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Let 𝑀 = (𝐸, ℐ) be a matroid of rank 𝑛. A 𝑘-truncation of 𝑀 is a matroid 𝑀 ′ = (𝐸, ℐ′) such that
for any 𝐴 ⊆ 𝐸, 𝐴 ∈ ∈𝐼 ′ if and only if |𝐴| ≤ 𝑘 and 𝐴 ∈ ℐ. Given a linear representation, 𝐴, of 𝑀 we
consider the problem of finding a linear representation, 𝐴𝑘, of the 𝑘-truncation of 𝑀 . A common
way to compute 𝐴𝑘 is to multiply the matrix 𝐴 with a random 𝑘 × 𝑛 matrix, yielding a simple
randomized algorithm. So a natural question is whether we can compute 𝐴𝑘 deterministically. In
this paper we settle this question for matrices over any field in which the field operations can be
done efficiently. This includes any finite field and the field of rational numbers (Q).

Our algorithms are based on the properties of the classical Wronskian determinant, and the
folded Wronskian determinant, which was recently introduced by Guruswami and Kopparty [FOCS
2013; COMBINATORICA 2016 ], and Forbes and Shpilka [STOC 2012 ]. Our main conceptual
contribution in this paper is to show that the Wronskian determinant can also be used to obtain a
representation of the truncation of a linear matroid in deterministic polynomial time.

An important application of our result is a deterministic algorithm to compute Representative
sets over linear matroids, which derandomizes a result of Fomin et. al. [ SODA 2014; J. ACM 2016 ].
This result derandomizes several parameterized algorithms, including an algorithm for ℓ-Matroid
Parity to which several problems, such as ℓ-Matroid Intersection, can be reduced to.
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1 INTRODUCTION

A rank 𝑘-truncation of a 𝑛×𝑚 matrix 𝑀 , is a 𝑘 ×𝑚 matrix 𝑀𝑘 such that for every subset
𝐼 ⊆ {1, . . . ,𝑚} of size at most 𝑘, the set of columns corresponding to 𝐼 in 𝑀𝑘 has rank |𝐼| if
and only if the corresponding set of columns in 𝑀 has rank |𝐼|. We can think of finding a rank
𝑘-truncation of a matrix as a dimension reduction problem such that linear independence
among all sets of columns of size at most 𝑘 is preserved. This problem is a variant of the
more general dimensionality reduction problem, which is a basic problem in many areas of
computer science such as machine learning, data compression, information processing and
others. In dimensionality reduction, we are given a collection of points (vectors) in a high
dimensional space, and the objective is to map these points to points in a space of small
dimension while preserving some property of the original collection of points. For an example,
one could consider the problem of reducing the dimension of the space, while preserving the
pairwise distance, for a given collection of points. Using the Johnson-Lindenstrauss Lemma
this can be done approximately for any collection of 𝑚 points, while reducing the dimension
of the space to 𝒪(log𝑚) [6, 25]. In this work, we study dimensionality reduction under
the constraint that linear independence of any sub-collection of size up to 𝑘 of the given
set of vectors is preserved. A motivation for this problem comes from matroid theory and
its algorithmic applications. For a matroid 𝑀 = (𝐸, ℐ), a 𝑘-truncation of 𝑀 is a matroid
𝑀 ′ = (𝐸, ℐ ′) such that for any 𝐴 ⊆ 𝐸, 𝐴 ∈ 𝐼 ′ if and only if |𝐴| ≤ 𝑘 and 𝐴 ∈ ℐ. Given a
linear representation of a matroid 𝑀 = (𝐸, ℐ) of rank 𝑛 over a ground set of size 𝑚 (which
has a representation matrix 𝑀 of dimension 𝑛×𝑚), we want to find a linear representation
of the 𝑘-truncation of the matroid 𝑀 . In other words, we want to map the set of column
vectors of 𝑀 (which lie in a space of dimension 𝑛) to vectors in a space of dimension 𝑘 such
that, any set 𝑆 of column vectors of 𝑀 with |𝑆| ≤ 𝑘 are linearly independent if and only if
the corresponding set of vectors in the 𝑘-dimensional vector space are linearly independent.
A common way to obtain a rank 𝑘-truncation of a matrix 𝑀 , is to left-multiply 𝑀 by a

random matrix of dimension 𝑘 × 𝑛 (with entries from a field of an exponential size). Then
using the Schwartz-Zippel Lemma one can show that, the product matrix is a 𝑘-truncation
of the matrix 𝑀 with high probability [31]. This raises a natural question of whether there
is a deterministic algorithm for computing 𝑘-truncation of a matrix. In this paper we settle
this question by giving a polynomial time deterministic algorithm to solve this problem. In
particular we have the following theorem.

Theorem 1.1. Let 𝑀 be a 𝑛×𝑚 matrix over a field F of rank 𝑛. Given a number 𝑘 ≤ 𝑛,
we can compute a matrix 𝑀𝑘 over the field F(𝑋) such that it is a representation of the
𝑘-truncation of 𝑀 , in 𝒪(𝑚𝑛𝑘) field operations over F. Furthermore, given 𝑀𝑘, we can test
whether a given set of ℓ columns in 𝑀𝑘 are linearly independent in 𝒪(𝑛2𝑘3) field operations
over F.
Observe that, using Theorem 1.1 we can obtain a deterministic truncation of a matrix over
any field where the field operations can be done efficiently. This includes any finite field
(F𝑝ℓ) or field of rationals Q. In particular our result implies that we can find deterministic
truncation for important classes of matroids such as graphic matroids, co-graphic matroids,
partition matroids and others. We note that for many fields, the 𝑘-truncation matrix can be
represented over a finite degree extension of F, which is useful in algorithmic applications.
A related notion is the ℓ-elongation of a matroid, where ℓ > rank(𝑀). It is defined as

the matriod 𝑀 ′ = (𝐸, ℐ ′) such that 𝑆 ⊆ 𝐸 is a basis of 𝑀 ′ if and only if, it contains a
basis of 𝑀 and |𝑆| = ℓ. Note that the rank of the matroid 𝑀 ′ is ℓ. We have the following
observation.
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Observation 1 ([34], page 75). Let 𝑀 be a matroid of rank 𝑛 over a ground set of
size 𝑚. Let 𝑀*, 𝑇 (𝑀,𝑘) and 𝐸(𝑀, ℓ) denote the dual matroid, the 𝑘-truncation and the
ℓ-elongation of the matroid 𝑀 , respectively. Then 𝐸(𝑀, ℓ) = {𝑇 (𝑀*,𝑚 − ℓ)}*, i.e. the
ℓ-elongation of 𝑀 is the dual of the (𝑚− ℓ)-truncation of the dual of 𝑀 .

Now using the fact that, given a representation of a matroid, a representation of the dual
matroid can be obtained in polynimial time, we obtain the following corollary.

Corollary 1.2. Let 𝑀 be a linear matroid of rank 𝑛, over a ground set of size 𝑚, which
is representable over a field F. Given a number ℓ ≥ 𝑛, we can compute a representation of
the ℓ-elongation of 𝑀 , over the field F(𝑋) in polynomially many (in 𝑚,𝑛, ℓ) field operations
over F.

Tools and Techniques

The main tool used in this work, is the Wronskian determinant and its characterization of
the linear independence of a set of polynomials. Given a polynomial 𝑃𝑗(𝑋) and a number ℓ,

define 𝑌 ℓ
𝑗 = (𝑃𝑗(𝑋), 𝑃

(1)
𝑗 (𝑋), . . . , 𝑃

(ℓ−1)
𝑗 (𝑋))𝑇 . Here, 𝑃

(𝑖)
𝑗 (𝑋) is the 𝑖-th formal derivative of

𝑃𝑗(𝑋). Formally, the Wronskian matrix of a set of polynomials 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) is defined
as the 𝑘 × 𝑘 matrix 𝑊 (𝑃1, . . . , 𝑃𝑘) = [𝑌 𝑘

1 , . . . , 𝑌 𝑘
𝑘 ]. Recall that to get a 𝑘-truncation of a

linear matroid, we need to map a set of vectors from F𝑛 to K𝑘 such that linear independence
of any subset of the given vectors of size at most 𝑘 is preserved. We associate with each
vector, a polynomial whose coefficients are the entries of the vector. A known mathematical
result states that a set of polynomials 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) ∈ F[𝑋] are linearly independent
over F if and only if the corresponding Wronskian determinant det(𝑊 (𝑃1, . . . , 𝑃𝑘)) ̸≡ 0
in F[𝑋] [4, 19, 32]. However, this requires that the underlying field be Q (or R, C), or
that it is a finite field whose characteristic is strictly larger than the maximum degree of
𝑃1(𝑋), . . . , 𝑃𝑘(𝑋).
For fields of small characteristic, we use the notion of 𝛼-folded Wronskian, which was

introduced by Guruswami and Kopparty [23, 24] in the context of subspace designs, with
applications in coding theory. It was also implicitly present in the works of Forbes and
Shpilka [14], who used it in reducing randomness for polynomial identity testing and related
problems. Let F be a finite field and 𝛼 be an element of F. Given a polynomial 𝑃𝑗(𝑋) ∈ F[𝑋]
and a number ℓ, define 𝑍ℓ

𝑗 = (𝑃𝑗(𝑋), 𝑃𝑗(𝛼𝑋), . . . , 𝑃𝑗(𝛼
ℓ−1𝑋))𝑇 . Formally, the 𝛼-folded

Wronskian matrix of a family of polynomials 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) is defined as the 𝑘×𝑘 matrix
𝑊𝛼(𝑃1, . . . , 𝑃𝑘) = [𝑍𝑘

1 , . . . , 𝑍
𝑘
𝑘 ]. Let 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) be a family of polynomials of degree

at most 𝑛− 1. From, the results of Forbes and Shpilka [14] one can derive that if 𝛼 is an
element of the field F, of order at least 𝑛 then 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) are linearly independent
over F if and only if the 𝛼-folded Wronskian determinant det(𝑊𝛼(𝑃1, . . . , 𝑃𝑘)) ̸≡ 0 in F[𝑋].
Having introduced the tools, we continue to the description of our algorithm. Given a

𝑛×𝑚 matrix 𝑀 over F and a positive integer 𝑘 our algorithm for finding a 𝑘-truncation
of 𝑀 proceeds as follows. To a column 𝐶𝑖 of 𝑀 we associate a polynomial 𝑃𝑖(𝑋) whose
coefficients are the entries of 𝐶𝑖. That is, if 𝐶𝑖 = (𝑐1𝑖, . . . , 𝑐𝑛𝑖)

𝑇 then 𝑃𝑖(𝑋) =
∑︀𝑛

𝑗=1 𝑐𝑗𝑖𝑥
𝑗−1.

If the characteristic of the field F is strictly larger than 𝑛 or F = Q then we return
𝑀𝑘 = [𝑌 𝑘

1 , . . . , 𝑌 𝑘
𝑚] as the required 𝑘-truncation of 𝑀 . In other cases we first compute an

𝛼 ∈ F of order at least 𝑛 and then return 𝑀𝑘 = [𝑍𝑘
1 , . . . , 𝑍

𝑘
𝑚]. We then use the properties of

Wronskian determinant and 𝛼-folded Wronskian, to prove the correctness of our algorithm.
Observe that when 𝑀 is a representation of a linear matroid then 𝑀𝑘 is a representation of
its 𝑘-truncation. Further, each entry of 𝑀𝑘 is a polynomial of degree at most 𝑛− 1 in F[𝑋].
Thus, testing whether a set of columns of size at most 𝑘 is independent, reduces to testing
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whether a determinant polynomial of degree at most (𝑛− 1)𝑘 is identically zero or not. This
is easily done by evaluating the determinant at (𝑛− 1)𝑘 + 1 points in F and testing if it is
zero at all those points.
Our main conceptual contribution in this paper is to show the connection between the

Wronskian matrix and the truncation of a linear matroid, which can be used to obtain
a representation of the truncation in deterministic polynomial time. These matrices are
related to the notion of “rank extractors” which have important applications in polynomial
identity testing and in the construction of randomness extractors [13, 14, 16, 17]. We
believe that these and other related tools could be useful in obtaining other parameterized
algorithms, apart from those mentioned in this paper. We note that, one can obtain a
different construction of matrix truncation via an earlier result of Gabizon and Raz [17],
which was used in construction of randomness extractors.

Applications

Matroid theory has found many algorithmic applications, starting from the characterization of
greedy algorithms, to designing fixed parameter tractable (FPT) algorithms and kernelization
algorithms. Recently the notion of representative families over linear matroids was used in
designing fast FPT, as well as kernelization algorithm for several problems [10–12, 21, 26,
27, 31, 36]. Let us introduce this notion more formally. Let 𝑀 = (𝐸, ℐ) be a matroid and let

𝒮 = {𝑆1, . . . , 𝑆𝑡} be a 𝑝-family, i.e. a collection of subsets of 𝐸 of size 𝑝. A subfamily ̂︀𝒮 ⊆ 𝒮
is 𝑞-representative for 𝒮 if for every set 𝑌 ⊆ 𝐸 of size at most 𝑞, if there is a set 𝑋 ∈ 𝒮
disjoint from 𝑌 with 𝑋 ∪ 𝑌 ∈ ℐ, then there is a set ̂︀𝑋 ∈ ̂︀𝒮 disjoint from 𝑌 and ̂︀𝑋 ∪ 𝑌 ∈ ℐ.
In other words, if a set 𝑌 of size at most 𝑞 can be extended to an independent set of size
|𝑌 |+ 𝑝 by adding a subset from 𝒮, then it also can be extended to an independent set of

size |𝑌 |+ 𝑝 by adding a subset from ̂︀𝒮 as well. The Two-Families Theorem of Bollobás [3]
for extremal set systems and its generalization to subspaces of a vector space of Lovász [30]
(see also [15]) imply that every family of sets of size 𝑝 has a 𝑞-representative family with
at most

(︀
𝑝+𝑞
𝑝

)︀
sets. Recently, Fomin et. al. [11] gave an efficient randomized algorithm to

compute a representative family of size
(︀
𝑝+𝑞
𝑝

)︀
in a linear matroid of rank 𝑛 > 𝑝+ 𝑞. This

algorithm starts by computing a randomized (𝑝+ 𝑞)-truncation of the given linear matroid
and then computes a 𝑞-representative family over the truncated matroid deterministically.
Therefore one of our motivations to study the 𝑘-truncation problem was to find an efficient
deterministic computation of a representative family in a linear matroid. Formally, we have
the following theorem.

Theorem 1.3. Let 𝑀 = (𝐸, ℐ) be a linear matroid of rank 𝑛 and let 𝒮 be a 𝑝-family of
independent sets of size 𝑡. Let 𝐴 be a 𝑛×|𝐸| matrix representing 𝑀 over a field F, and let 𝜔
be the exponent of matrix multiplication. Then there are deterministic algorithms computinĝ︀𝒮 ⊆𝑞

𝑟𝑒𝑝 𝒮 as follows.

(i) A family ̂︀𝒮 of size
(︀
𝑝+𝑞
𝑝

)︀
in 𝒪

(︁(︀
𝑝+𝑞
𝑝

)︀2
𝑡𝑝3𝑛2 + 𝑡

(︀
𝑝+𝑞
𝑞

)︀𝜔
𝑛𝑝
)︁
+ (𝑛+ |𝐸|)𝒪(1), operations

over F.
(ii) A family ̂︀𝒮 of size 𝑛𝑝

(︀
𝑝+𝑞
𝑝

)︀
in 𝒪

(︁(︀
𝑝+𝑞
𝑝

)︀
𝑡𝑝3𝑛2 + 𝑡

(︀
𝑝+𝑞
𝑞

)︀𝜔−1
(𝑝𝑛)𝜔−1

)︁
+ (𝑛 + |𝐸|)𝒪(1)

operations over F.

Let us point out that the above algorithms offer a trade-off between the size of a representa-
tive set and the running time of the algorithm. As a corollary of the above theorem, we obtain
a deterministic FPT algorithm for ℓ-Matroid Parity, derandomizing the main algorithm
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of Marx [31]. This then derandomizes the algorithms for all the other problems in [31] as well.
In particular this implies a deterministic FPT algorithm for ℓ-Matroid Intersection,
certain packing problems and Feedback Edge Set with Budget Vectors. Using our
results one can compute, in deterministic polynomial time, the 𝑘-truncation of graphic
and co-graphic matroids, which has important applications in graph algorithms. Recently,
the truncation of co-graphic matroid has been used to obtain deterministic parameterized
algorithms, running in time 2𝒪(𝑘)𝑛𝒪(1) time, for problems where we need to delete 𝑘 edges
that keeps the graph connected and maintain certain parity conditions [22]. These problems
include Undirected Eulerian Edge Deletion, Directed Eulerian Edge Deletion
and Undirected Connected Odd Edge Deletion [5, 8, 9, 22].

2 PRELIMINARIES

In this section we give various definitions and notions which we make use of in the paper.

We use the following notations: [𝑛] = {1, . . . , 𝑛} and
(︀
[𝑛]
𝑖

)︀
= {𝑋 | 𝑋 ⊆ [𝑛], |𝑋| = 𝑖}.

Fields, Polynomials, Vectors and Matrices

In this section we review some definitions and properties of fields that are required in this
paper. We refer to any graduate textbook on algebra for more details. The number of
elements in a field is called its order. For every prime number 𝑝 and a positive integer ℓ,
there exists a finite field of order 𝑝ℓ. For a prime number 𝑝, the set {0, 1, . . . , 𝑝− 1} with
addition and multiplication modulo 𝑝 forms a field, which we denote by F𝑝. Let F be a
finite field and then F[𝑋] denotes the ring of polynomials in 𝑋 over F. For the ring F[𝑋],
we use F(𝑋) to denote the field of fractions of F[𝑋]. We will use F[𝑋]<𝑛 to denote the set
the polynomials in F[𝑋] of degree < 𝑛. The characteristic of a field, denoted by char(F), is
defined as least positive integer 𝑚 such that

∑︀𝑚
𝑖=1 1 = 0. For fields such as R where there is

no such 𝑚, the characteristic is defined to be 0. For a finite field F = F𝑝ℓ , F* = F ∖ {0} is
called the multiplicative group of F. It is a cyclic group and has a generator 𝛼 ∈ F*, which
is called a primitive element of F. We say that an element 𝛽 ∈ F has order 𝑟, if 𝑟 is the least
integer such that 𝛽𝑟 = 1. Let us note that the order of any element is at most |F*| = |F| − 1.
A polynomial 𝑃 (𝑋) ∈ F[𝑋] is called irreducible if it cannot expressed as a product of two
other non-trivial polynomials in F[𝑋]. Let 𝑃 (𝑋) be an irreducible polynomial in F[𝑋] of
degree ℓ. Then K = F[𝑋]/𝑃 (𝑋) = F[𝑋](mod 𝑃 (𝑋)) (i.e. the quotient ring of the ideal
generated by 𝑃 (𝑋)), is also a field. It is of order |F|ℓ and characteristic of K is equal to the
characteristic of F. We note that the field K is well defined by specifying the irreducible
polynomial 𝑃 (𝑋). The field K is called a field extension of F of degree ℓ. All finite fields are
obtained as extensions of prime fields, and for any prime 𝑝 and positive integer ℓ there is
exactly one finite field of order 𝑝ℓ up to isomorphism.

Derivatives. Recall the definition of the formal derivative 𝑑
𝑑𝑥 of a function over R. We denote

the 𝑘-th formal derivative of a function 𝑓 by 𝑓 (𝑘). We can extend this notion to finite fields.
Let F be a finite field and let F[𝑋] be the ring of polynomials in 𝑋 over F. Let 𝑃 ∈ F[𝑋]

be a polynomial of degree 𝑛 − 1, i.e. 𝑃 =
∑︀𝑛−1

𝑖=0 𝑎𝑖𝑋
𝑖 where 𝑎𝑖 ∈ F. Then we define the

formal derivative of as 𝑃 ′ =
∑︀𝑛−1

𝑖=1 𝑖𝑎𝑖𝑋
𝑖−1. We can extend this definition to the 𝑘-th formal

derivative of 𝑃 as 𝑃 (𝑘) = (𝑃 (𝑘−1))′. For a polynomial 𝑃 (𝑋) ∈ F[𝑋], the 𝑖-th Hasse derivative
𝐷𝑖(𝑃 ) is defined as the coefficient of 𝑍𝑖 in 𝑃 (𝑋 +𝑍). Here, 𝑃 (𝑋 +𝑍) =

∑︀∞
𝑖=0 𝐷

𝑖(𝑃 (𝑋))𝑍𝑖.
We note that Hasse derivatives differ from formal derivatives by a multiplicative factor. We
refer to [7] and [20] for details.
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Vector and Matrices. A vector 𝑣 over a field F is an array of values from F. A collection of
vectors {𝑣1, 𝑣2, . . . , 𝑣𝑘} are said to be linearly dependent if there exist values 𝑎1, 𝑎2, . . . , 𝑎𝑘,

not all zero, from F such that
∑︀𝑘

𝑖=1 𝑎𝑖𝑣𝑖 = 0. Otherwise these vectors are called linearly
independent. The matrix is said to have dimension 𝑛×𝑚 if it has 𝑛 rows and 𝑚 columns.
For a matrix 𝐴 (or a vector 𝑣), we denote its transpose by 𝐴𝑇 (or 𝑣𝑇 ). Further, we use
C(𝐴) to denote the collection of column vectors of the matrix 𝐴. The rank of a matrix is
the cardinality of the maximum sized collection of columns which are linearly independent.
Equivalently, the rank of a matrix is the maximum number 𝑘 such that there is a 𝑘 × 𝑘
submatrix whose determinant is non-zero. The determinant of a 𝑛× 𝑛 matrix 𝐴 is denoted
by det(𝐴). Throughout the paper we use 𝜔 to denote the matrix multiplication exponent.
The current best known bound on 𝜔 < 2.373 [18, 40].

Matroids

We review some definitions and properties of matroids. For a detailed introduction to
matroids, we refer to the textbook of Oxley [35]. A pair 𝑀 = (𝐸, ℐ), where 𝐸 is a ground
set and ℐ is a family of subsets (called independent sets) of 𝐸, is a matroid if it satisfies the
following conditions: (I1) 𝜑 ∈ ℐ. (I2) If 𝐴′ ⊆ 𝐴 and 𝐴 ∈ ℐ then 𝐴′ ∈ ℐ. (I3) If 𝐴,𝐵 ∈ ℐ and
|𝐴| < |𝐵|, then there is 𝑒 ∈ (𝐵 ∖𝐴) such that 𝐴∪ {𝑒} ∈ ℐ. An inclusion-wise maximal set of
ℐ is called a basis of the matroid. Using axiom (I3) it is easy to show that all the bases of a
matroid have the same size. This size is called the rank of the matroid 𝑀 , and is denoted by
rank(M). The dual of a matroid 𝑀 is defined as the matroid 𝑀* = (𝐸, ℐ*), where 𝐼 ′ ⊆ 𝐸 is
a basis of 𝑀* if and only if 𝐼 = 𝐸 ∖ 𝐼 ′ is a basis of 𝑀 . Observe that (𝑀*)* = 𝑀 .
Let 𝐴 be a matrix over an arbitrary field F and let 𝐸 be the set of columns of 𝐴. For

𝐴, we define matroid 𝑀 = (𝐸, ℐ) as follows. A set 𝑋 ⊆ 𝐸 is independent (that is 𝑋 ∈ ℐ)
if the corresponding columns are linearly independent over F. The matroids that can be
defined by such a construction are called linear matroids, and if a matroid can be defined by
a matrix 𝐴 over a field F, then we say that the matroid is representable over F. That is,
a matroid 𝑀 = (𝐸, ℐ) of rank 𝑑 is representable over a field F if there exist vectors in F𝑑

corresponding to the elements such that linearly independent sets of vectors correspond to
independent sets of the matroid. A matroid 𝑀 = (𝐸, ℐ) is called representable or linear if it
is representable over some field F. The dual matroid 𝑀* of a linear matroid 𝑀 is also linear
and given a representation of 𝑀 , a representation of 𝑀* can be found in polynomial time.

Truncation of a Matroid. The 𝑡-truncation of a matroid 𝑀 = (𝐸, ℐ) is a matroid 𝑀 ′ =
(𝐸, ℐ ′) such that 𝑆 ⊆ 𝐸 is independent in 𝑀 ′ if and only if |𝑆| ≤ 𝑡 and 𝑆 is independent in
𝑀 .

3 DETERMINISTIC MATROID TRUNCATION

In this section we give the main result of this work. We start with an introduction to our
tools and then we give two results that give rank 𝑘-truncation of the given matrix 𝑀 .

Tools and Techniques

In this subsection we collect some known results, definitions and derive some new connections
among them that will be central to our results.

Polynomials and Vectors. Let F be a field. The set of polynomials 𝑃1(𝑋), 𝑃2(𝑋), . . . , 𝑃𝑘(𝑋)
in F[𝑋] are said to be linearly independent over F if there doesn’t exist 𝑎1, 𝑎2, . . . , 𝑎𝑘 ∈ F,
not all zero such that

∑︀𝑘
𝑖=1 𝑎𝑖𝑃𝑖(𝑋) ≡ 0. Otherwise they are said to be linearly dependent.
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Definition 1. Let 𝑃 (𝑋) be a polynomial of degree at most 𝑛 − 1 in F[𝑋]. We define
the vector 𝑣 corresponding to the polynomial 𝑃 (𝑋) as follows: 𝑣[𝑗] = 𝑐𝑗 where 𝑃 (𝑋) =
𝑛∑︀

𝑗=1

𝑐𝑗𝑥
𝑗−1. Similarly given a vector 𝑣 of length 𝑛 over F, we define the polynomial 𝑃 (𝑋) in

F[𝑋] corresponding to the vector 𝑣 as follows: 𝑃 (𝑋) =
𝑛∑︀

𝑗=1

𝑣[𝑗]𝑥𝑗−1.

The next lemma will be key to several proofs later. The proof of this lemma follows easily
from standard methods, and we include it for the sake of completeness.

Lemma 3.1. Let 𝑣1, . . . , 𝑣𝑘 be vectors of length 𝑛 over F and let 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) be
the corresponding polynomials respectively. Then 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) are linearly independent
over F if and only if 𝑣1, 𝑣2, . . . , 𝑣𝑘 are linearly independent over F.

Proof. For 𝑖 ∈ {1 . . . 𝑘}, let 𝑣𝑖 = (𝑐𝑖1, . . . , 𝑐𝑖𝑛) and let 𝑃𝑖(𝑋) =
∑︀𝑛

𝑗=1 𝑐𝑖𝑗𝑥
𝑗−1 be the

polynomial corresponding to 𝑣𝑖.
We first prove the forward direction of the proof. For a contradiction, assume that

𝑣1, . . . , 𝑣𝑘 are linearly dependent. Then there exists 𝑎1, . . . , 𝑎𝑘 ∈ F, not all zeros, such that∑︀𝑘
𝑖=1 𝑎𝑖𝑣𝑖 = 0. This implies that for each 𝑗 ∈ {1, . . . 𝑛},

∑︀𝑘
𝑖=1 𝑎𝑖𝑣𝑖[𝑗] = 0. Since 𝑣𝑖[𝑗] = 𝑐𝑖𝑗 ,

we have
∑︀𝑘

𝑖=1 𝑎𝑖𝑐𝑖𝑗 = 0, which implies that
∑︀𝑘

𝑖=1 𝑎𝑖𝑐𝑖𝑗𝑥
𝑗−1 = 0. Summing over all these

expressions we get
∑︀𝑘

𝑖=1 𝑎𝑖𝑃𝑖(𝑋) ≡ 0, a contradiction. This completes the proof in the
forward direction.

Next we prove the reverse direction of the lemma. To the contrary assume that 𝑃1(𝑋), . . . ,
𝑃𝑘(𝑋) are linearly dependent. Then there exists 𝑎1, . . . , 𝑎𝑘 ∈ F, not all zeros, such that∑︀𝑘

𝑖=1 𝑎𝑖𝑃𝑖(𝑋) ≡ 0. This implies that for each 𝑗 ∈ {1, . . . , 𝑛}, the coefficients of 𝑥𝑗−1

satisfy
∑︀𝑘

𝑖=1 𝑎𝑖𝑐𝑖𝑗 = 0. Since 𝑐𝑖𝑗 is the 𝑗-th entry of the vector 𝑣𝑖 for all 𝑖 and 𝑗, we have∑︀𝑘
𝑖=1 𝑎𝑖𝑣𝑖 = 0. Thus the vectors 𝑣1, . . . , 𝑣𝑘 are linearly dependent, a contradiction to the

given assumption. This completes the proof. �

We will use this claim to view the column vectors of a matrix 𝑀 over a field F as elements
in the ring F[𝑋] and in the field of fractions F(𝑋). We shall then use properties of polynomials
to deduce properties of these column vectors and vice versa.

The Wronskian determinant. Let F be a field with characteristic at least 𝑛. Consider a
collection of polynomials 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) from F[𝑋] of degree at most 𝑛− 1. We define
the following matrix, called the Wronskian, of 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) as follows.

𝑊 (𝑃1, . . . , 𝑃𝑘) =

⎛⎜⎜⎜⎝
𝑃1(𝑋) 𝑃2(𝑋) . . . 𝑃𝑘(𝑋)

𝑃
(1)
1 (𝑋) 𝑃

(1)
2 (𝑋) . . . 𝑃

(1)
𝑘 (𝑋)

...
...

. . .
...

𝑃
(𝑘−1)
1 (𝑋) 𝑃

(𝑘−1)
2 (𝑋) . . . 𝑃

(𝑘−1)
𝑘 (𝑋)

⎞⎟⎟⎟⎠
𝑘×𝑘

Note that, the determinant of the above matrix actually yields a polynomial. For our
purpose we will need the following well known result.

Theorem 3.2 ([4, 19, 32]). Let F be a field and 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) be a set of polynomials
from F[𝑋]<𝑛 and let char(F) > 𝑛. Then 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) are linearly independent over F
if and only if the Wronskian determinant det(𝑊 (𝑃1, 𝑃2, . . . , 𝑃𝑘)) ̸≡ 0 in F[𝑋].

The notion of Wronskian dates back to 1812 [32]. We refer to [4, 19] for some recent
variations and proofs. The switch between usual derivatives and Hasse derivatives multiplies
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the Wronskian determinant by a constant, which is non-zero as long as 𝑛 < char(F), and
thus this criterion works with both notions. Observe that the Wronskian determinant is a
(univariate) polynomial of degree at most 𝑛𝑘 in F[𝑋]. Thus to test if such a polynomial (of
degree 𝑑) is identically zero, we only need to evaluate it at 𝑑+ 1 arbitrary points of the field
F, and check if it is zero at all those points. Alternatively, if the order of the field F is small,
we may also compute the coefficients of this polynomial.

The Folded Wronskian determinant. The above definition of Wronskian requires us to
compute derivatives of degree (𝑛− 1) polynomials. As noted earlier, they are well defined
only if the underlying field has characteristic greater than or equal to 𝑛. However the matrix
might be over a field of small characteristic. For these kind of fields, we have the notion
of Folded Wronskian which was recently introduced by Guruswami and Kopparty in the
context of subspace designs [23, 24].

Consider a collection of polynomials 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) from F[𝑋] of degree at most (𝑛−1).
Further, let F be of order at least 𝑛𝑘 + 1, and 𝛼 be an element of F*. We define the the
𝛼-folded Wronskian, of 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) as follows.

𝑊𝛼(𝑃1, . . . , 𝑃𝑘) =

⎛⎜⎜⎜⎝
𝑃1(𝑋) 𝑃2(𝑋) . . . 𝑃𝑘(𝑋)
𝑃1(𝛼𝑋) 𝑃2(𝛼𝑋) . . . 𝑃𝑘(𝛼𝑋)

...
...

. . .
...

𝑃1(𝛼
𝑘−1𝑋) 𝑃2(𝛼

𝑘−1𝑋) . . . 𝑃𝑘(𝛼
𝑘−1𝑋)

⎞⎟⎟⎟⎠
𝑘×𝑘

As before, the determinant of this matrix is a polynomial of degree at most 𝑛𝑘 in F[𝑋]. The
following theorem by Forbes and Shpilka [14] shows that the above determinant characterizes
the linear independence of the collection of polynomials.

Theorem 3.3 ([14], Theorem 4.1). 1 Let 1 ≤ 𝑘 ≤ 𝑛 and let 𝑀 be a 𝑛× 𝑘 matrix over
F of rank 𝑘. Let K be an extension of F and let 𝑔 ∈ K be an element of order ≥ 𝑛. For
𝑋 ∈ K, define 𝐴𝑋 to be a 𝑘 × 𝑛 matrix where (𝐴𝑋)𝑖,𝑗 = (𝑔𝑖−1𝑋)𝑗−1. Then there are at
most 𝑛𝑘 values of 𝑋 ∈ K such that the rank of 𝐴𝑋𝑀 is less than 𝑘.

The following is a restatement of the above theorem in the language of this paper.

Theorem 3.4. 2 Let F be a field with at least 𝑛𝑘 + 1 elements, and let 𝛼 be an element
of F of order ≥ 𝑛 and let 𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) be a set of polynomials from F[𝑋]<𝑛. Then
𝑃1(𝑋), . . . , 𝑃𝑘(𝑋) are linearly independent over F if and only if the 𝛼-folded Wronskian
determinant det(𝑊𝛼(𝑃1, . . . , 𝑃𝑘)) ̸≡ 0 in F[𝑋].

Proof. The proof follows by observing the following. Let 𝑀𝑖 be the column vector
corresponding to the coefficients of 𝑃𝑖. And let 𝐴𝑋 be the 𝑘×𝑛 matrix defined as, (𝐴𝑋)𝑖,𝑗 =
(𝛼𝑖−1𝑋)𝑗−1. Then 𝑊𝑖 = 𝐴𝑋𝑀𝑖 = [𝑃𝑖(𝑋), 𝑃𝑖(𝛼𝑋), . . . , 𝑃𝑖(𝛼

𝑘−1𝑋)]𝑇 . Thus if 𝑀 were the
𝑛 × 𝑘 matrix with column vectors {𝑀𝑖}, then 𝐴𝑋𝑀 = 𝑊𝛼(𝑃1, . . . , 𝑃𝑘) with {𝑊𝑖} as it’s
column vectors.
If 𝑃1, . . . , 𝑃𝑘 are linearly independent, then 𝑀 has rank 𝑘. We then apply Theorem 3.3

with F = K and 𝑔 = 𝛼 to obtain that there is some value of 𝑋 for which rank of the 𝑘 × 𝑘
matrix 𝐴𝑋𝑀 has rank 𝑘. This means that the polynomial det(𝑊𝛼(𝑃1, . . . , 𝑃𝑘)) ̸≡ 0. And,

1In [14], the matrix 𝐴 is defined as (𝐴𝑋)𝑖,𝑗 = (𝑔𝑖𝑋)𝑗 . But the same proof also holds when we define

(𝐴𝑋)𝑖,𝑗 = (𝑔𝑖−1𝑋)𝑗−1 since the order of 𝑔 is ≥ 𝑛.
2Unaware of the results of [14], we had obtained a different proof of this theorem with a slightly weaker

bound. We thank the anonymous reviewers for pointing out these results from literature. Our proof may be
found in [28].
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if {𝑃𝑖} were not linearly independent, then {𝑊𝑖} are also not linearly independent. Thus,
det(𝑊𝛼(𝑃1, . . . , 𝑃𝑘)) ≡ 0. �

We must also note that the following lemma by Gabizon and Raz [17] can be used to
obtain a different construction of matrix truncation. We omit the details.

Lemma 3.5 ([17], Lemma 6.1). Let 1 ≤ 𝑘 ≤ 𝑛 and let 𝑀 be a 𝑛× 𝑘 matrix over F of
rank 𝑘. For 𝑋 ∈ F, define 𝐴𝑋 to be a 𝑘 × 𝑛 matrix where (𝐴𝑋)𝑖,𝑗 = 𝑋𝑖𝑗 . Then there are at
most ≤ 𝑛𝑘2 values of 𝑋 such that the rank of 𝐴𝑋𝑀 is less than 𝑘.

Finding irreducible polynomials and elements of large order. Whenever we need to use folded
Wronskians, we will also need to get hold of an element of large order of an appropriate
field. We start by reviewing some known algorithms for finding irreducible polynomials over
finite fields. Note that for a finite field of order 𝑝ℓ, the field operations can be done in time
(ℓ log 𝑝)𝒪(1). And for an infinite field, the field operations will require (log𝑁)𝒪(1) where 𝑁
is the size of the largest value handled by the algorithm. Typically we will provide an upper
bound on 𝑁 when the need arises. A result by Shoup [37, Theorem 4.1]) allows us to find
an irreducible polynomial of degree 𝑟 over F𝑝ℓ in time polynomial in 𝑝, ℓ and 𝑑. Adleman
and Lenstra [1, Theorem 2] gave an algorithm that allows us to compute an irreducible
polynomial of degree at least 𝑟 over a prime field F𝑝 in time polynomial in log 𝑝 and 𝑟.

Lemma 3.6 ([1, 37]). (Finding Irreducible Polynomials)

(i) There is an algorithm such that given prime 𝑝 and 𝑟 it can compute an irreducible
polynomial 𝑓(𝑋) ∈ F𝑝[𝑋] such that 𝑟 ≤ deg(𝑓) ≤ 𝑐𝑟 log 𝑝 in (𝑐𝑟(log 𝑝)2)𝑐 time, where
𝑐 is a constant.

(ii) For 𝑞 = 𝑝ℓ and an integer 𝑟, we can compute an irreducible polynomial of F𝑞[𝑋] of degree

𝑟 in 𝒪(
√
𝑝(log 𝑝)3𝑟3(log 𝑟)𝒪(1)+(log 𝑝)2𝑟4(log 𝑟)𝒪(1)+(log 𝑝)𝑟4(log 𝑟)𝒪(1)ℓ2(log ℓ)𝒪(1))

time.

Next we consider a few algorithms for finding primitive elements in finite fields. For fields
of large order but small characteristic, we have the following lemma from the results of
Shparlinski [39] and also from the results of Shoup [38].

Lemma 3.7 ([38, 39]). Let F = F𝑝ℓ be a finite field. Then we can compute a set 𝑆 ⊂ F
of size poly(𝑝, ℓ) containing a primitive element in time poly(𝑝, ℓ). 3

We use Lemma 3.7 to get the following result that allows us to find elements of sufficiently
large order in a finite field of small size.

Lemma 3.8. Let F = F𝑝ℓ be a finite field. Given an integer 𝑛 such that 𝑛 < 𝑝ℓ, we can
compute an element of F of order at least 𝑛 in poly(𝑝, ℓ, 𝑛) time.

Proof. We begin by applying Lemma 3.7 to the field F and obtain a set 𝑆 of size
poly(𝑝, ℓ). This takes time poly(𝑝, ℓ). Then for each element 𝛼 ∈ 𝑆 we compute the set
𝐺𝛼 = {𝛼𝑖 | 𝑖 = 1, 2, . . . , 𝑛}. If for any 𝛼 we have |𝐺𝛼| ≥ 𝑛, i.e. the set contains 𝑛 distinct
elememts, then we return it as the required element of order at least 𝑛. Since the set 𝑆
contains at least one primitive element of F, we will find some 𝛼 in this step. Note this step
too takes poly(𝑝, ℓ, 𝑛) time. �

When given a small field, the following lemma allows us to increase the size of the field as
well as find an element of large order in the bigger field.

3The term poly(𝑥, 𝑦, 𝑧, . . .) indicates a value that is bounded by a polynomial function in 𝑥, 𝑦, 𝑧 . . ..
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Lemma 3.9. Given a field F = F𝑝ℓ and a number 𝑛 such that 𝑝ℓ < 𝑛, we can find an

extension K of F such that 𝑛 < |K| < 𝑛2 and an element 𝛼 ∈ K of order at least 𝑛 in time
𝑛𝒪(1).

Proof. Let 𝑟 be smallest number such that 𝑝ℓ𝑟 > 𝑛. But then 𝑝
ℓ𝑟
2 < 𝑛. Therefore we

have that 𝑝ℓ𝑟 < 𝑛2. Next we find an extension K of F of degree 𝑟, by finding an irreducible
polynomial 𝑃 (𝑋) ∈ F[𝑋] of degree 𝑟 using Lemma 3.6, in time polynomial in 𝑝, ℓ, 𝑟 which is
𝑛𝒪(1). We then define the field K to be F[𝑋]/𝑃 (𝑋). Let us note that K is a field of order
𝑝ℓ𝑟 since it is a degree 𝑟 extension of the field F and |F| = 𝑝ℓ. Then we can use Lemma 3.8
to compute an element of K of order at least 𝑛. Since |K| < 𝑛2, this can be done in time
𝑛𝒪(1). This completes the proof of this lemma. �

Deterministic Truncation of Matrices

In this subsection we look at algorithms for computing 𝑘-truncation of matrices. We consider
matrices over the set of rational numbers Q or over some finite field F. Therefore, we are
given as input a matrix 𝑀 of rank 𝑛 over a field F. Let 𝑝 be the characteristic of the field F
and 𝑁 denote the size of the input in bits. The following theorem gives us an algorithm to
compute the truncation of a matrix using the classical wronskian, over an appropriate field.
We shall refer to this as the classical wronskian method of truncation.

Lemma 3.10. Let 𝑀 be a 𝑛×𝑚 matrix of rank 𝑛 over a field F, where F is either Q or
char(F) > 𝑛. Then we can compute a 𝑘 ×𝑚 matrix 𝑀𝑘 of rank 𝑘 over the field F(𝑋) which
is a 𝑘-truncation of the matrix 𝑀 in 𝒪(𝑚𝑛𝑘) field operations over F.

Proof. Let F[𝑋] be the ring of polynomials in𝑋 over F and let F(𝑋) be the corresponding
field of fractions. Let 𝐶1, . . . , 𝐶𝑚 denote the columns of𝑀 . Observe that we have a polynomial
𝑃𝑖(𝑋) corresponding to the column 𝐶𝑖 of degree at most 𝑛 − 1, and by Lemma 3.1 we
have that 𝐶𝑖1 , . . . , 𝐶𝑖ℓ are linearly independent over F if and only if 𝑃𝑖1(𝑋), . . . , 𝑃𝑖ℓ(𝑋) are
linearly independent over F. Further note that 𝑃𝑖 lies in F[𝑋] and thus also in F(𝑋). Let

𝐷𝑖 be the vector (𝑃𝑖(𝑋), 𝑃
(1)
𝑖 (𝑋), . . . , 𝑃

(𝑘−1)
𝑖 (𝑋)) of length 𝑘 with entries from F[𝑋] (and

also in F(𝑋)). Note that the entries of 𝐷𝑖 are polynomials of degree at most 𝑛− 1. Let us
define the matrix 𝑀𝑘 to be the (𝑘×𝑚) matrix whose columns are 𝐷𝑇

𝑖 , and note that 𝑀𝑘 is
a matrix with entries from F[𝑋]. We will show that indeed 𝑀𝑘 is a desired 𝑘-truncation of
the matrix 𝑀 .
Let 𝐼 ⊆ {1, . . . ,𝑚} such that |𝐼| = ℓ ≤ 𝑘. Let 𝐶𝑖1 , . . . , 𝐶𝑖ℓ be a linearly independent set

of columns of the matrix 𝑀 over F, where 𝐼 = {𝑖1, . . . , 𝑖ℓ}. We will show that the columns
𝐷𝑇

𝑖1
, . . . , 𝐷𝑇

𝑖ℓ
are linearly independent in 𝑀𝑘 over F(𝑋). Consider the 𝑘× ℓ matrix 𝑀𝐼 whose

column are the vectors 𝐷𝑇
𝑖1
, . . . , 𝐷𝑇

𝑖ℓ
. We shall show that 𝑀𝐼 has rank ℓ by showing that there

is a ℓ× ℓ submatrix whose determinant is a non-zero polynomial. Let 𝑃𝑖1(𝑋), . . . , 𝑃𝑖ℓ(𝑋)
be the polynomials corresponding to the vectors 𝐶𝑖1 , . . . , 𝐶𝑖ℓ . By Lemma 3.1 we have that
𝑃𝑖1(𝑋), . . . , 𝑃𝑖ℓ(𝑋) are linearly independent over F. Then by Theorem 3.2, the (ℓ× ℓ) matrix

formed by the column vectors (𝑃𝑖𝑗 (𝑋), 𝑃
(1)
𝑖𝑗

(𝑋), . . . , 𝑃
(ℓ−1)
𝑖𝑗

(𝑋))𝑇 , 𝑖𝑗 ∈ 𝐼, is a non-zero

determinant in F[𝑋]. But note that this matrix is a submatrix of 𝑀𝐼 . Therefore 𝑀𝐼 has
rank ℓ in F(𝑋). Therefore the vectors 𝐷𝑇

𝑖1
, . . . , 𝐷𝑇

𝑖ℓ
are linearly independent in F(𝑋). This

completes the proof of the forward direction.
Let 𝐼 ⊆ {1, . . . ,𝑚} such that |𝐼| = ℓ ≤ 𝑘 and let 𝐷𝑇

𝑖1
, . . . , 𝐷𝑇

𝑖ℓ
be linearly independent

in 𝑀𝑘 over F(𝑋), where 𝐼 = {𝑖1, . . . , 𝑖ℓ}. We will show that the corresponding set of
columns 𝐶𝑖1 , . . . , 𝐶𝑖ℓ are also linearly independent over F. For a contradiction assume that
𝐶𝑖1 , . . . , 𝐶𝑖ℓ are linearly dependent over F. Let 𝑃𝑖1(𝑋), . . . , 𝑃𝑖ℓ(𝑋) be the polynomials in
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F[𝑋] corresponding to these vectors. Then by Lemma 3.1 we have that 𝑃𝑖1(𝑋), . . . , 𝑃𝑖ℓ(𝑋)
are linearly dependent over F. So there is a tuple 𝑎𝑖1 , . . . , 𝑎𝑖ℓ of values of F such that∑︀ℓ

𝑗=1 𝑎𝑖𝑗𝑃𝑖𝑗 (𝑋) = 0. Therefore, for any 𝑑 ∈ {1, . . . , ℓ−1}, we have that
∑︀ℓ

𝑗=1 𝑎𝑖𝑗𝑃
(𝑑)
𝑖𝑗

(𝑋) = 0.

Now consider the column vectors 𝐷𝑇
𝑖1
, . . . , 𝐷𝑇

𝑖ℓ
of 𝑀𝑘 corresponding to 𝐶𝑖1 , . . . , 𝐶𝑖ℓ . Note that

F is a subfield of F(𝑋) and by the above, we have that
∑︀ℓ

𝑗=1 𝑎𝑖𝑗𝐷𝑖𝑗 = 0. Thus 𝐷𝑇
𝑖1
, . . . , 𝐷𝑇

𝑖ℓ

are linearly dependent in 𝑀𝑘 over F(𝑋), a contradiction to our assumption.
Thus we have shown that for any {𝑖1, . . . , 𝑖ℓ} ⊆ {1, . . . ,𝑚} such that ℓ ≤ 𝑘, 𝐶𝑖1 , . . . , 𝐶𝑖ℓ

are linearly independent over F if and only if 𝐷𝑖1 , . . . , 𝐷𝑖ℓ are linearly independent over
F(𝑋). To estimate the running time, observe that for each 𝐶𝑖 we can compute 𝐷𝑖 in 𝒪(𝑘𝑛)
field operations and thus we can compute 𝑀𝑘 in 𝒪(𝑚𝑛𝑘) field operations. This completes
the proof of this lemma. �

Lemma 3.10 is useful in obtaining 𝑘-truncation of matrices whose entries are either from
the field of large characteristic or from Q. The following lemma allows us to find truncations
in fields of small characteristic which have large order. The proof of this lemma is similar to
the proof of Lemma 3.10. However, we will require an element of high order of such a field
to compute the truncation. Therefore, we demand a lower bound on the size of the field as
we need an element of certain order. We will later see how to remove this requirement from
the statement of the next lemma.

Lemma 3.11. Let F be a finite field with at least 𝑛𝑘+1 elements, and let 𝛼 be an element
of F of order at least 𝑛. Let 𝑀 be a 𝑛 ×𝑚 matrix of rank 𝑛 over a field F. Then we can
compute a (𝑘 ×𝑚) matrix 𝑀𝑘 of rank 𝑘 over the field F(𝑋) which is a 𝑘-truncation of the
matrix 𝑀 in 𝒪(𝑚𝑛𝑘) field operations over F.

Proof. Let F[𝑋] be the ring of polynomials in𝑋 over F and let F(𝑋) be the corresponding
field of fractions. Let 𝐶1, . . . , 𝐶𝑚 denote the columns of𝑀 . Observe that we have a polynomial
𝑃𝑖(𝑋) corresponding to the column 𝐶𝑖 of degree at most 𝑛 − 1, and by Lemma 3.1 we
have that 𝐶𝑖1 , . . . , 𝐶𝑖ℓ are linearly independent over F if and only if 𝑃𝑖1(𝑋), . . . , 𝑃𝑖ℓ(𝑋) are
linearly independent over F. Further note that 𝑃𝑖(𝑋) lies in F[𝑋] (and also in F(𝑋)).

Let 𝐷𝑖 be the vector (𝑃𝑖(𝑋), 𝑃𝑖(𝛼𝑋), . . . , 𝑃𝑖(𝛼
𝑘−1𝑋)). Observe that the entries of 𝐷𝑖 are

polynomials of degree at most 𝑛 − 1 and are elements of F[𝑋]. Let us define the matrix
𝑀𝑘 to be the (𝑘 ×𝑚) matrix whose columns are the vectors 𝐷𝑇

𝑖 , and note that 𝑀𝑘 is a
matrix with entries from F[𝑋] ⊆ F(𝑋). We will show that 𝑀𝑘 is a desired 𝑘-truncation of
the matrix 𝑀 .
Let 𝐼 ⊆ {1, . . . ,𝑚} such that |𝐼| = ℓ ≤ 𝑘. Let 𝐶𝑖1 , . . . , 𝐶𝑖ℓ be a linearly independent set

of columns of the matrix 𝑀 over F, where 𝐼 = {𝑖1, . . . , 𝑖ℓ}. We will show that 𝐷𝑇
𝑖1
, . . . , 𝐷𝑇

𝑖ℓ
are linearly independent in 𝑀𝑘 over F(𝑋). Consider the 𝑘 × ℓ matrix 𝑀𝐼 whose columns
are the vectors 𝐷𝑇

𝑖1
, . . . , 𝐷𝑇

𝑖ℓ
. We shall show that 𝑀𝐼 has rank ℓ by showing that there is

a ℓ× ℓ submatrix whose determinant is a non-zero polynomial. Let 𝑃𝑖1(𝑋), . . . , 𝑃𝑖ℓ(𝑋) be
the polynomials corresponding to the vectors 𝐶𝑖1 , . . . , 𝐶𝑖ℓ . By Lemma 3.1 we have that
𝑃𝑖1(𝑋), . . . , 𝑃𝑖ℓ(𝑋) are linearly independent over F. Then by Theorem 3.4, the (ℓ× ℓ) matrix
formed by the column vectors (𝑃𝑖𝑗 (𝑋), 𝑃𝑖𝑗 (𝛼𝑋), . . . , 𝑃𝑖𝑗 (𝛼

(ℓ−1)𝑋))𝑇 , 𝑖𝑗 ∈ 𝐼, is a non-zero
determinant in F[𝑋]. But note that this matrix is a submatrix of 𝑀𝐼 . Therefore 𝑀𝐼 has
rank ℓ in F(𝑋). Therefore the vectors 𝐷𝑖1 , . . . , 𝐷𝑖ℓ are linearly independent in F(𝑋). This
completes the proof of the forward direction.
Let 𝐼 ⊆ {1, . . . ,𝑚} such that |𝐼| = ℓ ≤ 𝑘 and let 𝐷𝑇

𝑖1
, . . . , 𝐷𝑇

𝑖ℓ
be linearly independent

in 𝑀𝑘 over F(𝑋), where 𝐼 = {𝑖1, . . . , 𝑖ℓ}. We will show that the corresponding set of
columns 𝐶𝑖1 , . . . , 𝐶𝑖ℓ are also linearly independent over F. For a contradiction assume that
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𝐶𝑖1 , . . . , 𝐶𝑖ℓ are linearly dependent over F. Let 𝑃𝑖1(𝑋), . . . , 𝑃𝑖ℓ(𝑋) be the polynomials in
F[𝑋] corresponding to these vectors. Then by Lemma 3.1 we have that 𝑃𝑖1(𝑋), . . . , 𝑃𝑖ℓ(𝑋)
are linearly dependent over F. So there is a tuple 𝑎𝑖1 , . . . , 𝑎𝑖ℓ of values of F such that∑︀ℓ

𝑗=1 𝑎𝑖𝑗𝑃𝑖𝑗 (𝑋) = 0. Therefore, for any 𝑑 ∈ {1, . . . , ℓ−1}, we have that
∑︀ℓ

𝑗=1 𝑎𝑖𝑗𝑃𝑖𝑗 (𝛼
𝑑𝑋) =

0. Now let 𝐷𝑇
𝑖1
, . . . , 𝐷𝑇

𝑖ℓ
be the column vectors of 𝑀𝑘 corresponding to 𝐶𝑖1 , . . . , 𝐶𝑖ℓ . Note that

F is a subfield of F(𝑋) and by the above, we have that
∑︀ℓ

𝑗=1 𝑎𝑖𝑗𝐷𝑖𝑗 = 0. Thus 𝐷𝑇
𝑖1
, . . . , 𝐷𝑇

𝑖ℓ

are linearly dependent in 𝑀𝑘 over F(𝑋), a contradiction to our assumption.
Thus we have shown that for any {𝑖1, . . . , 𝑖ℓ} ⊆ {1, . . . ,𝑚} such that ℓ ≤ 𝑘, 𝐶𝑖1 , . . . , 𝐶𝑖ℓ

are linearly independent over F if and only if 𝐷𝑖1 , . . . , 𝐷𝑖ℓ are linearly independent over
F(𝑋). To estimate the running time, observe that for each 𝐶𝑖 we can compute 𝐷𝑖 in 𝒪(𝑘𝑛)
field operations and thus we can compute 𝑀𝑘 in 𝒪(𝑚𝑛𝑘) field operations. This completes
the proof of this lemma. �

In Lemma 3.11 we require that the field F contain at least 𝑛𝑘 + 1 elements, and further 𝛼
be an element of order at least 𝑛. We can ensure these requirements by preprocessing the
input before invoking the Lemma 3.11. Formally, we have the following lemma.

Lemma 3.12. Let 𝑀 be a 𝑛 × 𝑚 matrix of rank 𝑛 over a field F, and of rank 𝑛. Let
F = F𝑝ℓ where 𝑝 < 𝑛, and let 𝑛′ ≥ 𝑛 be an integer. Then in time polynomial in 𝑚,𝑛′, 𝑝 and
ℓ, we can find an extension field K of order at least 𝑛′ + 1 and an element 𝛼 ∈ K of order at
least 𝑛′, such that 𝑀 is a matrix over K with the same linear independence relationships
between it’s columns as before.

Proof. We distinguish two cases by comparing the values of 𝑝ℓ and 𝑛.

Case 1: 𝑝ℓ ≤ 𝑛′ + 1 In this case we use Lemma 3.9 to obtain an extension K of F of size
at most (𝑛′ + 1)2, and an element 𝛼 ∈ K of order at least 𝑛′ in polynomial time.

Case 2: 𝑝ℓ > 𝑛′ + 1 In this case we set K = F and use Lemma 3.8 to find an element of
order at least 𝑛′, in time poly(𝑝, ℓ, 𝑛′).

Observe that F is a subfield of K and 𝑀 is also a matrix over K. Thus, any collection
of linearly dependent columns over F continue to be linearly dependent over K. Similarly,
any collection of linearly independent columns continue to be linearly independent. This
completes the proof of this lemma. �

Next we show a result that allows us to find basis of matrices with entries from F[𝑋].

Lemma 3.13. Let 𝑀 be a 𝑚 × 𝑡 matrix with entries from F[𝑋]<𝑛 and let 𝑚 ≤ 𝑡. Let
𝑤 : C(𝑀) → R+ be a weight function. Then we can compute minimum weight column
basis of 𝑀 in 𝒪(𝑚2𝑛2𝑡+𝑚𝜔𝑛𝑡) field operations over F

Proof. Let 𝑆 ⊆ F* be a set of size (𝑛− 1)𝑚+ 1 and for every 𝛼 ∈ 𝑆, let 𝑀(𝛼) be the
matrix obtained by substituting 𝛼 for 𝑋 in the polynomials in matrix 𝑀 . Now we compute
the minimum weight column basis 𝐶(𝛼) in 𝑀(𝛼) for all 𝛼 ∈ 𝑆. Let ℓ = max{|𝐶(𝛼)| | 𝛼 ∈ 𝑆}.
Among all the column basis of size ℓ, let 𝐶(𝜁) be a minimum weighted column basis for
some 𝜁 ∈ 𝑆. Let 𝐶 ′ be the columns in 𝑀 corresponding to 𝐶(𝜁). We will prove that 𝐶 ′ is a
minimum weighted column basis of 𝑀 . Towards this we start with the following claim.

Claim 1. The rank of 𝑀 is the maximum of the rank of matrices 𝑀(𝛼), 𝛼 ∈ 𝑆.

Proof. Let 𝑟 ≤ 𝑚 be the rank of 𝑀 . Thus, we know that there exists a submatrix 𝑊of 𝑀
of dimension 𝑟× 𝑟 such that det(𝑊 ) is a non-zero polynomial. The degree of the polynomial
det(𝑊 (𝑋)) ≤ (𝑛− 1)× 𝑟 ≤ (𝑛− 1)𝑚. Thus, we know that it has at-most (𝑛− 1)𝑚 roots.
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Hence, when we evaluate det(𝑊 (𝑋)) on set 𝑆 of size more than (𝑛− 1)𝑚, there exists at
least one element in 𝑆, say 𝛽, such that det(𝑊 (𝛽)) ̸= 0. Thus, the rank of 𝑀 is upper
bounded by the rank of 𝑀(𝛽) and hence upper bounded by the maximum of the rank of
matrices 𝑀(𝛼), 𝛼 ∈ 𝑆.
As before let 𝑟 ≤ ℓ be the rank of 𝑀 . Let 𝛼 be an arbitrary element of 𝑆. Observe that

for any submatrix 𝑍 of dimension 𝑟′ × 𝑟′, 𝑟′ > 𝑟 we have that det(𝑍(𝑋)) ≡ 0. Thus, for any
𝛼, the determinant of the corresponding submatrix of 𝑀(𝛼) is also 0. This implies that for
any 𝛼, the rank of 𝑀(𝛼) is at most 𝑟. This completes the proof. �

Claim 1 implies that ℓ = max{|𝐶(𝛼)| | 𝛼 ∈ 𝑆} is equal to the rank of 𝑀 . Our next claim is
following.

Claim 2. For any 𝛼 ∈ 𝑆, and 𝐶 ⊆ C(𝑀(𝛼)), if 𝐶 is linearly independent in 𝑀(𝛼) then
𝐶 is also linearly independent in 𝑀 .

The proof follows from the arguments similar to the ones used in proving reverse direction
of Claim 1. Let 𝑟 ≤ 𝑚 be the rank of 𝑀 and let 𝐶* be a minimum weight column basis of 𝑀 .
Thus, we know that there exists a submatrix 𝑊 of 𝑀 of dimension 𝑟× 𝑟 such that det(𝑊 ) is
a non-zero polynomial. The degree of the polynomial det(𝑊 (𝑋)) ≤ (𝑛− 1)× 𝑟 ≤ (𝑛− 1)𝑚.
Thus, we know that it has at most (𝑛− 1)𝑟 roots. Hence, when we evaluate det(𝑊 (𝑋)) on
set 𝑆 of size more than (𝑛 − 1)𝑟, there exists at least one element in 𝑆, say 𝛽, such that
det(𝑊 (𝛽)) ̸= 0 and the set of columns 𝐶* is linearly independent in 𝑀(𝛽). Using Claim 2
and the fact that 𝐶* is linearly independent in both 𝑀(𝛽) and 𝑀 , we can conclude that
𝐶* is a column basis for 𝑀(𝛽). Since |𝐶 ′| = |𝐶*|, 𝑤(𝐶 ′) ≤ 𝑤(𝐶*), 𝐶 ′ is indeed a minimum
weighted column basis of 𝑀 .

We can obtain any 𝑀(𝛼) with at most 𝒪(𝑛𝑚𝑡) field operations in F. Furthermore, we can
compute minimum weight column basis of 𝑀(𝛼) in 𝒪(𝑡𝑚𝜔−1) field operations [2]. Hence
the total number of field operations over F is bounded by 𝒪(𝑚2𝑛2𝑡+𝑚𝜔𝑛𝑡). � �

Finally, we combine Lemma 3.10, Lemma 3.12 and Lemma 3.11 to obtain the following
theorem.

Theorem 3.14 (Theorem 1.1, restated). Let 𝑀 be a 𝑛×𝑚 matrix over F of rank 𝑛.
Given a number 𝑘 ≤ 𝑛, we can compute a matrix 𝑀𝑘 over the field F(𝑋) such that it is a
representation of the 𝑘-truncation of 𝑀 , in 𝒪(𝑚𝑛𝑘) field operations over F. Furthermore,
given 𝑀𝑘, we can test whether a given set of ℓ columns in 𝑀𝑘 are linearly independent in
𝒪(𝑛2𝑘3) field operations over F.

Proof. Let 𝑝 = char(F). We first consider the case when 𝑝 = 0 or 𝑝 > 𝑛. In this case we
apply Lemma 3.10 to obtain a matrix 𝑀𝑘 over F(𝑋) which is a 𝑘-truncation of 𝑀 . Next, we
consider the case when F is a finite field and the characteristic of F is at most 𝑛, i.e. 𝑝 ≤ 𝑛.
First apply Lemma 3.12 to ensure that the order of the field F is at least 𝑛𝑘 + 1 and to
obtain an element of order at least 𝑛 in the field F. Of course by doing this, we have gone to
an extension of K of F of size at least 𝑛𝑘 + 1. However, for brevity of presentation we will
assume that the input is given over such an extension. We then apply Lemma 3.11 to obtain
a matrix 𝑀𝑘 over F(𝑋) which is a representation of the 𝑘-truncation of the matrix 𝑀 . This
completes the description of 𝑀𝑘.
Let 𝐼 ⊆ {1, . . . ,𝑚} such that |𝐼| = ℓ ≤ 𝑘. Let 𝐷𝑖1 , . . . , 𝐷𝑖ℓ be a set of columns of

the matrix 𝑀𝑘 over F, where 𝐼 = {𝑖1, . . . , 𝑖ℓ}. Furthermore, by 𝑀𝐼 we denote the 𝑘 × ℓ
submatrix of 𝑀𝑘 containing the columns 𝐷𝑖1 , . . . , 𝐷𝑖ℓ . To test whether these columns are
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linearly independent, we can apply Lemma 3.13 on 𝑀𝑇
𝐼 and see the size of column basis of

𝑀𝑇
𝐼 is ℓ or not. This takes time 𝒪(ℓ2𝑛2𝑘 + ℓ𝜔𝑛𝑘) = 𝒪(𝑛2𝑘3) field operations in F. �

Observe that, using Theorem 1.1 we can obtain a deterministic truncation of a matrix
over any field where the field operations can be done efficiently. This includes any finite field
(F𝑝ℓ) and field of rationals Q.

Representing the truncation over a finite field. In Theorem 3.14, the representation 𝑀𝑘 is over
the field F(𝑋). However, in some cases this matrix can also be viewed as a representation over
a finite extension of F of sufficiently large degree, which is useful for algorithmic applications.
That is, if F = F𝑝ℓ is a finite field then 𝑀𝑘 will be a matrix over F𝑝ℓ′ where ℓ′ ≥ 𝑛𝑘ℓ.
Formally, we have the following corollary.

Theorem 3.15. Let 𝑀 be a 𝑛×𝑚 matrix over F of rank 𝑛, 𝑘 ≤ 𝑛 be a positive integer
and 𝑁 be the size of the input matrix. If F = F𝑝 be a prime field or F = F𝑝ℓ where 𝑝 = 𝑁𝒪(1),
then in polynomial time we can find a 𝑘-truncation 𝑀𝑘 of 𝑀 over a finite extension K of F
where K = F𝑝𝑛𝑘ℓ .

Proof. Let 𝑀𝑘 be the matrix returned by Theorem 3.14. Next we show how we can
view the entries in 𝑀𝑘 over a finite extension of F. Consider any extension K of F of degree

𝑟 ≥ 𝑛𝑘. Thus K = F[𝑋]
𝑟(𝑋) , where 𝑟(𝑋) is a irreducible polynomial in F[𝑋] of degree 𝑟. Recall

that each entry of 𝑀𝑘 is a polynomial in F[𝑋] of degree at most 𝑛− 1 and therefore they are
present in K. Further the determinant of any 𝑘 × 𝑘 submatrix of 𝑀𝑘 is identically zero in K
if and only if it is identically zero in F(𝑋). This follows from the fact that the determinant
is a polynomial of degree at most (𝑛− 1)𝑘 and therefore is also present in K. Thus 𝑀𝑘 is a
representation over K.
To specify the field K we need to compute the irreducible polynomial 𝑟(𝑋). If F is a

prime field, i.e. F = F𝑝, then we can compute the polynomial 𝑟(𝑋) using the first part of

Lemma 3.6. And if 𝑝 = 𝑁𝒪(1) we can use the second part of Lemma 3.6 to compute 𝑟(𝑋).

Thus we have a well defined 𝑘-truncation of 𝑀 over the finite field K = F[𝑋]
𝑟(𝑋) . Furthermore,

if degree of 𝑟(𝑋) is 𝑛𝑘 then K is isomorphic to F𝑝𝑛𝑘ℓ . This completes the proof of this
theorem. �

4 DETERMINISTIC COMPUTATION OF REPRESENTATIVE FAMILIES

In this section we give deterministic algorithms to compute representative families of a linear
matroid, given its representation matrix. We start with the definition of a 𝑞-representative
family.

Definition 4.1 (𝑞-Representative Family). Given a matroid 𝑀 = (𝐸, ℐ) and a family 𝒮
of subsets of 𝐸, we say that a subfamily ̂︀𝒮 ⊆ 𝒮 is 𝑞-representative for 𝒮 if the following holds:
for every set 𝑌 ⊆ 𝐸 of size at most 𝑞, if there is a set 𝑋 ∈ 𝒮 disjoint from 𝑌 with 𝑋 ∪𝑌 ∈ ℐ,
then there is a set ̂︀𝑋 ∈ ̂︀𝒮 disjoint from 𝑌 with ̂︀𝑋 ∪ 𝑌 ∈ ℐ. If 𝒮 ⊆ 𝒮 is 𝑞-representative for

𝒮 we write ̂︀𝒮 ⊆𝑞
𝑟𝑒𝑝 𝒮.

In other words if some independent set in 𝒮 can be extended to a larger independent set

by 𝑞 new elements, then there is a set in ̂︀𝒮 that can be extended by the same 𝑞 elements. We
say that a family 𝒮 = {𝑆1, . . . , 𝑆𝑡} of sets is a 𝑝-family if each set in 𝒮 is of size 𝑝. In [11]
the following theorem is proved.

Theorem 4.2 ([11]). Let 𝑀 = (𝐸, ℐ) be a linear matroid and let 𝒮 = {𝑆1, . . . , 𝑆𝑡} be a

𝑝-family of independent sets. Then there exists ̂︀𝒮 ⊆𝑞
𝑟𝑒𝑝 𝒮 of size

(︀
𝑝+𝑞
𝑝

)︀
. Furthermore, given a
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representation 𝐴𝑀 of 𝑀 over a field F, there is a randomized algorithm computing ̂︀𝒮 ⊆𝑞
𝑟𝑒𝑝 𝒮

in 𝒪
(︁(︀

𝑝+𝑞
𝑝

)︀
𝑡𝑝𝜔 + 𝑡

(︀
𝑝+𝑞
𝑞

)︀𝜔−1
)︁

operations over F.

Let 𝑝 + 𝑞 = 𝑘. Fomin et al. [11, Theorem 3.7] first give a deterministic algorithm for
computing 𝑞-representative of a 𝑝-family of independent sets if the rank of the corresponding
matroid is 𝑝 + 𝑞. To prove Theorem 4.2 one first computes the representation matrix of
a 𝑘-truncation of 𝑀 = (𝐸, ℐ). This step returns a representation of a 𝑘-truncation of
𝑀 = (𝐸, ℐ) with a high probability. Given this matrix, one applies [11, Theorem 3.7] and
arrives at Theorem 4.2. In this section we design a deterministic algorithm for computing 𝑞-
representative even if the underlying linear matroid has unbounded rank, using deterministic
truncation of linear matroids.

Observe that the representation given by Theorem 3.14 is over F(𝑋). For the purpose of
computing 𝑞-representative of a 𝑝-family of independent sets we need to find a set of linearly
independent columns over a matrix with entries from F[𝑋]. However, deterministic algorithms
to compute basis of matrices over F[𝑋] is not as fast as compared to the algorithms where
we do not need to do symbolic computation. We start with a lemma that allows us to find a
spanning set of columns of a matrix over F[𝑋] quickly; though the size of the set returned
by the algorithm given by the lemma could be slightly larger than the basis of the given
matrix.

Definition 2. Let 𝑊 = {𝑣1, . . . , 𝑣𝑚} be a set of vectors over F and 𝑤 : 𝑊 → R+. We
say that 𝑆 ⊆ 𝑊 is a spanning set, if every 𝑣 ∈ 𝑊 can be written as linear combination
of vectors in 𝑆 with coefficients from F. We say that 𝑆 is a nice spanning set of 𝑊 , if
𝑆 is a spanning set and for any 𝑧 ∈ 𝑊 if 𝑧 =

∑︀
𝑣∈𝑆 𝜆𝑣𝑣, and 0 ̸= 𝜆𝑣 ∈ F then we have

𝑤(𝑣) ≤ 𝑤(𝑧).

The following lemma enables us to find a small size spanning set of vectors over F(𝑋).

Lemma 4.3. Let F be a field and let 𝑀 ∈ F[𝑋]𝑚×𝑡 be a matrix over F[𝑋]<𝑛 and let
𝑤 : C(𝑀) → R+ be a weight function. Then we can find a nice spanning set 𝑆 of C(𝑀) of
size at most 𝑛𝑚 with at most 𝒪(𝑡(𝑛𝑚)𝜔−1) field operations over F.

Proof. The main idea is to do a “gaussian elimination” in 𝑀 , but only over the subfield F
of F(𝑋). Let 𝐶𝑖 be a column of the matrix 𝑀 . It is a vector of length 𝑚 over F[𝑋]<𝑛 and it’s
entries are polynomials 𝑃𝑗𝑖(𝑋), where 𝑗 ∈ {1, . . . ,𝑚}. Observe that 𝑃𝑗𝑖(𝑋) is a polynomial
of degree 𝑛− 1 with coefficients from F. Let 𝑣𝑗𝑖 denote the vector of length 𝑛 corresponding
to the polynomial 𝑃𝑗𝑖(𝑋). Consider the column vector 𝑣𝑖 formed by concatenating each 𝑣𝑗𝑖
in order from 𝑗 = 1 to 𝑚. That is, 𝑣𝑖 = (𝑣1𝑖, . . . , 𝑣𝑚𝑖)

𝑇 . This vector has length 𝑛𝑚 and has
entries from F. Let 𝑁 be the matrix where columns correspond to column vectors 𝑣𝑖. Note
that 𝑁 is a matrix over F of dimension 𝑛𝑚× 𝑡 and the time taken to compute 𝑁 is 𝒪(𝑡𝑛𝑚).
For each column 𝑣𝑖 of 𝑁 we define it’s weight to be 𝑤(𝐶𝑖). We now compute a minimum
weight set of column vectors 𝑆′, which spans 𝑁 over the field F. Observe that |𝑆′| ≤ 𝑛𝑚
and time taken to compute it is 𝒪(𝑡(𝑛𝑚)𝜔−1) [2]. Let 𝑆 be the set of column vectors in 𝑀
corresponding to the column vectors in 𝑆′. We return 𝑆 as a nice spanning set of column
vectors in 𝑀 .

Now we show the correctness of the above algorithm. We first show that 𝑆 is a spanning
set of 𝑀 . Let 𝑣1, . . . , 𝑣|𝑆| be the set of vectors in 𝑆 and let 𝑣𝑑 be some column vector

in 𝑁 . Then 𝑣𝑑 =
∑︀|𝑆|

𝑖=1 𝑎𝑖𝑣𝑖 where 𝑎𝑖 ∈ F. In particular for any 𝑗 ∈ {1, . . . ,𝑚} we have

𝑣𝑗𝑑 =
∑︀|𝑆|

𝑖=1 𝑎𝑖𝑣𝑗𝑖. Let 𝐶1, . . . , 𝐶|𝑆| be the column vectors corresponding to 𝑣1, . . . , 𝑣|𝑆| and
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let 𝐶𝑑 be the column vector corresponding to 𝑣𝑑. We claim that 𝐶𝑑 =
∑︀|𝑆|

𝑖=1 𝑎𝑖𝐶𝑖. Consider
the 𝑗-the entry of the column vector 𝐶 and of 𝐶1, . . . , 𝐶|𝑆|. Towards our claim we need

to show that 𝑃𝑗𝑑(𝑋) =
∑︀|𝑆|

𝑖=1 𝑎𝑖𝑃𝑗𝑖(𝑋). But since 𝑣𝑑𝑗 and {𝑣𝑖𝑗 | 𝑗 ∈ {1, . . . ,𝑚}} are the
collection of vectors corresponding to 𝑃𝑗𝑑(𝑋) and {𝑃𝑗𝑖(𝑋) | 𝑗 ∈ {1, . . . ,𝑚}}, the claim
follows.
Next we show that 𝑆 is indeed a nice spanning set. Since 𝑆 is a spanning set of 𝑀 we

have that any column 𝐶𝑑 =
∑︀

𝐶𝑖∈𝑆 𝜆𝑖𝐶𝑖, 𝜆𝑖 ∈ F. Let 𝐶𝑗 ∈ 𝑆 be such that 𝜆𝑗 ̸= 0 and

𝑤(𝐶𝑗) > 𝑤(𝐶𝑑). Let 𝑣𝑑 and 𝑣𝑗 be the vectors corresponding to 𝐶𝑑 and 𝐶𝑗 respectively.

We have that 𝑣𝑑 =
∑︀

𝑣𝑖∈𝑆 𝜆𝑖𝑣𝑖, which implies 𝑣𝑗 = 𝜆−1
𝑗 𝑣𝑑 −

∑︀
𝑣𝑖∈𝑆,𝑣𝑖 ̸=𝑣𝑗

𝜆−1
𝑗 𝜆𝑖𝑣𝑖. But this

implies that 𝑆* = (𝑆 ∖ {𝑣𝑗}) ∪ {𝑣𝑑} is a spanning set of 𝑁 , and 𝑤(𝑆*) < 𝑤(𝑆), which is a
contradiction. Thus we have that for every column vector 𝐶 ∈ 𝑀 if 𝐶 =

∑︀
𝐶𝑖∈𝑆 𝜆𝑖𝐶𝑖 and

0 ̸= 𝜆𝑖 ∈ F, then 𝑤(𝐶𝑖) ≤ 𝑤(𝐶). This completes the proof. �

The main theorem of this section is as follows.

Theorem 4.4 (Theorem 1.3, restated). Let 𝑀 = (𝐸, ℐ) be a linear matroid of rank
𝑛 and let 𝒮 = {𝑆1, . . . , 𝑆𝑡} be a 𝑝-family of independent sets. Let 𝐴 be a 𝑛 × |𝐸| matrix
representing 𝑀 over a field F, where F = F𝑝ℓ or F is Q. Then there are deterministic

algorithms computing ̂︀𝒮 ⊆𝑞
𝑟𝑒𝑝 𝒮 as follows.

(i) A family ̂︀𝒮 of size
(︀
𝑝+𝑞
𝑝

)︀
in 𝒪

(︁(︀
𝑝+𝑞
𝑝

)︀2
𝑡𝑝3𝑛2 + 𝑡

(︀
𝑝+𝑞
𝑞

)︀𝜔
𝑛𝑝
)︁
+ (𝑛+ |𝐸|)𝒪(1), operations

over F.
(ii) A family ̂︀𝒮 of size 𝑛𝑝

(︀
𝑝+𝑞
𝑝

)︀
in 𝒪

(︁(︀
𝑝+𝑞
𝑝

)︀
𝑡𝑝3𝑛2 + 𝑡

(︀
𝑝+𝑞
𝑞

)︀𝜔−1
(𝑝𝑛)𝜔−1

)︁
+ (𝑛 + |𝐸|)𝒪(1)

operations over F.

Proof. Let 𝑝+ 𝑞 = 𝑘 and |𝐸| = 𝑚. We start by finding 𝑘-truncation of 𝐴, say 𝐴𝑘, over
F[𝑋] ⊆ F(𝑋) using Theorem 3.14. We can find 𝐴𝑘 with at most (𝑛 +𝑚)𝒪(1) operations
over F. Given the matrix 𝐴𝑘 we follow the proof of [11, Theorem 3.7]. For a set 𝑆 ∈ 𝒮 and

𝐼 ∈
(︀
[𝑘]
𝑝

)︀
, we define 𝑠[𝐼] = det(𝐴𝑘[𝐼, 𝑆]). We also define the following.

�⃗�𝑖 = (𝑠𝑖[𝐼])𝐼∈([𝑘]
𝑝 )

Thus the entries of the vector �⃗�𝑖 are the values of det(𝐴𝑘[𝐼, 𝑆𝑖]), where 𝐼 runs through all

the 𝑝 sized subsets of rows of 𝐴𝑘. Let 𝐻𝒮 = (�⃗�1, . . . , �⃗�𝑡) be the
(︀
𝑘
𝑝

)︀
× 𝑡 matrix obtained by

taking �⃗�𝑖 as columns. Observe that each entry in 𝐴𝑘 is in F[𝑋]<𝑛. Thus, the determinant
polynomial corresponding to any 𝑝× 𝑝 submatrix of 𝐴𝑘 has degree at most 𝑝𝑛. As we can
find determinant of a 𝑝× 𝑝 matrix over F[𝑋]<𝑛 in time 𝒪(𝑝3𝑛2) [33]. Thus, we can obtain
𝐻𝒮 in time 𝒪(𝑡

(︀
𝑝+𝑞
𝑝

)︀
𝑝3𝑛2).

Let 𝑊 be a spanning set of columns for C(𝐻𝒮). We define ̂︁𝑊 = {𝑆𝛼 | �⃗�𝛼 ∈ 𝑊} as the
corresponding subfamily of 𝒮 . The proof of [11, Theorem 3.7] implies that if 𝑊 is a spanning

set of columns for C(𝐻𝒮) then the corresponding ̂︁𝑊 is the required 𝑞-representative family

for 𝒮. That is, ̂︁𝑊 ⊆𝑞
𝑟𝑒𝑝 𝒮. We get the desired running time by either using Lemma 3.13 to

compute a basis of size
(︀
𝑝+𝑞
𝑝

)︀
for 𝐻𝒮 or by using Lemma 4.3 to compute a spanning set of

size 𝑛𝑝
(︀
𝑝+𝑞
𝑝

)︀
of C(𝐻𝒮). This completes the proof. �

In fact one can prove Theorem 4.4 for a “weighted notion of representative family”. This
requires the notion of a nice spanning set. It is presented in the following section.
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Weighted representative families of linear matroids. In this section we give deterministic
algorithms for the weighted version of representative families of a linear matroid. It is
useful in solving problems where we are looking for objects of maximum or minimum
weight. We refer to [11, Theorem 3.7] for further discussions. Given a non-negative weight
function 𝑤 : 𝐸 → R+ and 𝐴 ⊆ 𝐸, we define 𝑤(𝐴) =

∑︀
𝑎∈𝐴 𝑤(𝑎), a weighted version of

𝑞-representative families is defined as follows.

Definition 3 (Min/Max 𝑞-Representative Family). Given a matroid 𝑀 = (𝐸, ℐ),
a family 𝒮 of subsets of 𝐸 and a non-negative weight function 𝑤 : 𝒮 → R+, we say that

a subfamily ̂︀𝒮 ⊆ 𝒮 is min 𝑞-representative (max 𝑞-representative) for 𝒮 if the following
holds: for every set 𝑌 ⊆ 𝐸 of size at most 𝑞, if there is a set 𝑋 ∈ 𝒮 disjoint from 𝑌 with

𝑋 ∪ 𝑌 ∈ ℐ, then there is a set ̂︀𝑋 ∈ ̂︀𝒮 disjoint from 𝑌 with

(i) ̂︀𝑋 ∪ 𝑌 ∈ ℐ; and
(ii) 𝑤( ̂︀𝑋) ≤ 𝑤(𝑋) (𝑤( ̂︀𝑋) ≥ 𝑤(𝑋)).

We use ̂︀𝒮 ⊆𝑞
𝑚𝑖𝑛𝑟𝑒𝑝 𝒮 ( ̂︀𝒮 ⊆𝑞

𝑚𝑎𝑥𝑟𝑒𝑝 𝒮) to denote a min 𝑞-representative (max 𝑞-representative)
family for 𝒮.

For our proof we also need the following well-known generalized Laplace expansion of
determinants. For a matrix 𝐴 = (𝑎𝑖𝑗), the row set and the column set are denoted by R(𝐴)
and C(𝐴) respectively. For 𝐼 ⊆ R(𝐴) and 𝐽 ⊆ C(𝐴), 𝐴[𝐼, 𝐽 ] =

(︀
𝑎𝑖𝑗 | 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

)︀
means

the submatrix (or minor) of 𝐴 with the row set 𝐼 and the column set 𝐽 . For 𝐼 ⊆ [𝑛] let
𝐼 = [𝑛] ∖ 𝐼 and

∑︀
𝐼 =

∑︀
𝑖∈𝐼 𝑖.

Proposition 4.5 (Generalized Laplace expansion). For an 𝑛× 𝑛 matrix 𝐴 and
𝐽 ⊆ C(𝐴) = [𝑛], it holds that

det(𝐴) =
∑︁

𝐼⊆[𝑛],|𝐼|=|𝐽|

(−1)
∑︀

𝐼+
∑︀

𝐽 det(𝐴[𝐼, 𝐽 ]]) det(𝐴[𝐼, 𝐽 ])

We refer to [34, Proposition 2.1.3] for a proof of the above identity. We always assume
that the number of rows in the representation matrix 𝐴𝑀 of 𝑀 over a field F is equal to
rank(𝑀)=rank(𝐴𝑀 ). Otherwise, using Gaussian elimination we can obtain a matrix of the
desired kind in polynomial time. See [31, Proposition 3.1] for details. The main theorem in
this section is as follows.

Theorem 4.6. Let 𝑀 = (𝐸, ℐ) be a linear matroid of rank 𝑛 and let 𝒮 = {𝑆1, . . . , 𝑆𝑡} be
a 𝑝-family of independent sets. Let 𝑤 : 𝒮 → R+ is a non-negative weight function on 𝒮. Let
𝐴 be a 𝑛× |𝐸| matrix representing 𝑀 over a field F, where F = F𝑝ℓ or F is Q. Then there

are deterministic algorithms computing ̂︀𝒮 ⊆𝑞
𝑚𝑖𝑛𝑟𝑒𝑝 𝒮 as follows.

(i) A family ̂︀𝒮 of size
(︀
𝑝+𝑞
𝑝

)︀
in 𝒪

(︁(︀
𝑝+𝑞
𝑝

)︀2
𝑡𝑝3𝑛2 + 𝑡

(︀
𝑝+𝑞
𝑞

)︀𝜔
𝑛𝑝
)︁
+ (𝑛+ |𝐸|)𝒪(1), operations

over F.
(ii) A family ̂︀𝒮 of size 𝑛𝑝

(︀
𝑝+𝑞
𝑝

)︀
in 𝒪

(︁(︀
𝑝+𝑞
𝑝

)︀
𝑡𝑝3𝑛2 + 𝑡

(︀
𝑝+𝑞
𝑞

)︀𝜔−1
(𝑝𝑛)𝜔−1

)︁
+ (𝑛 + |𝐸|)𝒪(1)

operations over F.

Proof. Let 𝑝+ 𝑞 = 𝑘 and |𝐸| = 𝑚. We start by finding 𝑘-truncation of 𝐴, say 𝐴𝑘, over
F[𝑋] ⊆ F(𝑋) using Theorem 3.14. We can find 𝐴𝑘 with at most (𝑛 +𝑚)𝒪(1) operations
over F. Given the matrix 𝐴𝑘 we follow the proof of [11, Theorem 3.7]. For a set 𝑆 ∈ 𝒮 and

𝐼 ∈
(︀
[𝑘]
𝑝

)︀
, we define 𝑠[𝐼] = det(𝐴𝑘[𝐼, 𝑆]). We also define the following.

�⃗�𝑖 = (𝑠𝑖[𝐼])𝐼∈([𝑘]
𝑝 )
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Thus the entries of the vector �⃗�𝑖 are the values of det(𝐴𝑘[𝐼, 𝑆𝑖]), where 𝐼 runs through all

the 𝑝 sized subsets of rows of 𝐴𝑘. Let 𝐻𝒮 = (�⃗�1, . . . , �⃗�𝑡) be the
(︀
𝑘
𝑝

)︀
× 𝑡 matrix obtained by

taking �⃗�𝑖 as columns. Observe that each entry in 𝐴𝑘 is in F[𝑋]<𝑛. Thus, the determinant
polynomial corresponding to any 𝑝× 𝑝 submatrix of 𝐴𝑘 has degree at most 𝑝𝑛. It is well
known that we can find determinant of a 𝑝× 𝑝 matrix over F[𝑋]<𝑛 in time 𝒪(𝑝3𝑛2) [33].
Thus, we can obtain 𝐻𝒮 in time 𝒪(𝑡

(︀
𝑝+𝑞
𝑝

)︀
𝑝3𝑛2).

Now we define a weight function 𝑤′ : C(𝐻𝒮) → R+ on the set of columns of 𝐻𝒮 . For the
column �⃗�𝑖 corresponding to 𝑆𝑖 ∈ 𝒮, we define 𝑤′(�⃗�𝑖) = 𝑤(𝑆𝑖). Let 𝑊 be a spanning set of

columns for C(𝐻𝒮). We define ̂︀𝒮 = {𝑆𝛼 | �⃗�𝛼 ∈ 𝑊} as the corresponding subfamily of 𝒮. Now
we claim that if 𝑊 is a nice spanning set of columns for C(𝐻𝒮) or minimum weight column

basis of C(𝐻𝒮), then the corresponding ̂︀𝒮 is the required min 𝑞-representative family for

𝒮. That is, ̂︀𝒮 ⊆𝑞
𝑚𝑖𝑛𝑟𝑒𝑝 𝒮. Observe that, if 𝑊 is a minimum weight column basis of C(𝐻𝒮),

then the claim follows from the proof of [11, Theorem 3.7].

Now we show that if 𝑊 is a nice spanning set of columns for C(𝐻𝒮), then ̂︀𝒮 ⊆𝑞
𝑚𝑖𝑛𝑟𝑒𝑝 𝒮.

Let 𝑆𝛽 ∈ 𝒮 such that 𝑆𝛽 /∈ ̂︀𝒮. We show that if there is a set 𝑌 ⊆ 𝐸 of size at most

𝑞 such that 𝑆𝛽 ∩ 𝑌 = ∅ and 𝑆𝛽 ∪ 𝑌 ∈ ℐ, then there exists a set ̂︀𝑆𝛽 ∈ ̂︀𝒮 disjoint from

𝑌 with ̂︀𝑆𝛽 ∪ 𝑌 ∈ ℐ and 𝑤(̂︀𝑆𝛽) ≤ 𝑤(𝑆𝛽). Let us first consider the case |𝑌 | = 𝑞. Since
𝑆𝛽 ∩ 𝑌 = ∅ we have that |𝑆𝛽 ∪ 𝑌 | = 𝑝 + 𝑞 = 𝑘. Furthermore, since 𝑆𝛽 ∪ 𝑌 ∈ ℐ, we have
that the columns corresponding to 𝑆𝛽 ∪ 𝑌 in 𝑀 are linearly independent over F(𝑋); that is,
det(𝐴𝑘[R(𝐴𝑘), 𝑆𝛽 ∪ 𝑌 ]) ̸≡ 0. Recall that, �⃗�𝛽 = (𝑠𝛽 [𝐼])𝐼∈([𝑘]

𝑝 )
, where 𝑠𝛽 [𝐼] = det(𝐴𝑘[𝐼, 𝑆𝛽 ]).

Similarly we define 𝑦[𝐿] = det(𝐴𝑘[𝐿, 𝑌 ]) and �⃗� = (𝑦[𝐿])
𝐿∈([𝑘]

𝑞 )
.

In the following, let
∑︀

𝐽 denote
∑︀

𝑗∈𝑆𝛽
𝑗. Then we define.

𝛾(�⃗�𝛽 , �⃗�) =
∑︁

𝐼∈([𝑘]
𝑝 )

(−1)
∑︀

𝐼+
∑︀

𝐽𝑠𝛽 [𝐼] · 𝑦[𝐼]

Since
(︀
𝑘
𝑝

)︀
=
(︀

𝑘
𝑘−𝑝

)︀
=
(︀
𝑘
𝑞

)︀
the above formula is well defined. Observe that by Proposition 4.5,

we have that 𝛾(�⃗�𝛽 , �⃗�) = det(𝐴𝑘[R(𝐴𝑘), 𝑆𝛽 ∪ 𝑌 ]) ̸≡ 0. We also know that �⃗�𝛽 can be written

as a linear combination of vectors in 𝑊 = {�⃗�1, �⃗�2, . . . , �⃗�ℓ}. That is, �⃗�𝛽 =
∑︀ℓ

𝑖=1 𝜆𝑖�⃗�𝑖, 𝜆𝑖 ∈ F
and for some 𝑖, 𝜆𝑖 ̸= 0. Thus,

𝛾(�⃗�𝛽 , �⃗�) =
∑︁
𝐼

(−1)
∑︀

𝐼+
∑︀

𝐽𝑠𝛽 [𝐼] · 𝑦[𝐼]

=
∑︁
𝐼

(−1)
∑︀

𝐼+
∑︀

𝐽

(︃
ℓ∑︁

𝑖=1

𝜆𝑖𝑠𝑖[𝐼]

)︃
𝑦[𝐼]

=

ℓ∑︁
𝑖=1

𝜆𝑖

(︃∑︁
𝐼

(−1)
∑︀

𝐼+
∑︀

𝐽𝑠𝑖[𝐼]𝑦[𝐼]

)︃

=

ℓ∑︁
𝑖=1

𝜆𝑖 det(𝐴𝑘[R(𝐴𝑘), 𝑆𝑖 ∪ 𝑌 ]) (by Proposition 4.5)

Define the following.

sup(𝑆𝛽) =
{︁
𝑆𝑖

⃒⃒⃒
𝑆𝑖 ∈ ̂︀𝒮, 𝜆𝑖 det(𝐴𝑘[R(𝐴𝑘), 𝑆𝑖 ∪ 𝑌 ])) ̸≡ 0

}︁
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Since 𝛾(�⃗�𝛽 , �⃗�) ̸= 0, we have that (
∑︀ℓ

𝑖=1 𝜆𝑖 det(𝐴𝑘[R(𝐴𝑘), 𝑆𝑖∪𝑌 ])) ̸≡ 0 and thus sup(𝑆𝛽) ̸= ∅.
Observe that for all 𝑆 ∈ sup(𝑆𝛽) we have that det(𝐴𝑘[R(𝐴𝑘), 𝑆∪𝑌 ]) ̸≡ 0 and thus 𝑆∪𝑌 ∈ ℐ.
Since 𝑊 is a nice spanning set, If �⃗�𝛽 =

∑︀ℓ
𝑖=1 𝜆𝑖�⃗�𝑖 and 0 ̸= 𝜆𝑖 ∈ F, then 𝑤(�⃗�𝛽) ≥ 𝑤(�⃗�𝑖). Thus

𝑤(̂︀𝑆) ≤ 𝑤(𝑆) for all 𝑆 ∈ sup(𝑆𝛽). Thus ̂︀𝑆 is a min 𝑞-representative of 𝑆.
Suppose that |𝑌 | = 𝑞′ < 𝑞. Since 𝑀 is a matroid of rank 𝑘 = 𝑝+ 𝑞, there exists a superset

𝑌 ′ ∈ ℐ of 𝑌 of size 𝑞 such that 𝑆𝛽 ∩𝑌 ′ = ∅ and 𝑆𝛽 ∪𝑌 ′ ∈ ℐ. This implies that there exists a

set ̂︀𝑆 ∈ ̂︀𝒮 such that det(𝐴𝑘[R(𝐴𝑘), ̂︀𝑆 ∪ 𝑌 ′]) ̸≡ 0. Thus the columns corresponding to ̂︀𝑆 ∪ 𝑌
are linearly independent.

Thus, if 𝑊 is a minimum weight column basis of C(𝐻𝒮) or a nice spanning set of columns

for C(𝐻𝒮) then the corresponding ̂︀𝒮 is a min 𝑞-representative family for 𝒮. By applying
Lemma 3.13 to compute a basis of size

(︀
𝑝+𝑞
𝑝

)︀
for 𝐻𝒮 , we get min 𝑞-representative family

for 𝒮 of size
(︀
𝑝+𝑞
𝑝

)︀
in 𝒪

(︀(︀
𝑝+𝑞
𝑝

)︀2
𝑡𝑝3𝑛2 + 𝑡

(︀
𝑝+𝑞
𝑞

)︀𝜔
𝑛𝑝
)︀
+ (𝑛 + |𝐸|)𝒪(1) operations over F. By

applying Lemma 4.3 to compute a nice spanning set of size 𝑛𝑝
(︀
𝑝+𝑞
𝑝

)︀
of C(𝐻𝒮), we get min

𝑞-representative family for 𝒮 of size 𝑛𝑝
(︀
𝑝+𝑞
𝑝

)︀
in 𝒪

(︁(︀
𝑝+𝑞
𝑝

)︀
𝑡𝑝3𝑛2 + 𝑡

(︀
𝑝+𝑞
𝑞

)︀𝜔−1
(𝑝𝑛)𝜔−1

)︁
+ (𝑛+

|𝐸|)𝒪(1) operations over F. This completes the proof. �

4.1 Applications

Marx [31] gave algorithms for several problems based on matroid optimization. The main
theorem in [31] is Theorem 1.1 on which most applications of [31] are based. This theorem
gives a randomized FPT algorithm for the ℓ-Matroid Parity problem.

ℓ-Matroid Parity Parameter: 𝑘, ℓ
Input: Let 𝑀 = (𝐸, ℐ) be a linear matroid where the ground set is partitioned into
blocks of size ℓ and let 𝐴𝑀 be a linear representation 𝑀 .
Question: is there an independent set that is the union of 𝑘 blocks ?

The proof of the theorem uses an algorithm to find representative sets as a black box.
Applying our algorithm (Theorem 4.4 of this paper) instead gives a deterministic version of
Theorem 1.1 of [31].

Proposition 4.7. Let 𝑀 = (𝐸, ℐ) be a linear matroid where the ground set is partitioned
into blocks of size ℓ. Given a linear representation 𝐴𝑀 of 𝑀 , it can be determined in
𝒪(2𝜔𝑘ℓ||𝐴𝑀 ||𝒪(1)) time whether there is an independent set that is the union of 𝑘 blocks.
(||𝐴𝑀 || denotes the length of 𝐴𝑀 in the input.)

We mention an application from [31] which we believe could be useful to obtain single
exponential time parameterized and exact algorithms.

ℓ-Matroid Intersection Parameter: 𝑘
Input: Let 𝑀1 = (𝐸, ℐ1), . . . ,𝑀1 = (𝐸, ℐℓ) be matroids on the same ground set 𝐸
given by their representations 𝐴𝑀1

, . . . , 𝐴𝑀ℓ
over the same field F and a positive integer

𝑘.
Question: Does there exist 𝑘 element set that is independent in each 𝑀𝑖 (𝑋 ∈
ℐ1 ∩ . . . ∩ ℐℓ)?

By using Proposition 4.7 instead, we get the following result.

Proposition 4.8. ℓ-Matroid Intersection can be solved in 𝒪(2𝜔𝑘ℓ||𝐴𝑀 ||𝒪(1)) time.
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5 CONCLUSION

In this paper we give the first deterministic algorithm to compute a 𝑘-truncation of linear
matroid. Our algorithms were based on the properties of the Wronskian determinant and
the 𝛼-folded Wronskian determinant. We also show how these can be used to compute
representative families over any linear matroid deterministically. We conclude with a few
related open problems.

∙ Our algorithm produces a representation of the truncation over the ring F[𝑋] when the
input field is F. However when F is large enough, then one can obtain a randomized
representation of the truncation over F itself. It is an interesting problem to compute
the representation over F deterministically. One should note that, even verifying if a
given matrix is a truncation of another matrix seems to be a difficult problem.

∙ Finding a deterministic representation of Transversal matroids and Gammoids, remains
interesting open problem in Matroid Theory. A solution to this problem will lead
to a deterministic kernelization algorithm for several important graph problems in
Parameterized Complexity [26, 27].
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