear kernel. In

the more general class of H-minor-free graphs, Dorn et at. [14] also solved Cycle Packing
in subexponential time 2O(

√
k) · |V |O(1). Moreover, for apex-minor-free graphs, Fomin et

al. [18] showed that Cycle Packing admits a linear kernel, and Fomin et al. [17] showed
that it also admits an EPTAS. When the input graph is a directed graph, Cycle Packing is
W[1]-hard [40], but it admits an FPT approximation scheme [20]. In fact, Cycle Packing in

1 The paper [39] was already available as a manuscript in 1986 (see, e.g., [3]).
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directed graphs was the first W[1]-hard problem shown to admit such a scheme. Krivelevich et
al. [31] obtained a factor O(|V | 12 ) approximation algorithm for Cycle Packing in directed
graphs and showed that this problem is quasi-NP-hard to approximate within a factor of
O(log1−ε |V |) for any ε > 0.

Several variants of Cycle Packing have also received significant scientific attention.
For example, the variant of Cycle Packing where one seeks k odd vertex-disjoint cycles
has been widely studied [37, 41, 36, 30, 28, 29]. Another well-known variant, where the
cycles need to contain a prescribed set of vertices, has also been extensively investigated
[25, 34, 26, 24, 27]. Furthermore, a combination of these two variants has been considered
in [24, 23].

Finally, we briefly mention that inspired by the Erdős-Pósa theorem, a class of graphs
H is said to have the Erdős-Pósa property if there is a function f(k) for which given a
graph G, it either contains k vertex-disjoint subgraphs such that each of these subgraphs
is isomorphic to a graph in H, or it contains a set of f(k) vertices that hits each of its
subgraphs that is isomorphic to a graph in H. A fundamental result in Graph Theory by
Robertson and Seymour [38] states the the class of all graphs that can be contracted to
a fixed planar graph H has the Erdős-Pósa property. Recently, Chekuri and Chuzhoy [7]
presented a framework that leads to substantially improved functions f(k) in the context
of results in the spirit of the Erdős-Pósa theorem. Among other results, these two works
are also related to the recent breakthrough result by Chekuri and Chuzhoy [8], which states
that every graph of treewidth at least f(k) = O(k98 · polylog(k)) contains the k × k grid as
a minor (the constant 98 has been improved to 36 in [9] and to 19 in [10]). Following the
seminal work by Robertson and Seymour [38], numerous papers (whose survey is beyond the
scope of this paper) investigated which other classes of graphs have the Erdős-Pósa property,
which are the “correct” functions f associated with them, and which generalizations of this
property lead to interesting discoveries.

1.2 Our Contribution

In this paper, we show that the running time of the algorithm that is a consequence of the
Erdős-Pósa theorem is not essentially tight. For this purpose, we develop a 2O( k log2 k

log log k ) · |V |-
time (deterministic) algorithm for Cycle Packing. In case a solution exists, our algorithm
also outputs a solution (in time 2O( k log2 k

log log k ) · |V |). Moreover, apart from beating the bound
2O(k log2 k) · |V |O(1), our algorithm runs in time linear in |V |, and its space complexity is
polynomial in the input size. Thus, we also improve upon the classical 2O(k2) · |V |-time
algorithm by Bodlaender [3]. Our result is summarized in the following theorem.

I Theorem 1. There exists a (deterministic) polynomial-space algorithm that solves Cycle
Packing in time 2O( k log2 k

log log k ) · |V |. In case a solution exists, it also outputs a solution.

Our technique relies on several combinatorial arguments that might be of independent
interest, and whose underlying ideas might be relevant to the design of other parameterized
algorithms. Let us now outline the structure of our proof, specifying the main ingredients
that we develop along the way.
• First, we show that in time linear in |V |, it is easy to bound |E| by O(k log k · |V |)

(Assumption 1).
• Second, we give an algorithmic version of the Erdős-Pósa theorem that runs in time linear

in |V | and which outputs either a solution or a small feedback vertex set (Theorem 2).
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• Then, we show that given a graph G = (V,E) and a feedback vertex set F , a shortest
cycle in G can be found in time O(|F | · (|V |+ |E|)) (Lemma 3).

• We proceed by interleaving an application of a simple set of reduction rules (Rules A1,
A2 and A3) with a computation of a “short” cycle. Thus, given some g > 6, we obtain
a set S of size smaller than gk such that the girth of the “irreducible component” of
G−S is larger than g (Lemma 5). Here, the irreducible component of G−S is the graph
obtained from G− S by applying our reduction rules.

• Next, we show that the number of vertices in the above mentioned irreducible component
is actually “small” — for some fixed constant c, it can be bounded by (2ck log k)1+ 6

g−6 +
3ck log k (Lemma 6). The choice of g = 48 log k

log log k + 6 results in the bound 3ck log k +
2ck log1.5 k (Corollary 7).2

• Now, we return to examine the graph G− S rather than only its irreducible component.
The necessity of this examination stems from the fact that our reduction rules, when
applied to G − S rather than G, do not preserve solutions. We first give a procedure
which given any set X, modifies the graph G−X in a way that both preserves solutions
and gets rid of many leaves (Lemma 8). We then use this procedure to bound the number
of leaves, as well as other “objects”, in the reducible component of G− S (Lemma 9).

• At this point, the graph G may still contain many vertices: the reducible component of
G− S may contain “long” induced paths (which are not induced paths in G). We show
that the length of these paths can be shortened by “guessing” permutations that provide
enough information describing the relations between these paths and the vertices in S.
Overall, we are thus able to bound the entire vertex-set of G by O(k log1.5 k) in time
2O( k log2 k

log log k ) · |V | and polynomial space (Lemma 10).
• Finally, we apply a DP scheme (Lemma 11). Here, to ensure that the space complexity is

polynomial in the input size, we rely on the principle of inclusion-exclusion.

2 Preliminaries

We use standard terminology from the book of Diestel [13] for those graph-related terms that
are not explicitly defined here. We only consider finite graphs possibly having self-loops and
multi-edges. Moreover, we restrict the maximum multiplicity of an edge to be 2. For a graph
G, we use V and E to denote the vertex and edge sets of the graph G, respectively. For a
vertex v ∈ V , we use degG(v) to denote the degree of v, i.e the number of edges incident
on v, in the (multi) graph G. We also use the convention that a self-loop at a vertex v
contributes 2 to its degree. For a vertex subset S ⊆ V , we let G[S] and G− S denote the
graphs induced on S and V \ S, respectively. For a vertex subset S ⊆ V , we use NG(S)
and NG[S] to denote the open and closed neighborhoods of S in G, respectively. That is,
NG(S) = {v | {u, v} ∈ E, u ∈ S} \ S and NG[S] = NG(S) ∪ S. In case S = {v}, we simply
let N(v) = N(S) and N [v] = N [S]. For a graph G = (V,E) and an edge e ∈ E, we let G/e
denote the graph obtained by contracting e in G. For E′ ⊆

(
V
2
)
, i.e. a subset of edges, we

let G+E′ denote the (multi) graph obtained after adding the edges in E′ to G, and we let
G/E′ denote the (multi) graph obtained after contracting the edges of E′ in G. The girth of
a graph is denoted by girth(G), its minimum degree by δ(G), and its maximum degree by
∆(G). A graph with no cycles has infinite girth.

2 We found these constants as the most natural ones to obtain a clean proof of any bound of the form
O( k log2 k

log log k ) (that is, the constants were not optimized to obtain the bound 3ck log k + 2ck log1.5 k).
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A path in a graph is a sequence of distinct vertices v0, v1, . . . , v` such that {vi, vi+1} is an
edge for all 0 ≤ i < `. A cycle in a graph is a sequence of distinct vertices v0, v1, . . . , v` such
that {vi, v(i+1) mod `+1} is an edge for all 0 ≤ i ≤ `. Both a double edge and a self-loop are
cycles. If P is a path from a vertex u to a vertex v in the graph G then we say that u and v
are the end vertices of the path P and P is a (u, v)-path. For a path P , we use V (P ) and
E(P ) to denote the sets of vertices and edges in the path P , respectively, and length of P
is denoted by |P | (i.e, |P | = |V (P )|). For a cycle C, we use V (C) and E(C) to denote the
sets of vertices and edges in the cycle C, respectively, and the length of C, denoted by |C|,
is |V (C)|. For a path or a cycle Q we use NG(Q) and NG[Q] to denote the sets NG(V (Q))
and NG[V (Q)], respectively. For a collection of paths/cycles Q, we use |Q| to denote the
number of paths/cycles in Q and V (Q) to denote the set

⋃
Q∈Q V (Q). We say a path P in

G is a degree-two path if all vertices in V (P ), including the end vertices of P , have degree
exactly 2 in G. We say P is a maximal degree-two path if no proper superset of P also forms
a degree-two path. We note that the notions of walks and closed walks are defined exactly
as paths and cycles, respectively, except that their vertices need not be distinct. Finally, a
feedback vertex set is a subset F of vertices such that G− F is a forest.

Below we formally state some of the key results that will be used throughout the paper,
starting with the classic Erdős-Pósa theorem [16].

I Proposition 1 ([16]). There exists a constant c′ such that every (multi) graph either
contains k vertex-disjoint cycles or it has a feedback vertex set of size at most c′k log k.

Observe that any (multi) graph G = (V,E) whose feedback vertex set number is bounded
by c′k log k has less than (2c′k log k+ 1) · |V | edges (recall that we restrict the multiplicity of
an edge to be 2). Indeed, letting F denote a feedback vertex set of minimum size, the worst
case (in terms of |E|) is obtained when G−F is a tree, which contains |V |−|F |−1 edges, and
between every pair of vertices v ∈ F and u ∈ V , there exists an edge of multiplicity 2. Thus,
by Proposition 1, in case |E| > (2c′k log k + 1) · |V |, the input instance is a yes-instance, and
after we discard an arbitrary set of |E| − (2c′k log k+ 1) · |V | edges, it remains a yes-instance.
A simple operation which discards at least |E| − (2c′k log k + 1) · |V | edges and can be
performed in time O(k log k · |V |) is described in Appendix A.

I Assumption 1. We assume that |E| = O(k log k · |V |).

Now, we state our algorithmic version of Proposition 1. The proof partially builds upon
the proof of the Erdős-Pósa theorem in the book [13], and it is given in Appendix B.

I Theorem 2. There exists a constant c and a polynomial-space algorithm such that given
a (multi) graph G and a non-negative integer k, in time kO(1) · |V | it either outputs k
vertex-disjoint cycles or a feedback vertex set of size at most ck log k = r.

Next, we state two results relating to cycles of average and short lengths.

I Proposition 2 ([1]). Any (multi) graph G = (V,E) on n vertices with average degree d
contains a cycle of length at most 2 logd−1 n+ 2.

Itai and Rodeh [22] showed that given a (multi) graph G = (V,E), an “almost” shortest
cycle (if there is any) in G can be found in time O(|V |2). To obtain a linear dependency on
|V | (given a small feedback vertex set), we prove the following result in Appendix C.

I Lemma 3. Given a (multi) graph G = (V,E) and a feedback vertex set F of G, a shortest
cycle (if there is any) in G can be found in time O(|F | · (|V |+ |E|)).
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Finally, we state a result that will be used (in Lemma 6) to bound the size of a graph
we obtain after performing simple preprocessing operations as well as repetitive removal of
short cycles.

I Proposition 3 ([35], Lemma 9). Let T = (V,E) be a forest on N vertices. Let M ′ =
{{i, j} ∈ E | degT (i) = degT (j) = 2} and L = {a ∈ V | degT (a) ≤ 1}. Then there exists
M ⊆M ′ such that M is a matching and |W | ≥ N

4 where W = L ∪M .

3 Removing Leaves, Induced Paths, and Short Cycles

As is usually the case when dealing with cycles in a graph, we first define three rules which
help getting rid of vertices of degree at most 2 as well as edges of multiplicity larger than
2. It is not hard to see that all three Reduction Rules A1, A2, and A3 are safe, i.e. they
preserve solutions in the reduced graph.

I Reduction Rule A1. Delete vertices of degree at most 1.

I Reduction Rule A2. If there is a vertex v of degree exactly 2 that is not incident to a
self-loop, then delete v and connect its two (not necessarily distinct) neighbors by a new edge.

I Reduction Rule A3. If there is a pair of vertices u and v in V such that {u, v} is an edge
of multiplicity larger than 2, then reduce the multiplicity of the edge to 2.

Observe that the entire process that applies these rules exhaustively can be done in time
O(|V |+ |E|) = O(k log k · |V |). Indeed, in time O(|V |) we first remove the vertex-set of each
maximal path between a leaf and a degree-two vertex. No subsequent application of Rule A2
or Rule A3 creates vertices of degree at most one. Now, we iterate over the set of degree-two
vertices. For each degree-two vertex that is not incident to a self-loop, we apply Rule A2.
Next, we iterate over E, and for each edge of multiplicity larger than two, we apply Rule A3.
At this point, the only new degree-two vertices that can be created are vertices incident to
exactly one edge, whose multiplicity is two. Therefore, during one additional phase where
we exhaustively apply Rule A2, the only edges of multiplicity larger than two that can be
created are self-loops. Thus, after one additional iteration over E, we can ensure that no
rule among Rules A1, A2 and A3 is applicable.

Since these rules will be applied dynamically and iteratively, we define an operator,
denoted by reduce(G), that takes as input a graph G and returns the (new) graph G′ that
results from an exhaustive application of Rules A1, A2 and A3.

I Definition 4. For a (multi) graph G, we let G′ = reduce(G) denote the graph obtained
after an exhaustive application of Reduction Rules A1, A2 and A3. | reduce(G)| denotes
the number of vertices in reduce(G). Moreover, img(reduce(G)) denotes the pre-image of
reduce(G), i.e. img(reduce(G)) is the set of vertices in G which are not deleted in reduce(G).

I Observation 1. For a graph G = (V,E) and a set E′ ⊆
(
V
2
)
it holds that | reduce(G+E′)| ≤

| reduce(G)|+ 2|E′|.

The first step of our algorithm consists of finding, in time linear in |V |, a set S satisfying
the conditions specified in Lemmata 5 and 6. Intuitively, S will contain vertices of “short”
cycles in the input graph, where short will be defined later.

I Lemma 5. Given a (multi) graph G = (V,E) and two integers k > 0 and g > 6, there
exists an kO(1) · |V |-time algorithm that either finds k vertex-disjoint cycles in G or finds a
(possibly empty) set S ⊆ V such that girth(reduce(G− S)) > g and |S| < gk.
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Proof. We proceed by constructing such an algorithm. First, we apply the algorithm of
Theorem 2 which outputs either k vertex-disjoint cycles or a feedback vertex set F of size at
most ck log k = r. In the former case we are done. In the latter case, i.e. the case where a
feedback vertex set F is obtained, we apply the following procedure iteratively (initially, we
set S = ∅):

(1) Apply Lemma 3 to find a shortest cycle C in reduce(G).
(2) If no cycle was found or |C| > g then return S.
(3) Otherwise, i.e. if |C| ≤ g, then add the vertices of C to S, delete those vertices from
G to obtain G′, set G = G′, and repeat from Step (1).

Note that if Step (3) is applied k times then we can terminate and return the corresponding
k vertex-disjoint cycles in G. Hence, when the condition of Step (2) is satisfied, i.e. when the
described procedure terminates, the size of S is at most g(k − 1) < gk and girth(reduce(G−
S)) > g. Since the algorithm of Theorem 2 runs in time kO(1) · |V |, and each iteration of Steps
(1)-(3) is performed in time O((k log k)2 · |V |), we obtain the desired time complexity. J

I Lemma 6. Given a (multi) graph G = (V,E) and two integers k > 0 and g > 6, let S
denote the set obtained after applying the algorithm of Lemma 5 (assuming no k vertex-disjoint
cycles obtained). Then | reduce(G− S)| ≤ (2ck log k)1+ 6

g−6 + 3ck log k.

Proof. Let G′ = (V ′, E′) = reduce(G − S) and |V ′| = n′. First, recall that G admits a
feedback vertex set of size at most ck log k = r. Since Reduction Rules A1, A2 and A3 do
not increase the feedback vertex set of the graph (see, e.g., [35], Lemma 1), G′ also admits a
feedback vertex set F of size at most r. Let T denote the induced forest on the remaining
N = n′ − r vertices in G′. Moreover, from Lemma 5, we know that girth(G′) > g > 6.

Next, we apply Proposition 3 to T to get W . Now with every element a ∈W we associate
an unordered pair of vertices of F as follows. Assume a ∈ L, i.e. a is a vertex of degree 0
or 1. Since the degree of a is at least 3 in G′, a has at least two neighbors in F . We pick
two of these neighbors arbitrarily and associate them with a. We use {xa, ya} to denote this
pair. If a = {u, v} is an edge from M then each of u and v has degree at least 3 in G′ and
each has at least one neighbor in F . We pick one neighbor for each and associate the pair
{xu, xv} with a. Note that since girth(G′) > 6, xu 6= xv and xa 6= ya.

We now construct a new multigraph G? = (V ?, E?) with vertex set V ? = F as follows.
For every vertex a ∈ W we include an edge in E? between xa and ya, and for every edge
a = {u, v} ∈ W we include an edge in E? between xu and xv. By Proposition 3, we know
that W is of size at least N

4 . It follows that G
? has at least N

4 edges and hence its average
degree is at least N

2r as |V ?| = ck log k = r. Note that if G? has a cycle of length at most `,
then G′ has a cycle of length at most 3`, as any edge of the cycle in G? can be replaced by
a path of length at most 3 in G′. Combining this with the fact that girth(G′) > g > 6, we
conclude that G? contains no self-loops or parallel edges. Hence G? is a simple graph with
average degree at least N

2r . By Proposition 2, G? must have a cycle of length at most

2 log N
2r−1 r + 2 = 2 log r

log(N2r − 1)
+ 2

which implies that G′ must have a cycle of length at most

6 log r
log(N2r − 1)

+ 6.
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Finally, by using the fact that girth(G′) > g and substituting N and r, we get

6 log r
log(N2r − 1)

+ 6 > g ⇐⇒ log r > (g − 6)
6 log

(N − 2r
2r

)
⇐⇒ log r > (g − 6)

6 log(N − 2r)− (g − 6)
6 log(2r)

⇐⇒
log r + (g−6)

6 log(2r)
(g−6)

6

> log(N − 2r)

=⇒
log(2r) + (g−6)

6 log(2r)
(g−6)

6

> log(N − 2r)

⇐⇒ (1 + 6
g − 6) log(2r) > log(N − 2r)

⇐⇒ (1 + 6
g − 6) log(2ck log k) > log(n′ − 3ck log k)

⇐⇒ (2ck log k)1+ 6
(g−6) + 3ck log k > n′.

This completes the proof. J

The usefulness of Lemma 6 comes from the fact that by setting g = 48 log k
log log k + 6, we

can guarantee that | reduce(G− S)| < 3ck log k + 2ck log1.5 k, and therefore we can beat the
O(k log2 k) bound. That is, we have the following consequence.

I Corollary 7. Given a (multi) graph G = (V,E) and an integer k > 0, let S denote the
set obtained after applying the algorithm of Lemma 5 with g = 48 log k

log log k + 6 (assuming no k
vertex-disjoint cycles obtained). Then | reduce(G− S)| ≤ 3ck log k + 2ck log1.5 k.

Proof. By Lemma 6, | reduce(G−S)| ≤ (2ck log k)1+ log log k
8 log k +3ck log k. Assuming k > log k >

c > 2, we have (2ck log k)1+ log log k
8 log k = (2ck log k)(2ck log k)

log log k
8 log k ≤ (2ck log k)k

4 log log k
8 log k . Now

note that k
4 log log k

8 log k ≤ log0.5 k. Hence, (2ck log k)1+ log log k
8 log k ≤ 2ck log k log

1
2 k ≤ 2ck log1.5 k.

This completes the proof. J

4 Bounding the Core of the Remaining Graph

At this point, we assume, without loss of generality, that we are given a graph G = (V,E),
a positive integer k, g = 48 log k

log log k + 6, and a set S ⊆ V such that girth(reduce(G− S)) > g,
|S| < gk, and | reduce(G− S)| ≤ 3ck log k + 2ck log1.5 k.

Even though the number of vertices in reduce(G− S) is bounded, the number of vertices
in G− S is unbounded. In what follows, we show how to bound the number of “objects” in
G− S, where an object is either a vertex in G− S or a degree-two path in G− S. The next
lemma is a refinement extending a lemma by Lokshtanov et al. [32] (Lemma 5.2). We give a
full proof in Appendix D.

I Lemma 8. Let G = (V,E) be a (multi) graph and let X ⊆ V be any subset of the vertices
of G. Suppose there are more than |X|2(2|X|+ 1) vertices in G−X whose degree in G−X is
at most one. Then, there is either an isolated vertex w in G−X or an edge e ∈ E such that
(G, k) is a yes-instance of Cycle Packing if and only if either (G−{w}, k) or (G/e, k) is a
yes-instance. Moreover, there is an O(|X|2 · k log k · |V |)-time algorithm that given G and X,
outputs sets VX ⊆ V \X and EX ⊆ E(G−X) such that, for the graph G′ = (G/EX)−VX , it
holds that (G, k) is a yes-instance of Cycle Packing if and only if (G′, k) is a yes-instance
of Cycle Packing, and G′ −X contains at most |X|2(2|X|+ 1) vertices whose degree in
G′ −X is at most one.
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Armed with Lemma 8, we are now ready to prove the following result. For a forest T , we
let T≤1, T2, and T≥3, denote the sets of vertices in T having degree at most one in T , degree
exactly two in T , and degree larger than two in T , respectively. Moreover, we let P denote
the set of all maximal degree-two paths in T .

Figure 1 A graph G (not all edges shown), the set S (in black), the set R (in gray), and the set
T = G−R− S (in white).

I Lemma 9. Let G = (V,E), S, k, and g be as defined above. Let R = img(reduce(G−S)) ⊆
(V \ S) denote the pre-image of reduce(G− S) in G− S. Then, T = G− S −R is a forest
and for every maximal degree-2 path in P there are at most two vertices on the path having
neighbors in R (in the graph G− S). Moreover, in time kO(1) · |V |, we can guarantee that
|T≤1|, |P|, and |T≥3| are bounded by kO(1).

Proof. To see why T = G−S−R must be a forest it is sufficient to note that for any cycle in
G− S at least one vertex from that cycle must be in R = img(reduce(G− S)) (see Figure 1).
Recall that, since girth(reduce(G− S)) > 6, every vertex in R has degree at least 3 in G− S.
Now assume there exists some path P ∈ P having exactly three (the same argument holds
for any number) distinct vertices u, v and w (in that order) each having at least one neighbor
in R (possibly the same neighbor). We show that the middle vertex v must have been in R,
contradicting the fact that T = G− S −R. Consider the graph G− S and apply Reduction
Rules A1, A2 and A3 exhaustively (in G− S) on all vertices in the tree containing P except
for u, v and w. Regardless of the order in which we apply the reduction rules, the path P
will eventually reduce to a path on three vertices, namely u, v, and w. To see why v must be
in R observe that even if the other two vertices have degree two in the resulting graph, after
reducing them, v will have degree at least three (into R) and is therefore non-reducible.

Next, we bound the size of T≤1, which implies a bound on the sizes of T≥3 and P . To do
so, we simply invoke Lemma 8 by setting X = S ∪R. Since |S| < gk, g = 48 log k

log log k + 6 and
|R| ≤ 3ck log k + 2ck log1.5 k, we get that |T≤1| ≤ |S ∪R|2(2|S ∪R|+ 1) = kO(1). Since in a
forest, it holds that |T≥3| < |T≤1|, the bound on |T≥3| follows. Moreover, in a forest, it also
holds that |P| < |T≤1|+ |T≥3| — if we arbitrarily root each tree in the forest at a leaf, one
end vertex of a path in P will be a parent of a different vertex from T≤1 ∪ T≥3 — the bound
on |P| follows as well. J

5 Guessing Permutations

This section is devoted to proving the following lemma. Note that assuming the statement of
the lemma, the only remaining task (to prove Theorem 1) is to develop an algorithm running
in time O(2|V | · poly(|V |)) and using polynomial space, which we present in Section 6.
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I Lemma 10. Given an instance (G, k) of Cycle Packing, we can in time 2O( k log2 k
log log k ) · |V |

and polynomial space compute 2O( k log2 k
log log k ) instances of Cycle Packing of the form (G′, k),

where the number of vertices in G′ is bounded by O(k log1.5 k), such that (G, k) is a yes-
instance if and only if at least one of the instances (G′, k) is a yes-instance.3

Proof. We fix g = 48 log k
log log k + 6. Using Lemma 5, we first compute a set S in time kO(1) · |V |.

Then, we guess which vertices to delete from S — that is, which vertices do not participate
in a solution — in time O(2gk) = 2O( k log k

log log k ). Here, guesses refer to different choices which
lead to the construction of different instances of Cycle Packing that are returned at the
end (recall that we are allowed to return up to 2O( k log2 k

log log k ) different instances). Combining
Lemma 5 and Corollary 7, we now have a set S ⊆ V such that |S| = O( k log k

log log k ), and
| reduce(G− S)| = O(k log1.5 k).

Applying Lemma 9 with R = img(reduce(G−S)) ⊆ (V \S), we get a forest T = G−(S∪R)
such that for every maximal degree-two path in P there are at most two vertices on the
path having neighbors in R (in the graph G− S). In addition, the size of R is bounded by
O(k log1.5 k), and the sizes |T≤1|, |P| and |T≥3| are bounded by kO(1) (see Figure 1).

For every vertex in S (which is assumed to participate in a solution), we now guess its
two neighbors in a solution (see Figure 2). Note however that we only have a (polynomial in
k) bound for |S|, |R|, |T≤1|, |P| and |T≥3|, but not for the length of paths in P an therefore
not for the entire graph G. We let ZP denote the set of vertices in V (P) having neighbors in
R. The size of ZP is at most 2|P|. Moreover, we let P? denote the set of paths obtained
after deleting ZP from P. Note that the size of P? is upper bounded by |P|+ |ZP | ≤ 3|P|,
and that vertices in V (P?) are adjacent only to vertices in V (P?) ∪ ZP ∪ S. Now, we create
a set of “objects”, O = S ∪ R ∪ T≤1 ∪ T≥3 ∪ ZP ∪ P?. We also denote Õ = O \ P?. We
then guess, for each vertex in S, which two objects in O constitute its neighbors, denoted
by `(v) and r(v), in a solution. It is possible that `(v) = r(v). Since |O| = kO(1), we can
perform these guesses in kO( k log k

log log k ), or equivalently 2O( k log2 k
log log k ), time. We can assume that if

`(v) ∈ Õ, then `(v) is a neighbor of v, and otherwise v has a neighbor on the path `(v), else
the current guess is not correct, and we need not try finding a solution subject to it. The
same claim holds for r(v). If `(v) = r(v) ∈ Õ, then {v, `(v)} is an edge of multiplicity two,
and otherwise if `(v) = r(v), then v has (at least) two neighbors on the path `(v).

Next, we fix some arbitrary order on P?, and for each path in P?, we fix some arbitrary
orientation. We let S? denote the multiset containing two occurrences of every vertex v ∈ S,
denoted by v` and vr. We guess an order of the vertices in S?. The time spent for guessing
such an ordering is bounded by |S|!, which in turn is bounded by 2O( k log2 k

log log k ). The ordering,
assuming it is guessed correctly, satisfies the following conditions. For each path P ∈ P?, we
let `(P ) and r(P ) denote the sets of vertices v ∈ S such that `(v) ∈ V (P ) and r(v) ∈ V (P ),
respectively. Now, for any two vertices u, v ∈ `(P ), if u` < v` according to the order that we
guessed, then the neighbor `(u) of u appears before the neighbor `(v) of v on P . Similarly,
for any two vertices u, v ∈ r(P ), if ur < vr, then r(u) appears before r(v) on P . Finally, for
any two vertices u ∈ `(P ) and v ∈ r(P ), if u` < vr, then `(u) appears before r(v) on P , and
otherwise r(v) appears before `(u) on P .

Given a correct guess of `(v) and r(v), for each v in S, as well as a correct guess of a
permutation of S?, for each path in P?, we let {xv, yv} denote the two guessed neighbors of a
vertex v in S. Note that if `(v) (r(v)) is in Õ then xv = `(v) (yv = r(v)). Otherwise, we assign

3 In practice, to use polynomial space, we output the instances one-by-one.
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Figure 2 [Left] a graph G (not all edges shown), the set S (in black), the set R (in gray), and
the set T = G−R− S (in white). [Center] the graph obtained after guessing vertices in S and their
neighbors in a solution. [Right] example of a reduced instance.

neighbors to a vertex by a greedy procedure which agrees with the guessed permutation on
S?; that is, for every path P ∈ P?, we iterate over `(P )∪r(P ) according to the guessed order,
and for each vertex in it, assign its first neighbor on P that is after the last vertex that has
already been assigned (if such a vertex does not exist, we determine that the current guess is
incorrect and proceed to the next one). We let X = {xv | v ∈ S} and Y = {yv | v ∈ S}. We
also let ES be the set of edges incident on a vertex in S, and we let E′ = {{xv, yv} | v ∈ S}
denote the set of all pairs of guesses. Finally, to obtain an instance (G′, k), we delete the
vertex set W = S \ (X ∪Y ) from G, we delete the edge set ES from G, we add instead the set
of edges E′, and finally we apply the reduce operator, i.e. G′ = reduce((G−W − ES) + E′).

I Claim 1. Let (G′, k) be one of the instances generated by the above procedure. Then, the
number of vertices in G′ is bounded by O(k log1.5 k).

Proof. Recall that by Corollary 7, we know that | reduce(G− S)| = O(k log1.5 k). Moreover,
we have |E′| = |S| = O( k log k

log log k ). Combining Observation 1 with the fact that G′ =
reduce((G−W−ES)+E′), we get | reduce((G−W−ES)+E′)| ≤ | reduce(G−W−ES)|+2|E′|.
Since in G−W−ES all vertices of S have degree zero, | reduce(G−W−ES)| ≤ | reduce(G−S)|.
Hence, we conclude that | reduce((G−W − ES) + E′)| = O(k log1.5 k), as needed. J

I Claim 2. (G, k) is a yes-instance if and only if at least one of the generated instances
(G′, k) is a yes-instance.

Proof. Assume that (G, k) is a yes-instance and let C = {C1, C2, . . .} be an optimal cycle
packing, i.e set of maximum size of vertex-disjoint cycles, in G. Note that if no cycle in C
intersects with S then C is also an optimal cycle packing in G− S. By the safeness of our
reduction rules, C is also an optimal cycle packing in reduce(G− S). Since we generate one
instance for every possible intersection between an optimal solution and S, the case where no
vertex from S is picked corresponds to the instance (G′, k), with G′ = reduce(G− S). Hence,
in what follows we assume that some cycles in C intersect with S. Consider any cycle C
which intersects with S and let PC = {u0, u1, . . . , uf} denote any path on this cycle such
that u0, uf 6∈ S but ui ∈ S for 0 < i < f . We claim that, for some G′, all such paths will
be replaced by edges of the form {u0, uf} in reduce((G −W − ES) + E′). Again, due to
our exhaustive guessing, for some G′ we would have guessed, for each i, `(ui) = ui−1 and
r(ui) = ui+1. Consequently, PC \ {u0, uf} is a degree-two path in (G−W − ES) + E′ and
therefore an edge in reduce((G−W −ES) +E′). Using similar arguments, it is easy to show
that if C is completely contained in S then this cycle is contained in G′ as a loop on some
vertex of the cycle.

For the other direction, let (G′, k) be a yes-instance and let C′ = {C ′1, C ′2, . . .} be an
optimal cycle packing in G′. We assume, without loss of generality, that C′ is a cycle
packing in (G−W −ES) +E′, as one can trace back all reduction rules to obtain the graph
(G −W − ES) + E′. If no cycle in C′ uses an edge {u0, uf} ∈ E′ then we are done, as
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(G−W − ES) is a subgraph of G. Otherwise, we claim that all such edges either exist in G
or can be replaced by vertex disjoint paths P = {u0, u1, . . . , uf} (on at least three vertices)
in G such that ui ∈ S for 0 < i < f . If either u0 or uf is in X ∪ Y ⊆ S then the former case
holds. It remains to prove the latter case. Recall that for every vertex in S we guess its two
neighbors from O = S ∪R∪T≤1 ∪T≥3 ∪ZP ∪P?. Hence, if {u0, uf} ⊆ Õ = O \P? then one
can easily find a path (or singleton) in G[S] to replace this edge by simply backtracking the
neighborhood guesses. Now assume that {u0, uf} 6⊆ Õ and recall that no vertex in a path in
P? can have neighbors in R. Hence, any cycle containing such an edge must intersect with
S (in G). Assuming we have correctly guessed the neighbors of vertices in S (as well as a
permutation for P?), we can again replace this edge with a path in S. J

Combining Claims 1 and 2 concludes the proof of the theorem. J

6 Dynamic Programming and Inclusion-Exclusion

Finally, we give an exact exponential-time algorithm for Cycle Packing. For this purpose,
we use DP and the principle of inclusion-exclusion, inspired by the work of Nederlof [33].
Due to space constraints, the details are given in Appendix E.

I Lemma 11. There exists a (deterministic) polynomial-space algorithm that in time O(2|V | ·
poly(|V |)) solves Cycle Packing. In case a solution exists, it also outputs a solution.

7 Conclusion

In this paper we have beaten the best known 2O(k log2 k) · |V |-time algorithm for Cycle
Packing that is a consequence of the Erdős-Pósa theorem. For this purpose, we developed a
deterministic algorithm that solves Cycle Packing in time 2O( k log2 k

log log k ) · |V |. Two additional
advantageous properties of our algorithm is that its space complexity is polynomial in the
input size and that in case a solution exists, it outputs a solution (in time 2O( k log2 k

log log k ) · |V |).
Our technique relies on combinatorial arguments that may be of independent interest. These
arguments allow us to translate any input instance of Cycle Packing into 2O( k log2 k

log log k )

instances of Cycle Packing whose sizes are small and can therefore be solved efficiently.
It remains an intriguing open question to discover the “true” running time, under

reasonable complexity-theoretic assumptions, in which one can solve Cycle Packing on
general graphs. In particular, we would like to pose the following question: Does there exist
a 2O(k log k) · |V |O(1)-time algorithm for Cycle Packing? This is true for graphs of bounded
maximum degree as one can easily bound the number of vertices by O(k log k) and then apply
Lemma 11. Moreover, Bodlaender et al. [6] proved that this is also true in case one seeks k
edge-disjoint cycles rather than k vertex-disjoint cycles. On the negative side, recall that
(for general graphs) the bound f(k) = O(k log k) in the Erdős-Pósa theorem is essentially
tight, and that it is unlikely that Cycle Packing is solvable in time 2o(tw log tw) · |V |O(1)

[12].4 Thus, the two most natural attempts to obtain a 2O(k log k) · |V |O(1)-time algorithm –
either replacing the bound O(k log k) in the Erdős-Pósa theorem by O(k) or speeding-up the
computation based on DP to run in time 2O(tw) · |V |O(1) – lead to a dead end.

4 However, we do not rule out the existence of an algorithm solving Cycle Packing in time 2O(fvs) ·|V |O(1).
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A Discarding Edges

In this appendix we describe the procedure, mentioned in Section 2 to justify Assumption 1,
which given a graph G = (V,E), discards at least |E| − (2c′k log k + 1) · |V | edges in time
O(k log k · |V |). We examine the vertices in V in some arbitrary order {v1, v2, . . . , v|V |}, and
initialize a counter x to 0. For each vertex vi, if x < (2c′k log k + 1) · |V | then we iterate
over the set of edges incident to vi, and for each edge whose other endpoint is vj for j ≥ i,
we increase x by 1. Let ` be the largest index for which we iterated over the set of edges
incident to v`. We copy V , and initialize the adjacency lists to be empty. Then, we copy the
adjacency lists of the vertices v1, v2, . . . , v`, where for each adjacency involving vertices vi
and vj , where i ≤ ` < j, we update the adjacency list of vj to include vi.

B Proof of Theorem 2

We fix c as the smallest integer such that c ≥ 150(log2 c). Let G = (V,E) be a (multi) graph,
and let k be a non-negative integer. The objective is to show that in time kO(1) · |V | we can
either output k vertex-disjoint cycles or a feedback vertex set of size at most ck log k = r.
We remark that the first part of this proof, which ends at the statement of Lemma 4, follows
the proof of the Erdős-Pósa theorem [16] given in the book [13].

We may assume that G contains at least one cycle, since this fact can clearly be checked
in time O(|V |+ |E|), and if it is not true, we output an empty set as a feedback vertex set.
Now, we construct a maximal subgraph H of G such each vertex in H is of degree 2 or 3
(in H). This construction can be done in time O(|V |+ |E|) (see [2]). Let V2 and V3 be the
degree-2 and degree-3 vertices in H, respectively. We also compute (in time O(|V |+ |E|)) the
set S of connected components of G− V (H). Observe that for each connected component
S ∈ S, there is at most one vertex vS ∈ V2 such that there is at least one vertex in S adjacent
to vS , else we obtain a contradiction to the maximality of H as it could have been extended
by adding a path from S. We compute (in time O(|V |+ |E|)) the vertices vS , where for each
component for which vS is undefined (since it does not exist), we set vS = nil. Let V ?2 ⊆ V2
be the set of vertices vS 6= nil such that vS has at least two neighbors in S, which is easily
found in time O(|V |+ |E|). Observe that if |V ?2 | ≥ k, we can output k vertex-disjoint cycles
in time O(|V |+ |E|). Thus, we next assume that |V ?2 | < k. Moreover, observe that V ?2 ∪ V3
is a feedback vertex set. Thus, if |V ?2 ∪ V3| ≤ ck log k, we are done. We next assume that
|V ?2 ∪ V3| > ck log k. In particular, it holds that |V3| > ck log k − k ≥ (c− 1)k log k.

Let H∗ be the graph obtained from H by contracting, for each vertex in V2, an edge
incident to it. We remark that here we permit the multiplicity of edges to be 3. Then, H∗ is
a cubic graph whose vertex-set is V3. To find k vertex-disjoint cycles in G in time kO(1) · |V |,
it is sufficient to find k vertex-disjoint cycles in H∗ in time kO(1) · |V |, since the cycles in H∗
can be translated into cycles in G in time O(|V |+ |E|). We need to rely on the following
claim, whose proof is given in the book [13]. We remark that the original claim refers to
graphs, but it also holds for multigraphs.

I Proposition 4 ([13]). If a cubic (multi) graph contains at least q = 4k(log k+ log log k+ 4)
vertices, then it contains k vertex-disjoint cycles.

Thus, we know that H∗ contains k vertex-disjoint cycles, and it remains to find them in
time kO(1) · |V |. We now modify H∗ to obtain a cubic graph H ′ on at least q vertices but at
most O(k · log k) vertices, such that given k vertex-disjoint cycles in H ′, we can translate
them into k vertex-disjoint cycles in H∗ in time O(|V |), which will complete the proof. To
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this end, we initially let H ′ be a copy of H∗. Now, as long as |V (H ′)| > (c− 1)k log k + 2,
we perform the following procedure:
1. Choose arbitrarily a vertex v ∈ V (H ′).
2. If v has exactly one neighbor u — that is, {v, u} is an edge of multiplicity 3 — remove v

and u from the graph.
3. Else if v has a neighbor u such that u, in turn, has a neighbor w (which might be v) such

that the edge {u,w} is of multiplicity 2, then remove u and w from H ′ and connect the
remaining neighbor of u to the remaining neighbor of w by a new edge (which might be a
self-loop).

4. Else, let x, y, z be the three distinct neighbors of v. Then, remove v and add an edge
between x and y. Now, each vertex is of degree 3, except for z, which is of degree 2, and
has two distinct neighbors. Remove z, and connected its two neighbors by an edge.

Since this procedure runs in time O(1) and each call decreases the number of vertices
in the graph, the entire process runs in time O(|V |). It is also clear that the procedure
outputs a cubic graph, and at its end, (c− 1)k log k ≤ |V (H ′)| ≤ (c− 1)k log k + 2. Thus,
to prove the correctness of the process, it is now sufficient to consider graphs H1 and H2,
where H2 is obtain from H1 by applying the procedure once, and show that given a set C2 of
k vertex-disjoint cycles in H2, we can modify them to obtain a set C1 of k vertex-disjoint
cycles in H1. Let v be the vertex chosen in the first step. If the condition in the second step
was true, we simply let C1 = C2. In the second case, we examine whether the newly added
edge belongs to a cycle in the solution in time O(1) (as we assume that each element in the
graph, if it belongs to the solution, has a pointer to its location in the solution), and if it is
true, we replace it by the path between its endpoints whose only internal vertices are u and
w. Finally, suppose the procedure reached the last case. Then, if the first newly added edge
is used, replace it by the path between its endpoints, x and y, whose only internal vertex is
v, and if the second newly added edge is used, replace it by the path between its endpoints
whose only internal vertex is z.

We are now left with the task of finding k vertex-disjoint cycles in H ′. We initialize a set
C of vertex-disjoint cycles to be empty. As long as |C| < k, we find a shortest cycle in H ′
in time O(|V (H ′)| · |E(H ′)|) = kO(1) (see [22]), insert it into C and remove all of the edges
incident to its vertices from H ′. Thus, to conclude the proof, it remains to show that for
each i ∈ {0, 1, . . . , k− 1}, after we remove the edges incident to the ith cycle from H ′, it still
contains a cycle.

By using induction on i, we show that after removing the edges incident to the ith
cycle from H ′, the number of edges in H ′ is at least p(i) = 3

2 (c − 1)k log2 k − 12 ·
i · log2(ck log2 k). This would imply that the average degree of a vertex of H ′ is at

least 2p(i)
|V (H ′)| ≥

2p(i)
(c− 1)k log2 k + 2 ≥ 2 (we later also explicitly show that 2p(i) ≥ (

√
2 +

1)ck log2 k), and therefore it contains a cycle (since the average degree of a forest is smaller
than 2). Initially, H ′ is a cubic graph, and therefore |E(H ′)| = 3

2 |V (H ′)| ≥ 3
2 (c− 1)k log2 k,

and the claim is true. Now, suppose that it is true for some i ∈ {0, 1, . . . , k − 2}, and let us
prove that it is true for i+ 1. By Proposition 2, a shortest cycle in H ′ is of length at most
2 logd−1 |V (H ′)| + 2 ≤ 3 logd−1(ck log2 k), where d = 2p(i)

(c− 1)k log2 k + 2 ≥
2p(i)

ck log2 k
. Such

a cycle is incident to at most 6 logd−1(ck log2 k) edges. Therefore, after removing from H ′

the edges incident to a shortest cycle in it, it contains at least p(i)− 6 logd−1(ck log2 k) ≥

p(i) − 6 log2(ck log2 k)
log2(d− 1) = p(i) − 6 log2(ck log2 k)

log2( 2p(i)
ck log2 k

− 1)
edges. Thus, by the induction hypo-
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thesis, it remains to prove that log2( 2p(i)
ck log2 k

− 1) ≥ 1/2, to which end we need to show

that 2p(i)
ck log2 k

− 1 ≥
√

2, that is, 2p(i) ≥ (
√

2 + 1)ck log2 k. For this purpose, it is suffi-

cient to show that 4p(i) ≥ 5ck log2 k. By the induction hypothesis and since i ≤ k − 1,
4p(i) ≥ 6(c−1)k log2 k−48k log2(ck log2 k) = 5ck log2 k+(ck log2 k−6k log2 k−48k log2 k−
48k log2 c− 48k log2 log2 k) ≥ 5ck log2 k + (ck log2 k − 150(log2 c)k log2 k). Thus, we need to
show that c ≥ 150(log2 c), which holds by our choice of c. This concludes the proof. J

C Proof of Lemma 3

We can clearly detect self-loops and edges of multiplicity 2 in time O(|V |+ |E|), and return
a cycle of length 1 or 2 accordingly, and therefore we next assume that G is a simple graph.
Since F is a feedback vertex set, to prove the lemma it is sufficient to present a procedure
that given a vertex v ∈ F , finds in time O(|V | + |E|) a cycle that is at least as short as
the shortest cycle in G that contains v. Indeed, then we can iterate over F and invoke this
procedure, returning the shortest cycle among those returned by the procedure. Thus, we
next fix some vertex v ∈ F . Let H be the connected component of G containing v.

From the vertex v, we run a breadth first search (BFS). Thus, we obtain a BFS tree T
rooted at v, and each vertex in V gets a level i, indicating the distance between this vertex
and v (the level of v is 0). By iterating over the neighborhood of each vertex, we identify
the smallest index i1 such that there exists an edge with both endpoints, u1 and v1, at level
i1 (if such an index exists), and the smallest index i2 such that there exists a vertex w2 at
level i2 adjacent to two vertices, u2 and v2, at level i2 − 1 (if such an index exists). For i1,
the edge {u1, v1} and the paths between v1 and u1 and their lowest common ancestor result
in a cycle of length at most 2i1 + 1. For i2, the edges {w2, u2} and {w2, v2} and the paths
between u2 and v2 and their lowest common ancestor result in a cycle of length at most 2i2.
We return the shorter cycle among the two (if such a cycle exists).

Suppose that there exists a cycle containing v, and let C be a shortest such cycle. We
need to show that above procedure returns a cycle at least as short as C. Every edge of
H either connects two vertices of the same level, or a vertex of level i− 1 with a vertex of
level i. Thus, if there does not exist an index i′1 such that there exists an edge in E(C) with
both endpoints, u′1 and v′1, at level i′1, there must exist an index i′2 such that there exists
a vertex w′2 at level i′2 adjacent to two vertices, u′2 and v′2, at level i′2 − 1, and the edges
{w′2, u′2} and {w′2, v′2} belong to E(C). First, suppose that the first case is true. Then, the
procedure returns a cycle of length at most 2i′1 + 1. The length of C cannot be shorter than
2i′1 + 1, since it consists of a path from v to u′1 (whose length is at least i′1 since u′1 belongs
to level i′1), a path from v to v′1 whose only common vertex with the previous path is v
(whose length is at least i′1 since v′1 belongs to level i′1), and the edge {u′1, v′1}. Now, suppose
that the second case is true. Then, the procedure returns a cycle of length at most 2i′2. The
length of C cannot be shorter than 2i′2, since it consists of two internally vertex-disjoint
paths from v to w′2 (each of length at least i′2 since w′2 belongs to level i′2). J

D Proof of Lemma 8

For (u, v) ∈ X ×X, let L(u, v) be the set of vertices of degree at most one in G−X such
that each x ∈ L(u, v) is adjacent to both u and v (if u = v, then L(u, u) is the set of vertices
which have degree at most one in G−X and an edge of multiplicity two to u). For each pair
(u, v) ∈ X ×X, we arbitrarily mark 2|X| + 1 vertices from L(u, v) if |L(u, v)| > 2|X| + 1,
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and we mark all vertices in L(u, v) if |L(u, v)| ≤ 2|X|+ 1. We can execute this process as
follows. First, in time O(|X| · |V |), for each vertex in X we compute the set of its neighbors
of degree at most one in G −X. Then, in time O(|X|3), for each pair (u, v) ∈ X ×X we
mark at most 2|X|+ 1 vertices as required.

Since we mark at most 2|X|+ 1 vertices for each pair (u, v) ∈ X ×X, there can be at
most |X|2(2|X|+ 1) marked vertices in G−X. Let w be an unmarked vertex of degree at
most one in G−X. We only consider the case where degG−X(w) = 1, as the other case can
be proved analogously. Let e be the unique edge in G−X which is incident to w and let z
be the other endpoint of this edge. Let C be a set of maximum size of vertex-disjoint cycles
in G. Observe that if C does not contain a pair of cycles such that each of them intersects a
different endpoint of e, then contracting e keeps the resulting cycles vertex disjoint in G/e.
Therefore, we may assume that C contains two cycles Cw and Cz where Cw contains w and
Cz contains z. The neighbor(s) of w in Cw must lie in X. Let these neighbors be x and y
(again, x and y are not necessarily distinct). Since w ∈ L(x, y) and it is unmarked, there are
2|X|+ 1 other vertices in L(x, y) which were marked by the marking procedure. Moreover,
each degree-1 vertex in G−X that belongs to a cycle in C is either the predecessor or the
successor of a vertex in X in such a cycle. Therefore, at most 2|X| of the marked vertices
can participate in cycles in C. Hence, there exists a vertex in L(x, y), call it w′, which is
unused by C. Consequently, we can route the cycle Cw through w′ instead of w, which gives
us a set of |C| vertex disjoint cycles in G/e.

The first phase of the claimed O(|X|2 · k log k · |V |)-time algorithm performs the above
marking procedure, and then proceeds as follows. First it deletes every unmarked isolated
vertex in G−X. Then, it contracts every edge in G−X incident to at least one unmarked
vertex of degree one in G−X. After these operations, new vertices in G−X of degree at
most one in G−X might have been created. These vertices were either the unique neighbors
in G − X of deleted vertices or vertices incident to contracted edges. Thus, in case new
vertices in G−X of degree at most one in G−X have been created, the algorithm performs
another phase. Here, the algorithm iterates over the set of new vertices in G−X of degree
at most one in G − X, and for each such vertex, if it is a neighbor of two vertices in X

for which we have not yet marked 2|X| + 1 vertices, the algorithm marks it. Then, the
algorithm deletes vertices and contracts edges as it did in the first phase. The running
time of such a phase is bounded by O(|X|2 · ρ), where ρ is the total number of vertices
deleted and edges contracted in the previous phase. As long as new degree-one vertices are
created, the execution of the algorithm continues. Since each vertex can be deleted only
once, and each edge can be contracted only once, the overall running time is bounded by
O(|X|(|X|2 + |V |) + |X|2 · (|V |+ |E|)) = O(|X|2 · k log k · |V |) (since |E| = O(k log k · |V |)).
It also holds that when the algorithm terminates, G−X contains at most |X|2(2|X|+ 1)
vertices whose degree in G−X is at most one. This completes the proof of the lemma. J

E Proof of Lemma 11

First, we recall the principle of inclusion-exclusion.

I Proposition 5 (Folklore, [33]). Let U and R be sets, and for every v ∈ R let Pv be a subset
of U . Use P̄v to denote U \ Pv. With the convention

⋂
v∈∅ P̄v = U , the following holds:

|
⋂
v∈R

Pv| =
∑
F⊆R

(−1)|F ||
⋂
v∈F

P̄v|.
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We now proceed with the proof of Lemma 11. In the context of Proposition 5, define
the universe U as the set of all tuples (C1, . . . , Ck, w

1
1, . . . , w

1
k, w

2
1, . . . , w

2
k, L) such that

each Ci is a closed walk in G of length at least three, w1
i and w2

i are consecutive occur-
rences of vertices in Ci, L ⊆ V and (

∑k
i=1 |V (Ci)|) + |L| = |V |. Here, by |V (Ci)| we

refer to a multiset – that is, if Ci contains x occurrences of some vertex v, then V (Ci)
contains x occurrences of v as well. We define the requirement space R = V , and for
each v ∈ V , we let Pv be the set of all tuples (C1, . . . , Ck, w

1
1, . . . , w

1
k, w

2
1, . . . , w

2
k, L) ∈

U such that v ∈ (
⋃k
i=1 V (Ci)) ∪ L. On the one hand, if G contains k vertex-disjoint

cycles C1, . . . , Ck, then for any choice of edges {w1
1, w

2
1} ∈ E(C1), . . . , {w1

k, w
2
k} ∈ E(Ck),

we have that (C1, . . . , Ck, w
1
1, . . . , w

1
k, w

2
1, . . . , w

2
k, V \ (

⋃k
i=1 V (Ci))) ∈

⋂
v∈V Pv. On the

other hand, if there exists (C1, . . . , Ck, w
1
1, . . . , w

1
k, w

2
1, . . . , w

2
k, L) ∈

⋂
v∈V Pv, then since

(
∑k
i=1 |V (Ci)|) + |L| = |V |, each vertex v ∈ V occurs exactly once in either exactly one of the

closed walks Ci or in the set L. In this case, we conclude that C1, . . . , Ck are vertex-disjoint
cycles. Therefore, we need to accept the input instance if and only if |

⋂
v∈V Pv| > 0.

By Proposition 5, to decide whether |
⋂
v∈V Pv| > 0 in time O(2|V | · poly(|V |)) and

polynomial space, it is sufficient to show that for each subset F ⊆ V , |
⋂
v∈F P̄v| can be

computed in polynomial time. To this end, we fix a subset F ⊆ V . Note that
⋂
v∈F P̄v is the

set of all tuples (C1, . . . , Ck, w
1
1, . . . , w

1
k, w

2
1, . . . , w

2
k, L) ∈ U such that (

⋃k
i=1 V (Ci)) ∪ L ⊆

V \ F . Now, given an integer ` ∈ {2k, . . . , |V |},5 let Q` denote the set of all tuples
(C1, . . . , Ck, w

1
1, . . . , w

1
k, w

2
1, . . . , w

2
k) such that each Ci is a closed walk in G− F of length at

least three, w1
i and w2

i are consecutive occurrences of vertices in Ci, and (
∑k
i=1 |V (Ci)|) = `.

Then, |
⋂
v∈F P̄v| =

∑|V |
`=2k(|Q`| ·

(|V \F |
|V |−`

)
), where if |V | − ` < |V \ F |, we let

(|V \F |
|V |−`

)
= 0.

Thus, it remains to show that each |Q`| can be computed in polynomial time. To this end,
fix an integer ` ∈ {2k, . . . , |V |}.

Next, we will compute |Q`| by simply employing the method of dynamic programming.
We use a matrix M that has an entry [i, j, v, u] for all i ∈ {1, . . . , k}, j ∈ {1, . . . , `} and
v, u ∈ V \ F . Given i ∈ {1, . . . , k}, j ∈ {1, . . . , `} and v, u ∈ V \ F , let S(i, j, v, u) be the set
of all tuples (C1, . . . , Ci, w

1
1, . . . , w

1
i , w

2
1, . . . , w

2
i ) such that for all t ∈ {1, . . . , i− 1}, Ct is a

closed walk of length at least three and w1
t and w2

t are consecutive occurrences of vertices
in this walk, Ci is a walk from v to u, w1

i = v and
∑i
t=1 |V (Ct)| = j. The entry M[i, j, v, u]

will be used to store |S(i, j, v, u)|. Observe that

|Q`| =
∑

v∈V \F

∑
u∈N(v)\F

∑
w∈N(u)\F

|S(k, `− 1, v, w)|.

Thus, it remains to show that the entries of M can be calculated in polynomial time.
In the basis, we have the following calculations, relating to the case where j = 1:

• If j = 1 and (i ≥ 2 or v 6= u): M[i, j, v, u] = 0.
• Else if j = 1: M[i, j, v, u] = 1.

Now, consider only entries where j ≥ 2, which have not already been calculated in the
basis. Then, we have the following calculations:
• If i ≥ 2, j ≥ 3 and v = u:

M[i, j, v, u] =
∑

w∈N(u)\F

M[i, j − 1, v, w] +
∑

p∈V \F

∑
q∈N(p)\F

∑
w∈N(q)\F

M[i− 1, j − 2, p, w].

• Else: M[i, j, v, u] =
∑

w∈N(u)\F

M[i, j − 1, v, w].

5 We do not consider the case where ` < 2k since k closed walks must overall contain at least 2k vertices.
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It is straightforward to verify that the calculations are correct. The order of the computa-
tion is an ascending order with respect to j, which ensures that when an entry is calculated,
the entries on which it relies have already been calculated. To output a solution, we apply a
simple self-reduction from the decision to the search variant of the problem. In particular, we
repeatedly remove edges until no more edges can be removed from the graph while preserving
a yes-instance. J
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