
Beyond Bidimensionality: Parameterized Subexponential

Algorithms on Directed Graphs∗

Frederic Dorn† Fedor V. Fomin† Daniel Lokshtanov‡ Venkatesh Raman§

Saket Saurabh§

Abstract

In this paper we make the first step beyond bidimensionality by obtaining subexponen-
tial time algorithms for problems on directed graphs. We develop two different methods
to achieve subexponential time parameterized algorithms for problems on sparse directed
graphs. We exemplify our approaches with two well studied problems. For the first prob-
lem, k-Leaf Out-Branching, which is to find an oriented spanning tree with at least k
leaves, we obtain an algorithm solving the problem in time 2O(

√
k log k)n+ nO(1) on directed

graphs whose underlying undirected graph excludes some fixed graph H as a minor. For
the special case when the input directed graph is planar, the running time can be improved
to 2O(

√
k)n + nO(1). The second example is a generalization of the Directed Hamilto-

nian Path problem, namely k-Internal Out-Branching, which is to find an oriented
spanning tree with at least k internal vertices. We obtain an algorithm solving the problem
in time 2O(

√
k log k) + nO(1) on directed graphs whose underlying undirected graph excludes

some fixed apex graph H as a minor. Finally, we observe that on these classes of graphs,
the k-Directed Path problem is solvable in time O((1 + ε)knf(ε)), for any ε > 0, where f
is some function of ε.

Our methods are based on non-trivial combinations of obstruction theorems for undi-
rected graphs, kernelization, problem specific combinatorial structures and a layering tech-
nique similar to the one employed by Baker to obtain PTAS for planar graphs.

Keywords: Parameterized algorithms, subexponential running time, directed graph, graph
algorithms

1 Introduction

Parameterized complexity theory is a framework for a refined analysis of hard (NP-hard) prob-
lems. Here, every input instance I of a problem Π is accompanied with an integer parameter
k and Π is said to be fixed parameter tractable (FPT) if there is an algorithm running in time
f(k) ·nO(1), where n = |I| and f is a computable function. A central problem in parameterized
algorithms is to obtain algorithms with running time f(k) ·nO(1) such that f is as slow growing
∗A preliminary version of this paper appeared in the proceedings of STACS 2010. Fedor V. Fomin is the

corresponding author.
†Department of Informatics, University of Bergen, Norway.

{dorn|fedor.fomin}@ii.uib.no.
‡Department of CS and Engineering, University of California San Diego, USA. dlokshtanov@cs.ucsd.edu
§The Institute of Mathematical Sciences, Chennai, India.

{vraman|saket}@imsc.res.in

1

function as possible. This has led to the development of various graph algorithms with run-
ning time 2O(k)nO(1)— notable ones include k-Feedback Vertex Set [7], k-Leaf Spanning

Tree [29], k-Odd Cycle Transversal [32], k-Path [4], and k-Vertex Cover [8] in undi-
rected graphs. A natural question was whether we can get subexponential time algorithms for
these problems, that is, can we have algorithms with running time 2o(k)nO(1). It is now possible
to show that these problems do not admit algorithms with running time 2o(k)nO(1) unless the
Exponential Time Hypothesis (ETH) [23, 28] fails. Finding algorithms with subexponential
running time on general undirected graphs is a trait uncommon to parameterized algorithms.

However, the situation changes completely when we consider problems on topological graph
classes like planar graphs or graphs of bounded genus. In 2000, Alber et al. [1] obtained the
first parameterized subexponential algorithm on undirected planar graphs by showing that k-
Dominating Set is solvable in time 2O(

√
k)nO(1). This result triggered an extensive study

of parameterized problems on planar and more general classes of sparse graphs like graphs
of bounded genus, apex minor-free graphs and H-minor free graphs. All this work led to
subexponential time algorithms for several fundamental problems like k-Feedback Vertex

Set, k-Edge Dominating Set, k-Leaf Spanning Tree, k-Path, k-r-Dominating Set, k-
Vertex Cover to name a few on planar graphs [1, 13, 26], and more generally, on H-minor-free
graphs [14, 17, 16]. These algorithms are obtained by showing a combinatorial relation between
the parameter and the structure of the input graph and proofs require strong graph theoretic
arguments. This graph-theoretic and combinatorial component in the design of subexponential
time parameterized algorithms makes it of an independent interest.

Demaine et al. [14] abstracted out the “common theme” among the parameterized subexpo-
nential time algorithms on sparse graphs and created the meta-algorithmic theory of Bidimen-
sionality. The bidimensionality theory unifies and improves almost all known previous subex-
ponential algorithms on spare graphs. The theory is based on algorithmic and combinatorial
extensions to various parts of Graph Minors Theory of Robertson and Seymour [33] and provides
a simple criteria for checking whether a parameterized problem is solvable in subexponential
time on sparse graphs. The theory applies to graph problems that are bidimensional in the sense
that the value of the solution for the problem in question on k × k grid or “grid like graph” is
at least Ω(k2) and the value of solution decreases while contracting or sometime deleting the
edges. Problems that are bidimensional include k-Feedback Vertex Set, k-Edge Dom-

inating Set, k-Leaf Spanning Tree, k-Path, k-r-Dominating Set, k-Vertex Cover

and many others. In most cases we obtain subexponential time algorithms for a problem using
bidimensionality theory in following steps. Given an instance (G, k) to a bidimensional problem
Π, in polynomial time we either decide that it is an yes instance to Π or the treewidth of G
is O(

√
k). In the second case, using known constant factor approximation algorithm for the

treewidth, we find a tree decomposition of width O(
√
k) for G and then solve the problem by

doing dynamic programming over the obtained tree decomposition. This approach combined
with Catalan structure based dynamic programming over graphs of bounded treewidth has led
to 2O(

√
k)nO(1) time algorithm for k-Feedback Vertex Set, k-Edge Dominating Set, k-

Leaf Spanning Tree, k-Path, k-r-Dominating Set, k-Vertex Cover and many others on
planar graphs [13, 14, 21] and in some cases like k-Dominating Set and k-Path on H-minor
free graphs [14, 19]. We refer to surveys by Demaine and Hajiaghayi [17] and Dorn et al. [20]
for further details on bidimensionality and subexponential parameterized algorithms.

While bidimensionality theory is a powerful algorithmic framework on undirected graphs,

2

it remains unclear how to apply it to problems on directed graphs (or digraphs). The main
reason is that Graph Minor Theory for digraphs is still in a nascent stage and there are no
suitable obstruction theorems so far. For an example, even the first step of the framework
does not work easily on digraphs, as there is no unique notion of directed k × k grid. Given a
k × k undirected grid we can make 2O(k2) distinct directed grids by choosing orientations for
the edges. Hence, unless we can guarantee a lower bound of Ω(k2) on the size of solution of a
problem for any directed k × k grid, the bidimensionality theory does not look applicable for
problems on digraphs. Even the analogue of treewidth for digraphs is not unique and several
alternative definitions have been proposed. Only recently the first non-trivial subexponential
parameterized algorithms on digraphs was obtained. Alon et al. [3] introduced the method of
chromatic coding, a variant of color coding [4], and combined it with divide and conquer to
obtain 2O(

√
k log k)nO(1) for k-Feedback Arc Set in tournaments.

Our contribution. In this paper we make the first step beyond bidimensionality by obtaining
subexponential time algorithms for problems on sparse digraphs. We develop two different
methods to achieve subexponential time parameterized algorithms for digraph problems when
the input graph can be embedded on some surface or the underlying undirected graph excludes
some fixed graph H as a minor.
Quasi-bidimensionality. Our first technique can be thought of as “bidimensionality in dis-
guise”. We observe that given a digraph D, whose underlying undirected graph UG(D) excludes
some fixed graph H as a minor, if we can remove o(k2) vertices from the given digraph to obtain
a digraph whose underlying undirected graph has a constant treewidth, then the treewidth of
UG(D) is o(k). So given an instance (D, k) to a problem Π, in polynomial time we either decide
that it is an yes instance to Π or the treewidth of UG(D) is o(k). In the second case, as in
the framework based on bidimensionality, we solve the problem by doing dynamic programming
over the tree decomposition of UG(D). The dynamic programming part of the framework is
problem-specific and runs in time 2o(k) + nO(1). We exemplify this technique on a well studied
problem of k-Leaf Out-Branching.

We say that a subdigraph T on vertex set V (T) of a digraph D on vertex set V (D) is an
out-tree if T is an oriented tree with only one vertex r of in-degree zero (called the root). The
vertices of T of out-degree zero are called leaves and every other vertex is called an internal
vertex. If T is a spanning out-tree, that is, V (T) = V (D), then T is called an out-branching of
D. Now we are in position to define the problem formally.

k-Leaf Out-Branching (k-LOB): Given a digraph D with the vertex set V (D)
and the arc set A(D) and a positive integer k, check whether there exists an out-
branching with at least k leaves.

The study of k-Leaf Out-Branching has been at forefront of research in parameterized
algorithms in the last few years. Alon et al. [2] showed that the problem is fixed parameter
tractable by giving an algorithm that decides in time O(f(k)n) whether a strongly connected
digraph has an out-branching with at least k leaves. Bonsma and Dorn [6] extended this result
to all digraphs, and improved the running time of the algorithm. Kneis et al. [29] provided a
parameterized algorithm solving the problem in time 4knO(1). This result was further improved
to 3.72knO(1) by Daligaut et al. [11]. Fernau et al. [22] showed that for the rooted version of
the problem, where apart from the input instance we are also given a root r and one asks for
a k-leaf out-branching rooted at r, admits a O(k3) kernel. Furthermore they also show that

3

k-LOB does not admit polynomial kernel unless polynomial hierarchy collapses to third level.
Finally, Daligault and Thomassé [12] obtained a O(k2) kernel for the rooted version of the
k-LOB problem and gave a constant factor approximation algorithm for k-LOB.

Using our new technique in combination with kernelization result of [22], we get an algorithm
for k-LOB that runs in time 2O(

√
k log k)n+nO(1) for digraphs whose underlying undirected graph

is H-minor-free. For planar digraphs our algorithm runs in 2O(
√
k)n+ nO(1) time.

Kernelization and Divide & Conquer. Our second technique is a combination of divide and
conquer, kernelization and dynamic programming over graphs of bounded treewidth. Here, using
a combination of kernelization and a Baker style layering technique for obtaining polynomial
time approximation schemes [5], we reduce the instance of a given problem to 2o(k)nO(1) many
new instances of the same problem. These new instances have the following properties: (a) the
treewidth of the underlying undirected graph of these instances is bounded by o(k); and (b)
the original input is an yes instance if and only if at least one of the newly generated instance
is. We exhibit this technique on the k-Internal Out-Branching problem, a parameterized
version of a generalization of Directed Hamiltonian Path.

k-Internal Out-Branching (k-IOB): Given a digraph D with the vertex set
V (D) and the arc set A(D) and a positive integer k, check whether there exists an
out-branching with at least k internal vertices.

Prieto and Sloper [31] studied the undirected version of this problem and gave an algorithm
with running time 24k log knO(1) and obtained a kernel of size O(k2). Recently, Fomin et al. [24]
obtained a vertex kernel of size 3k and gave an algorithm for the undirected version of k-IOB

running in time 8knO(1). For the (directed) k-IOB, Gutin et al. [27] obtained an algorithm
of running time 2O(k log k)nO(1) and gave a kernel of size of O(k2). Cohen et al. [9] improved
the algorithm for k-IOB and gave an algorithm with running time 49.4knO(1). Here, we obtain
a subexponential time algorithm for k-IOB with running time 2O(

√
k log k) + nO(1) on directed

planar graphs and digraphs whose underlying undirected graphs are apex minor-free.
Finally, we also observe that for any ε > 0, there is an algorithm finding in time O((1 +

ε)knf(ε)) a directed path of length at least k (the k-Directed Path problem) in a digraph
whose underlying undirected graph excludes a fixed apex graph as a minor. The existence of
subexponential parameterized algorithm for this problem remains open.

2 Preliminaries

LetD be a digraph. By V (D) andA(D) we represent the vertex set and arc set ofD, respectively.
Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the digraph induced by V ′. The
underlying graph UG(D) of D is obtained from D by omitting all orientations of arcs and by
deleting one edge from each resulting pair of parallel edges. A vertex u of D is an in-neighbor
(out-neighbor) of a vertex v if uv ∈ A(D) (vu ∈ A(D), respectively). The in-degree d−(v)
(out-degree d+(v)) of a vertex v is the number of its in-neighbors (out-neighbors). We say that
a subdigraph T of a digraph D is an out-tree if T is an oriented tree with only one vertex r of
in-degree zero (called the root). The vertices of T of out-degree zero are called leaves and every
other vertex is called an internal vertex. If T is a spanning out-tree, that is, V (T) = V (D),
then T is called an out-branching of D. An out-branching (respectively. out-tree) rooted at
r is called r-out-branching (respectively. r-out-tree). We define the operation of a contraction

4

of a directed arc as follows. An arc uv is contracted as follows: add a new vertex u′, and for
each arc wv or wu add the arc wu′ and for an arc vw or uw add the arc u′w, remove all arcs
incident to u and v and the vertices u and v. We call a loopless digraph D rooted, if there exists
a pre-specified vertex r of in-degree 0 as a root r and d+(r) ≥ 2. The rooted digraph D is called
connected if every vertex in V (D) is reachable from r by a directed path.

Let G be an undirected graph with the vertex set V (G) and the edge set E(G). For a
subset V ′ ⊆ V (G), by G[V ′] we mean the subgraph of G induced by V ′. By N(u) we denote
(open) neighborhood of u that is the set of all vertices adjacent to u and by N [u] = N(u)∪{u}.
Similarly, for a subset D ⊆ V , we define N [D] = ∪v∈DN [v]. The diameter of a graph G, denoted
by diam(G), is defined to be the maximum length of a shortest path between any pair of vertices
of V (G).

Given an edge e = uv of a graph G, the graph G/e is obtained by contracting the edge uv;
that is, we get G/e by identifying the vertices u and v and removing all the loops and duplicate
edges. A minor of a graph G is a graph H that can be obtained from a subgraph of G by
contracting edges. A graph class C is minor closed if any minor of any graph in C is also an
element of C. A minor closed graph class C is H-minor-free or simply H-free if H /∈ C. A graph
H is called an apex graph if the removal of one vertex makes it a planar graph.

A tree decomposition of a (undirected) graph G is a pair (X,T) where T is a tree whose
vertices we will call nodes and X = ({Xi | i ∈ V (T)}) is a collection of subsets of V (G) such
that (a)

⋃
i∈V (T)Xi = V (G), (b) for each edge vw ∈ E(G), there is an i ∈ V (T) such that

v, w ∈ Xi, and (c) for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of T . The
width of a tree decomposition ({Xi | i ∈ V (T)}, T) equals maxi∈V (T){|Xi| − 1}. The treewidth
of a graph G is the minimum width over all tree decompositions of G. We use notation tw(G)
to denote the treewidth of a graph G.

A parameterized problem is said to admit a polynomial kernel if there is a polynomial time
algorithm (where the degree of the polynomial is independent of k), called a kernelization algo-
rithm, that reduces the input instance down to an instance with size bounded by a polynomial
p(k) in k, while preserving the answer. This reduced instance is called a p(k) kernel for the
problem. See [30] for an introduction to kernelization.

3 Method I – Quasi Bidimensionality

In this section we present our first approach. In general, a subexponential time algorithm using
bidimensionality is obtained by showing that the solution for a problem in question is at least
Ω(k2) on k × k (contraction) grid minor. Using this we reduce the problem to a question on a
graph with treewidth o(k). We start with a lemma which enables us to use the framework of
bidimensionality for digraph problems, though not as directly as for undirected graph problems.

Lemma 1. Let D be a digraph such that UG(D) excludes a fixed graph H as a minor. For any
constant c ≥ 1, if there exists a subset S ⊆ V (D) with |S| = s such that tw(UG(D[V (D)\S])) ≤
c, then tw(UG(D)) = O(

√
s).

Proof. By [17], for any H-minor-free graph G with treewidth more than r, there is a constant
δ > 1 only dependent on H such that G has a r

δ ×
r
δ grid minor. Suppose tw(UG(D)) >

δ(c + 1)
√
s. Then UG(D) contains a (c + 1)

√
s × (c + 1)

√
s grid as a minor. Notice that this

grid minor can not be destroyed by any vertex set S of size at most s. That is, if we delete any

5

vertex set S with |S| = s from this grid, it will still contain a (c + 1) × (c + 1) subgrid. Thus,
UG(D[V (D) \ S]) contains a (c + 1) × (c + 1) grid minor and hence by [23, Exercise 11.6] we
have that tw(UG(D[V (D) \ S])) > c. This shows that we need to delete more than s vertices
from UG(D) to obtain a graph with treewidth at most c, a contradiction.

Using Lemma 1, we show that k-Leaf-Out-Branching problem has a subexponential time
algorithm on digraphs D such that UG(D) exclude a fixed graph H as a minor. For our purpose
a rooted version of k-LOB will also be useful which we define now. In the Rooted k-Leaf-

Out-Branching (R-k-LOB) problem apart from D and k, the root r of the tree searched for
is also a part of the input and the objective is to check whether there exists an r-out-branching
with at least k leaves. We now state our main combinatorial lemma and postpone its proof for
a while.

Lemma 2. Let D be a digraph, k be a positive integer and r ∈ V (D) be the root. Then in
polynomial time either we can construct an r-out-branching with at least k leaves in D or find
a digraph D′ such that the following holds.

• D has an r-out-branching with at least k leaves if and only if D′ has an r-out-branching
with at least k leaves;
• there exists a subset S ⊆ V (D′) such that |S| = O(k) and tw(U(D′[V (D′) \ S]) ≤ c, c a

constant.

Furthermore, if UG(D) excludes a fixed graph H as a minor, then so does UG(D′).

Combining Lemmata 1 and 2 we obtain the following result.

Lemma 3. Let D be a digraph such that UG(D) excludes a fixed graph H as a minor, k be
a positive integer and r ∈ V (D) be a root. Then in polynomial time either we can construct
an r-out-branching with at least k leaves in D or find a digraph D′ such that D has an r-out-
branching with at least k leaves if and only if D′ has an r-out-branching with at least k leaves.
Furthermore tw(UG(D′)) = O(

√
k).

When a tree decomposition of UG(D) is given, dynamic programming methods can be used
to decide whetherD has an out-branching with at least k leaves, see [27]. The time complexity of
such a procedure is 2O(w logw)n, where n = |V (D)| and w is the width of the tree decomposition.
Now we are ready to prove the main theorem of this section assuming the combinatorial Lemma
2.

Theorem 1. The k-LOB problem can be solved in time 2O(
√
k log k)n+ nO(1) on digraphs with

n vertices such that the underlying undirected graph excludes a fixed graph H as a minor.

Proof. Let D be a digraph where UG(D) excludes a fixed graph H as a minor. We guess a
vertex r ∈ V (D) as a root. This only adds a factor of n to our algorithm. By Lemma 3, we
can either compute, in polynomial time, an r-out-branching with at least k leaves in D or find
a digraph D′ with UG(D′) excluding a fixed graph H as a minor and tw(UG(D′)) = O(

√
k).

In the later case, using the constant factor approximation algorithm of Demaine et al. [18] for
computing the treewidth of a H-minor free graph, we find a tree decomposition of width O(

√
k)

for UG(D′) in time nO(1). With the previous observation that we can find an r-out-branching
with at least k leaves, if exists one, in time 2O(

√
k log k)n using dynamic programming over graphs

6

of bounded treewidth, we have that we can solve R-k-LOB in time 2O(
√
k log k)nO(1). Hence, we

need 2O(
√
k log k)nO(1) to solve the k-LOB problem.

To obtain the claimed running time bound we use the known kernelization algorithm after
we have guessed the root r. Fernau et al. [22] gave an O(k3) kernel for R-k-LOB which preserves
the graph class. That is, given an instance (D, k) of R-k-LOB, in polynomial time they output
an equivalent instance (D′′, k) of R-k-LOB such that (a) if UG(D) is H-minor free then so is
UG(D′′); and (b) |V (D′′)| = O(k3). We will use this kernel for our algorithm rather than the
O(k2) kernel for R-k-LOB obtained by Daligault and Thomassé [12], as they do not preserve
the graph class. So after we have guessed the root r, we obtain an equivalent instance (D′′, k)
for R-k-LOB using the kernelization procedure described in [22]. Then using the algorithm
described in the previous paragraph we can solve R-k-LOB in time 2O(

√
k log k) + nO(1). Hence,

we need 2O(
√
k log k)n+ nO(1) to solve k-LOB.

Given a tree decomposition of width w of UG(D) for a planar digraph D, we can solve
k-LOB using dynamic programming methods in time 2O(w)n. This brings us to the following
theorem.

Theorem 2. The k-LOB problem can be solved in time 2O(
√
k)n + nO(1) on digraphs with n

vertices when the underlying undirected graph is planar.

Proof. We only give an outline of dynamic programming algorithm for planar digraphs that
given a tree-decomposition of width w decides whether D has an out-branching with at least k
leaves in time 2O(w)n. The rest of the proof is same as Theorem 1.

Tree collections. Let G be an undirected graph with edge set E(G) and let E′ ⊆ E(G).
Let S ⊆ V (G) be a vertex set separating E′ from E(G) \ E′, that is, S contains all vertices
incident to at least one edge of E and at least one edge of E(G) \ E′. We consider a forest F
with disjoint trees on edges of E′ and each intersecting at least one vertex of S. Let us denote
the collection of all such forests F by forestsE′(S).

We define an equivalence relation ∼ on forestsE′(S) as: for two forests F1,F2 ∈ F , F1 ∼ F2

if there is a bijection µ : F1 → F2 such that for every tree T ∈ F we have that T ∩S = µ(T)∩S.
Let q-forests(S) denote the cardinality of both, the quotient set of forestsE′(S) plus the
quotient set of forestsE′\E(G)(S) by relation ∼. In general, q-forests(S) ≤ |S|!. In [21],
the authors show for a planar graph G of treewidth w how to decompose G by separators
of size O(w), such that for each such separator S, q-forests(S) is bounded by 2O(w). These
branch decompositions are very closely related to tree decompositions with width parameters
bounding each other by constants. Thus, we can simply talk about tree decompositions with
some additional structure.

In this case we use standard dynamic programming on such tree decompositions (X,T) (see
e.g. [26]) At every step of dynamic programming for each node of T , we keep track of all the
ways the required out-branching can cross the separator S represented by X. In other words,
we count all the ways parts of the out-branching can be routed through E. In the underlying
undirected graph, this is proportional to q-forests(S). Since an out-branching is rooted, every
subtree is rooted, too. Thus, the only overhead in the directed case compared to the undirected
is that we have to guess for each tree TF in F if its root is in S. In this case, we guess which of
the vertices of TF ∩ S is the root. The number of guesses is bounded by 2O(w) and hence the
dynamic programming algorithm runs in time O(2O(w)n).

7

However if we are willing to have a randomized algorithm then we can improve the running
time coming from Theorem 1 to 2O(

√
k)n+nO(1). To do so we will use the randomized algorithm

designed by Cygan et al. [10] to solve k-LOB on a tree decomposition of width w of UG(D) and
running in time 6wnO(1). Using this result in Theorem 1 for algorithms on graphs of bounded
treewidth we obtain the following theorem.

Theorem 3. There exists a randomized algorithm solving the k-LOB problem in time 2O(
√
k)n+

nO(1) on digraphs with n vertices such that the underlying undirected graph excludes a fixed graph
H as a minor.

3.1 Proof of Lemma 2

To prove the combinatorial lemma, we need a few results from the literature on out-branching
problems. Recall that we have a directed graph D with a designated root vertex r. We start
with some definitions given in [12]. A cut of D is a subset S such that there exists a vertex
z ∈ V (D) \S such that z is not reachable from r in D[V (D) \S]. We say that D is 2-connected
if there exists no cut of size one in D or equivalently there are at least two vertex disjoint paths
from r to every vertex in D.

Lemma 4 ([12]). Let D be a rooted 2-connected digraph with r being its root. Let α be the
number of vertices in D with in-degree at least 3. Then D has an out-branching rooted at r with
at least α/6 leaves and such an out-branching can be found in polynomial time.

A vertex v ∈ V (D) is called a nice vertex if v has an in-neighbor which is not its out-neighbor.
The following lemma is proved in [12].

Lemma 5 ([12]). Let D be a rooted 2-connected digraph rooted at a vertex r. Let β be the
number of nice vertices in D. Then D has an out-branching rooted at r with at least β/24 leaves
and such an out-branching can be found in polynomial time.

Proof of Lemma 2. To prove the combinatorial lemma, we consider two cases based on whether
or not D is 2-connected.
Case 1) D is a rooted 2-connected digraph.

We prove this case in the following claim.

Claim 1. Let D be a rooted 2-connected digraph with root r and a positive integer k. Then in
polynomial time, we can find an out-branching rooted at r with at least k leaves or find a set S
of at most 30k vertices whose removal results in a digraph whose underlying undirected graph
has treewidth one.

Proof. If α ≥ 6k, then we are done by Lemma 4. Similarly if β ≥ 24k, then we are done by
Lemma 5. Hence we assume that α < 6k and β < 24k. Let S be the set of nice vertices and
vertices of in-degree at least 3 in G. Then |S| < α + β ≤ 30k. Observe that D[V (D) \ S] is
simply a collection of directed paths where every edge of the path is a directed 2-cycle. This
is because D[V (D) \ S] contains only those vertices which are not nice (that is, those vertices
whose in-neighbors are also out-neighbors) and are of in-degree at most two. Hence, if there
is an arc xy in D[V (D) \ S], then the arc yx also exists in D[V (D) \ S]. Next we note that
D[V (D) \ S] does not contain a directed cycle of length more than two. We prove the last
assertion as follows. Let C be a directed cycle in D[V (D) \ S] of length at least 3. Since D is a

8

rooted 2-connected digraph, we have a vertex v on the cycle C such that there is a path from
r to v without using any other vertex from the cycle C. This implies that the in-degree of v
is at least 3 in D and hence v ∈ S, contrary to our assumption that v /∈ S. This proves that
D[V (D) \ S] does not contain a directed cycle of length more than two. Hence the underlying
undirected graph UG(D[V (D)\S]) is just a collection of paths and hence tw(UG(D[V (D)\S]))
is one.

Case 2) D is not 2-connected.

Since D is not 2-connected, it has cut vertices, those vertices that separate r from some
other vertices. We deal with the cut vertices in three cases. Let x be a cut vertex of D. The
three cases we consider are following.
Case 2a) There exists an arc xy that disconnects at least two vertices from r.

In this case, we contract the arc xy. After repeatedly applying Case 2a), we obtain a digraph
D′ such that any arc out of a cut vertex x of D′ disconnects at most 1 vertex. The resulting
digraph D′ is the one required in the statement of the Lemma. Since we have only contracted
some arcs iteratively to obtain D′, it is clear that UG(D′) also excludes H as a minor. The
proof that such contraction does not decrease the number of leaves follows from a reduction rule
given in [22]. We provide a proof for completion.

Claim 2. Let D be a rooted connected digraph with root r, let xy be an arc that disconnects at
least two vertices from r and D′ be the digraph obtained after contracting the arc xy. Then D

has an r-out-branching with at least k leaves if and only if D′ has an r-out-branching with at
least k leaves.

Proof. Let the arc xy disconnect at least two vertices y and w from r and let D′ be the digraph
obtained from D by contracting the arc xy. Let T be an r-out-branching of D with at least k
leaves. Since every path from r to w contains the arc xy, T contains xy as well and neither x nor
y is a leaf of T . Let T ′ be the tree obtained from T by contracting xy. T ′ is an r-out-branching
of D′ with at least k leaves.

For the converse, let T ′ be an r-out-branching of D′ with at least k leaves. Let x′ be the
vertex in D′ obtained by contracting the arc xy, and let u be the parent of x′ in T ′. Notice that
the arc ux′ in T ′ was initially the arc ux before the contraction of xy, since there is no path from
r to y avoiding x in D. We obtain an r-out-branching T of D from T ′, by replacing the vertex x′

by the vertices x and y and adding the arcs ux, xy and arc sets {yz : x′z ∈ A(T ′)∧ yz ∈ A(D)}
and {xz : x′z ∈ A(T ′)∧yz /∈ A(D)}. All these arcs belong to A(D) because all the out-neighbors
of x′ in D′ are out-neighbors either of x or of y in D. Finally, x′ must be an internal vertex of
T ′ since x′ disconnects w from r. Hence T has at least as many leaves as T ′.

Now we handle the remaining cut-vertices of D′ as follows. Let S be the set of cut vertices
in D′. For every vertex x ∈ S, we associate a cut-neighborhood C(x), which is the set of out-
neighbors of x such that there is no path from r to any vertex in C(x) in D′[V (D′) \ {x}]. By
C[x] we denote C(x) ∪ {x}. The following observation is used to handle other cases.

Claim 3. Let S be the set of cut vertices in D′. Then for every pair of vertices x, y ∈ S and
x 6= y, we have that C[x] ∩ C[y] = ∅.

Proof. To the contrary let us assume that C[x]∩C[y] 6= ∅. We note that C[x]∩C[y] can only have
a vertex v ∈ {x, y}. To prove this, assume to the contrary that we have a vertex v ∈ C[x]∩C[y]

9

and v /∈ {x, y}. But then it contradicts the fact that v ∈ C[x], as x doesn’t separate v from r

due to the path between r and v through y. Thus, either x ∈ C(y) or y ∈ C(x). Without loss of
generality let y ∈ C(x). This implies that we have an arc xy and there exists a vertex z ∈ C(y)
such that z /∈ C(x). But then the arc xy disconnects at least two vertices y and z from r and
hence Case 2a would have applied. This proves the claim.

Now we distinguish cases based on cut vertices having cut-neighborhood of size at least 2 or
1. Let S≥2 and S=1 be the subset of cut-vertices of D′ having at least two cut-neighbors and
exactly one neighbor respectively.
Case 2b) S≥2 6= ∅.

We first bound |S≥2|. Let Ac = {xy | x ∈ S≥2, y ∈ C(x)} be the set of out-arcs emanating
from the cut vertices in S≥2 to its cut neighbors. We now prove the following structural claim
which is useful for bounding the size of S≥2.

Claim 4. If D′ has an r-out-branching T ′ with at least k leaves then D′ has an r-out-branching
T with at least k leaves and containing all the arcs of Ac, that is, Ac ⊆ A(T). Furthermore such
an out-branching can be found in polynomial time.

Proof. Let T ∗ be an r-out-branching of D′ with at least k leaves and containing the maximum
number of arcs from the set Ac. If Ac ⊆ A(T ∗), then we are through. So let us assume that
there is an arc e = xy ∈ Ac such that e /∈ A(T ∗). Notice that since the vertices of S≥2 are cut
vertices, they are always internal vertices in any out-branching rooted at r in D. In particular,
the vertices of S≥2 are internal vertices in T ∗. Furthermore by Claim 3 we know that y is an end-
point of exactly one arc in Ac. Let z be the parent of y in T ∗. Now obtain T ∗e = T ∗\{zy}∪{xy}.
Observe that T ∗e contains at least k leaves and has more arcs from Ac than T ∗. This is contrary
to our assumption that T ∗ is an r-out-branching of D′ with at least k leaves and containing the
maximum number of arcs from the set Ac. This proves that T ∗ contains all the arcs of Ac.

Observe that starting from any r-out-branching T ′ of D′ we can obtain the desired T in
polynomial time by simple arc exchange operations described in the previous paragraph.

We know that in any out-tree, the number of internal vertices of out-degree at least 2 is
bounded by the number of leaves. Hence if |S≥2| ≥ k then we obtain an r-out-branching T of
D′ with at least k leaves using Claim 4 and we are done. So from now onwards we assume that
|S≥2| = ` ≤ k − 1.

We now do a transformation to the given digraph D′. For every vertex x ∈ S≥2, we introduce
an imaginary vertex xi and add an arc uxi if there is an arc ux ∈ A(D′) and add an arc xiv
if there is an arc xv ∈ A(D′). Basically we duplicate the vertices in S≥2. We also add edges
xxi for all x ∈ S≥2. Let the transformed graph be called Ddup. We have the following two
properties about Ddup. First, no vertex in S≥2 ∪ {xi|x ∈ S≥2} is a cut vertex in Ddup. We sum
up the second property in the following claim.

Claim 5. The digraph D′ has an r-out-branching T with at least k leaves if and only if Ddup

has an r-out-branching T ′ with at least k + ` leaves.

Proof. Given an r-out-branching T of D′ with at least k leaves, we obtain an out-branching T ′

of Ddup with at least k + ` leaves by adding an arc xxi to T for every x ∈ S≥2. Since every
vertex of S≥2 is an internal vertex in T , this process only adds {xi | x ∈ S≥2} as leaves and
hence we have at least k + ` leaves in T ′.

10

For the converse, assume that Ddup has an r-out-branching T ′ with at least k + ` leaves.
First, we modify the out-branching so that not both of x and xi are internal vertices and we do
not lose any leaf. This can be done easily by making all out arcs in the out-branching from x

and making xi a leaf. That is, if N+
T ′(x

i) is the set of out-neighbors of xi in T ′ then we delete
the arcs xiz, z ∈ N+

T ′(x
i) and add xz for all z ∈ N+

T ′(x
i). This process can not decrease the

number of leaves. Furthermore we can always assume that if exactly one of x and xi is an
internal vertex, then x is the internal vertex in T ′. Now delete all the vertices of {xi | x ∈ S≥2}
from T ′ and obtain T . Since the vertices in the set {xi | x ∈ S≥2} are leaves of T ′, we have
that T is an r-out-branching in D′. Since in the whole process we have only deleted ` vertices
we have that T has at least k leaves.

Now we move on to the last case.
Case 2c) S=1 6= ∅.

Consider the arc set Ap = {xy | x ∈ S=1, y ∈ C(x)}. Observe that Ap ⊆ A(D′) ⊆ A(Ddup)
and Ap forms a matching in Ddup because of Claim 3. Let Ddup

c be the digraph obtained from
Ddup by contracting the arcs of Ap. That is, for every arc uv ∈ Ap, the contracted graph is
obtained by identifying the vertices u and v as uv and removing all the loops and duplicate
arcs.

Claim 6. Let Ddup
c be the digraph obtained by contracting the arcs of Ap in Ddup. Then the

following holds.

1. The digraph Ddup
c is 2-connected;

2. If Ddup
c has an r-out-branching T with at least k+` leaves then Ddup has an r-out-branching

with at least k + ` leaves.

Proof. The digraph Ddup
c is 2-connected by the construction as we have iteratively removed all

cut-vertices. If Ddup
c has an r-out-branching T with at least k + ` leaves then we can obtain a

r-out-branching with at least k+ ` leaves for Ddup by expanding each of the contracted vertices
to arcs in Ap.

We are now ready to combine the above claims to complete the proof of the lemma. We
first apply Claim 1 on Ddup

c with k + `. Either we get an r-out-branching T ′ with at least
k + ` leaves or a set S′ of size at most 30(k + `) such that tw(UG(Ddup

c [V (Ddup
c) \ S])) is

one. In the first case, by Claims 5 and 6 we get an r-out-branching T with at least k leaves
in D′. In the second case we know that there is a vertex set S′ of size at most 30(k + `)
such that tw(UG(Ddup

c [V (Ddup
c) \ S′])) is one. Let S∗ = {u | uv ∈ S′, vu ∈ S′, u ∈ S′}

be the set of vertices obtained from S′ by expanding the contracted vertices in S′. Clearly
the size of |S∗| ≤ 2|S′| ≤ 60(k + `) ≤ 120k = O(k). We now show that the treewidth of the
underlying undirected graph ofDdup[V (Ddup)\S∗] is at most 3. This follows from the observation
that tw(UG(Ddup

c [V (Ddup
c) \ S′])) is one. Hence given a tree-decomposition of width one for

UG(Ddup
c [V (Ddup

c) \ S′]) we can obtain a tree-decomposition for UG(Ddup[V (Ddup) \ S∗]) by
expanding the contracted vertices. This can only double the bag size and hence the treewidth
of UG(Ddup[V (Ddup) \ S∗]) is at most 3, as the bag size can at most be 4. Now we take
S = S∗ ∩ V (D′) and since V (D′) ⊆ V (Ddup), we have that tw(UG(D[V (D) \ S])) ≤ 3. This
concludes the proof of the lemma.

11

4 Method II - Kernelization and Divide & Conquer

In this section we exhibit our second method of designing subexponential time algorithms for
digraph problems through the k-Internal Out-Branching problem. In this method we
utilize the known polynomial kernel for the problem and obtain a collection of 2o(k) instances
such that the input instance is an “yes” instance if and only if one of the instances in our
collection is. The property of the instances in the collection which we make use of is that
the treewidth of the underlying undirected graph of these instances is o(k). The last property
brings dynamic programming on graphs of bounded treewidth into picture as the final step of
the algorithm.

Here, we will solve a rooted version of the k-IOB problem, called Rooted k-Internal

Out-Branching (R-k-IOB), where apart from D and k we are also given a root r ∈ V (D),
and the objective is to find an r-out-branching, if exists one, with at least k internal vertices.
The k-IOB problem can be reduced to R-k-IOB by guessing the root r at the additional cost
of |V (D)| in the running time of the R-k-IOB problem. Henceforth, we will only consider R-k-

IOB. We call an r-out-tree T with k internal vertices minimal if deleting any leaf results in an
r-out-tree with at most k− 1 internal vertices. A well known result relating minimal r-out-tree
T with k internal vertices with a solution to R-k-IOB is as follows.

Lemma 6 ([9]). Let D be a rooted connected digraph with root r. Then D has an r-out-branching
T ′ with at least k internal vertices if and only if D has a minimal r-out-tree T with k internal
vertices with |V (T)| ≤ 2k − 1. Furthermore, given a minimal r-out-tree T , we can find an
r-out-branching T ′ with at least k internal vertices in polynomial time.

We also need another known result about kernelization for k-IOB.

Lemma 7 ([27]). k-Internal Out-Branching admits a polynomial kernel of size 8k2 + 6k.

In fact, the kernelization algorithm presented in [27] works for all digraphs and has a unique
reduction rule which only deletes vertices. This implies that if we start with a graph G ∈ G

where G excludes a fixed graph H as a minor, then the graph G′ obtained after applying
kernelization algorithm still belongs to G .

Our algorithm tries to find a minimal r-out-tree T with k internal vertices with |V (T)| ≤
2k− 1 recursively. As the first step of the algorithm we obtain a set of 2o(k) digraphs such that
the underlying undirected graphs have treewidth O(

√
k), and the original problem is a “yes”

instance if and only at least one of the 2o(k) instances is a “yes” instance. More formally, we
prove the following lemma.

Lemma 8. Let H be a fixed apex graph and G be a minor closed graph class excluding H as
a minor. Let (D, k) be an instance to k-Internal Out-Branching such that UG(D) ∈ G .
Then there exists a collection

C =
{

(Di, k
′, r) | Di is a subgraph of D, k′ ≤ k, r ∈ V (D), 1 ≤ i ≤

(
8k2 + 6k√

k

)}
,

of instances such that tw(UG(Di)) = O(
√
k) for all i and (D, k) has an out-branching with at

least k internal vertices if and only if there exists an i, r and k′ ≤ k such that (Di, k
′, r) has an

r-out-branching with at least k′ internal vertices.

12

Proof. The idea of the proof is to do Baker style layering technique [5] combined with kernel-
ization. In the first step we apply the kernelization algorithm given by Lemma 7 on (D, k)
and obtain an equivalent instance (D′, k′) where |D′| ≤ 8k2 + 6k and k′ ≤ k for k-IOB. From
now onwards we will confine ourselves to (D′, k′). Observe that since the kernelization algo-
rithm only deletes vertices to obtain the reduced instance from the input digraph, we have that
UG(D′) ∈ G .

Now we reduce the k-IOB problem to the R-k-IOB problem by guessing a vertex r ∈ V (D′)
as a root. Furthermore we try to find a minimal r-out-tree T with k′ internal vertices with
|V (T)| ≤ 2k′ − 1. This suffices for our purpose if we know that every vertex in V (D′) is
reachable from the root r, as in this case Lemma 6 is applicable.

We start with a BFS starting at the vertex r in UG(D′). Let the layers created by doing BFS
on r be Lr0, L

r
1, . . . , L

r
t . If t ≤ d

√
ke, then the collection Cr consists of (D′, k′, r). For t ≤

√
k,

the fact that tw(D′) = O(
√
k) follows from the comments later in the proof. Hence from now

onwards we assume that t > d
√
ke. Now we partition the vertex set into d

√
ke parts where

the q-th part contains all vertices which are at a distance of q mod(d
√
ke) from r. That is, let

V (D′) = ∪qPq, q ∈ {0, . . . , d
√
ke − 1}. We define Pq =

⋃
Lr
q+i(d

√
ke+1)

, i ∈
{

0, . . . ,
⌊

t−
√
k

d
√
ke+1

⌋}
.

It is clear from the definition of Pq that it partitions the vertex set V (D′). If the input is an

“yes” instance then there exists a partition Pa such that it contains at most
⌈

2k′−1
d
√
ke

⌉
≤ 2
√
k

vertices of the minimal r-out-tree T we are seeking for. We guess the partition Pa and a subset
Z of size at most 2

√
k of Pa and obtain the collection

Cr(Pa) =
{

(D′[V (D′) \ Pa ∪ Z], k′, r)
∣∣∣ Z ⊆ Pa, |Z| ≤ 2

√
k
}
.

We now claim that for every Z ⊆ Pa, |Z| ≤ 2
√
k, tw(UG(D′[V (D′) \ Pa ∪ Z])) = O(

√
k). Let

V ′ = V (D′) \ Pa be the set of vertices after removal of Pa from the vertex set of D′. Let
the resultant underlying undirected graph be G′ = UG(D′[V ′]) with connected components
C1, . . . , C`. We show that each connected component Ci of G′ has O(

√
k) treewidth. More

precisely, every connected component Ci of G′ is a subset of at most d
√
ke − 1 consecutive

layers of the BFS starting at r. If we start with UG(D′), and delete all BFS layers after
these layers and contract all BFS layers before these layers into a single vertex v, we obtain
a minor M of UG(D′). This minor M has diameter at most d

√
ke and contains Ci as an

induced subgraph. Since UG(D′) ∈ G ′, we have that M ∈ G . Furthermore, Demaine and
Hajiaghayi [15] have shown that for any fixed apex graph H, every H-minor-free graph of
diameter d has treewidth O(d). This implies that the tw(Ci) ≤ tw(M) ≤ O(

√
k). Notice that

since every connected component of G′ has treewidth O(
√
k), G′ itself has O(

√
k) treewidth.

Given a tree-decomposition of width O(
√
k) for G′, we can obtain a tree-decomposition of width

O(
√
k) for UG(D′[V (D′) \ Pa ∪ Z]) by adding Z to every bag. The collection Cr is given by

∪d
√
ke

a=0 Cr(Pa). Finally the collection C = ∪r∈V (D′)Cr.
By the pigeon hole principle we know that if (D′, k′) is an yes instance then there exists a

Pa containing at most 2
√
k vertices of the minimal tree T we are looking for. Since we have

run through all r ∈ V (D′) as a potential root as well as all subsets of size at most 2
√
k as the

possible intersection of V (T) with Pa, we know that (D′, k′) has an out-branching with at least
k internal vertices if and only if there exists an i, r and k′ ≤ k such that (Di, k

′, r) ∈ C has a
r-out-branching with at least k′ internal vertices. This concludes the proof of the lemma.

Given a tree decomposition of width w for UG(D), one can solve R-k-IOB in time 2O(w logw)n

13

using a dynamic programming over graphs of bounded treewidth as described in [27]. This brings
us to the main theorem of this section.

Theorem 4. The k-IOB problem can be solved in time 2O(
√
k log k) + nO(1) on digraphs with n

vertices such that the underlying undirected graph excludes a fixed apex graph H as a minor.

Proof. As the first step of the algorithm we apply Lemma 8 and obtain collection C such that
for every (D, k, r) ∈ C, tw(UG(D)) ∈ O(

√
k). Then using the constant factor approximation

algorithm of Demaine et al. [18] for computing the treewidth of a H-minor free graph, we find
a tree decomposition of width O(

√
k) for UG(D) in time kO(1). Finally, we apply dynamic

programming algorithm running in time (
√
k)O(

√
k) = 2O(

√
k log k) on each instance in C. If for

any of them we get an yes answer we return “yes”, else we return “no”. The running time of
the algorithm is bounded by

|C| · 2O(
√
k log k) + nO(1) = 2O(

√
k log k) · 2O(

√
k log k) + nO(1) = 2O(

√
k log k) + nO(1).

We have an additive term of nO(1) as we apply the algorithm only on the O(k2) size kernel.
This completes the proof.

5 Conclusion and Discussions

We have given the first subexponential parameterized algorithms on planar digraphs and on
the class of digraphs whose underlying undirected graph excludes a fixed graph H or an apex
graph as a minor. We have outlined two general techniques, and have illustrated them on two
well studied problems concerning oriented spanning trees (out branching)— one that maximizes
the number of leaves and the other that maximizes the number of internal vertices. One of our
techniques uses the grid theorem on H-minor graphs, albeit in a different way than how it
is used on undirected graphs. The other uses Baker type layering technique combined with
kernelization and solves the problem on a subexponential number of problems whose instances
have sublinear treewidth.

We believe that our techniques will be widely applicable and it would be interesting to find
other problems where such subexponential algorithms are possible. Two famous open problems
in this context are whether the k-Directed Path problem (does a digraph contains a directed
path of length at least k) and the k-Directed Feedback Vertex Set problem (does a
digraph can be turned into acyclic digraph by removing at most k vertices) have subexponential
algorithms (at least) on planar digraphs. However, for the k-Directed Path problem, we can
reach “almost” subexponential running time. More precisely, we have the following theorem.

Theorem 5. For any ε > 0, there is δ such that the k-Directed Path problem is solvable
in time O((1 + ε)k · nδ) on digraphs with n vertices such that the underlying undirected graph
excludes a fixed apex graph H as a minor.

Proof. Let P be a path of length k in a digraph D. The vertex set of P can be covered by at
most b balls of radius k/b in the metric of UG(D). Let F be a subgraph of UG(D) induced by
the vertices contained in b balls of radius k/b. We claim that there is a constant c (depending
only on the size of the apex graph H), such that tw(F) ≤ c · k/

√
b. Indeed, because F is apex

minor-free, it contains a partially triangulated (d · tw(F)× d · tw(F))-grid as a contraction for
some d > 0 [25]. One needs Ω((tw(F)b/k)2) balls of radius k/b to cover such a grid, and hence

14

to cover F [13]. But on the other hand, F is covered by at most b balls of radius k/b, and the
claim follows. By an easy adaptation of the algorithm from [19] for undirected H-minor-free
graphs, it is possible to find in time 2O(tw(F)) ·nO(1), if the subdigraph of D with the underlying
undirected graph F contains a directed path of length k. Thus these computations can be done
in time 2cH ·k/

√
b · nO(1) for some constant cH > 0 depending only on the size of H.

Putting things together, to check if D contains a path of length k (and if yes, to construct
such a path), we try all possible sets of b vertices B and for each such set we construct a graph
F induced by vertices at distance at most k/b from vertices of B. If D contain a k-path, then
this path should be covered by at least one such set of b balls. For each such graph, we check, if
the corresponding directed subgraph contains a k-path. The total running time of the algorithm
is

O(
(
n

b

)
2c·k/

√
b · nc) = O(2c·k/

√
b · nb+c)

for some constant c. By putting b = (c/(log(1 + ε))2 and δ = b + c, we complete the proof of
the theorem.

Let use remark that similar O((1 + ε)knf(ε)) results can also be obtained for several other
problems including Steiner Tree in apex-minor-free graphs.

References

[1] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier, Fixed
parameter algorithms for dominating set and related problems on planar graphs, Algorith-
mica, 33 (2002), pp. 461–493.

[2] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh, Spanning
directed trees with many leaves, SIAM Journal on Discrete Mathematics, 23 (2009), pp. 466–
476.

[3] N. Alon, D. Lokshtanov, and S. Saurabh, Fast FAST, in ICALP 09, vol. 5555 of
LNCS, Springer, 2009, pp. 49–58.

[4] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–856.

[5] B. S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J.
ACM, 41 (1994), pp. 153–180.

[6] P. Bonsma and F. Dorn, Tight bounds and a fast FPT algorithm for directed max-leaf
spanning tree, to appear in Transaction on Algorithms, (2010).

[7] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger, Improved algorithms for
feedback vertex set problems, J. Comput. Syst. Sci., 74 (2008), pp. 1188–1198.

[8] J. Chen, I. A. Kanj, and G. Xia, Improved upper bounds for vertex cover, Theor.
Comput. Sci., 411 (2010), pp. 3736–3756.

[9] N. Cohen, F. V. Fomin, G. Gutin, E. J. Kim, S. Saurabh, and A. Yeo, Algorithm
for finding k-vertex out-trees and its application to k-internal out-branching problem, J.
Comput. Syst. Sci., 76 (2010), pp. 650–662.

15

[10] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. van Rooij,

and J. O. Wojtaszczyk, Solving connectivity problems parameterized by treewidth
in single exponential time. To appear in FOCS 2011, Manuscript available at
http://lanl.arxiv.org/abs/1103.0534.

[11] J. Daligault, G. Gutin, E. J. Kim, and A. Yeo, FPT algorithms and kernels for the
directed k-leaf problem, J. Comput. Syst. Sci., 76 (2010), pp. 144–152.

[12] J. Daligault and S. Thomassé, On finding directed trees with many leaves, in IWPEC,
vol. 5917 of Lecture Notes in Computer Science, 2009, pp. 86–97.

[13] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Fixed-parameter
algorithms for (k, r)-center in planar graphs and map graphs, ACM Trans. Algorithms, 1
(2005), pp. 33–47.

[14] , Subexponential parameterized algorithms on graphs of bounded genus and H-minor-
free graphs, J. ACM, 52 (2005), pp. 866–893.

[15] E. D. Demaine and M. Hajiaghayi, Equivalence of local treewidth and linear local
treewidth and its algorithmic applications, in SODA 04, 2004, pp. 840–849.

[16] , The bidimensionality theory and its algorithmic applications, Computer Journal, 51
(2008), pp. 292–302.

[17] , Linearity of grid minors in treewidth with applications through bidimensionality,
Combinatorica, 28 (2008), pp. 19–36.

[18] E. D. Demaine, M. Hajiaghayi, and K. Kawarabayashi, Algorithmic graph minor
theory: Decomposition, approximation, and coloring, in FOCS 05, 2005, pp. 637–646.

[19] F. Dorn, F. V. Fomin, and D. M. Thilikos, Catalan structures and dynamic program-
ming in H-minor-free graphs, in SODA 08, SIAM, 2008, pp. 631–640.

[20] , Subexponential parameterized algorithms, Computer Science Review, 2 (2008),
pp. 29–39.

[21] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin, Efficient exact algo-
rithms on planar graphs: Exploiting sphere cut decompositions, Algorithmica, 58 (2010),
pp. 790–810.

[22] H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Vil-

langer, Kernel(s) for problems with no kernel: On out-trees with many leaves, in STACS,
2009, pp. 421–432.

[23] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer-Verlag, Berlin, 2006.

[24] F. V. Fomin, S. Gaspers, S. Saurabh, and S. Thomassé, A linear vertex kernel
for maximum internal spanning tree, in ISAAC, vol. 5878 of Lecture Notes in Computer
Science, Springer, 2009, pp. 275–282.

[25] F. V. Fomin, P. A. Golovach, and D. M. Thilikos, Contraction obstructions for
treewidth, J. Comb. Theory, Ser. B, 101 (2011), pp. 302–314.

16

[26] F. V. Fomin and D. M. Thilikos, Dominating sets in planar graphs: Branch-width and
exponential speed-up, SIAM J. Comput., 36 (2006), pp. 281–309.

[27] G. Gutin, I. Razgon, and E. J. Kim, Minimum leaf out-branching and related problems,
Theor. Comput. Sci., 410 (2009), pp. 4571–4579.

[28] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential
complexity, J. Comput. System Sci., 63 (2001), pp. 512–530.

[29] J. Kneis, A. Langer, and P. Rossmanith, A new algorithm for finding trees with many
leaves, in ISAAC 08, vol. 5369 of LNCS, Springer-Verlag, 2008, pp. 270–281.

[30] R. Niedermeier, Invitation to fixed-parameter algorithms, Oxford University Press, Ox-
ford, 2006.

[31] E. Prieto and C. Sloper, Reducing to independent set structure – the case of k-internal
spanning tree, Nord. J. Comput., 12 (2005), pp. 308–318.

[32] B. A. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Oper. Res. Lett.,
32 (2004), pp. 299–301.

[33] N. Robertson, P. Seymour, and R. Thomas, Quickly excluding a planar graph, J.
Comb. Th. Ser. B, 62 (1994), pp. 323–348.

17

