Distortion is Fixed Parameter Tractable* Michael Fellows † Fedor V. Fomin ‡ Daniel Lokshtanov ‡ Elena Losievskaja § Frances Rosamond † Saket Saurabh ¶ September 7, 2012 #### Abstract We study low-distortion embedding of metric spaces into the line, and more generally, into the shortest path metric of trees, from the parameterized complexity perspective. Let M=M(G) be the shortest path metric of an edge weighted graph G, with the vertex set V(G) and the edge set E(G), on n vertices. We give the first fixed parameter tractable algorithm that for an unweighted graph metric M and integer d either constructs an embedding of M into the line with distortion at most d, or concludes that no such embedding exists. Our algorithm requires $O(nd^4(2d+1)^{2d})$ time which is a significant improvement over the best previous algorithm that runs in time $O(n^{4d+2}d^{O(1)})$. Because of its apparent similarity to the notoriously hard Bandwidth Minimization problem, we find it surprising that this problem turns out to be fixed parameter tractable. We extend our results on embedding unweighted graph metric into the line in two ways. First, we give an algorithm to construct small distortion embeddings of weighted graph metrics. The running time of our algorithm is $O(n(dW)^4(2d+1)^{2dW})$, where W is the largest edge weight of the input graph. To complement this result, we show that the exponential dependence on the maximum edge weight is unavoidable. In particular, we show that deciding whether a weighted graph metric M(G) with maximum weight W < |V(G)| can be embedded into the line with distortion at most d is NP-complete for every fixed rational $d \geq 2$. This rules out any possibility of an algorithm with running time $O((nW)^{h(d)})$ where h is a function of d alone. Secondly, we consider more general host metrics for which analogous results hold. In particular, we prove that for any tree T with maximum degree Δ , embedding M into a shortest path metric of T is fixed parameter tractable, parameterized by (Δ, d) . #### 1 Introduction Given an undirected graph G with the vertex set V(G) and the edge set E(G) together with a weight function w that assigns a positive weight w(uv) to every edge $uv \in E(G)$, a natural metric associated with G is $M(G) = (V(G), D_G)$ where the distance function D_G . (We also denote the distance function D_G by D if the graph in consideration is clear from the context.) is the weighted shortest path distance between u and v for each pair of vertices $u, v \in V(G)$. ^{*}The results of this work were presented in [7]. [†]Charles Darwin University, Darwin, Australia {michael.fellows|frances.rosamond}@cdu.edu.au [‡]Department of Informatics, University of Bergen, Bergen, Norway. {fomin|daniello}@ii.uib.no [§]Dept. of Computer Science, University of Iceland, Iceland. elenal@hi.is The Institute of Mathematical Sciences, Chennai, India. saket@imsc.res.in We call M(G) as the (weighted) graph metric of G. If w(uv) = 1 for every edge $uv \in E(G)$, we say that $M(G) = (V(G), D_G)$ is an unweighted graph metric. For a subset S of V(G), we say that M[S] = (S, D'') (where D'' is D restricted to S^2) is the submetric of M(G) induced by S. Given a graph metric M and another metric space M' with distance functions D and D', a mapping $f: M \to M'$ is called an embedding of M into M'. The mapping f has contraction c_f and expansion e_f if for every pair of points p, q in M, $D(p, q) \leq D'(f(p), f(q)) \cdot c_f$ and $D(p, q) \cdot e_f \geq D'(f(p), f(q))$ respectively. We say that f is non-contracting if c_f is at most 1. A non-contracting mapping f has distortion d if e_f is at most d. Embedding a graph metric into a simple metric space like the real line has proved to be a useful tool in designing algorithms in various fields. A long list of applications given in [9] includes approximation algorithms for graph and network problems, such as sparsest cut, minimum bandwidth, low-diameter decomposition and optimal group steiner trees, and online algorithms for metrical task systems and file migration problems. These applications often require algorithms for finding low distortion embeddings, and the study of the algorithmic issues of metric embeddings has recently begun to develop [1, 2, 3, 12]. For example, Bădoiu *et al.* [1, 3] describe approximation algorithms and hardness results for embedding general metrics into the line and tree metrics respectively. In particular they show that the minimum distortion for a line embedding is hard to approximate up to a factor polynomial in n even for weighted trees with polynomial spread (the ratio of maximum/minimum weights). Hall and Papadimitriou [10] studied the hardness of approximation for bijective embeddings. Independently from the algorithmic viewpoint, the problem of finding a low-distortion embedding between metric spaces is a fundamental mathematical problem [11, 13] that has been studied intensively. In many applications one needs the distortion of the required embedding to be relatively small. Hence it is natural to study the algorithmic issues related to small distortion embeddings within the framework of parameterized complexity [6, 8, 15]. This paradigm associates a natural secondary measurement to the problem and studies the algorithmic behavior of the problem in terms of the associated measurement, called the *parameter*. In this paper we consider a natural parameter, the distortion d, and consider the feasibility of having an algorithm of time complexity $g(d) \cdot n^{O(1)}$ for the problem of embedding weighted graph metrics into the line with distortion at most d. What would one expect about the complexity of embedding an unweighted graph metric into the line, parameterized by the distortion d? At a glance, the problem seems to closely resemble the BANDWIDTH MINIMIZATION problem. In the BANDWIDTH MINIMIZATION problem one is given a graph G and asked to find a bijective mapping $f:V(G)\to\{1,\ldots,n\}$, for which the bandwidth, i.e. $b=\max_{uv\in E(G)}|f(u)-f(v)|$, is minimized. This problem is known to be W[t]-hard for all $t\geq 1$ [4, 5], when parameterized by b. Unless an unlikely collapse of parameterized complexity classes occurs, this rules out any possibility of having an algorithm with running time $g(b)\cdot n^{O(1)}$ for BANDWIDTH MINIMIZATION and thus the algorithm of Saxe [16] running in time $O(4^b n^{b+1})$ is essentially the best possible. Bădoiu $et\ al.$ [2] gave the first exact algorithm deciding whether an unweighted graph metric can be embedded into the line with distortion at most d. The algorithm of Bădoiu $et\ al.$ is based on the analogous result for the bandwidth problem by Saxe [16] and is of running time $O(n^{4d+2}\cdot d^{O(1)})$. Because of the apparent similarity to the notoriously hard bandwidth problem, the problem of embedding unweighted graph metrics into the line was not expected to be fixed parameter tractable (FPT). Our first result is the following theorem, which we find a bit surprising. **Theorem 1.1.** Given an unweighted n-vertex graph G and a positive integer d, it is possible in time $O(nd^4(2d+1)^{2d})$ either to embed M(G) into the real line with distortion at most d, or to conclude correctly that no such embedding exists. The running time of the algorithm is linear for every fixed d and drastically improves the running time of the previously known algorithm. In fact, one can apply Theorem 1.1 in order to check whether the unweighted graph metric can be embedded into the line with distortion at most $\lg n/\lg \lg n$ in time polynomial in n. As it was shown by Lokshtanov et al. [14], the problem of embedding into line cannot be solved in time $2^{o(d \log d)} n^{O(1)}$ unless Exponential Time Hypothesis (ETH) fails. Thus the running time of Theorem 1.1 is asymptotically tight. We provide the proof of Theorem 1.1 in Section 2.1. Having coped with the unweighted case, we return to the study of low-distortion embeddings of weighted graph metrics into the line. We show that if the maximum weight of any edge is bounded by W, then we can modify the algorithm presented in Theorem 1.1 to give an algorithm to decide whether M(G) can be embedded into the line with distortion at most d in time $O(n(dW)^4(2d+1)^{2dW})$. This is proved in Theorem 2.12, Section 2.2. However the weights in a graph metric do not need to be small, and hence this algorithm is not sufficient to give a $g(d) \cdot n^{O(1)}$ time algorithm for the problem of embedding weighted graph metrics into the line. Can such an algorithm exist? Unfortunately, it turns out that our $O(n(dW)^4(2d+1)^{2dW})$ algorithm essentially is the best one can hope for. In fact, our next result rules out not only any possibility of having an algorithm with running time of the form $g(d) \cdot n^{O(1)}$, but also any algorithm with running time $(nW)^{h(d)}$, where h only depends on d. More precisely, in Section 3 we prove the following theorem. **Theorem 1.2.** Deciding whether a weighted graph G metric M(G) can be embedded into the line with distortion at most d is NP-Complete for every fixed rational $d \geq 2$. The problem remains NP-Complete even when the maximum weight of an edge in G is at most |V(G)|. Another direction for generalizing Theorem 1.1 is to look for other simple topologies or host metrics for which an analogous result to Theorem 1.1 holds. Kenyon et al. [12] provided FPT algorithms for the bijective embedding of unweighted graph metrics into the metric of a tree with bounded maximum degree Δ . The running time of their algorithm is $n^2 \cdot 2^{\Delta^{\alpha^3}}$ where α is the maximum of c_f and e_f . An important point, observed in [2], is that constraining the embedding to be bijective (not just injective, as in our case) is crucial for the correctness of the algorithms from [12]. In Section 4, we complement the FPT result of Kenyon, Rabani and Sinclair [12] by extending
our techniques to give an algorithm for the problem of embedding unweighted graph metrics into a metric generated by a tree with maximum degree bounded by Δ , parameterized by distortion d and Δ . **Theorem 1.3.** Given an unweighted n-vertex graph G, a tree T with maximum degree Δ , and an integer d > 0, it is possible to embed M(G) into M(T) with distortion at most d in time $n^2 \cdot |V(T)| \cdot 2^{O((5d)^{\Delta^{d+1}} \cdot d)}$, or to conclude correctly that no such embedding exists. Why stop at bounded degree trees? Can our results be extended to yield FPT algorithms for low distortion embeddings into other, more complicated topologies? At a first glance, this seems to be the case. However, even a simple change in the topology of the host metric can change the behavior of the problem, or even make the problem completely intractable. For embedding into the line it is enough to control the local properties of the embedding whereas this is not sufficient for embedding into bounded degree trees. The techniques we use to cope with these difficulties do not look to be extendable to the problem of finding low-distortion embeddings into cycles, an interesting open problem that seems to exhibit even more non-locality than that of embedding into bounded degree trees. A more dramatic example is that of low-distortion embeddings of unweighted graph metrics into wheels (cycle with one additional vertex adjacent to all the vertices of a cycle). In fact, it turns out that deciding whether one can embed an unweighted graph metric into a wheel with distortion at most 2 is NP-complete, by a simple reduction from the Hamiltonian Cycle problem. Thus, the problems of embedding an unweighted graph metric into cycles and trees of unbounded degree remain interesting open problems. ### 2 Algorithms for embedding graph metrics into the line #### 2.1 Unweighted graph metrics into the line In this section we give an algorithm for embedding unweighted graph metrics into the line. We slightly abuse the terminology here by saying *embedding* of a graph G instead of embedding of the unweighted graph metric M(G) of G. Before we proceed to the details of the algorithm we need a few observations that allow us to only consider a specific kind of embeddings. For a non-contracting embedding f of a graph G into the line, we say that vertex u pushes vertex v if D(u, v) = |f(u) - f(v)|. **Observation 2.1.** If f(u) < f(v) < f(w) and u pushes w, then u pushes v and v pushes w. Proof. By the triangle inequality, $D(u, w) \leq D(u, v) + D(v, w)$. Since u pushes w and because f is non-contracting, we have that $D(u, w) = f(w) - f(u) = (f(w) - f(v)) + (f(v) - f(u)) \geq D(u, v) + D(v, w) \geq D(u, w)$. Since f is a non-contracting embedding we have that $f(w) - f(v) \geq D(v, w)$ and $f(v) - f(u) \geq D(u, v)$. This implies that f(w) - f(v) = D(v, w) and f(v) - f(u) = D(u, v), otherwise it will contradict to the fact that $D(u, w) \leq D(u, v) + D(v, w)$. For an embedding f, let v_1, v_2, \ldots, v_n be an ordering of the vertices such that $f(v_1) < f(v_2) < \cdots < f(v_n)$. We say that f is pushing if v_i pushes v_{i+1} , for each $1 \le i \le n-1$. **Observation 2.2.** If G can be embedded into the line with distortion d, then there is a pushing embedding of G into the line with distortion d. Furthermore, every pushing embedding of G into the line is non-contracting. *Proof.* Among all embeddings of G into the line with distortion d, let us choose f such that $$\sum_{2 \le i \le n} |f(v_i) - f(v_{i-1})| \text{ is minimized.}$$ We claim that f is pushing. Indeed, if f is not pushing, then there is a minimum integer $q \geq 1$ such that v_q does not push v_{q+1} . By Observation 2.1, for every $p \leq q$ and $r \geq q+1$, $D(v_p, v_r) > f(v_r) - f(v_p)$. But then embedding f', $f'(v_i) = f(v_i)$ for $i \leq q$ and $f'(v_i) = f(v_i) - 1$ for i > q, is a non-contracting embedding of distortion d, which is a contradiction to the choice of f. To prove that every pushing embedding of G into the line is non-contracting, we observe that for each $b > a \ge 1$, $f(v_b) - f(v_a) = \sum_{i=a+1}^b f(v_i) - f(v_{i-1}) = \sum_{i=a+1}^b D(v_i, v_{i-1}) \ge D(v_a, v_b)$. \square **Observation 2.3.** Let f be a pushing embedding of a connected graph G into the line with distortion at most d. Then $D(v_{i-1}, v_i) \leq d$ for every $1 \leq i \leq n$. *Proof.* Suppose for contradiction that $D(v_{i-1}, v_i) > d$ for some i. As the endpoints of any edge can be mapped at most d apart, this implies that G is disconnected. By Observation 2.2, it is sufficient to work only with pushing embeddings. Our algorithm is based on dynamic programming over small intervals of the line. The intuition behind the algorithm is as follows. Let us consider a distortion d embedding of G into the line and an interval of length 2d+1 of the line. First, observe that no edge can have one end-point to the left of this interval and one end-point to the right. This means that if there is a vertex u embedded to the left of this interval and another vertex v that has been embedded to the right, then the set of vertices embedded into the interval form an u, v-separator. Moreover, for each edge, its end-points can be mapped at most d apart, and hence there is no edge with one end-point to the left of this interval and the other end-point in the rightmost part of this interval. Thus just by looking at the vertices mapped into an interval of length 2d+1, we deduce which of the remaining vertices of G were mapped to the left and which were mapped to the right of this interval. This is a natural division of the problem into independent subproblems and the solutions to these subproblems can be used to find an embedding of G. Next we formalize this intuition by defining partial embeddings and showing how they are glued onto each other to form a distortion d embedding of the input graph. It is well known (and it follows from Observation 2.2) that there always exists an optimal embedding with all the vertices embedded into *integer coordinates* of the line. Without loss of generality, in the rest of this section we only consider pushing embeddings of this type. In the remaining part of the paper we always assume that our input graph G is connected. **Definition 2.4.** For a graph G and a subset $S \subseteq V(G)$, a partial embedding of S is a function $f: S \to \{-(d+1), \ldots, d+1\}$. We define $S_f^{[a,b]}$, $-(d+1) \le a \le b \le d+1$, to be the set of all vertices of S which are mapped into $\{a,\ldots,b\}$ by f (let us remark that this can be \emptyset). We also define $S_f^L = S_f^{[-(d+1),-1]}$ and $S_f^R = S_f^{[1,d+1]}$. For an integer x, $-(d+1) \le x \le d+1$, we put $S_f^x = S_f^{[x,x]}$. Finally, we put L(f) (R(f)) to denote the union of the vertex sets of all connected components of $G \setminus S$ that have neighbors in S_f^L (S_f^R). **Definition 2.5.** A partial embedding f of a subset $S \subseteq V(G)$ is called **feasible** if - 1. f is a non-contracting distortion d embedding of S; - 2. $L(f) \cap R(f) = \emptyset$; - 3. every neighbor of S_f^0 is in S; - 4. If $R(f) = \emptyset$, then S_f^{d+1} is nonempty; - 5. If $L(f) = \emptyset$, then $S_f^{-(d+1)}$ is nonempty; - 6. For every $u, v \in S$, if f(u) + 1 < f(v) and $S_f^{[f(u)+1,f(v)-1]} = \emptyset$, then f(v) f(u) = D(u,v). (In other words, u pushes v.) The properties 1, 2, and 3 of this definition will be used to show that every distortion d embedding of G into the line can be described as a sequence of feasible partial embeddings that have been glued onto each other. Properties 4, 5 and 6 are helpful to bound the number of feasible partial embeddings. **Definition 2.6.** Let f and g be feasible partial embeddings of a graph G, with domains S_f and S_q , respectively. We say that g succeeds f if ``` 1. S_f^{[-d,d+1]} = S_g^{[-(d+1),d]} = S_f \cap S_g; 2. for every u \in S_f \cap S_g, f(u) = g(u) + 1; 3. S_g^{d+1} \subseteq R(f); 4. S_f^{-(d+1)} \subseteq L(g). ``` The properties 1 and 2 describe how one can glue a partial embedding g that has been shifted one to the right onto another partial embedding f. Properties 3 and 4 are employed to enforce "intuitive" behavior of the sets L(f), R(f), L(g) and R(g). That is, since g is glued on the right side of f, everything to the right of g should appear in the right side of f. Similarly, everything to the left of f should be to the left of g. **Lemma 2.7.** For every pair of feasible partial embeddings f and g of subsets S_f and S_g of V(G) such that g succeeds f, we have $R(f) = R(g) \cup S_g^{d+1}$ and $L(g) = L(f) \cup S_f^{-(d+1)}$. Proof. Let us prove that $R(f) = R(g) \cup S_g^{d+1}$. (The proof of $L(g) = L(f) \cup S_f^{-(d+1)}$ is similar.) Because g succeeds f, we have that $S_g^{d+1} \subseteq R(f)$. Let C be the vertex set of a connected component of $G \setminus S_g$ such that $C \subseteq R(g)$. Because $S_f^{-(d+1)} \subseteq L(g)$, the subgraph G[C] induced by C is a connected component of $G \setminus (S_f \cup S_g)$. If C contains a neighbor of S_g^{d+1} , then $C \subseteq R(f)$ (this is because $S_g^{d+1} \subseteq R(f)$ and C and S_g^{d+1} are in the same connected component of $G \setminus S_f$). On the other hand, if C contains no neighbor of $S_g^{(d+1)}$, then, as $C \subseteq R(g)$, C has a neighbor in $S_g^{(1,d)} \subseteq S_f^R$. Therefore $C \subseteq R(f)$, which in turn implies that $R(g) \subseteq R(f)$. Thus, we have proved that $R(g) \cup S_g^{d+1} \subseteq R(f)$. Let us now show that $R(f) \subseteq R(g) \cup S_g^{d+1}$. Let C be the vertex set of a connected component of $G \setminus S_f$ such that $C \subseteq R(f)$. C contains no neighbors of $S_f^{-(d+1)}$ thus C is a connected component of $G \setminus S_g^{(-(d+1),d)}$. If C does not contain S_g^{d+1} , then C is a connected component of $G \setminus S_g$. Furthermore, as $C \subseteq
R(f)$, C has a neighbor in $S_f^{(1,d+1)} \subseteq S_g^{(0,d)}$. As S_g^0 has no neighbors outside of S_g , C has a neighbor in S_g^R implying $C \subseteq R(g)$. On the other hand, if C contains S_g^{d+1} , then every connected component C' of $G[C] \setminus S_g^{d+1}$ is a connected component of $G \setminus S_g$ that has a neighbor in $S_g^{d+1} \subseteq S_g^R$. This concludes the proof that $R(f) \subseteq R(g) \cup S_g^d$, implying $R(f) = R(g) \cup S_g^{d+1}$. **Lemma 2.8.** For every integer d, a graph G has an embedding of distortion at most d if and only if there exists a sequence of feasible partial embeddings $f_0, f_1, f_2, \ldots, f_t$ such that for each $0 \le i \le t-1$, f_{i+1} succeeds f_i , and $L(f_0) = R(f_t) = \emptyset$. Proof. Let f be a pushing embedding of G with distortion d which maps all vertices to integers greater than or equal to -(d+1) and maps one vertex to -(d+1). Let t be the smallest integer such that $f(v) \le t + d + 1$ for every $v \in V(G)$. For every $0 \le i \le t$, let S_i be the set of vertices that f maps to $\{i - (d+1), \ldots, i + d + 1\}$. We define $f_i : S_i \to \{-(d+1), \ldots, d+1\}$ to be $f_i(v) = f(v) - i$, $v \in S_i$. Then for every $i \le t - 1$, f_i is a feasible partial embedding, f_{i+1} succeeds f_i , and $L(f_0) = R(f_t) = \emptyset$. In the other direction, let $f_0, f_1, f_2, \ldots, f_t$ be a sequence of feasible partial embeddings such that for each i, f_{i+1} succeeds f_i and $L(f_0) = R(f_t) = \emptyset$. Let S_i be the domain of f_i . First we show that for every vertex v there is an index i such that $v \in S_i$. If $v \notin S_0$, then $v \in R(f_0)$. Let k be the largest integer such that $v \in R(f_k)$. Because $R(f_t) = \emptyset$, we have that k < t. Thus, $v \in R(f_k) \setminus R(f_{k+1})$. By Lemma 2.7, $R(f_k) \setminus R(f_{k+1}) \subseteq S_{f_{k+1}}^{d+1}$ which implies that $v \in S_{k+1}$. We claim that for every $v \in S_i \cap S_j$, $f_i(v) + i = f_j(v) + j$. Indeed, let k be the smallest integer such that $v \in S_k$. Let $k' = \min\{t, f_k(v) + k + d + 1\}$. For every i and j, such that $k \leq i, j \leq k'$, we have $f_i(v) + i = f_j(v) + j$. Furthermore, if k' < t, then $v \in L(f_{k'+1})$ and thus by Lemma 2.7, $v \in L(f_{k''})$ for every $k' < k'' \leq t$. Since k is the smallest integer such that $v \in S_k$, we have that if $v \in S_i \cap S_j$, then $f_i(v) + i = f_j(v) + j$. From the previous two paragraphs, we conclude that there is a function f such that for every $v \in S_i$, $f(v) = f_i(v) + i$. It remains to prove that f is a distortion d embedding of G into the line. We say that a pair of vertices u and v are in conflict if either |f(u) - f(v)| < D(u, v), or if $|f(u) - f(v)| > d \cdot D(u, v)$. Let us note that if no pair of vertices are in conflict, then f is a distortion d embedding of G. We prove that no two vertices in $S_i \cup L(f_i)$ are in conflict by induction on i. For i = 0 this is true as f_0 is a feasible partial embedding. Assume now that the statement is true for every i < k. If $S_{f_k}^{d+1}$ is empty, then the statement trivially holds for k. Otherwise, for some vertex v, $S_{f_k}^{d+1} = \{v\}$. To complete the proof, it is sufficient to show that v is not in conflict with any other vertex u in $S_k \cup L(f_k)$. If u is in S_k , u and v are not in conflict because f_k is a feasible partial embedding. If u is not in S_k , then u is in $L(f_k)$ and every shortest path from u to v in G must contain a vertex $w \in S_k^L$. Since $f(u) \leq f(w) \leq f(v)$, we have that $|f(v) - f(u)| = f(v) - f(w) + f(w) - f(u) \geq D(v, w) + D(w, u) = D(v, u)$. Therefore, $|f(v) - f(u)| = f(v) - f(w) + f(w) - f(u) \leq d \cdot D(v, w) + d \cdot D(w, u) = d \cdot D(v, u)$. Thus no pair of vertices in $S_i \cup L(f_i)$ are in conflict for every $i \leq t$. However, for i = t, $S_i \cup L(f_i) = V(G)$ and we conclude that no pair of vertices are in conflict. For a vertex v of a graph G and integer $r \geq 0$, we denote the ball of radius r centered at v, which is the set of vertices at distance at most r in G, by B(v,r). The local density of a graph G is $\delta = \max_{v \in V(G), r > 0} \frac{|B(v,r)-1|}{2r}$. We will apply the following well known lower bound on distortion. **Lemma 2.9** ([1]). [Local Density] Let G be a graph that can be embedded into the line with distortion d. Then d is at least the local density δ of G. Applying Lemma 2.9 we can bound the number of possible feasible partial embeddings. Observe that each feasible partial embedding f can be represented as a number $1 \le t \le d$ and a sequence of vertices $v_0v_1 \dots v_q$ such that $t + \sum_{i=1}^q D(v_{i-1}, v_i) \le 2d + 1$ and $D(v_{i-1}, v_i) \le d$ for every $i \ge 1$. This is done by simply saying that the domain S of f is the set $\{v_0, v_1, \dots, v_q\}$ and that $f(v_a) = -(d+1) + t + \sum_{i=1}^a D(v_{i-1}, v_i)$. For $x \ge 0$ and $v_0 \in V(G)$, let $\mathcal{N}(x, v_0)$ be the number of sequences $v_0v_1 \dots v_q$ such that $\sum_{i=1}^q D(v_{i-1}, v_i) = x$. We define $\mathcal{N}(x)$ as the maximum over all numbers $\mathcal{N}(x, v_0)$, $v_0 \in V(G)$. For any negative number $x, \mathcal{N}(x) = 0$. **Lemma 2.10.** For $x \in \mathbb{Z}$, $\mathcal{N}(x) \leq (2d+1)^x$. Proof. We prove Lemma by induction on x. For $x \leq 0$, the statement is trivially true. Suppose that the inequality holds for every x' < x. For a vertex v_0 , let \mathcal{S} be the set of all vertex sequences $v_0v_1\dots v_q$ starting with v_0 with the property that $\sum_{i=1}^q D(v_{i-1},v_i)=x$. For $i\in\{1,\dots,x\}$, let \mathcal{S}_i be the set of sequences in \mathcal{S} such that $D(v_0,v_1)=i$. Let $C(v_0,i)=|B(v_0,i)\setminus B(v_0,i-1)|$. Then $|\mathcal{S}_i|\leq C(v_0,i)\cdot \mathcal{N}(x-i)$ and $|\mathcal{S}|=\sum_{i=1}^x |\mathcal{S}_i|\leq \sum_{i=1}^x C(v_0,i)\cdot \mathcal{N}(x-i)$. By the induction assumption, $\sum_{i=1}^x C(v_0,i)\cdot \mathcal{N}(x-i)\leq \sum_{i=1}^x C(v_0,i)\cdot (2d+1)^{x-i}$. Furthermore, by Lemma 2.9, we have that $\sum_{j=1}^{i} C(v_0, i) \leq 2di$ for every i. Because $(2d+1)^y$ is a convex function of y, it follows that the sum $\sum_{i=1}^{x} C(v_0, i) \cdot (2d+1)^{x-i}$ subject to the constraints $\sum_{j=1}^{i} C(v_0, j) \leq 2di$, $1 \leq i \leq x$, is maximized when each of $C(v_0, i) = 2d$. In this case $\sum_{i=1}^{x} C(v_0, i) \cdot (2d+1)^{x-i} \leq 2d \cdot \sum_{i=1}^{x} (2d+1)^{x-i}$ which is a geometric sequence with sum upper bounded by $2d \cdot (2d+1)^x \cdot \sum_{i=1}^{\infty} (2d+1)^{-i} = (2d+1)^x$. Since this holds for each choice of v_0 , the inequality holds also for x. **Corollary 2.11.** For a graph G with local density at most d the number of possible feasible partial embeddings of subsets of V(G) is at most $O(n(2d+1)^{2d})$. Proof. By discussions preceding Lemma 2.10, for each fixed first vertex v_0 and each value of t, there are at most $\mathcal{N}(2d+1-t)$ feasible partial embeddings that map v_0 to -(d+1)+t Thus the number of feasible partial embeddings is at most $\sum_{t=1}^{d} n \mathcal{N}(2d+1-t)$. By Lemma 2.10, this is at most $n \cdot \sum_{t=1}^{d} (2d+1)^{2d+1-t} \leq \frac{3}{2}n(2d+1)^{2d}$. Now we are in the position to prove Theorem 1.1. *Proof.* [of Theorem 1.1] The algorithm proceeds as follows. First, check whether G has local density δ bounded by d. Checking the local density of G can be done in time linear in n because if $|E(G)| \ge nd$ we can immediately answer "no". If $\delta > d$, answer "no". Otherwise, we can test whether the conditions of Lemma 2.8 apply. That is, we construct a directed graph \mathcal{D} where the vertices are feasible partial embeddings and there is an edge from a partial embedding f_x to a partial embedding f_y if f_y succeeds f_x . Checking the conditions of Lemma 2.8, reduces to checking for the existence of a directed path starting in a feasible partial embedding f_0 with $L(f_0) = \emptyset$ and ending in a feasible partial embedding f_t with $R(f_t) = \emptyset$. This can be done in linear time in the size of \mathcal{D} by running a depth first search in \mathcal{D} . The number of vertices in \mathcal{D} is at most $O(n(2d+1)^{2d})$. Every vertex of \mathcal{D} has at most $O(d^2)$ edges going out of it, as a feasible partial embedding f_y succeeding another feasible partial embedding f_x is completely determined by f_x together with the vertex that f_y maps to d+1 (or the fact that f_y does not map anything there). Using prefix-tree-like data structures one can test whether a given partial embedding f_x succeeds another in $O(d^2)$ time. The total running time is then bounded by $O(nd^4(2d+1)^{2d})$. #### 2.2 Weighted graph metrics into the line parameterized by d and W In this section we show how the algorithm of Theorem 1.1 can be generalized to handle metrics generated by weighted graphs. More precisely, let G be a graph with weight function $w: E(G) \to \mathbb{Z}^+ \setminus \{0\}$ and M = (V(G), D) be the weighted shortest path distance metric of G. Now we give an outline of an algorithm for embedding M into the line, parameterized by the distortion d and the maximum edge weight W, that is, $W = \max_{e \in E(G)} \{w(e)\}$. The definition of a pushing embedding and Observations 2.1 and 2.2 work out even when G is a weighted graph. Once we define the notion of partial embeddings, other notions like feasibility and succession are adapted in an obvious way. Given a graph G and a subset $S \subseteq V(G)$, a partial embedding of S is a function $f: S \to \{-(dW+1), \ldots, (dW+1)\}$. We can prove results analogous to Lemma 2.7 and Lemma 2.8 with the new definitions of partial embeddings, feasibility and succession. Thus, we can give an algorithm for this problem similar to the algorithm presented in Theorem 1.1. The runtime of
this algorithm is dominated by the number of different feasible partial embeddings. Let $B_w(v, r)$ denote the set of vertices at weighted distance at most r from v and δ_w be the analogous notion of weighted local density of a graph G. It is easy to see that if M can be embedded into the line with distortion at most d then $d \geq \delta_w$. This result immediately upper bounds the number of feasible partial embeddings by $n \cdot (dW)^{O(dW)}$. In what follows next we show that the number of feasible partial embeddings actually is bounded by $n \cdot (2d+1)^{2dW}$. Let $\mathcal{N}(x)$ be as in Lemma 2.10. For each fixed first vertex v_0 in the partial embedding, and each value of $1 \leq t \leq (2dW+1)$, there are at most $\mathcal{N}(2dW+1-t)$ feasible partial embeddings that map v_0 to -(dW+1)+t. Thus the number of feasible partial embeddings is at most $\sum_{t=1}^{dW} n \cdot \mathcal{N}(2dW+1-t)$. By Lemma 2.10, this is at most $n \cdot \sum_{t=1}^{dW} (2d+1)^{2dW+1-t} \leq \frac{3}{2} n(2d+1)^{2dW}$. **Theorem 2.12.** Given a weighted graph G with maximum edge weight W, it is possible in time $O(n(dW)^4(2d+1)^{2dW})$ to embed M(G) into the real line with distortion at most d, or to conclude correctly that no such embedding exists. ### 3 Graph metrics into the line is hard for fixed rational $d \ge 2$ We complement Theorem 2.12 by proving that deciding whether a given weighted graph metric can be embedded into the line with distortion at most d is NP-complete for every fixed rational $d \geq 2$. Our reduction is from 3-Coloring, one of the classical NP-complete problems. For input G to 3-Coloring we construct an edge weighted graph G'. For an edge $uv \in E(G')$, w(uv) will be the weight if the edge uv. The weighted shortest path metric M(G') will then be the input to our embedding problem. Let n = |V(G)|, m = |E(G)| and $d = \frac{a}{b} \ge 2$ for some integers a and b. Let e_1, e_2, \ldots, e_m be an ordering of the edges of G, and choose the integers g = 5a - 1, r = 10b, q = m(2n + 1), L = 10qb and t = abL + 1. We start constructing G'by making two cliques C_1 and C_2 of size t. Let $C_1 = \{c_1, c_2, \dots, c_t\}$ and $C_2 = \{c'_1, c'_2, \dots, c'_t\}$. Let $w(c_i c_j) = w(c'_i c'_j) = \lceil |i-j|/d \rceil$. Now, we make q-1 separator vertices and label them s_1, \ldots, s_{q-1} . We make q gadgets T_1, \ldots, T_q encoding the edges of G. For every edge $e_i = uv$ there are 2n+1 gadgets, namely T_{i+mp} for every $0 \le p < 2n+1$. Each such gadget, say T_{i+mp} , consists of three vertices, one vertex corresponding to u, one vertex corresponding to v and one vertex corresponding to e_i . These three vertices form a triangle with edges of weight 1. For every j between 1 and q we connect all vertices of T_i to s_{i-1} and s_i with edges of weight g. Whenever this implies that we need to connect something to the non-existing vertices s_0 and s_q we connect to c_t and c'_1 respectively. Now, for every pair of vertices $x \in T_i$ and $y \in T_j$ that correspond to the same vertex or edge of G we add an edge of weight r|i-j| between x and y. Finally, we add an edge with weight L between c_t and c'_1 . This concludes the construction of G'. Figure 1 shows the general structure of the construction. The next lemma essentially shows that if there is an edge $uv \in E(G')$ then that is the shortest weight path between u and v in G'. **Lemma 3.1.** For every edge uv in E(G'), $D_{G'}(u, v) = w(uv)$. *Proof.* Clearly, $D_{G'}(u,v) \leq w(uv)$ for every edge uv, so it is sufficient to prove $D_{G'}(u,v) \geq w(uv)$. If w(uv) = 1 then $D_{G'}(u,v) \geq w(uv)$, so suppose w(uv) > 1. In this case uv either has - both endpoints in C_1 or C_2 , or - is the edge $c_t c'_1$, or - is an edge from c_t to a vertex in T_1 , or Figure 1: The figure shows the overall structure of the construction. The numbers appearing between C_1 and C_2 indicate edge weights. - an edge from c'_1 to a vertex in T_q , or - an edge incident to a separator vertex or - an edge between a vertex in a gadget T_i and a vertex in a gadget T_j . If both u and v lie inside C_1 every shortest u-v path lies entirely within C_1 . For every w in C_1 we have that $w(u,v) \leq w(u,w) + w(w,v)$ so $w(uv) \leq D_{G'}(u,v)$. Similarly, if both u and v lie inside C_2 then $w(uv) \leq D_{G'}(u,v)$. If uv is incident to a separator vertex then w(uv) = g and $D_{G'}(uv) \geq g$ because every separator vertex is only incident to edges with weight g. If uv is an edge from c_t to a vertex in T_1 or an edge from c_1' to a vertex in T_q then w(uv) = g and $D_{G'}(uv) \geq g$ because every edge with one endpoint inside $C_1 \cup C_2$ and one endpoint outside of $C_1 \cup C_2$ has weight exactly g. Now, if uv is an edge between a vertex in a gadget T_i and a vertex in a gadget T_j , w(uv) = r|i-j|. Observe that a path from u to v with length smaller than r|i-j| can never use the edge c_tc_1' and thus will never visit the set $C_1 \cup C_2$. We prove that the distance between u and v is at least r|i-j| by induction on |i-j|. If |i-j|=1 then any path containing an edge with one endpoint in $T_{i'}$ and another in $T_{j'}$ with $i' \neq j'$ will have length at least r. Any path from u to v that does not contain any such edges must contain at least one separator vertex as an in intermediate vertex and thus have length at least 2g = 20a - 2 > 10b = r. We now suppose that the induction hypothesis is true whenever |i-j| < z and show that it also must hold when |i-j| = z. If a path P from u to v contains a vertex u' from a gadget $T_{i'}$ with $i' \neq i$, $i' \neq j$ and |i'-i|+|j-i'|=|i-j| then the induction hypothesis implies that the length of P is at least |i'-i|r+|j-i'|r=|i-j|r. If P contains no such vertices as intermediate vertices then P must contain at least one edge with one endpoint in $T_{i'}$ and another in $T_{j'}$ such that $|i'-j'| \geq |i-j|$. In this case the length of P is at least $|i'-j'|r \geq |i-j|r$, concluding the proof that the distance between a vertex u in a gadget T_i and a vertex v in a gadget T_j is at least r|i-j|. It remains to show that $D_{G'}(c_tc'_1) > L$. If a shortest path P from c_t to c'_1 avoids the edge $c_tc'_1$, the first vertex in P after c_t must be a vertex u in T_1 , and the last vertex in P before c'_1 must be a vertex v in T_q . Thus, by the discussion in the previous paragraph, the length of P is at least $2g + (q-1)r \ge qr = 10qb = L$, concluding the proof. **Lemma 3.2.** If G is 3-colorable then there is an embedding f of M(G') into the line with distortion at most d. *Proof.* Let $\psi: V(G) \to \{1,2,3\}$ be a proper 3-coloring of the vertices of G. We extend ψ to also color the edges, by defining $\psi(uv) = \{1,2,3\} \setminus \{\psi(u),\psi(v)\}$ for every edge $uv \in E(G)$, that is every edge gets a color different from its two endpoints. We give an ordering of the vertices of G', and the embedding f of G' into the line is the pushing embedding imposed by this ordering. We order the vertices of G' as follows: $C_1, T_1, s_1, T_2, s_2, \ldots, T_q, C_2$. Here, the vertices inside C_1 and C_2 are ordered like $\{c_1, \ldots, c_t\}$ and $\{c'_1, \ldots, c'_t\}$ respectively and the vertices inside each gadget T_i are ordered by color. That is, if T_i corresponds to an edge e = uv and contains the vertices u', v' and e' corresponding to u, v and e respectively, we sort u, v and e in increasing order by ψ and use the corresponding order imposed by this for the vertices in T_i . Observation 2.2 implies that the pushing embedding f is non-contracting. Thus, it suffices to show that the expansion of f is at most d. Because of Lemma 3.1 it suffices to show that $|f(u) - f(v)| \le w(uv)d$ for every edge $uv \in E'$. For edges with both endpoints in C_1 or both endpoints in C_2 this inequality holds. For an edge uv between a separator vertex and a vertex in a gadget T_i we have $|f(u) - f(v)| \le g + 2 \le dg = dw(uv)$. For an edge uv between two vertices in the same gadget T_i we have $|f(u) - f(v)| \le 2 \le dw(uv)$. Now, for the edge $c_tc'_1$, $|f(c'_1) - f(c_t)| = (2g + 2)q = 10aq = 10qba/b = Ld = w(c_tc'_1)d$. Similarly, any edge uv with one endpoint in T_i and the other in T_j for $i \ne j$ has the property that u and v correspond to the same vertex (or edge) of G and thus are given the same color by ψ . Hence $|f(c'_1) - f(c_t)| = (2g + 2)|i - j| = 10a|i - j| = 10b|i - j|a/b = r|i - j|d = w(uv)d$. As all edges of G' now are accounted for, this means that the expansion of f is at most d. **Lemma 3.3.** If there is an embedding f of M(G') into the line with distortion at most d then G is 3-colorable. Proof. Without loss of generality, we assume that f is a pushing embedding (Observation 2.2). Let σ be the ordering of the vertices of G imposed by f. Now we describe the structure of the ordering σ . Towards this, we first prove that σ orders the vertices of the clique C_1 consecutively. That is, if u and v are the leftmost and the rightmost vertex of C_1 with respect to the ordering σ , then there is no vertex w in $V(G') \setminus C_1$ such that f(u) < f(w) < f(v). We know that $|f(u) - f(v)| \ge |C_1| - 1$. However $c_1 c_t$ is the only edge in C_1 satisfying $|f(u) - f(v)| \le w(uv)d$. Furthermore $w(c_1c_t)d = |C_1| - 1$ and hence σ must order the vertices of C_1 consecutively with c_1 and c_t as its endpoints. Similarly σ must order the vertices of C_2 consecutively with c_1' and c_2' as its endpoints. Also, without loss of generality we can assume that C_1 appears before C_2 in our ordering, because if C_2 appears first we can reverse our ordering. Now, if c_t is the leftmost vertex of C_1 or c_1' is the rightmost vertex of C_2 then the edge c_1c_1' is stretched by a
factor more than d, as t > Ld. Thus, c_t is the rightmost endpoint of C_1 and c_2' is the leftmost endpoint of c_2 . Now, every vertex not in c_1 or c_2 has to appear in between c_1 and c_2 because no edge with at least one endpoint outside of $c_1 \cup c_2$ is long enough to stretch over the entire expanse of c_1 or c_2 . Next, we prove that σ orders the vertices as follows $C_1, T_1, s_1, T_2, s_2, T_3, \ldots, T_q, C_2$. To show this, we introduce the notion of gaps. A gap between two vertices u and v appearing consecutively in σ is simply the interval [f(u), f(v)] on the real line. We say that a gap is incident to a vertex u if the vertex u is one of the endpoints of the gap. The size of the gap is |f(u)-f(v)|. In the layout, there are 4q-1 vertices and 4q gaps that appear between c_t and c'_1 . In the following discussion we will treat c_t and c'_1 as separator vertices. Each gap that is incident to two separator vertices, one separator vertex and no separator vertex has size at least 2g, g and 1 respectively. Let x_0 , x_1 and x_2 be the number of gaps incident to 0, 1 and 2 separator vertices respectively. Then $|f(c_t) - f(c'_1)| \ge 2gx_2 + gx_1 + x_0$ and $x_0 = 4q - x_2 - x_1$. Furthermore each separator vertex (except c_t and c'_1) is incident to exactly two gaps, while c_t and c'_1 are incident to exactly one gap each among the gaps between c_t and c'_1 . Therefore we have that $x_1 + 2x_2 = 2q$. Substituting $x_1 = 2q - 2x_2$, we get $x_0 = 2q + x_2$ and $|f(c_t) - f(c'_1)| \ge 2gq + x_0$. Hence, if $x_2 > 0$ we have $|f(c_t) - f(c'_1)| > 2gq + 2q = 2(5a - 1)q + 2q = 10aq = 10aqb/b = 10qbd = 10Ld = w(c_tc'_1)d$, contradicting that the expansion of f is at most d. Thus, $x_2 = 0$, $x_1 = x_0 = 2q$ and hence $|f(c_t) - f(c'_1)| \ge 2gq + 2q = w(c_tc'_1)d$. Also, if any gap not incident to any separator vertices has size more than 1, or if any of the gaps incident to a separator vertex have size more than g then $|f(c_t) - f(c'_1)| > 2gq + 2q = w(c_tc'_1)d$, again contradicting that the expansion of g is at most g. Finally note that g > d and hence no edge with weight one can ever be stretched over a gap of size g. Since the only edges of weight 1 in g' are within a gadget g and every edge incident to a separator vertex has weight g, we have that g must order the vertices in the aforementioned order g. This concludes the description of ordering g. For a vertex v in V(G), if there is a vertex v' in a gadget T_i corresponding to v, we look at the position that v' is assigned by σ compared to the other vertices of T_i . If the relative position of v' given by σ with respect to other vertices of T_i is $k \in \{1,2,3\}$, then we say that the color of v in the gadget T_i is k and denote it by $\chi(v,i)$. In all of these cases we say that v has a color in T_i . We prove that for any i,j with i < j and vertex $v \in V(G)$ such that v has a color in both T_i and T_j then $\chi(v,j) \leq \chi(v,i)$. Suppose this is not the case, and let u' and v' be the vertices corresponding to v in gadgets T_i and T_j such that $\chi(v,j) > \chi(v,i)$. Then we know that |f(v') - f(u')| > (2g+2)|j-i| = (2(5a-1)+2)|j-i| = 10a|j-i|b/b = 10b|j-i|d = r|j-i|d.However since both u' and v' correspond to v there is an edge of weight r|j-i| between u and v which is stretched more than d by the embedding. Thus we obtain a contradiction which allows us to conclude that $\chi(v,j) \leq \chi(v,i)$. Notice that since a vertex (in a gadget) can have one of three different colors this implies that as we scan the gadgets from T_1 to T_q the color of a vertex can change at most twice. Thus, there must be some $0 \le p < 2n + 1$ such that every vertex of G has the same color in all the gadgets it appears in among T_{1+mp} to $T_{m(p+1)}$. Notice that every vertex and every edge of G has a color in at least one of these gadgets. We can now make a coloring ψ of the vertices of G. For every vertex $v \in V(G)$, we look at the gadget T_i , $1 + mp \le i \le m(p+1)$, such that there is a vertex corresponding to $v \in T_i$ and assign $\psi(v) = \chi(v,i)$. All that remains to prove is that ψ is a proper coloring. For every edge $uv \in E(G)$ there is an i between 1 + mp and m(p+1) such that the edge uv has a color in T_i . Then both u and v have colors in T_i and their colors in T_i must be different. Since $\psi(u)$ is equal to u's color in T_i and $\psi(v)$ is equal to v's color in T_i this implies $\psi(u) \neq \psi(v)$ concluding the proof. Together with the construction of G' from G, Lemmata 3.2 and 3.3 imply Theorem 1.2. ### 4 Embedding graphs into trees of bounded degree In this section we give a fixed parameter tractable algorithm for embedding unweighted graph metrics into trees of bounded degree. More precisely, given a graph G with shortest path metric D_G and a tree T with maximum degree Δ , having shortest path metric D_T , we give an algorithm that decides whether G can be embedded into T with distortion at most d in time $n^2 \cdot |V(T)| \cdot 2^{O((5d)^{\Delta^{d+1}} \cdot d)}$. We assume that the tree T is rooted, and we will refer to the root of T as r(T). For a vertex v in the tree, T_v is the subtree of T rooted at v, and C(v) is the set of v's children. Finally, for an edge uv of T, let $T_u(uv)$ and $T_v(uv)$ be the tree of $T \setminus uv$ that contains u and v respectively. Notice that if u is the parent of v in the tree, then $T_v(uv) = T_v$ and $T_u(uv) = T \setminus V(T_v)$. As in the previous section, we need to define feasible partial embeddings together with the notion of succession. For a vertex $u \in V(T)$ and a subset S of V(G), a u-partial embedding is a function $f_u: S \to B(u, d+1)$. To proceed with the proof of Theorem 1.3, we need a number of auxiliary results and definitions. **Definition 4.1.** For a u-partial embedding f_u of a subset $S \subseteq V(G)$ and a vertex $v \in N(u)$ we define $S[v, f_u] = \{x \in S : f_u(x) \in V(T_v(uv))\}$. Given two integers i and j, $0 \le i \le j \le k$, let $S^{[i,j]}[f_u] = \{x \in S : i \le D_T(f_u(x), u) \le j\}$. Finally, let $S^{[i,j]}[v, f_u] = S^{[i,j]}[f_u] \cap S[v, f_u]$, $S^k[v, f_u] = S^{[k,k]}[v, f_u]$ for $k \ge 1$ and $S^0[f_u] = S^{[0,0]}[f_u]$. **Definition 4.2.** For a u-partial embedding f_u of a subset $S \subseteq V(G)$ and a vertex $v \in N(u)$ we define $M[v, f_u]$ to be the union of the vertex sets of all connected components of $G \setminus S$ that have neighbors in $S[v, f_u]$. **Definition 4.3.** A u-partial embedding f_u of a subset S of V(G) is called **feasible** if - 1. f_u is a non-contracting distortion d embedding of S into B(u, d+1); - 2. for any distinct pair $v, w \in N(u)$, $M[v, f_u] \cap M[w, f_u] = \emptyset$; - 3. $N(S^0[f_u]) \subseteq S$. **Definition 4.4.** For a feasible u-partial embedding f_u of a subset S_u of V(G) and a feasible v-partial embedding f_v of a subset S_v of V(G) with $v \in C(u)$ we say that f_v succeeds f_u if - 1. $S_u \cap S_v = (S^{[0,d]}[f_u] \cup S^{d+1}[v, f_u]) = (S^{[0,d]}[f_v] \cup S^{d+1}[u, f_v]);$ - 2. for every $x \in S_u \cap S_v$, $f_u(x) = f_v(x)$; - 3. $M[v, f_u] = \bigcup_{x \in N(v) \setminus u} (M[x, f_v] \uplus S^{d+1}[x, f_v]);$ - 4. $M[u, f_v] = \bigcup_{x \in N(u) \setminus v} (M[x, f_u] \uplus S^{d+1}[x, f_u])$. Suppose we have picked out a subtree T_v for a vertex $v \in V(T)$ and found a non-contracting embedding f' with distortion at most d of a subset Z of V(G) into $T' = T[\bigcup_{u \in V(T_v)} B(u, d+1)]$. We wish to find a non-contracting distortion d embedding of G into T such that for every vertex u with $f(u) \in V(T')$, we have that $u \in Z$ and such that if $u \in Z$ then f(u) = f'(u). At this point, a natural question arises. Can we impose constraints on the restriction of f to $V(T) \setminus V(T_v)$ such that f restricted to $V(T) \setminus V(T_v)$ satisfies these conditions if and only if f is a non-contracting distortion d embedding of G into G? One necessary condition is that G restricted to G and G must be a non-contracting distortion G embedding of G into G and G into G and G into G and G into G and G into G in order to determine which connected components of G into G must map G to in order to be a non-contracting distortion G embedding of G into G must map G to in order to be a non-contracting distortion G embedding of G into G must map G to in order to be a non-contracting distortion G embedding of G into G must map G to in order to be a non-contracting distortion G embedding of G into G. For the line, these two conditions are both necessary and sufficient. Unfortunately, for the case of bounded degree trees, this is not the case. The reason the conditions are sufficient when we restrict ourselves to the line is that every embedding of a graph metric into the line that is locally non-contracting and locally expanding by a factor at most d, also is globally non-contracting and expanding by a factor at most d. When we embed into trees of bounded degree, every embedding that is locally expanding by a factor at most d, also has this property globally. However, every locally non-contracting embedding need not be globally non-contracting. To cope with this issue, we introduce the concept of vertex types. Intuitively, vertices of the same type in T_v are indistinguishable when viewed from $T \setminus V(T_v)$. We show that the set of possible vertex types can be bounded by a function of d and Δ . Then, to complete f from f' we only need to know the restriction of f' to B(v, d+1) and which vertex types appear in T_v . Then the amount of information we need to pass on from f' to f is bounded by $n \cdot h(d, \Delta)$. We exploit this fact to give an algorithm for the problem. In the rest of this section, we formalize this intuition. For a vertex $u \in V(T)$, a
neighbor v of u and a feasible u-partial embedding f_u of a subset S of V(G) we define a $[v, f_u]$ -type to be a function $t: S[v, f_u] \to \{\infty, 3d+2, d, \ldots, -d, -(d+1)\}$ and a $[v, f_u]$ -typelist to be a set of $[v, f_u]$ -types. For an integer k let $\beta(k) = k$ if $k \leq 3d+2$ and $\beta(k) = \infty$ otherwise. **Definition 4.5.** For a vertex $u \in V(T)$ with two neighbors v and w, and a feasible u-partial embedding f_u of a subset S of V(G) together with a $[v, f_u]$ -typelist \mathcal{L}_1 and a $[w, f_u]$ -typelist \mathcal{L}_2 we say that \mathcal{L}_1 and \mathcal{L}_2 agree if for every type $t_1 \in \mathcal{L}_1$ and $t_2 \in \mathcal{L}_2$ there is a vertex $x \in S[v, f_u]$ and a vertex $y \in S[w, f_u]$ such that $t_1(x) + t_2(y) \geq D_G(x, y)$. **Definition 4.6.** For a vertex $u \in V(T)$, a neighbor v of u, a feasible u-partial embedding f_u of a subset S of V(G) and a $[v, f_u]$ -typelist \mathcal{L} we say that \mathcal{L} is **compatible** with $S[v, f_u]$ if for every vertex x in $S[v, f_u]$ there is a type $t \in \mathcal{L}$ such that for every $y \in S[v, f_u]$, $D_T(f_u(x), u) - D_G(x, y) = t(y)$. **Definition 4.7.** A feasible u-state is a feasible partial embedding f_u of a subset S of V(G) together with a $[v, f_u]$ -typelist $\mathcal{L}[v, f_u]$ for every $v \in N(u)$ such that the following conditions are satisfied: (1) $\mathcal{L}[v, f_u]$ is compatible with $S[v, f_u]$ for every $v \in N(u)$; and (2) For every pair of distinct vertices x and y in N(u), $\mathcal{L}[x, f_u]$ agrees with $\mathcal{L}[y, f_u]$. **Definition 4.8.** Let $u \in V(T)$, $v \in C(u)$. Let \mathcal{X}_u be a feasible u-state and \mathcal{X}_v be a feasible v-state. We say that \mathcal{X}_v succeeds \mathcal{X}_u if - 1. f_v succeeds f_u ; - 2. For every $w \in (N(v) \setminus u)$ and a type $t_1 \in \mathcal{L}[w, f_v]$ there is a type $t_2 \in \mathcal{L}[v, f_u]$ such that - (a) For every node $x \in S[v, f_u] \cap S[w, f_v], t_2(x) = \beta(t_1(x) + 1);$ - (b) For every node $x \in (S[v, f_u] \setminus S[w, f_v]), t_2(x) = \beta(\max_{y \in S[w, f_v]} (t_1(y) + 1 D_G(x, y))).$ - 3. For every $w \in (N(u) \setminus v)$ and a type $t_1 \in \mathcal{L}[w, f_u]$ there is a type $t_2 \in \mathcal{L}[u, f_v]$ such that - (a) For every node $x \in S[u, f_v] \cap S[w, f_u], t_2(x) = \beta(t_1(x) + 1);$ - (b) For every node $x \in (S[u, f_v] \setminus S[w, f_u]), t_2(x) = \beta(\max_{u \in S[w, f_u]} (t_1(y) + 1 D_G(x, y))).$ The main result of this section relies on the next two lemmas. **Lemma 4.9.** If there is a distortion d embedding F of G into T then, for every vertex u of V(T) there is a feasible u-state \mathcal{X}_u such that for every vertex $v \in V(T)$, $w \in C(v)$, \mathcal{X}_w succeeds \mathcal{X}_v . Proof. We start by giving a feasible u-partial embedding f_u for each vertex of the tree. Recall that a feasible u-state contains a feasible u-partial embedding f_u of a subset S_u of V(G). For a vertex $u \in V(T)$ we define f_u to be the restriction of F to B(u, d+1). It is easy to see that f_u indeed is a feasible partial embedding for every u and that for every vertex $v \in V(T)$, $w \in C(v)$, f_w succeeds f_v . Now, for every vertex $u \in V(T)$ and $v \in N(v)$ we give a typelist $\mathcal{L}[v, f_u]$. For every vertex $x \in (S[v, f_u] \cup M[v, f_u])$ we add a $[v, f_u]$ -type $t_x[v, f_u]$ to $\mathcal{L}[v, f_u]$. For a vertex $y \in S[v, f_u]$, let $t_x[v, f_u](y) = \beta(D_T(F(x), u) - D_G(x, y))$. Notice that since $y \in B(u, d+1)$ and F is non-contracting, by the triangle inequality it follows that $t_x(y) \geq -(d+1)$ and thus t_x is a $[v, f_u]$ -type. Furthermore, for every $u \in V(T)$, $\mathcal{L}[v, f_u]$ is compatible with $S[v, f_u]$ because for every x and y in $S[v, f_u]$ we have that $t_x[v, f_u](y) = \beta(D_T(F(x), u) - D_G(x, y))$. In order to show that each state \mathcal{X}_u is a feasible u-state it remains to show that for every vertex $u \in V(T)$ and every pair of distinct vertices v and w in N(u), $\mathcal{L}[v, f_u]$ agrees with $\mathcal{L}[w, f_u]$. Assume for contradiction that there is a type $t_a[v, f_u] \in \mathcal{L}[v, f_u]$ and a type $t_b[w, f_u] \in \mathcal{L}[w, f_u]$ such that $t_a[v, f_u](x) + t_b[w, f_u](y) < D_G(x, y)$ for every $x \in S[v, f_u]$ and $y \in S[w, f_u]$. Let $x' \in S[v, f_u]$ and $y' \in S[w, f_u]$ be the pair of vertices that maximizes $t_a[v, f_u](x') + t_b[w, f_u](y') - D_G(x', y')$. There is a vertex $a \in (S[v, f_u] \cup M[v, f_u])$ and a vertex $b \in (S[w, f_u] \cup M[w, f_u])$ such that $\beta(D_T(f(a), u) - D_G(a, x)) = t_a[v, f_u](x)$ for every $x \in S[v, f_u]$ and $\beta(D_T(F(b), u) - D_G(b, y)) = t_b[w, f_u](y)$ for every $y \in S[w, f_u]$. This yields $D_T(F(a), u) - D_G(a, x') + D_T(F(b), u) - D_G(b, y') = (D_T(F(a), u) + D_T(F(b), u)) (D_G(a,x')+D_G(b,y')) < D_G(x',y').$ Now, $(D_T(F(a),u)+D_T(F(b),u)) = D_T(F(a),F(b))$ since u lies on the unique f(a)-f(b) path in T. Also, since x' and y' are the pair that maximize $t_a[v, f_u](x') + t_b[w, f_u](y') - D_G(x', y')$ and every shortest x'-y' path in G must pass both through $S[v, f_u]$ and $S[w, f_u]$, we conclude that $D_G(a, x') + D_G(b, y') + D_G(x', y') = D_G(a, b)$. However this implies $D_T(F(a), F(b)) < D_G(a, b)$ contradicting that F is non-contracting. It remains to prove that for every vertex $u \in T$, $v \in N(u)$, $w \in (N(v) \setminus u)$ and type $t_1 \in \mathcal{L}[w, f_v]$ there is a type $t_2 \in \mathcal{L}[v, f_u]$ such that - 1. for every node x in $S[v, f_u] \cap S[w, f_v], t_2(x) = \beta(t_1(x) + 1);$ - 2. for every node x in $S[v, f_u] \setminus S[w, f_v], t_2(x) = \beta(\max_{u \in S[w, f_v]} (t_1(y) + 1 D_G(x, y))).$ Let $t_a[w, f_v] \in \mathcal{L}[w, f_v]$, and let a be the vertex of $S[w, f_v] \cup M[w, f_v]$ such that for every x in $S[w, f_v]$, $t_a[w, f_v](x) = \beta(D_T(F(a), v) - D_G(a, x))$. Now, $S[w, f_v] \cup M[w, f_v] \subseteq S[v, f_u] \cup M[v, f_u]$ so $a \in (S[v, f_u] \cup M[v, f_u])$. Let $t_a'[v, f_u]$ be the type in $\mathcal{L}[v, f_u]$ so that for every x' in $S[v, f_u]$, $t_a'[v, f_u](x') = \beta(D_T(F(a), u) - D_G(a, x'))$. As $\beta(D_T(F(a), u)) = \beta(D_T(F(a), v) + 1)$ it is easy to see that for every node $x \in (S[v, f_u] \cap S[w, f_v])$, $t_a'[v, f_u](x) = \beta(t_a[w, f_v](x) + 1)$. Finally, observe that for a vertex $x \in (S[v, f_u] \setminus S[w, f_v])$ every a-x path in G must pass through $S[w, f_v]$. Thus $D_G(a, x) = \min_{y \in S[w, f_v]} D_G(a, y) + D_G(x, y)$ and so $t_a'[v, f_u](x) = \beta(\max_{y \in S[w, f_v]} (t_a[w, f_v](y) + 1) - D_G(x, y))$. This concludes the proof. **Lemma 4.10.** If there is a feasible u-state \mathcal{X}_u for every vertex u of V(T) such that for every vertex $v \in V(T)$, $w \in C(v)$, \mathcal{X}_w succeeds \mathcal{X}_v then there is a distortion d embedding F of G into T. *Proof.* For every vertex u, let f_u be the feasible u-partial embedding of the subset $S_u \subseteq V(G)$ in \mathcal{X}_u . We prove the lemma by proving a series of claims Claim 4.11. For every vertex $x \in V(G)$ there is a $u \in V(T)$ such that $x \in S_u$. Proof. If $x \in S_{r(T)}$ we are done, so assume that $x \notin S_{r(T)}$. This means that the vertex $x \in \bigcup_{v \in C(r(T))} M[v, f_{r(T)}]$. Let $v_1 \in C(r(T))$ be a vertex such that $x \in M[v_1, f_{r(T)}]$. Observe that the choice of v_1 implies that $x \notin M[r(T), f_{v_1}]$. Now, if $x \in S_{v_1}$ we are done, otherwise $x \in \bigcup_{v \in C(v_1)} M[v, f_{v_1}]$. Let v_2 be the vertex in $C(v_1)$ so that $x \in M[v_2, f_{v_1}]$. Again, the choice of v_1 implies that $x \notin M[v_1, f_{v_2}]$. If $x \in S_{v_2}$ we are done, otherwise we can select v_3, v_4 and so on until we select a leaf v_q . The choice of v_q implies that $x \in S_{v_q} \cup \bigcup_{v \in C(v_q)} M[v, f_{v_q}] = S_{v_q}$. \square Claim 4.12. For every vertex $x \in V(G)$, the set $\{u \in V(T) : x \in S_u\}$ induces a connected subtree of T. Proof. Suppose for contradiction that this is not the case. Then there is a pair of vertices $u, v \in V(T)$ such that $x \in S_u$, $x \in S_v$, $uv \notin E(T)$ and for every internal vertex w of the u-v-path in T, $x \notin S_w$. Let w' and w'' be the predecessor and successor of w on the u-v-path respectively. By the properties of succession of feasible u-partial embeddings both $M[w', f_w]$ and $M[w'', f_w]$ must contain x. This contradicts that f_w is a feasible partial embedding. \square From Claim 4.12 together with property 2 of succession feasible u-partial embeddings it is clear that for every pair of vertices u and v in V(T) such that $x \in S_u$ and $x \in S_v$, $f_u(x) = f_v(x)$. We can therefore define a function $F: V(G) \to V(T)$ such that for every $x \in V(G)$ and $u \in V(T)$ it holds that if $x \in S_u$ then $F(x) = f_u(x)$. This property also guarantees F maps distinct vertices of G onto distinct vertices of T. In the rest of the proof of Lemma 4.10 we will prove that the expansion of F is at most d and that F is non-contracting. Claim 4.13. The expansion of F is at most d. Proof. It suffices to prove that F expands every edge of G by at most a factor of d. Let $xy \in E(G)$. Let u = F(x). By the property 3 of feasible u-partial embeddings $y \in S_u$. Furthermore, since f_u is a feasible u-partial embedding, $D_T(F(x), F(y)) = D_T(f_u(x), f_u(y)) \le d$ which completes the proof. We now proceed to prove that F is non-contracting. **Claim 4.14.** For every path $P = v_1v_2...v_k$ in T, with $v_1 = u$ and $v_k = w$ the following must apply. - 1. F restricted to $\bigcup_{v_i \in P} S_{v_i}$ is non-contracting. - 2. For every vertex $x \in S_w$ one of the following two conditions must hold. - (a) either there is a $v_j \in P$, $y \in S_{v_j}$ such that $D_T(F(x), v_j) D_G(x, y) > 3d + 2$ - (b) or there is a type
$t_x[v_2, f_u] \in \mathcal{L}[v_2, f_u]$ such that for every $y \in S[v_2, f_u]$, $t_x[v_2, f_u](y) = D_T(F(x), u) D_G(x, y)$. *Proof.* We prove the claim by induction on k. If k = 1 then (1) is true because f_u is a feasible partial embedding and (2b) holds because of the compatibility constraints of feasible u-states. For k=2, we first prove that (2b) holds for every $x \in S_w$. If $x \in S_u$ then (2b) holds because of the compatibility constraints of feasible u-states. Therefore, consider a vertex $x \in S_w \setminus S_u$. Then $x \in S_w^{d+1}[w', f_w]$ for a $w' \in (N(w) \setminus u)$. By compatibility, there is a type $t_1[w', f_w] \in \mathcal{L}[w', f_w]$ such that for every y in S_w , $t_1[w', f_w](y) = D_T(F(x), w) - D_G(x, y)$. By the properties of succession of feasible u-states, there is a type $t_2[w, f_u] \in \mathcal{L}[w, f_u]$ such that 1. For every node y in $S[w, f_u] \cap S[w', f_w]$, $$t_{2}[w, f_{u}](y) = \beta(t_{1}[w', f_{w}](y) + 1)$$ $$= t_{1}[w', f_{w}](y) + 1$$ $$= D_{T}(F(x), w) - D_{G}(x, y) + 1$$ $$= D_{T}(F(x), u) - D_{G}(x, y).$$ 2. For every node y in $S[w, f_u] \setminus S[w', f_w]$, $$t_{2}[w, f_{u}](y) = \beta \left(\max_{z \in S[w', f_{w}]} (t_{1}[w', f_{w}](z) + 1 - D_{G}(z, y)) \right)$$ $$= \max_{z \in S[w', f_{w}]} (t_{1}[w', f_{w}](z) + 1 - D_{G}(z, y))$$ $$= \max_{z \in S[w', f_{w}]} (D_{T}(F(x), w) - D_{G}(x, z) + 1 - D_{G}(z, y))$$ $$= D_{T}(F(x), u) - D_{G}(x, y).$$ Thus (2b) holds for every x in S_w . Using this fact we can now prove (1). Observe that it is sufficient to prove that F does not contract any vertex $y \in (S_u \setminus S_w)$ and $x \in (S_w \setminus S_u)$. Let u' be the neighbor of u such that $y \in S[u', f_u]$. By (2b) there is a type $t_x[w, f_u]$ such that for every $z \in S[w, f_u]$, $t_x[w, f_u](z) = D_T(F(x), u) - D_G(x, z)$. By the properties of feasible u-states there is a type $t_y[u', f_u]$ such that for every $z \in S[u', f_u]$, $t_y[u', f_u](z) = D_T(F(y), u) - D_G(y, z)$. Since $t_x[w, f_u]$ and $t_y[u', f_u]$ must agree, it follows that there is a vertex $x' \in S[w, f_u]$, and a vertex $y' \in S[u', f_u]$ such that $t_x[w, f_u](x') + t_y[u', f_u](y') \ge D_G(x', y')$. By substituting for $t_x[w, f_u](x')$ and $t_y[u', f_u](y')$, we obtain $$D_{T}(F(x), F(y)) - D_{G}(x, y) \geq D_{T}(F(x), u) - D_{G}(x, x') + (D_{T}(F(y), u) - D_{G}(y, y')) - D_{G}(f(x'), f(y')) \geq 0.$$ Finally, suppose the statement of the claim holds for every k' < k for some k > 2. We prove that the statement also must hold for k. We start by showing (2). Consider a vertex $x \in S_w$ such that for every v_j , $j \ge 1$ and every $y \in S_{v_j}$ we have that $D_T(F(x), v_j) - D_G(x, y) \le 3d + 2$, that is, (2a) does not hold for x. We need to show that (2b) must hold for x. By the inductive hypothesis there is a type $t_x[v_3, f_{v_2}] \in \mathcal{L}[v_3, f_{v_2}]$ so that for every $y \in S[v_3, f_{v_2}]$, $t_x[v_3, f_{v_2}](y) = D_T(F(x), v_2) - D_G(x, y)$. Furthermore, by the assumption that (2a) does not hold for x, $t_x[v_3, f_{v_2}] \le 3d + 2$. By the properties of succession of feasible u-states there must be a type $t'_x[v_2, f_u] \in \mathcal{L}[v_2, f_u]$ such that: 1. For every node y in $S[v_2, f_u] \cap S[v_3, f_{v_2}]$: $$\begin{aligned} t_x'[v_2, f_u](y) &= & \beta(t_x[v_3, f_{v_2}](y) + 1) \\ &= & \beta\left(D_T(F(x), v_2) - D_G(x, y) + 1\right) \\ &= & \beta\left(D_T(F(x), u) - D_G(x, y)\right). \end{aligned}$$ Observe that if $\beta(D_T(F(x), u) - D_G(x, y)) = \infty$ then $D_T(F(x), u) - D_G(x, y) > 3d + 2$ which implies that (2a) holds for x which is a contradiction. Therefore, $\beta(D_T(F(x), u) - D_G(x, y)) \neq \infty$ so $\beta(D_T(F(x), u) - D_G(x, y)) = D_T(F(x), u) - D_G(x, y)$. 2. For every node y in $S[v_2, f_u] \setminus S[v_3, f_{v_2}]$, $$t'_x[v_2, f_u](y) = \beta \left(\max_{z \in S[v_3, f_{v_2}]} (t_x[v_3, f_{v_2}](z) + 1 - D_G(z, y)) \right).$$ As before, $t'_x[v_2, f_u](y) \leq 3d + 2$ because otherwise (2a) holds for x. Thus $$t'_{x}[v_{2}, f_{u}](y) = \beta \left(\max_{z \in S[v_{3}, f_{v_{2}}]} (t_{x}[v_{3}, f_{v_{2}}](z) + 1 - D_{G}(z, y)) \right)$$ $$= \max_{z \in S[v_{3}, f_{v_{2}}]} (t_{x}[v_{3}, f_{v_{2}}](z) + 1 - D_{G}(z, y)).$$ Following this $$t'_{x}[v_{2}, f_{u}](y) = \max_{z \in S[v_{3}, f_{v_{2}}]} (D_{T}(F(x), v_{2}) - D_{G}(x, z) + 1 - D_{G}(z, y))$$ $$= D_{T}(F(x), u) - D_{G}(x, y).$$ Thus (2b) holds for x and (2) is true for |P| = k. It remains to prove that (1) is true for |P| = k as well. It is sufficient to prove that F does not contract any $x \in (S_u \setminus S_{v_2})$ with any $y \in (S_w \setminus S_{v_{k-1}})$. There are two cases, either (2a) holds for y or (2a) does not, and in that case, (2b) holds for y. In the latter case let $t_y[v_1, f_u]$ be the type in $\mathcal{L}[v_1, f_u]$ such that for every z in $S[v_2, f_u]$, $t_y[v_1, f_u](z) = D_T(F(y), u) - D_G(y, z)$. Also, let $u' \in (N(u) \setminus v_1)$ be the neighbor of u such that $x \in S[u', f_u]$. As in the proof of (1) for k = 2, let $t_x[u', f_u]$ be the type in $\mathcal{L}[u', f_u]$ such that for every z in $S[u', f_u]$, $t_x[u', f_u](z) = D_T(F(x), u) - D_G(x, z)$. Again as in the proof of (1) for k = 2, $t_x[u', f_u](z)$ and $t_y[v_1, f_u]$ must agree which in turn implies that F does not contract x and y To conclude, we consider the case when (2a) holds for y. Let v_j be a vertex such that there is a $y' \in S_{v_j}$ so that $D_T(F(y), v_j) - D_G(y, y') > 3d + 2$. By the induction hypothesis, F does not contract x and y'. This gives us the following inequality for $D_T(F(x), F(y))$ and $D_G(x, y)$: $$d_{T}(F(x), F(y)) = D_{T}(F(x), v_{j}) + D_{T}(v_{j}, F(y))$$ $$\geq (D_{T}(F(x), F(y')) - D_{T}(v_{j}, F(y'))) + D_{T}(v_{j}, F(y))$$ $$\geq D_{G}(x, y') + D_{G}(y, y') + 3d + 2 - D_{T}(v_{j}, F(y'))$$ $$\geq D_{G}(x, y) + 2d + 1 \geq D_{G}(x, y).$$ This implies that the statement of the claim holds for every positive k. The claims together prove the existence of a non-contracting embedding F of G into T with distortion at most d. Next we give the proof of Theorem 1.3. *Proof.* [of Theorem 1.3] The algorithm proceeds as follows. First, check that $\Delta(G) \leq \Delta^d$ (follows from local density argument). Now, we do bottom up dynamic programming on the tree T. For each vertex u of the tree we make a boolean table with an entry for each possible feasible u-state. For every leaf of the tree all the entries are set to true. For an inner node u and a feasible u-state \mathcal{X}_u we set \mathcal{X}_u 's entry to true if for each child v of u there is a feasible v-state \mathcal{X}_v that succeeds \mathcal{X}_u and so that \mathcal{X}_v 's entry is set to true. The algorithm returns "yes" if, at the termination of this procedure, there is a feasible r(T)-state $\mathcal{X}_{r(T)}$ with its table entry set to true. The algorithm clearly terminates, and correctness of this algorithm follows from Lemmas 4.10 and 4.9. We now proceed to the running time analysis. In our bottom up sweep of T, we consider every edge and every vertex of T exactly once, which yields a factor of $n_t = |V(T)|$. For each vertex u we consider each feasible u-state \mathcal{X}_u once, and for each such state and every child v of u of the state we need to enumerate all feasible v-states that succeed \mathcal{X}_u . In fact, we enumerate a larger set of candidate feasible v-states and for each such state \mathcal{X}_v we check whether \mathcal{X}_v succeeds \mathcal{X}_u . First we show that the number of feasible u-partial embeddings is at most $n \cdot \Delta^{O(d^2 \cdot \Delta^{d+1})}$. This follows from the fact that for any vertex u of the tree $|B(u,d+1)| \leq \Delta^{d+1}$ and that the domain of a any feasible u-partial embedding f_u is contained in a ball of radius at most 2d+2 in G. Because the degree of G is bounded, a ball of radius 2d+2 in G can contain at most $\Delta^{O(d^2)}$ vertices. One can easily prove that if the feasible partial embedding f_u is given, the number of types and typelists that can appear in a feasible u-state together with f_u is bounded by $(5d)^{\Delta^{d+1}}$ and $2^{O((5d)^{\Delta^{d+1}})}$ respectively. Thus, the number of feasible u-states is bounded by $2^{O((5d)^{\Delta^{d+1} \cdot d)}$. If the domain S_v of a feasible partial embedding f_v for a child v of u is non-empty then we can use the fact that S_v must have a non-empty intersection with the domain of f_u to bound the number of potential successors of a u-state by $2^{O((5d)^{\Delta^{d+1} \cdot d)} \cdot \Delta^d \leq 2^{O((5d)^{\Delta^{d+1} \cdot d)}$. One can check whether a particular u-feasible state succeeds another in time $n \cdot 2^{O((5d)^{\Delta^{d+1} \cdot d)}$, and hence the overall running time of the algorithm is bounded by $n^2 n_t \cdot 2^{O((5d)^{\Delta^{d+1} \cdot d)}$. # 5 Concluding remarks and open problems We find it very natural to study low-distortion embeddings from parameterized complexity perspective. An explanation, why these important problems have not been studied systematically within parameterized settings can be a "psychological barrier"—finding embeddings even into the simplest metrics like the line, should be at least as hard as one of the hardest problems in parameterized hierarchy, the Bandwidth Minimization problem. In this paper we remove this barrier, by providing FPT algorithms for embedding unweighted graph metrics into a tree metric for a tree of maximum degree Δ , parameterized by (Δ, d) where d is the distortion. For the case when the host metric is the line, we generalized our result and showed that embedding weighted graph metrics into the line is FPT parameterized by distortion d and maximum edge weight W. A similar generalization can also be obtained for embedding weighted graph metrics into weighted bounded degree tree metrics, parameterized by d, Δ and W, where W is the maximum edge weight in the
input graph. The proof that embedding a weighted metric into the line is NP-hard for every fixed distortion $d \geq 2$ shows that our algorithms qualitatively are the best possible. All this demonstrates that the parameterized complexity landscape of low-distortion embeddings is very rich and worth to be explored. We believe that our results will lead to further investigation of the combinatorially challenging field of low-distortion embeddings within the framework of parameterized algorithmics. We conclude with two concrete interesting open problems: - What is the parameterized complexity of embedding unweighted graph metrics into (unbounded degree) trees parameterized by distortion d? - What about embeddings into cycles? ### References - [1] Bădoiu, M., Chuzhoy, J., Indyk, P., and Sidiropoulos, A. Low-distortion embeddings of general metrics into the line. In STOC 2005, ACM, pp. 225–233. - [2] Bădoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Räcke, H., Ravi, R., and Sidiropoulos, A. Approximation algorithms for low-distortion embeddings into low-dimensional spaces. In SODA 2005, ACM and SIAM, pp. 119–128. - [3] Badoiu, M., Indyk, P., and Sidiropoulos, A. Approximation algorithms for embedding general metrics into trees. In SODA 2007, ACM and SIAM, pp. 512–521. - [4] BODLAENDER, H. L., FELLOWS, M. R., AND HALLETT, M. T. Beyond NP-completeness for problems of bounded width: Hardness for the w hierarchy (extended abstract). In STOC 1994, ACM, pp. 449–458. - [5] BODLAENDER, H. L., FELLOWS, M. R., HALLETT, M. T., WAREHAM, T., AND WARNOW, T. The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs. *Theor. Comput. Sci.* 244, 1-2 (2000), 167–188. - [6] Downey, R. G., and Fellows, M. R. *Parameterized complexity*. Springer-Verlag, New York, 1999. - [7] M. Fellows, F. V. Fomin, D. Lokshtanov, E. Losievskaja, F. Rosamond, and S. Saurabh, *Distortion is fixed parameter tractable*, in ICALP 2009, vol. 5555 of LNCS, 2009, pp. 463-474. - [8] Flum, J., and Grohe, M. *Parameterized Complexity Theory*. Springer-Verlag, Berlin, 2006. - [9] Gupta, A., Newman, I., Rabinovich, Y., and Sinclair, A. Cuts, trees and l₁-embeddings of graphs. *Combinatorica* 24, 2 (2004), 233–269. - [10] Hall, A., and Papadimitriou, C. H. Approximating the distortion. In APPROX-RANDOM 2005, vol. 3624 of *LNCS*, Springer, pp. 111–122. - [11] INDYK, P. Algorithmic applications of low-distortion geometric embeddings. In FOCS 2001, IEEE, pp. 10–33. - [12] Kenyon, C., Rabani, Y., and Sinclair, A. Low distortion maps between point sets. In STOC 2004, ACM, pp. 272–280. - [13] Linial, N. Finite metric-spaces—combinatorics, geometry and algorithms. In *Proceedings* of the ICM, Vol. III (Beijing, 2002), Higher Ed. Press, pp. 573–586. - [14] Lokshtanov, D., Marx, D., and Saurabh, S., Known algorithms on graphs on bounded treewidth are probably optimal. In SODA 2011, ACM-SIAM, pp. 777-789 - [15] Niedermeier, R. *Invitation to fixed-parameter algorithms*, Oxford University Press, Oxford, 2006. - [16] SAXE, J. B. Dynamic programming algorithms for recognizing small bandwidth graphs in polynomial time. SIAM J. on Algebraic and Discrete Methods 1, 4 (1980), 363–369.