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Abstract

The search for linear kernels for the DOMINATING SET problem on classes of graphs of a
topological nature has been one of the leading trends in kernelization in recent years. Following
the fundamental work of Alber et al. [2] that established a linear kernel for the problem on planar
graphs, linear kernels have been given for bounded-genus graphs [4], apex-minor-free graphs [15],
H-minor-free graphs [16], and H-topological-minor-free graphs [17]. These generalizations are
based on bidimensionality and powerful decomposition theorems for H-minor-free graphs and
H-topological-minor-free graphs of Robertson and Seymour [28] and of Grohe and Marx [22].

In this work we investigate a new approach to kernelization algorithms for DOMINATING SET
on sparse graph classes. The approach is based on the theory of bounded expansion and nowhere
dense graph classes, developed in the recent years by Nesettil and Ossona de Mendez, among
others. More precisely, we prove that DOMINATING SET admits a linear kernel on any hereditary
graph class of bounded expansion and an almost linear kernel on any hereditary nowhere dense
graph class. Since the class of H-topological-minor-free graphs has bounded expansion, our
results strongly generalize all the above mentioned works on kernelization of DOMINATING SET.
At the same time, our algorithms are based on relatively short and self-contained combinatorial
arguments, and do not depend on bidimensionality or decomposition theorems.

Finally, we prove that for the closely related CONNECTED DOMINATING SET problem, the
existence of such kernelization algorithms is unlikely, even though the problem is known to admit
a linear kernel on H-topological-minor-free graphs [17]. Thus, it seems that whereas for DomI-
NATING SET sparsity is enough to guarantee the existence of an efficient kernelization algorithm,
for CONNECTED DOMINATING SET stronger constraints of topological nature become necessary.
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1 Introduction

Domination and kernelization. In the classical DOMINATING SET problem, given a graph G
and an integer k, we are asked to determine the existence of a subset D C V(G) of size at most k
such that every vertex u € V(G) is dominated by D: either u belongs to D itself, or it has a neighbor
that belongs to D. The problem is NP-hard and remains so even in very restricted settings, e.g.
on planar graphs of maximum degree 3 (cf. [GT2] in Garey and Johnson [20]). The complexity of
DOMINATING SET was studied intensively under different algorithmic frameworks, most importantly
from the points of view of approximation and of parameterized complexity. In this work we are
interested in the latter paradigm.

DOMINATING SET parameterized by the target size k plays a central role in parameterized
complexity as it is a predominant example of a W[2]-complete problem. Recall that the main focus
in parameterized complexity is on designing fixed-parameter algorithms, or shortly FPT algorithms,
whose running time on an instance of size n and parameter k has to be bounded by f(k) - n¢
for some computable function f and constant ¢. Downey and Fellows introduced a hierarchy of
parameterized complexity classes FPT C W[1] C W[2] C ... that is believed to be strict, see [9,14].
As DOMINATING SET is W[2]-complete in general, we do not expect it to be solvable in FPT time.

However, it turns out that various restrictions on the input graph lead to robust tractability
of DOMINATING SET. Out of these, a particularly fruitful line of research concerned investigation of
the complexity of the problem in sparse graph classes, like planar graphs, graphs of bounded genus,
or graphs excluding some fixed graph H as a minor. In these classes we can even go one step further
than just showing fixed-parameter tractability; It is possible to design a linear kernel for the problem:
Formally, a kernelization algorithm (or a kernel) is a polynomial-time preprocessing procedure that
given an instance (I, k) of a parameterized problem outputs another instance (I’, k') of the same
problem which is equivalent to (I, k), but whose total size |I’| + k" is bounded by f(k) for some
computable function f, called the size of the kernel. If f is polynomial (resp. linear), then such an
algorithm is called a polynomial (resp. linear) kernel. Note that the existence of such a kernelization
algorithm immediately implies that the problem can be solved by a very efficient fixed-parameter
algorithm: after applying kernelization, any brute-force search or more clever algorithm runs in
time bounded by a function of k only.

The quest for small kernels for DOMINATING SET on sparse graph classes began with the
groundbreaking work of Alber et al. [2], who showed the first linear kernel for the problem on planar
graphs. This work also introduced the concept of a region decomposition, which proved to be a
crucial tool for constructing linear kernels for other problems on planar graphs later on. Another
important step was the work of Alon and Gutner [3,23], who gave an O(k¢) kernel for the problem
on H-topological-minor free graphs, where ¢ depends on H only. Moreover, if H = K3} for some h,
then the size of the kernel is actually linear. This led Alon and Gutner to pose the following excellent
question: Can one characterize the families of graphs where DOMINATING SET admits a linear kernel?

The research program sketched by the works of Alber et al. [2] and Alon and Gutner [3,23]
turned out to be one of particularly fruitful directions in parameterized complexity in recent years,
and eventually led to the discovery of new and deep techniques. In particular, linear kernels for
DOMINATING SET have been given for bounded genus graphs [4], apex-minor-free graphs [15], H-
minor-free graphs [16], and most recently H-topological-minor-free graphs [17]. In all these results,
the notion of bidimensionality plays the central role. Using variants of the Grid Minor Theorem, it
is possible to understand well the connections between the minimum possible size of a dominating
set in a graph and its treewidth. The considered graph classes also admit powerful decomposition
theorems that follow from the Graph Minors project of Robertson and Seymour [28], or the recent
work of Grohe and Marx [22] on excluding H as a topological minor. The combination of these tools



provides a robust base for a structural analysis of the input instance, which leads to identifying
protrusions: large portions of the graph that have constant treewidth and small interaction with
other vertices, and hence can be efficiently replaced by smaller gadgets. The protrusion approach,
while originating essentially in the work on the DOMINATING SET problem, turned out to be a
versatile tool for finding efficient preprocessing routines for a much wider class of problems. In
particular, the meta-kernelization framework of Bodlaender et al. [4], further refined by Fomin
et al. [15], describes how a combination of bidimensional and finite-state properties of a generic
problem leads to the construction of linear kernels on bounded genus and H-minor-free graphs.

Beyond the current frontier of H-topological-minor-free graphs [17], kernelization of DOMINATING
SET was studied in graphs of bounded degeneracy. Recall that a graph is called d-degenerate if
every subgraph contains a vertex of degree at most d. Philip et al. [27] obtained a kernel of size
O(k(d+1)2) on d-degenerate graphs for constant d, and more generally a kernel of size (’)(l{:max(iQ’j 2))
on graphs excluding the complete bipartite graph K ; as a subgraph. However, as proved by Cygan
et al. [5], the exponent of the size of the kernel needs to increase with d at least quadratically: the
existence of an O(k(@=1(@=3)=¢) kernel for any & > 0 would imply that NP C coNP /poly. Thus, in
these classes the existence of a linear kernel is unlikely.

Sparsity. The concept of sparsity has been recently the subject of intensive study both from the
point of view of pure graph theory and of computer science. In particular, the notions of graph
classes of bounded expansion and nowhere dense graph classes have been introduced by Nesetfil
and Ossona de Mendez. The main idea behind these models is to establish an abstract notion of
sparsity based on known properties of well-studied sparse graph classes, e.g. H-minor-free graphs,
and to develop tools for combinatorial analysis of sparse graphs based only on this abstract notion.
We refer to the book of Nesetfil and Ossona de Mendez [26] for an introduction to the topic.

Intuitively, a graph class G has bounded expansion if any minor obtained by contracting disjoint
subgraphs of radius at most r is d,-degenerate, for some constant d,.. Thus, this property can be
thought of as strengthened degeneracy that persists after very constrained minor operations. The no-
tion of a nowhere dense graph class is a further relaxation of this concept; we refer to Definition 2.13
for a formal definition. In particular, every graph class G that has bounded expansion is also nowhere
dense, and all the aforementioned classes on which the existence of a linear kernel for DOMINATING
SET has been established (planar, bounded genus, H-minor-free, H-topological-minor-free) have
bounded expansion.

From the point of view of theoretical computer science, of particular importance is the program
of establishing fixed-parameter tractability of model checking first order logic on sparse graphs. A
long line of work resulted in FPT algorithms for model checking first order formulas on more and
more general classes of sparse graphs [7,11,13,18,21,29], similarly to the story of kernelization of
DOMINATING SET. Finally, FPT algorithms for the problem have been given for graph classes of
bounded expansion by Dvotdk et al. [11], and very recently for nowhere dense graph classes by
Grohe et al. [21]. This is the ultimate limit of this program: as proven in [11], for any class G that
is not nowhere dense (is somewhere dense) and is closed under taking subgraphs, model checking
first order formulas on G is not fixed-parameter tractable (unless FPT = W[1]).

Fixed-parameter tractability of DOMINATING SET on nowhere dense graph classes follows im-
mediately from the result of Grohe et al. [21], since the problem is definable in first order logic.
However, an explicit algorithm was given earlier by Dawar and Kreutzer [8].

To summarize, we would like to stress that DOMINATING SET has repeatedly served as a trigger
for developing new techniques in parameterized complexity: the subexponential algorithm on planar
graphs [1] lead to the theory of bidimensionality; the kernelization algorithm on planar graphs [2]



initiated meta-theorems and protrusion-based techniques on planar graphs and beyond, which were
further refined by techniques developed for graphs with excluded topological minor [17]; and, last
but not least, the work on DOMINATING SET in nowhere-dense graphs [8] lead to generic first order
logic results on sparse classes of graphs. Therefore, we believe that understanding the kernelization
status of DOMINATING SET in sparse graph classes may again lead to very fruitful developments.

Our results. In this work we prove that having bounded expansion or being nowhere dense is
sufficient for a graph class to admit an (almost) linear kernel for DOMINATING SET. Henceforth,
for a graph G, we let ds(G) denote the size of a minimum dominating set of G.

Theorem 1.1. Let G be a graph class of bounded expansion. There exists a polynomial-time algorithm
that given a graph G € G and an integer k, either correctly concludes that ds(G) > k or finds a subset
of vertices Y C V(G) of size O(k) with the property that ds(G) < k if and only if ds(G[Y]) < k.

Theorem 1.2. Let G be a nowhere dense graph class and let € > 0 be a real number. There exists a
polynomial-time algorithm that given a graph G € G and an integer k, either correctly concludes that
ds(G) > k or finds a subset of vertices Y C V(G) of size O(k¥*¢) with the property that ds(G) < k
if and only if ds(G[Y]) < k.

In both cases, to obtain a kernel we apply the algorithm given by Theorem 1.1 or 1.2, and then
either provide a trivial no-instance (in case the algorithm concluded that ds(G) > k), or we output
(G[Y], k). This immediately yields the following:

Corollary 1.3. For every hereditary graph class G with bounded expansion, DOMINATING SET
admits a kernel of size O(k) on graphs from G. For every hereditary and nowhere dense graph
class G and every € > 0, DOMINATING SET admits a kernel of size O(k'™) on graphs from G.

Note that we formally need to assume that the graph class G is hereditary (closed under taking
induced subgraphs), in order to ensure that the output instance (G[Y], k) is of the same problem
as the input one. However, this is a purely formal problem: for any class G that either has bounded
expansion or is nowhere dense, its closure under taking induced subgraphs also has this property,
with exactly the same expansion parameters. So for the sake of kernelization we can always remain
in the closure of G under taking induced subgraphs.

The obtained results strongly generalize the previous results on linear kernels for DOMINATING
SET on sparse graph classes [2,4,15-17], since all the graph classes considered in these results have
bounded expansion. However, we see the main strength of our results in that they constitute an abrupt
turn in the current approach to kernelization of DOMINATING SET on sparse graphs: the tools used to
develop the new algorithms are radically different from all the previously applied techniques. Instead
of investigating bidimensionality and treewidth, and relying on intricate decomposition theorems origi-
nating in the work on graph minors, our algorithms exploit only basic properties of bounded expansion
and nowhere dense graph classes. As a result, this paper presents essentially self-contained proofs of
Theorems 1.1 and 1.2 that rely on simple combinatorial arguments and span over just a few pages.
The only external facts that we use are basic properties of weak colorings and the constant-factor ap-
proximation algorithm for DOMINATING SET of Dvordk [10]. All in all, the results show that only the
combinatorial sparsity of a graph class is essential for designing (almost) linear kernels for DOMINAT-
ING SET, and further topological constraints like excluding some (topological) minor are unnecessary.

We complement our study by proving that for the closely related CONNECTED DOMINATING
SET problem, where the sought dominating set D is additionally required to induce a connected
subgraph, the existence of even polynomial kernels for bounded expansion and nowhere dense graph
classes is unlikely. More precisely, we prove the following result:



Theorem 1.4. There exists a class of graphs G of bounded expansion such that CONNECTED
DOMINATING SET does not admit a polynomial kernel when restricted to G, unless NP C coNP /poly,
and furthermore, G is closed under taking subgraphs.

Up to this point, linear kernels for CONNECTED DOMINATING SET were given for the same family
of sparse graph classes as for DOMINATING SET: a linear kernel for the problem on H-topological-
minor-free graphs was obtained by Fomin et al. [17]. Hence, classes of bounded expansion constitute
the point where the kernelization complexity of both problems diverge: while DOMINATING SET
admits a linear kernel by Theorem 1.1, for CONNECTED DOMINATING SET even a polynomial
kernel is unlikely by Theorem 1.4. We find this difference very surprising, and our intuition about
the phenomenon is as follows: the connectivity constraint has a completely different nature, and
topological properties of the graph class become necessary to handle it efficiently. Indeed, a deeper
examination of the proof of Theorem 1.4 shows that we essentially exploit only the connectivity
constraint to establish the lower bound.

Our techniques. As explained before, the techniques applied to prove Theorems 1.1 and 1.2
differ radically from tools used in the previous works [2,4,15-17]. The main reason is that so far
all the approaches were based on bidimensionality and decomposition theorems for graph classes
with topological constraints, like H-(topological)-minor-free graphs. For bounded expansion and
nowhere dense graphs, there are no known decomposition theorems. Bidimensional arguments also
cease to work, since they are inextricably linked to surface embeddings of graphs, meaningless in
the world of nowhere dense and bounded expansion graph classes.

The failure of known techniques, seemingly a large obstacle for our project, actually came as a
blessing as it forced us to search for the “real” reasons why DOMINATING SET admits linear kernels
on sparse graph classes; Identifying the right tools enabled us to streamline the reasoning so that
it is significantly simpler than the previous works. We now briefly describe the main approach on
the example of Theorem 1.1. The proof of Theorem 1.2 uses exactly the same approach, with the
difference that some arguments for graphs of bounded expansion need to be replaced with analogous
results for nowhere dense graphs.

The first idea is to kernelize the instance in two phases: Intuitively, in the first phase we reduce
the number of dominatees, vertices whose domination is essential, and in the second phase we reduce
the number of dominators, vertices that are sensible to use to dominate other vertices. In order
to formalize this approach, we introduce the notion of a domination core: a subset Z C V(G) is
a domination core if every minimum-size subset D C V(G) that dominates Z is guaranteed to
dominate the whole graph. Hence, every vertex whose domination is identified as irrelevant can
safely be removed from the domination core. In the first phase of the algorithm we find a domination
core in the graph of size linear in the parameter k, and in the second phase we reduce the number
of vertices outside it. The first phase is the most difficult one, while the second is much simpler.

The small domination core is found iteratively, by first taking Z = V(G) and then removing
vertices from Z one by one. Hence, the main difficulty is to find a vertex that can be safely removed
from Z; for simplicity, we focus on the first iteration when Z = V(G). The first step is to apply
the approximation algorithm of Dvordk for DOMINATING SET on graphs of bounded expansion [10].
This algorithm has the following very important feature: given a parameter k, it either provides a
dominating set of size O(k), or it outputs a proof that ds(G) > k in the form of a 2-scattered set S
of size larger than k where S is 2-scattered if every two vertices of S are at distance more than 2
from each other. The idea is to apply the algorithm of Dvordk repeatedly: In each iteration we
either identify another approximate dominating set and remove it from the graph, or we find a large
2-scattered set in the remaining instance and terminate the iteration. As we work in a graph of



bounded expansion, it can be shown that this process terminates after a constant number of steps.
Hence, we end up with the following structure in the graph: a dominating set X C V(G) of size
O(k), and a set S C V(G) \ X that is 2-scattered in G — X. By carefully selecting the parameters
of the approximation, we can ensure that |S| > ¢|X]| for as large a constant ¢ as we like.

Having identified such a pair (X, S), we partition V(G)\ X into equivalence classes such that two
vertices are equivalent when they have exactly the same neighborhood in X. The vertices of S are
handled slightly differently: before the partitioning we contract their whole neighborhoods in G — X
onto them. Now is the moment where we crucially use the fact that the graph under consideration has
bounded expansion: it can be shown that the number of equivalence classes is linear in the size of X.
This neighborhood diversity argument (formally, Proposition 2.5) appears again and again in our
proofs, and in our opinion it is the main reason why linear kernelization of DOMINATING SET on sparse
graph classes is possible. We further strengthen this argument (see Lemma 2.10) to prove that not
only are there few classes, but their mutual interaction forms a graph of bounded expansion. Based
on these observations, we can use the potential method to identify a class s, where the number of
vertices from S is large compared to the number of other classes with which x interacts. We then show
that an appropriately chosen member of k is an irrelevant dominatee that can be removed from Z.

This reasoning can be applied as long as |Z| > Ck for some constant C, so we eventually
compute a domination core of size linear in k. To remove the dominators, we again apply the
neighborhood diversity argument. We partition the vertices of V(G) \ Z into classes with respect
to their neighborhoods in Z, the number of these classes is linear in |Z|, and it is safe to remove
all but one vertex from each class.

The proof of Theorem 1.4 uses the technique of compositionality to refute the existence of a
polynomial kernel, and is based on the kernelization hardness result for CONNECTED DOMINATING
SET on 2-degenerate graphs presented by Cygan et al. [6]. The output instances of the original
construction of Cygan et al. [6] do not have bounded expansion, but after adding a number of new
technical ideas the construction can be modified to ensure this property.

Organization of the paper. In Section 2 we recall the most important definitions and facts
about bounded expansion and nowhere dense classes of graphs, as well as prove some auxiliary
results that will be used later on. Section 3 contains the proof of Theorem 1.1 — the main result for
bounded expansion classes — whereas Section 4 contains the proof of Theorem 1.2 — the main result
for nowhere dense classes. In Section 5 we present the lower bound for CONNECTED DOMINATING
SET, i.e., Theorem 1.4. Section 6 contains concluding remarks and prospects for future work. Proofs
of auxiliary facts (marked with x) that are very easy and/or follow directly from known results have
been deferred to Appendix 6 in order not to distract the attention of the reader.

2 Preliminaries

2.1 Notation

Basic graph notation All graphs we consider are finite, simple, and undirected. For a graph G,
we denote by |G| = |V(G)| the number of vertices and by ||G|| = |E(G)| the number of edges
in G. The density of a graph G, denoted density(G) is defined as density(G) = ||G||/|G|. For an
integer k£ € N we denote by [k] = {1,...,k} the first k positive integers.

For a vertex v in a graph G, we denote by Ng(v) = {u: uwv € E(G)} the open neighborhood of v
and by Ng[v] = Ng(v) U{v} the closed neighborhood of v in G. These notions can be naturally
extended to sets of vertices X C V(G) as follows: Ng[X] = U,cx Na[v] and Ng(X) = Ng[X]\ X.
If G is clear from the context, we omit the subscripts. Furthermore, we write Nx (v) to denote the



neighborhood of v restricted to X, i.e., Nx(v) = Ng(v) N X, and refer to it as the X-neighborhood
of v. The degree of a vertex v € V(G) is the number of neighbors it has, i.e., deg(v) = |N(v)|.

The induced subgraph G[X] for X C V(G) is the graph with vertex set X and for z1,22 € X
we have that x129 € E(G[X]) if and only if 2129 € E(G). A graph H = (Vy, Ep) is a subgraph
of G = Vg, Eq) if Vg C Vi and Ey C E(G[Vy]). We will say that H is a subgraph of G if H is
isomorphic to a subgraph of G. For a set of vertices X C V(G), we write G — X to denote the
induced subgraph G[V(G) \ X].

Given a graph G and two vertex subsets D, Z C V(G), we say that D is a Z-dominator if D
dominates Z in G, that is, every vertex z € Z \ D has a neighbor in D. We denote by ds(G, Z)
the size of a smallest Z-dominator of G. By ds(G) we mean ds(G, V(G)), i.e., the size of a smallest
dominating set in G. A set S C V(G) is f-scattered in G if for every pair of distinct vertices
s1,82 € 5, the distance between s and so is at least £+ 1, i.e., any path from v; to v9 has at least ¢
internal vertices. Note that if there is a 2-scattered set S of size k, then any dominating set of G
must have size at least k, since every vertex of G can dominate at most one vertex of S. Hence,
we call a 2-scattered set of size k 4+ 1 an obstruction for a dominating set of size k.

A clique in a graph is a subset of pairwise adjacent vertices. We write w(G) to denote the clique
number of a graph G, i.e., the size of a maximum clique in G. We write #w(G) to be the total
number of cliques in G. By K. we denote the complete graph on c vertices, and by K, ., we denote
the complete bipartite graph with the sides of the bipartition of sizes ¢; and cs, respectively.

The radius of a graph G, denoted radius(G) is the minimum integer r for which there exists
a vertex v € V(G) (a center) such that every vertex in V(G) is within distance at most r from v.

Minors and minor operations For an edge e = wv in a graph G, the graph G/e is the graph
obtained from contracting e, i.e., we replace the vertices u and v with a vertex w,, that is adjacent
to every vertex of Ng({u,v}) in G/e. If S C V(G) is a set of vertices such that G[S] is connected,
we let G/S denote the graph obtained from G by contracting S to a single vertex. That is, G/S is
the graph obtained from deleting S from G and adding a vertex vg which is adjacent to every vertex
of Ng(S); note that this is equivalent to contracting all the edges of any spanning tree of G[S].

The reverse operation of contraction is the operation of subdivision. Given a graph G and an
edge uv = e € E(G), the graph obtained from subdividing e in G is the graph with vertex set
V(GQ) U {we} and edge set E(G) \ {e} U {uwe, vw,}.

A graph H which is obtained from a graph G after a sequence of contractions is called a
contraction of G. If H is subgraph of a contraction of G, then we say that H is a minor of G. A
graph G is said to be H-minor-free if H is not a minor of G, and a graph class G is H-minor-free
if every graph of G is H-minor-free.

2.2 Shallow minors, grad and expansion

Definition 2.1 (Shallow minor). A graph M is an r-shallow minor of G, where r is an integer,
if there exists a set of disjoint subsets Vi,..., V5 of V(G) such that

1. each graph G[V;] is connected and has radius at most r, and

2. there is a bijection ¢: V(M) — {V4,...,Vja} such that for every edge uv € E(M) there is
an edge in G with one endpoint in ¢ (u) and second in ¥ (v).

The set of all r-shallow minors of a graph G is denoted by G vV r. Similarly, the set of all r-shallow
minors of all the members of a graph class G is denoted by GV r = Ugeg(G V7).



Definition 2.2 (Grad and bounded expansion). For a graph G and an integer r > 0, we define
the greatest reduced average density (grad) at depth r as
Vi (G) = density(M) = M]|/|M]|.
(G) = max density(M) = max ||M]|/|M]

We extend this notation to graph classes as V,.(G) = supgeg Vi-(G). A graph class G then has
bounded expansion if there exists a function f: N — R such that for all » we have that V,.(G) < f(r).

Graph classes excluding a topological minor, such as planar and bounded-degree graphs, have
bounded expansion [26]. Observe that bounded expansion implies bounded degeneracy, since 2Vp(G)
is equal to the degeneracy of G. However, the reverse does not hold: For an example, consider the
class of cliques with each edge subdivided once.

Observe that for every graph G and integers r < 7/, it holds that V,.(G) < V,»(G), and the same
inequality holds for classes of graphs. Let us revisit some basic properties of grads that will be used
later on.

Lemma 2.3. [x] Let G be a graph and let G’ be obtained from G by adding a universal vertezx to G,
i.e., a vertex that is adjacent to every vertex of V(G). Then

V. (G) < V. (G") <V, (G) + 1.
The following proposition follows directly from the definition of grads.

Proposition 2.4. For every graph class G and every pair of nonnegative integers r, s, the following
holds: (GV s)Vr C GV (2rs+r+s). Consequently, Vs(G') < Varsir1s(G) for every G' € Gvr. In
particular, V,(G') < Va,41(G) and Vi(G') < Vu(G) for each G' € GV 1.

The following lemma about graphs of bounded expansion will be our main tool for constructing
the kernel. It establishes a bound on the number of X-neighborhoods in a graph G, i.e., the number
of subsets of X that are X-neighborhoods of some vertices outside X.

Proposition 2.5 ([19]). Let G be a graph, X C V(G) be a vertex subset, and R =V (G)\ X. Then
for every integer p = Vi (G) it holds that

1. [{v € R: [Nx(v)] > 2p}| < 2p-|X|, and
2. {AC X:|A| <2p and yer A= Nx(v)}| < (47 + 2p)| X]|.
Consequently, the following bound holds:
{AC X: Jpen A = Nx()}| < (47O +4%(G)) - [ X].

We most often apply Proposition 2.5 to a graph G belonging to some graph class G of bounded
expansion. In all cases we will assume that Vi(G) > 1, and hence we will use a simpler form of the
inequality:

{AC X:Fer A= Nx(@)}] < (47D +4%(@)) - |X] < (4V9 +4%(9) ) - [X| < 2479 - |x].

Another important property of graphs of bounded expansion is their stability under taking
lexicographic products.

Definition 2.6 (Lexicographic product). Given two graphs G and H, the lexicographic product
G e H is defined as the graph on the vertex set V(G) x V(H) where the vertices (u,a) and (v, b)
are adjacent if uv € E(G) or if u =wv and ab € E(H).
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Figure 1: The lexicographic product of a claw and a Ps.

Figure 1 exemplifies this procedure. The following lemma shows that the grad of the lexicographic
product of a graph and a complete graph is bounded.

Lemma 2.7. [x] For any graph G and non-negative integers ¢ > 1 and r we have that

Vi(G o Ko) <A(8c(r + ¢) - Vi(G) + 4o) T

2.3 Weak colorings

Let II(G) denote the set of all linear orderings of V(G). Given a graph G, an integer r and an
ordering o € II(G), we say that a vertex u is weakly r-accessible from a vertex v in o if u <, v and
there is a path P of length at most r with endpoints v and v such that every internal vertex w on P
has the property that u <, w. We denote by B (v) the set of vertices that are weakly r-accessible
from v in 0. When G is clear from context, we drop it from the superscript and write BZ (v).

Definition 2.8 (Weak r-coloring number). We then define the weak r-coloring number of a graph G
to be
l.(G) =1 i BZ(v)].
weolr(G) =1+ [in max, | B (v)]
The weak coloring number of a graph is related to its grads, and in the following sections we
need the following upper bound, which follows from [26, Proposition 4.8 and Theorem 7.11]:

Lemma 2.9 ([26]). For any graph G, it holds that wcola(G) < (8V1(G)3 + 1)2.

2.4 Charging Lemma

Using the weak coloring number and its links with the grads, we can now strengthen the insight
of Lemma 2.5 by showing that not only is the number of X-neighborhoods in a graph of bounded
expansion small, but these X-neighborhoods are, in a sense, also uniformly spread on X. The
following technical result is one of the most useful new contributions of this paper.

Lemma 2.10 (Charging Lemma). Let G be a bipartite graph with bipartition (X,Y") that belongs
to some graph class G such that Vi(G) > 1. Suppose further that for every u € Y we have that
N(u) # 0, and that for every distinct ui,ugs € Y we have that N(ui) # N(uz), i.e., Y is twin-free.
Then there exists a mapping ¢: Y — X with the following properties:

e up(u) € E for eachu €Y;



o [t (v)] <27 -4V(D) .V (G)® < 22 4V19) . v (G)S for each v € X.

In other words, there exists an assignment of vertices of Y to vertices of X such that each
vertex of Y is assigned to one of its neighbors, and each vertex of X is charged by at most f(Vi(G))
neighbors, for some function f(-).

Proof of Lemma 2.10. Since by Lemma 2.9 there exists an ordering o of V(G) such that for every
vertex v, the set of weakly 2-accessible vertices BS(v) has size at most (8V;(G)3 + 1)2.

Construct ¢ as follows: for every u € Y, set ¢(u) to that vertex of N(u) that is last in o; note
that the validity of this definition is asserted by the assumption that Y does not contain isolated
vertices. The first condition is trivially satisfied by ¢, so we proceed to proving the second one.

To see that no vertex is charged too many times by ¢, fix a vertex v € X and consider any
vertex u with ¢(u) = v. First, suppose that u <, v: Then u is contained in Bf(v). Hence, the
number of such vertices u is at most | B (v)].

Otherwise, i.e. when v <, u, note that by the definition of ¢ we have that N(u)\ {v} lies entirely
to the left of v. We infer that N(u) C BJ(v) U {v}. Since Y is twin-free, we can immediately bound
the number of such vertices u by 2155 ()|, However, we can obtain a better bound by applying
Proposition 2.5 to B§(v): the number of such vertices u is then bounded by

2.4 |BS (v).
Combining these two cases we obtain that

]

=27.4V109) .y, (g)8,

as claimed. n

2.5 Domination and scattered sets

We now state the constant-factor approximation for DOMINATING SET proved by Dvorak [10].
The statement is slightly different from the results there, and we therefore explain how this exact
statement can be derived from the work of Dvorak in the appendix.

Theorem 2.11. [x] There is a polynomial-time algorithm that given a graph G and an integer k,
either finds a dominating set of size at most 229V, (G)'2k or a 2-scattered set of size at least k+1 in G.

We remark that the proof of Theorem 2.11 does not assume that the graph belongs to some class
of bounded expansion. If this is the case, then algorithm can be implemented with slightly better
approximation ration and in linear time. However, in the nowhere dense case it will be important
for us that we can apply Theorem 2.11 without this assumption, and in particular that the running
time does not depend exponentially on the grads of G.

We need the following strengthened version of Dvorak’s algorithm that approximates domination
of only some subset of vertices.

Lemma 2.12. There is a polynomial-time algorithm that, given a graph G, a vertex subset Z C V(G)
and an integer k, finds either

10



e a Z-dominator in G of size at most 233V (G)12 - k, or
o q subset of Z of size at least k + 1 that is 2-scattered in G.

Proof. Obtain G’ from G by adding first an isolated vertex v’ and then a vertex v universal to
V(G") \ Z and adjacent to v'. Apply Theorem 2.11 to graph G’ with parameter k + 1.

Suppose first that the algorithm outputs a dominating set D in G'. By Lemma 2.3 and The-
orem 2.11, this dominating set has size at most

220v (G2 (B +1) <22(V(G) + D2 (B +1) <28V (G)'2 - k.

Observe that DNV (G) is a Z-dominator in G; neither v nor v’ can possibly dominate any vertex of Z.

Suppose now that the algorithm provided a 2-scattered set S in G’ of size at least k+ 2. Observe
that the graph G’ — Z has diameter 2 since v is a universal vertex for this graph. Hence any 2-
scattered set in G’ contains at most one vertex from V(G)\ Z. Therefore, S can contain at most one
vertex outside of Z in G, hence [SNZ| > k+1 and SN Z is the sought 2-scattered subset of Z. [

2.6 Nowhere dense graph classes

In this section we introduce auxiliary definitions and facts about nowhere dense graph classes. These
results will be essential for the reasoning in Section 4, where we obtain an almost linear kernel for
DOMINATING SET on any fixed nowhere dense class. However, no result of this section is used in
Section 3 that treats of graph classes of bounded expansion, hence the reader only interested in
bounded expansion graphs can omit this part.

We first introduce the definition of a nowhere dense graph class; recall that w(G) denotes the
size of the largest clique in G’ and w(G) = supgeg w(G).

Definition 2.13 (Nowhere dense). A graph class G then is nowhere dense if there exists a function
fw: N — N such that for all » we have that w(G v r) < f,(r).

This definition follows closely the definition of bounded expansion. Since cliques have non-
constant density, we have that every class of bounded expansion is also nowhere dense; however,
the converse is not true [26].

We shall mostly rely on the following alternative characterization of nowhere dense graph classes,
which follows easily from the following results of [25]: Theorem 4.1, points (ii) and (x), and Corollary
4.3.

Proposition 2.14 ([25]). Let G be a nowhere dense graph class. Then:

1. There is a function fy(r,e) such that Vo(G') < fv(r,e) - |G| for every integer r > 0,
G' € GVr, and real ¢ > 0. In particular, V,.(G) < fv(r,e) - |G|¢ for every integer r > 0,
G e g, and real € > 0.

2. There is a function fyeol(r,€) such that weol,(G) < fwcol(r,€) - |GIE for every integer r > 0,
G € G, and real € > 0.

As shown in [25], conditions (1) and (2) are in fact equivalent to G being nowhere dense, provided
that G is closed under taking subgraphs.

We remark that in the other literature on the topic, it is customary to use an alternative variant of
this statement: for instance, there exists a constant N¥¢°! such that weol,(G) < |G|* for any integer
r, real € and graph G € G such that |G| > Nk see e.g. [21, Lemma 5.3]. Whereas this formulation
can be easily seen to be equivalent to ours, we find it more cumbersome to use in the proofs.
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It turns out that the clique density, i.e. the number of complete subgraphs in a graph divided
by the size of the graph, is an important measure that that determines the structure of nowhere
dense graphs. Recall that #w(G) denotes the total number of cliques in G.

Lemma 2.15 (Clique density of nowhere dense graph). Let G be a nowhere dense class of graphs.
Then there exists a function fu.,(r,€) such that for any G € G, integer r > 0 and real € > 0, we
have that #w(G V1) < fuu(r,e) - |G]1Te.

Proof. Take any H € GV r; of course, |H| < |G|. Since G € G, we have that w(H) < f,(r). By
Proposition 2.14, point (2) applied to r = 1 and &’ = ¢/(f,,(r) —1), there exists an ordering o € I1(H)
such that for each v € V/(H) we have that Bfl’g(v) ={u: u<,vAuv € E(H)} has size at most
fucol(L,€") - [HIF" < fucor(1,€") - |G|F". For each clique Q@ C V(H), let vg be the last vertex of Q in
o. Then we have that @ C BiH’U(vQ). Therefore, for each v € V(H) we have that the number of
cliques @ C V(H) with v = vg is at most

fw(r)—1
ST B @) < fulr) - BT )0 fu(r) - frear (1) GPE
d=0

The claim follows by summing through all the vertices of H and using the fact that |H| < |G|. O

We now use the following result from [19, Lemma 6.6] that relates the structure of bipartite
graphs to the edge- and clique-density of its respective graph class.

Proposition 2.16. Let G = (X, Y, E) be a bipartite graph, and let Gy be the class of 1-shallow minors
of G that have at most | X| vertices. Let further h = supyeg, (#w(H)/|H|). Then there are at most

1. 2¥p(G1) - | X| vertices in' Y with degree larger than w(G1);
2. (h+2V%(G1)) - | X| subsets A C X such that A= N(u) for someu €Y.

With these tools at hand, we can prove the following important lemma that serves the role of
Proposition 2.5 in the nowhere dense case.

Lemma 2.17 (Twin classes). Let G be nowhere dense graph class. Then there ezists a function
fnei(+) such that for any graph G € G, any nonempty vertex subset X C V(G) and any ¢ > 0, the
following holds:

{AC X: Fperix A= Nx(} < freile) - | X[,

Proof. We would like to use the second bound of Proposition 2.16. Fix € > 0, a graph G € G and a
nonempty vertex set X C G. Let G be the bipartite graph (X, V(G)\ X, E(G)N(X x (V(G)\ X))).
To obtain the sought bound, we need bounds on the quantities h := supycg, (#w(H)/|H|) and
Vo(G1), where Gy is defined for G as in Proposition 2.16.

Since Gy is a subgraph of G, we have that G; C GV 1. Hence, from Lemma 2.15 we obtain

o(H (1, )| H| e
he s SEUD o Tr(L O]

wea, |Hl 7 meavi |H|
|H|<|X]|

< fro(le) - [XT5. (1)

The bound of the grad follows directly from Proposition 2.14, point (1):

Vo(G1) = Hzlgvlvo(H) < fe(le) - | X5 (2)
|H|<|X]
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By plugging (1) and (2) in upper bound of Proposition 2.16 (2), we obtain that
{ACX: Fenx A= Nx(0)} < (h+2%(G1)) - |X] < (fgo(l,e) +2fv(1,2)) - [ X]HE.
Hence we can set fei(e) = faw(l,e) +2fv(1,€). O

Given Lemma 2.17, we can now use it to prove the analogue of the Charging Lemma, i.e.,
Lemma 2.10. The proof uses the same approach via weak 2-colorings as that of Lemma 2.10, and
is contained in the appendix for completeness.

Lemma 2.18. [ Let G be a nowhere dense graph class. Then there exists a function fepr(-)
such that the following holds. For any e > 0 and any bipartite graph G = (X,Y, E) € G such that
every verter from Y has a nonempty neighborhood in X and no two vertices of Y have the same
neighborhood in X, there exists a mapping ¢: Y — X with the following properties:

e up(u) € E for each u €Y;
o (071 (V)| < fenrg(€) - |GIF for each v € X.

Finally, we state the variant of Dvordk’s algorithm suitable for nowhere dense graphs. The follow-
ing lemma follows directly from plugging the bound of Proposition 2.14, point (1), into Lemma 2.12.

Lemma 2.19. Let G be a nowhere dense class of graphs. Then there exists a function fg,(-) and
a polynomial-time algorithm that, given a graph G € G, a vertex subset Z C V(G) and an integer
k, finds either:

e o Z-dominator in G that has size at most fq,(€) - k- |G|° for every e >0, or

o q subset of Z of size at least k + 1 that is 2-scattered in G.

3 A kernel for graphs of bounded expansion

In this section we give a linear kernel for DOMINATING SET on graphs of bounded expansion; that
is, we prove Theorem 1.1. Let us fix a graph class G that has bounded expansion, and let (G, k)
be the input instance of DOMINATING SET, where G € G. We assume that Vi(G) > 1, otherwise G
is a forest and the DOMINATING SET problem can be solved in linear time.

We assume that G is fixed and thus also the values of V,.(G) for 0 < r < 4. We discuss in
Section 6 that the values of V,.(G) for 0 < r < 4 need not be known to the algorithm, but it will
significantly simplify the analysis.

As explained in Section 1, the first goal is to reduce the number of dominatees. More precisely,
we find a subset of vertices Z of size linear in k, called a domination core, such that any Z-dominator
is guaranteed to dominate the whole graph. In this manner, domination of vertices outside the
domination core is not relevant to the problem, and they can only serve the role of dominators.
Reducing their number is performed in the second step of the algorithm.

3.1 Reducing dominatees

We begin with introducing formally the notion of a domination core:

Definition 3.1 (Domination core). Let G be a graph and Z be a subset of vertices. We say that Z
is a domination core in G if every minimum-size Z-dominator in G is also a dominating set in G.
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Clearly, the whole V(@) is a domination core, but we look for a domination core that is small
in terms of k. Note that if Z is a domination core, then ds(G) = ds(G, Z). Let us remark that in
this definition we do not require that every Z-dominator is a dominating set in G; there can exist
Z-dominators that are not of minimum size and that do not dominate the whole graph.

The rest of this subsection is devoted to the proof of the following theorem.

Theorem 3.2. There exists a function feoresize(+) and a polynomial-time algorithm that, given an
instance (G, k) where G € G, either correctly concludes that ds(G) > k, or finds a domination core
Z C V(G) with |Z| < fcoresize(v4(g)) k.

We fix G and k in the following to improve readability. For the proof of Theorem 3.2 we start
with Z = V(@) and gradually reduce |Z| by removing one vertex at a time, while maintaining the
invariant that Z is a domination core. To this end, we need to prove the following lemma, from
which Theorem 3.2 follows trivially as explained:

Lemma 3.3. There exists a function feoresize() and a polynomial-time algorithm that, given a
domination core Z C V(G) with |Z| > feoresize(Va(G)) - k, either correctly concludes that ds(G) > k,
or finds a vertex z € Z such that Z \ {z} is still a domination core.

Thus, from now on we focus on proving Lemma 3.3.

3.1.1 Iterative extraction of Z-dominators

The first phase of the algorithm is to build a structural decomposition of the graph G. More precisely,
we try to “pull out” a small set X of vertices that dominates Z, so that after removing them, Z
contains a large subset S, which is 2-scattered in the remaining graph. Given such a structure,
we can argue that any optimal Z-dominator should take vertices from X (which dominate many
vertices of §) rather than from V(G) \ Z (which can dominate only at most one vertex from 5).
Since S will be large compared to X, some vertices of S will be indistinguishable from the point
of view of domination from X, and these will be precisely the vertices that can be removed from
the domination core. The identification of the irrelevant dominatee will be the goal of the second
phase of the algorithm, whereas the goal of this phase is to construct the pair (X, S).

Given Z, we first apply the algorithm of Lemma 2.12 to G, Z, and the parameter k. Thus, we
either find a Z-dominator X; such that |X7| < 23V (G)12 -k < 233V4(G)'2 - k, or we find a subset
S C Z of size at least k + 1 that is 2-scattered in . In the latter case, since S is an obstruction to
a dominating set of size at most k, we may terminate the algorithm and provide a negative answer.
Hence, from now on we assume that X; has been successfully constructed.

Now, we inductively construct sets Xa, X3, X4, ... such that X; C Xy C X3 C .... We shall
maintain the invariant

| Xi| < fi(Va(9)) - K,

where (fi)i=1,2,... is a sequence of upper bounds that increases quite rapidly with . More precisely,
we inductively define the following functions:

g($) — 2105220x$53 + 1,
fz(ﬁf) — (1 + (2333?12 i g(x)))i—l i 2333312.

Observe that we indeed have that | X1| < f1(Vi(9)) - k < f1(Va(G9)) - k, so the invariant is satisfied
in the first step.
We now explain how X, is computed based on Xj:
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1. First, apply the algorithm of Lemma 2.12 to G — X;, Z\ X;, and the parameter g(V4(G)) - | X;].

2. Suppose the algorithm has found a set S C Z \ X;, which is 2-scattered in G — X;, and has
cardinality greater than ¢(V4(G)) - |X;|. Then we let X = X, terminate the computation of
the sets X; and proceed to the second phase with the pair (X, S).

3. Otherwise, the algorithm has found a (Z \ X;)-dominator D;;; in G — X; such that

Dina| < (2¥W(G)2 - (Va(9))) - K] < (2%W1(9)"2 - 9(Viu(9))) - 1]
We let X;11 = X; U D;+1 and proceed to the next i. Observe that

Xt < (142W1(9)"2 - g(Va(G))) - |X,
< (14289 - 9(Vi(G)) - i(Va(G)) -
= fir1(Va(9)) - k.

Hence, the invariant that | X;| < f;(Va(G)) - k is maintained in the next iteration.

In this manner, the algorithm consecutively extracts Z-dominators Do, D3, Dy, ... constructing
sets X9, X3, X4, ... up to the point when case (2) is encountered. Then the computation is termi-
nated and the sought pair (X, .S) is constructed. We now claim that case (2) always happens within
a constant number of iterations.

Lemma 3.4. Assuming that |Z| > 2foy,g)(Va(G)) - k, the construction terminates with some
pair (X, S) before iteration 2Vy(G), that is, before constructing Xov,(g)-

Proof. Suppose for a contradiction that the algorithm actually performed 2Vy(G) — 1 iterations and
hence it constructed @ = Xoy,(gy- Then |Q] < bk where b = foy, () (Va(G))-

Since |Z| > 2bk, we infer that |Z \ Q| > bk > |Q|. Take any z € Z \ @, and observe that by
the construction of X1, Xs,..., Xoy;(g), it must hold that z has one neighbor in each of the sets
X1, D2, D3 ..., Doy g) constructed along the way: each of these sets is a Z-dominator. Thus, z must
have at least 2Vj(G) neighbors in Q). Construct a set P by taking @) together with |@| 4+ 1 arbitrarily
chosen elements of Z \ ). Observe that the density of G[P] is at least TGO+ -, Vo(G), which

. L. 2]Q]+1
is a contradiction. O

Therefore, unless the size of Z is bounded by 2 fovy,(g)(Va(G)) - k, the construction terminates
within 2Vp(G) — 1 iterations with a pair (X, S). By the construction of X and S, we have the
following properties:

o [X| <2 fogy)-1(Va(9)) - k;

e X is a Z-dominator in G;

o S| > (2105220V4(D) v, (G)%3 + 1) - |X|;

e SCZ\ X and S is 2-scattered in G — X.

With sets X and S computed we proceed to the second phase, that is, finding an irrelevant dominatee
that can be removed from Z.
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Figure 2: Overview over important vertex sets.

3.1.2 Finding an irrelevant dominatee

Given G and the constructed sets X, Z and S, we denote by R = V(G) \ X the vertices outside X.
Using this notation, S is 2-scattered in the graph G[R]. Recall that for any vertex u € R, by the
X -neighborhood of u, denoted Nx (u), we mean N(u)N X.

We construct an auxiliary graph G’ € G v 1 as follows: for every vertex s € S, we contract every
vertex of the set N(s)\ X into s. Since the vertices of S are 2-scattered in G — X, the sets N(s) \ X
are pairwise disjoint for different s € S and this operation creates a 1-shallow minor of G. The
vertex of G’ onto which the set N(s) \ X is contracted to is renamed as s. We denote by N'(-) and
N'[-], respectively, open and closed neighborhoods of vertices in G’. Again, the X-neighborhoods
in G’ are denoted N (u) = N'(u) N X, for u € V(G’).

Note that for a vertex s € S, we have that Nx(s) C N (s). Moreover, both these sets are
nonempty, since X is a Z-dominator in G and .S C Z. We first prove that most vertices of S actually
have few neighbors in X in the graph G’.

Lemma 3.5. There are at most | X| vertices s € S for which |N%(s)| > 2Vi(G).

Proof. Assume that there are more than |X| such vertices, and let S’ be a set of |X| + 1 such
vertices. Consider the induced subgraph G'[S” U X]. The density of this subgraph is at least

15 -2Vi(9) _ |S']-2VA(9)
[S+1x] 29-1

> Vl(g)v

which is impossible since G’, and therefore also G’'[S” U X], are 1-shallow minors of G € G. O

We now remove from S all the vertices s with | N% (s)| > 2V (G); Lemma 3.5 ensures that there is
at most | X| of them, and hence the resulting set has size at least | S| — | X| > 2105220V1(9)y,(G)%3 .| X|.
For ease of readability, we abuse notation and call the remaining set S. We also reconstruct the
graph G’ according to the new definition of S. Hence, from now on we assume that |S| >
2105920V4(9) 7, (G)53 . | X | and that no vertex of S has more than 2V} (G) neighbors in X in G'.
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Let Ry = RN N|S] be those vertices of R that can possibly dominate a vertex in S, and
let R, = R\ R; be all the other vertices in R. We now partition the vertices of G’ — X into
classes according to their neighborhoods in X. Note that by the construction of G’, we have that
V(G — X) =S U Ry. We define the equivalence relation ~x over S U Ry as follows:

u~x v& Ny(u) = Nx(v).

In the following, we consider the quotients (sets of classes of abstraction) K; = S/~x and
K9 = Ry /~x. We will also use K = K; U K3. Note that since vertices of Ry are untouched during
the construction of G, we have that K5 is simply the partitioning of vertices of Ry with respect
to their X-neighborhoods in G. Each « € K will simply be called a class. For a class k € K, by
N’ (k) we denote the common X-neighborhood of vertices of x in G'.

Observe that each class k € K7 consists of vertices from S C Z, which, since X is a Z-dominator,
have to have neighbors in X in graph G. Hence, N% (k) is nonempty for each x € K;. However,
in K» there may be a class kg whose vertices do not have neighbors in X; i.e., N4 (xg) = 0. Note
that the vertices of this class, provided it exists, cannot be contained in Z.

For a class k € K we define U, = N|[k]N R. That is, U,, comprises all vertices of R C V(G) that
have been contracted onto the vertices of x during the construction of G’. Since S is 2-scattered
in G[R], the sets Uy, for k € K are pairwise disjoint. Moreover, (U,)xck, forms a partition of R;.

Intuitively, our goal now is to identify a large class x € K that cannot be dominated by a small
set of vertices in R. We then argue that such a class contains a vertex that is irrelevant: it can
be removed from Z without breaking the invariant that Z is a domination core.

First, we define an auxiliary graph that captures the interaction between the classes in K.

Definition 3.6. The class graph H is a graph with vertex set K that contains an edge between
k, k" € K if and only if there exists u € x and v’ € x’ such that uu’ € E(G’).

Figure 3: The class graph H with vertex set K1 U Ko = K.

The crucial observation is that the class graph actually cannot be too large and complicated:
it has O(|X|) vertices, and has bounded expansion. We now prove these facts formally.

Lemma 3.7 (Size of the class graph). The following holds:
o |Ky| <2-4Y9) . |X]|, and

o K| <2-4M109) . |X|.

17



Consequently, |V (H)| = |K| < 4-4¥+9) . |X].

Proof. Recall from Proposition 2.5 that for G € G and X C V(G), with R = V(G) \ X, we have
that [{Nx(v): v € R} < 2-4V19) .|X|. The upper bound on |K»| (second item) follows from the
above equation applied to the graph G — R; and X. In order to obtain an upper bound on |Kj|,
we again apply the above equation, but now to the graph G’[S U X| and X. We thus infer that
the number of possible X-neighborhoods among the vertices in S, and hence the number of classes
in K1, is at most 2-4V1(¢) . | X|. Since G’ is a 1-shallow minor of G € G, by Proposition 2.4 it
follows that V3 (G’) < V4(G). Hence |K;| < 2-4%49) .| X]|. O

Our intuition tells us that the grad of H should be related to the grad of G. Since H is not
necessarily a shallow minor of G (the members of a class are not necessarily connected in G’ and
thus can therefore not necessarily be contracted), the proof of this fact needs some additional work.
We remark that the only fact we use later is that H has a constant density; however, we find the
observation that H has bounded expansion quite insightful.

Lemma 3.8 (Grad of the class graph). There exists a function h(-,-) such that for every r >0 it
holds that V,(H) < h(r, Vor+4(G)). In particular, Vo(H) < 2100216V4(9)y, (G)52.

Before we proceed to the proof of Lemma 3.8, we briefly discuss the intuition behind it, which
consists of two steps: We first blow up the graph using the lexicographic product with a constant-
sized clique. The resulting grad is bounded, as was observed in Lemma 2.7. Then, we apply
Lemma 2.10 in order to find a smart way of contracting vertices in such a manner that every class k
ends up being contracted onto a different copy of a vertex from X. The class graph H will then
appear as a subgraph of this construction, and therefore we can bound its grad as a function of G’s
grad. During the construction we need to be careful about the class xp, which needs to be treated
separately, since it cannot be contracted onto X at all.

Proof of Lemma 3.8. In the following, we assume that kj exists. In case this class does not exist,
the proof follows the same line of reasoning and is, in fact, simpler, as we do not need to perform
the final step of considering kp separately.

Let L1 be a set constructed by selecting an arbitrary vertex s, from each x € Ky. Analogously
construct a set Ly for the set of classes K2\ {kg}. We define two bipartite graphs G} = (L1, X, E(G")N
(L1 x X)) and Gy = (Lo, X, E(G') N (La x X)); observe that both of them are subgraphs of G'.
Moreover, by the definition of the classes from K; and K9 we infer that these graphs satisfy the as-
sumptions of Lemma 2.10: X-neighborhoods of vertices in L; are distinct and non-empty, for t = 1, 2.

Hence, we can apply Lemma 2.10 to the graphs G} and G5, thus obtaining assignments
¢1: L1 — X and ¢o: Ly — X such that the pre-images of every vertex of X under ¢1 and ¢o have
sizes at most 294V1(GI)V1(G/ )6. As the vertices of Ly and Lo correspond bijectively to classes of K3
and Ks \ {kg} respectively, we consider ¢; and ¢ also as assignments from K; to X and from
Ko\ {kp} to X, respectively.

Let us combine ¢1, ¢2 into ¢: K1 U Ko \ {kp} — X. Hence, the number of times a single vertex
v € X can be chosen is at most doubled: for every v € X, it holds that

67" (0)] < 247D (E)° < 24TV (G),

where the last inequality follows from Proposition 2.4. Let 7 = 2194V4(9)y,(G)5. We now consider the
lexicographic product G” = G’ e K. Let us construct a 1-shallow minor H' € G” v 1 as follows: for
every class k € K\ {kp}, contract all the copies of all the vertices of x onto one of the copies of ¢(k) €
X, so that every class K € K \ {kgy} is contracted onto a different vertex. Since every vertex of X is
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chosen at most 7 times by ¢, such a contraction is possible. Let ¢: K\ {xg} — V(G") be an injection
that assigns classes of K\ {kp} to the copies of vertices of X they are contracted onto. Then it is easy
to see that ¢ defines a subgraph embedding of H—{kg} into H'. Consequently, H—{xg} is a 1-shallow
minor of G”; and hence we can bound the grads of H — {y} using Proposition 2.4 and Lemma 2.7:
Vars1(G") < 4(87(3r + 1+ 7) Va1 (G') + 47) 3+

A(BT(3r + 1 + 7) Vo4 4(G) + 47) B+’

A(8T(3r + 1+ 7)Vora(G) + 47)B32°,

Vir(H —{fg}) <
<
<

To obtain a bound on the grads of H, observe that H is a subgraph of the graph obtained from
H — {kp} by adding a universal vertex. From Lemma 2.3 we infer that V,(H) < V,.(H — {kp}) + 1,
and hence

Vo(H — {kg}) < 4B7(3r + 1+ 7)Vr1a(G) + 47) B 11 = h(r, Vo,14(G)),

since 7 is a function of r and V4(G) < Vi, 44(G).
Thus, we have proven the first part of the lemma. The second part, i.e., the explicit bound on
the degeneracy of H, follows from taking r = 0 and substituting 7 = 2104V4(9) Vi(G)S:

Vo(H) < 4(87(1 4+ 7)Vu(G) +41)* +1
<AV(G)*t - (8T2 +127) 41

<AVL(G)*- (2072 +1
<220.vy(g)*t- 8
2

(g)52 . 216V4(g) .

- Vi
100 . 7,

O]

As a corollary to Lemmas 3.7 and 3.8, we can now bound the number of edges in the class graph
by a linear function of | X]|.

Corollary 3.9. The number of edges in H, |E(H)|, is at most 2102V,(G)?2218V4(9) | X]|.

Proof. Since |E(H)| < Vo(H) - |V(H)|, we apply the upper bounds proven in Lemmas 3.7 and 3.8

and obtain
|E(H)| < 290V, (G)2216%1(9) . 4. 4%4(9) . | x|

2102V4(g)52218V4(Q) . ‘X‘

NN

O]

Our next goal is to find a class k € Ky which is large compared to its degree in the class graph H.
This class is the set of candidates among which an irrelevant vertex will be identified.

Lemma 3.10 (Large subclass). There exists a class k € K; and a subset X\ C k with the property
that every member has the same X -neighborhood in G and, furthermore, that

A > 2V1(G) - (deg (k) + 1) + 1.
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Proof. For k € K let us define the following potential function:
O(k) = |k] — 22192V (G) - (degy (x) + 1) +1).
Summing over all K € K; we observe that

> (k)= D |8 =229 3 (2V1(G) - (degy (k) +1) + 1)

reK1 reK1 rkeK1

= |§| — 22%1(9) (m > degy (k) + (2VA(G) + )-|K1|).

KEKq

Using the fact that 3, degy (k) < Ypev(m)degr(r) = 2|E(H)| and the upper bound from
Corollary 3.9, we obtain

3 B(r) > |5] - 27O (21097,(G)P25VO) X 4 (2W(G) + D] -
reEK,

Now we apply the upper bound on |Kj| in terms of |X| from Lemma 3.7:

> (k) > |S] - 22O (21009, (g)P3215VHD) 4 2. 4% (294(9) + 1)) - |X]|
rEK

> |S| _ 2105V4(g)53220v4(g) . |X|

However, recall that |S| > 210°V,(G)?3220V1(9) . | X| by the construction of S, so we conclude that
> . ®(k) > 0. Therefore, there exists at least one k € K; for which ®(x) > 0. Equivalently,

k| > 2219 2V, (G) - (degy (k) +1) + 1).

Having found such a large class s, we proceed as follows. Partition the members of s according
to their X-neighborhoods Nx in G; recall that the members of x have the same X-neighborhood N
in G', but they potentially have different X-neighborhoods in G. However, since we explicitly ex-
cluded from S all the vertices that have more than 2V; (G) neighbors in X in graph G, we know that
IN% (k)| < 2Vi(G) (see Lemma 3.5 and the subsequent paragraph). Since Nx(s) C N (k) for each
s € k, the number of possible classes we partition x into is trivially bounded by 2INx ()] < 92V1(9)
Thus, we arrive at the conclusion that one of the parts A C x satisfies the size bound

|A| > 2Vi(G) - (degy (k) +1) +1
as claimed. n
We can finally state the lemma that identifies the irrelevant vertex:

Lemma 3.11. Let z be an arbitrary vertex of X\. Then Z \ {z} is still a domination core.

Proof. Denote Z' = Z \ {z} and let Nx(\) C N% (k) be equal to Nx(s) for any s € X\ (these
X-neighborhoods are by definition equal). Let D be any minimum-size Z’-dominator in G; the goal
is to prove that D is a dominating set in GG. In the following we work in the graph G.

Assume first that D contains some vertex from Nx (). Since every vertex of Nx(A) is by
definition adjacent to every vertex of A, we have that D also dominates z. Hence D is a Z-dominator,
and it must be of minimum size since ds(G, Z) > ds(G, Z’). Since Z was a domination core, we
have that D is a dominating set in G.
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Now suppose that D N Nx(A) = (). We prove that this situation is impossible, as it would
contradict the assumption that D has minimum size. Recall that for k; € K7, we denote by
Uk, = N[k1] N R the set of all the vertices of R that can potentially dominate a vertex of .

Since A\ {z} C S\ {2z} C 7/, all the vertices of A\ {z} must be dominated somehow by D. They
are not dominated from X, since we assumed that DN Nx(\) = (. Hence, each vertex of A\ {z} has
to be dominated by a vertex belonging to Uy. Since S is 2-scattered in G — X, each element of D can
dominate at most one element of A\ {z}. We infer that |[DNU,| = |A\{z}| > 2V1(G) - (degy (k) +1).

Now construct a vertex set D’ from D by:

e removing from D all the vertices belonging to Us;
e adding all the vertices of N% (k1) for each k1 € Ny[k] N K1; and

e adding an arbitrary vertex of Nx(k2) for each ko € Np[k] N Ky, provided that the set Nx (k2)
is nonempty.

Clearly, in the first step we have removed more than 2V, (G) - (degy (k) + 1) vertices. Observe that
in the second we have added at most 2V;(G) - (degy (k) + 1) vertices: there are degy (k) + 1 classes
in Ny[x|, each class k1 € Ny[r] N K; has |[N% (k1) < 2V1(G) and for each class ko € Ny[k] N Ko
we have added at most 1 < 2V;(G) vertex from Nx(r2). Thus, we have that |D’'| < |D|.

To arrive at a contradiction it remains to show that D’ is a Z’-dominator. By removing the vertices
of DN U, from D we might have removed domination from some vertices of Z’ that are contained
either (a) in N (k), or (b) in Uy, or (c) in Uy, for some k1 € Ny (k)NKy, or (d) in some k2 € Ny (k)N
K. Let u € Z' be some vertex from which we removed domination when removing D N U, from D.
We now investigate the aforementioned four cases, and in each case we prove that u is dominated
by D’. Note that since u € Z and X is a Z-dominator, then u has at least one neighbor in X.

Case (a): u € Ni (k).

However, we have included N% (k) in D’, so in particular u € D'.

Case (b): u € U,.
Note that every neighbor of u in X belongs to N’ (), and we have included the whole N (k)
in D'. As we have argued, u indeed has at least one neighbor in X. Hence this neighbor
belongs to D’ and dominates wu.

Case (c¢): u € U, for some k1 € Ng(k) N K.
The same argumentation as in Case (b): Every neighbor of v in X belongs to N% (1), and
we have included the whole N (k1) in D’. Moreover, u indeed has at least one neighbor in X,
and hence this neighbor belongs to D’ and dominates wu.

Case (d): u € Ky for some kg € Ny (k) N K.
By the definition of K3, the X-neighborhood of u is exactly Nx(k2). Moreover, since u has
at least one neighbor in X, this X-neighborhood is non-empty and hence we have picked at
least one vertex from it to D’. Hence, the picked vertex belongs to D’ and dominates u.

Therefore, |D'| < |D| and D’ is a Z'-dominator, contradicting the minimality of D. O

We now conclude the proof of Lemma 3.3, which also concludes the proof of Theorem 3.2.
We let feoresize(Va(G)) = ZfQVO(g)(V4(g)), for the reasoning of Section 3.3 to apply to any set Z
of size more than feoresize(V4(G)). The algorithm works as follows: First, we compute the two
sets X and S as described in Section 3.3; this can clearly be done in polynomial time since the
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construction boils down to a constant number of applications of the algorithm of Lemma 2.12. Then
we compute the class graph H and identify a class k and a subset A C k that satisfy the statement
of Lemma 3.10. Again, the construction of H can be done in polynomial time, and finding x and A
requires iterating through all the classes of K7, and then partitioning the vertices of x according
to their X-neighborhoods in G. Finally, Lemma 3.11 ensures that any vertex of A can be output
by the algorithm as an irrelevant dominatee.

3.2 Reducing dominators

Having reduced the number of vertices whose domination is essential, we arrive at the situation
where the vast majority of vertices serve only the role of dominators. Now, it is relatively easy to
reduce their number in one step, thus obtaining the sought kernel. In other words, we can now
proceed to the proof of the main result; for the reader’s convenience, we recall its statement.

Theorem 1.1. Let G be a graph class of bounded expansion. There exists a polynomial-time algorithm
that given a graph G € G and an integer k, either correctly concludes that ds(G) > k or finds a subset
of vertices Y C V(G) of size O(k) with the property that ds(G) < k if and only if ds(G[Y]) < k.

Proof. The algorithm works as follows. First, we apply the algorithm of Theorem 3.2 to compute
a small domination core in the graph. In case that algorithm gives a negative answer, we output
that ds(G) > k. Hence, from here on, we assume that we have correctly computed a domination
core Z C V(G) of size at most 2 foy; gy (Va(G)) - k.

Partition the vertices of V(G) \ Z into classes with respect to their Z-neighborhoods. By
Proposition 2.5, the number of these classes is at most

(479 +4w(9)) - |2 < 2-479 - |z].

Recall that since Z is a domination core, it follows that ds(G) = ds(G, Z2).

Construct a set Y by taking Z and adding an arbitrarily selected vertex v, from each nonempty
class k of the introduced partition. We claim that Y satisfies the condition from the statement.
Observe that

V| <249z + 12| < (2 L 4VE) 4 1) 2 fowy(9)(Va(9)) - k,
so indeed Y| = O(k).

Suppose first that ds(G) < k. Let D be a minimum-size dominating set in G, so |D| = ds(G) =
ds(G, Z). Tt follows that D is a minimum-size Z-dominator as well. We construct D’ by replacing
kND with vy, for each class k that has a nonempty intersection with D. Clearly, |D’| < |D| = ds(G, Z)
and D' C Y. Moreover, D’ is still a Z-dominator in G; the representative vertex v, dominates
exactly the same vertices in Z as the vertices from D N k. Therefore, since |D’| < ds(G, Z), it must
hold that D’ is a minimum-size Z-dominator in G and |D’| = ds(G, Z). Since Z is a domination
core, we infer that D’ is a dominating set in G. As D’ is a dominating set in G and D' C Y, it
follows that D’ is a dominating set in G[Y]. Hence ds(G[Y]) < |D'| =ds(G, Z) = ds(G) < k.

In the reverse direction, suppose now that ds(G[Y]) < k and let D’ be a minimum-size dom-
inating set in G[Y]; it follows that |D’| = ds(G[Y]). In particular, D" dominates Z C Y, and hence
it is a Z-dominator in G. It follows that ds(G, Z) < |D'| = ds(G[Y]) < k. Since ds(G) = ds(G, Z),
we get that ds(G) < k and we are done. O
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4 A kernel for nowhere dense graphs

In this section we generalize the approach presented in Section 3 to give an almost linear kernel
for DOMINATING SET in nowhere dense graph classes. In other words, we prove Theorem 1.2. The
proof will closely follow the reasoning in the bounded expansion case, and in the presentation we
assume that the reader is already familiar with the proof of Section 3. We need, however, to modify
the reasoning in a few places.

From now on, we assume that G is a fixed nowhere dense graph class. Without loss of generality
we assume that G is closed under taking subgraphs, since otherwise we may consider the closure of G
under this operation, which is also nowhere dense. We fix all the functions given by Proposition 2.14
and Lemmas 2.17, 2.18, 2.19 for the class G. Observe that the class G V1 is also nowhere dense,
hence we can apply these results also to this class. We therefore fix also the functions given by
Proposition 2.14 and Lemmas 2.17, 2.18, 2.19 for G v 1, and we shall denote them by f&(-,-), fli(-),

Clhrg(-) etc. Moreover, since G is nowhere dense, there exist constants ¢ and ¢’ such that K. ¢ GV 0
and Ky o+ ¢ GV 1; in the following we shall use these constants extensively.

We also fix the real value € > 0 for which the algorithm is constructed. Recall that Theorem 1.2
asserts the existence of an algorithm for each fixed value of ¢, and not an algorithm that gets ¢
on the input. Thus, the values of functions given by Proposition 2.14 and Lemmas 2.17, 2.18, 2.19
for classes G and G v 1 applied to any fixed & depending on ¢ can be hard-coded in the algorithm,
and do not need to be computed. If we would like to implement one algorithm that works for e
given on the input, then we would need to assume that class G is effectively nowhere dense, that
is, that function f(r) in Definition 2.13 is computable. Then we would be able to derive that all
the functions introduced in Section 2.6 are computable as well.

Let (G, k) be the input instance of DOMINATING SET such that G € G. We denote n = |V (G)].

4.1 Reducing dominatees

Exactly as in Section 3, we are going to reduce the number of vertices whose domination is essential
in the graph to almost linear in terms of k. More formally, we are going to find domination core
that has size bounded by g(¢) - k - n®, for some function g(-) and every € > 0. In this proof we shall
use the same definition of a domination core as in Section 3; that is, we prove the following result:

Theorem 4.1. There exists a function g(-) and a polynomial-time algorithm that, given an instance
(G, k) where G € G and any € > 0, either correctly concludes that ds(G) > k, or finds a domination
core Z CV(G) with |Z] < g(e) - k- n®.

Again, the proof of Theorem 4.1 follows trivially from iterative application of the following
lemma that enables us to identify a vertex that can be safely removed from the domination core.

Lemma 4.2. There exists a function g(-) and a polynomial-time algorithm that, given any e > 0,
a vertex subset Z C V(QG) with |Z| > g(e) - k- n® and a promise that Z is a domination core, either
correctly concludes that ds(G) > k, or finds a vertex z € Z such that Z\{z} is still a domination core.

From now on we focus on proving Lemma 4.2. We fix the constant € > 0 given to the algorithm;
without loss of generality we assume that ¢ < 1/10. That is, all the constants introduced in the
sequel may depend on .

4.1.1 Iterative extraction of Z-dominators

We now present the analogue of the subroutine presented in Section 3.1.1 for the nowhere dense
case. The argumentation will differ in some important details. Before we proceed to formal details,
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let us begin with an informal discussion about these differences.

As in the bounded expansion case, the goal is to find a pair of disjoint subsets X and S with the
following properties: X is bounded linearly in terms of & - nf/2, whereas S is 2-scattered in G — X
and is at least C'- n¢ times larger than X, for some &’ > 0 and a constant C chosen as large as we
like. If we now generalize the reasoning of Section 3.1.1 directly to the nowhere dense case, then
every consecutive Z-dominator X; would be f(8)-n’ times larger than the previous one, for any
d > 0. As V(G) is not bounded by a constant anymore, in a direct generalization we would have
problems with proving the analogue of Lemma 3.4: the argument that the construction terminates
after a constant number of iterations breaks per se. We therefore replace it with a different argument
based on discovering a large biclique subgraph in case the procedure runs for too many iterations.

We now proceed to the formal argumentation. Let § = £ > 0 and let us fix some constant C,
to be decided later. First, we apply Lemma 2.19 to G, Z, and parameters k and ¢. This algorithm
either outputs a subset S C Z such that |S| > k and S is 2-scattered in G, or a Z-dominator X3
such that | X;| < fay(6) - k- n°. In case S is found, every vertex of G can dominate at most one
vertex of S and thus we can conclude that ds(G,Z) > k. As ds(G, Z) = ds(G), we infer that
ds(G) > k and we can terminate the algorithm and provide a negative answer. Hence, from now
on we assume that the Z-dominator X; has been successfully constructed.

Now, we inductively construct Z-dominators Xo, X3, X4,...suchthat X; C Xo C X35 C X, C....
We maintain the invariant that

|1Xi| < Cy - kP02,

where constants C; are defined as
Ci = (]- + fdv((s) . C)i_l : fdv(é)

Observe that | X1| < fqv(8) - k - n%, which means that the invariant is satisfied at the first step. We
now describe how X1 is constructed based on X; for consecutive i = 1,2,3,....

1. First, apply the algorithm of Lemma 2.19 to graph G — X;, set Z\ X;, and parameter C-| X;|-n?.

2. Suppose the algorithm has found a set S C Z \ X; that is 2-scattered in G \ X; and has
cardinality larger than C - |X;| - n’. We set X = X;, terminate the construction of sets X;
and proceed to the second phase with the pair (X, .S5).

3. Otherwise, the algorithm has found a (Z \ X;)-dominator D;; in G \ X; such that
1Diga| < fav(8) - C - |Xi| - n® - n°
= fav(6) - C - | X .n20
We set X;41 = X; U D;y1 and proceed to the next i. Observe that

[Xi1] = 1X6] + [Diga] < (1+ fav(8) - ©) - 1 Xi] - n®

<
< (1 + fau(6)-C) - Ci - k- nZi1)0 . 20

= Cyy - k- p RO

Hence, the invariant that | X;| < C; - k - n(3=1? is maintained in the next iteration.

We now present the analogue of Lemma 3.4: we prove that the construction terminates by
outputting a pair (X, .S) after a constant number of iterations.
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Lemma 4.3. Assuming that |Z| > (¢ fnei(¢/2) + 1) - Cc - k - n®, the construction terminates by
outputting some pair (X, S) after at most ¢ — 1 iterations, i.e., before constructing X.

Proof. For the sake of contradiction, suppose that the procedure actually performed ¢ — 1 iterations,
successfully constructing disjoint Z-dominators Xy, Dy, D3, ..., D, where X; = X1UDsUD3sU. . .UD;
fori=1,2,...,c. Let Q := X, and observe that

1Z\Q| > 12| = |Q| > (¢ faci(e/2) +1) - Ce- k- n® = Ce - k-7 ?
> (¢ fuei(e/2) +1)-Cp-k-nf —C,-k-n/?
> faei(2/2) - Cokonf > ¢ faei(2/2) - Q] - n/2.

Now, partition vertices of Z \ @ into classes with respect to their neighborhoods in Q. By
Lemma 2.17, we infer that the number of these classes is at most fuei(¢/2) - |Q| - n*/2. Since
1Z\ Q| > ¢ faei(e/2) - |Q| - n°/2, we infer that one of these classes « satisfies |x| > ¢. However,

each member of x has neighbors in each of the Z-dominators X1, Do, D3, ..., D., and hence the
common Q-neighborhood of vertices of k is of size at least ¢. Thus we see that the induced subgraph
G|k U Ng(k)| contains a K. as a subgraph, a contradiction. O

Hence, provided that the cardinality of Z satisfies the lower bound stated in Lemma 4.3, the
construction will terminate after at most ¢ — 1 iterations, thus constructing sets X and S with the
following properties:

o |X|<Cer-k-n%

e X is a Z-dominator in G;

o |S|>C-[X] n’

e SCZ\ X and S is 2-scattered in G — X.

With sets X and S we proceed to the second phase, that is, finding an irrelevant dominatee.

4.1.2 Finding an irrelevant dominatee

We again denote R := V(G) \ X and we define Ry := J,cg N[s] N R and Ry := R\ R;. Then
S C ZNR and S is 2-scattered in G[R]. Again, graph G’ is a 1-shallow minor of G constructed
by contracting every vertex of N(s) N R onto s, for each s € S; the resulting vertex is identified
with s. We adopt the same notation for neighborhoods as in Section 3: N'(-) and N%(-) denote
neighborhoods and X-neighborhoods in graph G’, respectively.

As before, we claim that only few vertices of S can have large X-neighborhoods in G’.

Lemma 4.4. The number of vertices s € S for which |N%(s)| > ¢ holds is at most ¢'- f},.(8)-| X |-n®.

Proof. Let 8" = {s : s € SA|Nk(s)| > ¢}, and for the sake of contradiction suppose |S’| >
- fLi(8)-1X|-n’. Consider the graph G’[SU X| and partition the vertices of X with respect to their
X-neighborhoods in this graph. As G'[SUX] € GVv1 C GV1, by Lemma 2.17 we infer that the
number of these classes is at most fL;(5) - | X|-n%. Hence, one of the classes, say , has cardinality
at least ¢. Since each member of k C S’ has at least ¢ neighbors in X in graph G’, and this
X-neighborhood is common among the vertices of k, we infer that [Ny (k)| > ¢ and G'[k U N (k)]

contains a biclique K »~ as a subgraph. This is a contradiction with G’ € G v 1. O
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Again, we remove from S all the vertices that have X-neighborhoods in G’ larger of size at least ¢'.
In this manner, Lemma 4.4 ensures us that the size of S shrinks by at most ¢ - fL;(6)-|X|-n°. Hence,
if we set C' := Cy+ ¢’ - fL;(8) for some Cy to be determined later, then after performing this step we
still have that the resulting set has size more than Cp-|X|-n%. Again, we shall abuse the notation and
denote the resulting set also S, and we reconstruct the graph G’ according to the new definition of S.
In this manner, from now on we assume that |S| > Cp - |X|-n® and that [N’ (s)| < ¢ for each s € S.
We define the equivalence relation ~x over S U Ry as before:

u~x v & Ni(u) = Ny (v).

Again, we shall consider quotients K1 := S/ ~x and Ky := Rp/ ~x. We adopt the same notation as
in Section 3: For xk € K; U Ky, we denote by N% (k) the common X-neighborhood in G’ of vertices
of k, and for k € K, we denote Uy, := Jye,. N[s] N R. As before, since X is a Z-dominator, we have
that N% (k) is nonempty for each x € K. In case Ky contains some class k with N% (k) = (), then
this class is denoted by rgp.

The definition of the class graph H is exactly the same as in Section 3: the vertex set of H
is equal to K7 U Ky, and we put xx’ € F(H) if and only if there exist u € x and ' € &’ such
that uu’ € E(G"). We now prove the analogues of Lemmas 3.7 and 3.8 that estimate the size and
sparsity of the class graph; the proofs are direct generalizations of the bounded expansion case to
the nowhere dense case. In the following, we denote v = /2.

Lemma 4.5 (Size of the class graph). The following holds:
d |K1’ nez 7) | | n?, and

i |K2| gfnez('Y) | |
Consequently, |V (H)| = |K1| + |Ka| < 2fL..(7) - | X]|-n?.

Proof. The upper bound on |K»| (second item) follows directly from Lemma 2.17 applied to the
graph G — Ry, set X, and parameter v (we use that |X| < n). In order to obtain an upper bound
on |K1|, we apply Lemma 2.17 to the graph G'[S U X] € G v 1. We thus infer that the number of
possible X-neighborhoods among the vertices in .S, and hence the number of classes in K1, is at
most fl(7) - | X| -, =

Lemma 4.6 (Grad of the class graph). There exists a function h(-) such that for every r > 0 it
holds that V,.(H) < h(r) - n7.

Proof. Let us fix r and let g = Tﬁ) As in the proof of Lemma 3.8, we assume that kg exists;
otherwise the argument is even simpler as we do not need to consider this class separately.

We construct sets L; and La by picking an arbitrary vertex from each class of K; and each class of
K3\ {0}, respectively. Bipartite graphs G and G} are again defined as G} = (L1, X, E(G")N(L1 x X))
and G4 = (L2, X, E(G") N (L2 x X)). By the definitions of classes of K and Ko, and the fact that
X is a Z-dominator, in the same manner as in Lemma 3.8 we infer that both these graphs satisfy
the assumptions of Lemma 2.18.

Hence, Lemma 2.18 ensures us that there exist assignments ¢1: L1 — X and ¢9: Lo — X such
that |7 (u)| < Chrg(,é’) -nP for each u € X and t = 1,2. Let us combine these assignments into
¢: L1 ULy — X such that |¢p~(u)| < 7 := 2 Chrg(ﬁ) -nP for each v € X. As in Lemma 3.8, we
regard ¢ also as an assignment with domaln K1 UKs \ {kp} in a natural way.

Let us consider the lexicographic product G” := G’ e K, and its 1-shallow minor H’ constructed
as in Lemma 3.8: for every class k € K1 U K» \ {kg}, we contract all the copies of all the vertices
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of k onto one copy of ¢(k), so that every class is contracted onto a different vertex of G”. Since
each vertex of X has been replaced with 7 copies, and pre-images under ¢ have sizes bounded by 7,
such a contraction is possible. After this contraction it is easy to see that the class graph H — {ry}
appears as a subgraph of H', as argued in the proof of Lemma 3.8. Hence, we can upper bound
the grads of H — {kp} using Proposition 2.4 and Lemma 2.7:

Vi(H — {kg}) < Vary1(G") < 487(3r + 1+ 7) V311 (G') + 47_)(3r+2)2

416 fL,0 (B)(3r + 1+ 2fL . (8))n®? - Vor1a(G) + 8 fhg(B) - nP)Er°
424 (B)Br 4 1+ 203, (B))n®® - f (8,07 + 4) - n?) B+

= 424 g (B)Br + 1+ 2f0y(8)) - fo (8,97 + 4) .

Again, H can be obtained from H — {ky} by adding a universal vertex and then possibly removing
some edges. Hence, by Lemma 2.3 we infer that

Vi (H) < Vi(H — {rp}) + 1 < 5(24fhg(8)Br + L+ 2f8 .(8)) - fo (8,97 +4)r+D° .7,

<
<

AN
A

This concludes the proof. ]

Corollary 4.7. There exists a constant C such that |E(H)| < Cg - |X| - n®.

Proof. Since |E(H)| < Vo(H) - |V(H)|, we apply the upper bounds proven in Lemma 4.5 and in
Lemma 4.6 for a = v and obtain

[B(H)| < 1(0) -0 - 2fpei(7) - 1X |- 17
< 20(0) frei () - | X .
Hence, we can take C := 2h(v,0) fL.(7). O

Now is the moment when we can finally set the constant Cy that governs how much larger X
is larger compared to X; more precisely, we assumed that |S| > Cp - | X| - n°. We namely set

Co =27 ((c +1) faa(y) +2¢Cp).

We can now prove the analogue of Lemma 3.10 that identifies a subclass whose size is large compared
to its possible interaction in H; the proof follows exactly the same lines as in the bounded expansion
case.

Lemma 4.8 (Large subclass). There exists a class k € K1 and a subset A C k with the properties
that every member s € X has the same neighborhood Nx(s) in G and

Al > - (degy (k) +1) + 1.
Proof. As in Lemma 3.10, we define a potential function for classes x € K as follows:
D(k) = k| — 2°(c' - (degy (k) + 1) + 1).
Summing up this potential through all the classes of K; we obtain the following:

do(k) = D Ikl =27 D (¢ (degp (k) +1)+ 1)

reEK keK reEK
=S| — 2¢ . (c’ Z degy (k) + (¢ + 1)|K1]) .
KEK

27



We now use the fact that 3, ., degy(k) < X.cv(mydegu(s) = 2[E(H)| and the bounds of
Lemma 4.5 and Corollary 4.7:

> (k) 2 18| =27 (2¢ - Cip | X[ -0 + (¢ +1) - faa(7) - [ X[ n7)
keK1

> 18] =27 (2 Cp - [X|-n + (¢ +1) - faa(7) - |X] - )
=S| = Cp-|X|-n® >0.
Hence, we infer that there exists a class k € K1 such that ®(x) > 0. Equivalently,
k| > 29 (¢ - (degpy (k) +1) +1).

Exactly as in the proof of Lemma 3.10, we partition vertices of x into subclasses with respect to
the neighborhoods in X in graph G. Recall that we assumed that [N (k')| < ¢ for each k' € Kj,
and Nx(s) € N%(x) for each s € &, so the number of these subclasses is actually less than 2.
Hence, there exists a subclass A C k of vertices with the same X-neighborhood in G such that
Al > |k]/2¢ > ¢ - (degy (k) +1) + 1. O

We now prove the bottom line: the analogue of Lemma 3.11 where we argue that every vertex
of A is an irrelevant dominatee. Again, the proof is basically the same.

Lemma 4.9. Let z be an arbitrary vertex of \. Then Z \ {z} is still a domination core.

Proof. Let Z' = Z \ {z} and let Nx(\) € N% (k) be equal to Nx(s) for any s € A. Take any
minimum-size Z’-dominator D; we need to prove that D is a dominating set of G. In the following
we work in the graph G all the time.

Suppose first that D N Nx () # (). Then in particular z is also dominated by D, hence D is also
a Z-dominator. As Z D Z', D must be a minimum-size Z-dominator, and hence also a dominating
set in GG since Z was a domination core.

Suppose then that DN Nx (\) = (). We are going to arrive at a contradiction with the assumption
that D is of minimum possible size. Since A\ {z} C S\ {z} C Z’, vertices of A\ {z} need in particular
to be dominated by D. Since S is 2-scattered in G — X, so is A\ {z} as well. Hence any vertex of D
can dominate only at most one vertex of A\ {z}, as none of them can be dominated from X by the
assumption that D N Nx(\) = 0. Also, the vertices of D that dominate vertices of A\ {z} need to
be contained in Uy; recall that U, := Jyc,. N[s] N R is the set of all vertices contracted onto vertices
of £ during the construction of G’. Hence, we conclude that [DNUk| = |A\ {z}| > ¢ - (degy (k) +1).

Construct now a set D’ from D by (a) removing all the vertices of DNUy, (b) adding all the vertices
of N% (k1) for every k1 € Ny[k] N K1, and (c) adding an arbitrary vertex of Nx(k2) for each kg €
Ny [k]NKy, provided that Nx (k2) is non-empty. In step (a) we have removed more than ¢/-(degy (k)+
1) vertices from D, whereas in steps (b) and (¢) we have added in total at most ¢ - (degy (k) + 1)
vertices: at most ¢’ vertices per each k1 € Ny [k]N K7, and at most one vertex per each ko € Ny[k]N
K5. Hence, |D'| < |D| and to arrive at a contradiction it remains to prove that D’ is a Z’-dominator.
From here on the proof is exactly the same as in Lemma 3.11, but we recall it briefly for completeness.

Take any u € Z’ which became not dominated when DNU, was removed during the construction
of D'; we prove that u is dominated by the vertices added to D’ in steps (b) and (c). Since u was
dominated by a vertex from D NU,, we have four cases: u can belong (a) to N (k), or (b) to U,, or
(c) to Uy, for some k1 € Ny (k) N Ky, or (d) to some ko € Ny (k)N Ko. Moreover, since u € Z’ and
X is a Z-dominator, we infer that u has at least one neighbor in X. In case (a) we have explicitly
included N% (k) to D', so even u € D’. In cases (b) and (c¢) we have added the sets N (k1) to D’
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for each k1 € Ng[k] N K1, so any neighbor of u in X belongs to D" and thus dominates u. In case
(d), we have that Nx(u) = Nx(k2) and this set is non-empty, since u indeed has a neighbor in X.
Hence, we added one vertex of Nx(u) to set D" and this vertex thus dominates w. O

We now conclude the proof of Lemma 4.2, which also concludes the proof of Theorem 4.1.
Adopting the notation of Section 4.1.1, we take g() = (¢ fnei(¢/2) + 1) - C (note that C. also
depends on ¢), so that Lemma 4.3 is applicable whenever |Z| > g(¢) - k - n°. Hence, we can safely
apply the algorithm of Section 4.1.1, which clearly works in polynomial time as it boils down to a
constant number of applications of the algorithm of Lemma 2.19, and obtain a pair (X, S) that can
be used in the second phase. Construction of the class graph H can be clearly done in polynomial
time. Also, in polynomial time we can recognize the class x and subclass A C x that satisfy the
statement of Lemma 4.8: this requires iterating through all the classes k € K1, and then examining
the partition of the vertices of the found class x with respect to the neighborhoods in X. Finally,
Lemma 4.9 ensures that any vertex of A can be output by the algorithm as an irrelevant dominatee.

4.2 Reducing dominators

Having presented how to compute a small dominating core in the nowhere dense case, we can proceed
to the proof of Theorem 1.2. Before this, we prove one more lemma from which the main result for the
nowhere dense case will follow very easily. Its proof is essentially the same as the proof of Theorem 1.1.

Lemma 4.10. Let G be a nowhere dense graph class and let € > 0 be a real number. There exists
a constant Cz and a polynomial-time algorithm that, given an n-vertex graph G € G and an integer
k, either correctly concludes that ds(G) > k or finds a subset of vertices Y C V(G) of size at most
C; - k- n® with the property that ds(G) < k if and only if ds(G[Y]) < k.

Proof. The algorithm works as follows. First, using the algorithm of Theorem 3.2 for parameter
£/2 we compute a domination core Z C V(G) such that |Z| < g(/2) - k - n¥/2. If the algorithm
of Theorem 3.2 concluded that ds(G) > k, then we can also terminate and provide this outcome.
Hence, from now on we assume that the domination core Z has been successfully computed.

Let R := V(G)\ Z and partition the vertices of Z into classes with respect to their neighborhoods
in Z. From Lemma 2.17 we infer that the number of these classes is at most fuei(e/2) - |Z| - n®/? <
fnei(e/2)g(e/2)-k-n®. Construct set Y by taking Z and, for every nonempty class  of the considered
partition, adding an arbitrarily picked vertex v, € k. Note that in this manner we have that:

Y1 < 1Z] 4+ faei(e/2)g(e/2) - k-1 < (fues(e/2) + Dgle/2) -k - 17,

which means that we can set C; := (fnei(¢/2) + 1)g(£/2). We are left with verifying that ds(G) < k
if and only if ds(G[Y]) < k. The argumentation is exactly the same as in Theorem 1.1, but we
recall it for the sake of completeness.

Suppose first that ds(G) < k, and let D be a minimum-size dominating set in G so that
|D| = ds(G) < k. As D is a dominating set in G, it is in particular a Z-dominator, and it is a
minimum-size Z-dominator in G since Z is a domination core and ds(G) = ds(G, Z). Construct set
D’ from D by replacing the set x N D with {v,} for each class k of the partition with |« N D| > 1.
Clearly, |D'| < |D|. Moreover, observe that set D’ is also a Z-dominator in G, since every vertex
v, dominates exactly the same set of vertices in Z as other vertices of k. As D was a minimum-size
Z-dominator, we infer that in fact |D’| = |D| = ds(G, Z) and D’ is also a minimum-size Z-dominator.
Since Z is a domination core, we infer that D’ is a dominating set in G. Finally, as D' C Y, we
infer that D’ is also a dominating set in G[Y] and hence ds(G[Y]) < |D'| < k.
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Suppose now that ds(G[Y]) < k, and let D’ be a dominating set in G[Y] such that |D'| < k.
Set D’ in particular dominates the whole set Z C Y, which means that D’ is also a Z-dominator
in G. Hence ds(G, Z) < |D’'| < k. As Z is a domination core, we have that ds(G) = ds(G, Z) and
we conclude that ds(G) < k. O

Theorem 1.2. Let G be a nowhere dense graph class and let € > 0 be a real number. There exists a
polynomial-time algorithm that given a graph G € G and an integer k, either correctly concludes that
ds(G) > k or finds a subset of vertices Y C V(G) of size O(k¥*¢) with the property that ds(G) < k
if and only if ds(G[Y]) < k.

Proof. We apply the algorithm of Lemma 4.10 iteratively to obtain sets V(G) =Yy 2 Y1 D Ys D

Y3 D ...: In the i-th iteration we apply the algorithm to G[Y;_1] in order to compute Y; C Y;_;.

We proceed in this manner up to the point when the algorithm returns Y; = Y;_1, in which case

we simply output Y := Y. Clearly, Y computed in this manner satisfies the requirement that

ds(G) < k if and only if ds(G[Y]) < k, so it remains to establish the upper bound on the size of Y.
Since the algorithm of Lemma 4.10 returned Y; = Y;_1, it follows that

Y=Y <C.-k-|Yial"=Cc-k-|Y[.
Here, C; is the constant from the statement of Lemma 4.10. Consequently,
Y] < (Cer WTF < O 12,

By rescaling ¢ by factor 2 we obtain the result. O

5 Hardness of CONNECTED DOMINATING SET

In this section we prove Theorem 1.4; let us recall its statement.

Theorem 1.4. There exists a class of graphs G of bounded expansion such that CONNECTED
DOMINATING SET does not admit a polynomial kernel when restricted to G, unless NP C coNP /poly,
and furthermore, G is closed under taking subgraphs.

The proof of Theorem 1.4 is a refinement of the proof of Cygan et al. [6] that CONNECTED
DOMINATING SET does not admit a polynomial kernel in graphs of bounded degeneracy. The main
idea of [6] is to use GRAPH MOTIF as a pivot problem.

GRAPH MOTIF Parameter: k
Input: A graph G, an integer k, and a surjective function ¢ : V(G) — [k].

Question: Does there exist a set X C V(G) of size exactly k such that G[X] is connected and
c|x is bijective?

We call the function ¢ a coloring and each value ¢ € [k] is a color. In this wording, in the GRAPH
MoTIF problem we seek for a set of vertices, one of every color, that induces a connected subgraph
of G.

Fellows et al. [12] were first to study the parameterized complexity of GRAPH MOTIF and,
among other results, they prove that the problem is hard already in a very restrictive setting.

Theorem 5.1 ([6,12]). The GRAPH MOTIF problem, restricted to graphs G being trees of mazimum
degree 3, is NP-complete and does not admit a polynomial compression when parameterized by k
unless NP C coNP /poly.
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Here, a polynomial compression is a generalization of the notion of a polynomial kernel, where
we relax the requirement that the output needs to be an instance of a original problem. Formally, a
polynomial compression from a parameterized language P into a (classic) language L is an algorithm
that, given an instance (z, k), works in time polynomial in |z| + k and outputs a string y with the
following properties: (i) (x,k) € P if and only if y € L, and (ii) |y| is bounded polynomially in k.

The main observation of [6] is that GRAPH MOTIF easily reduces to CONNECTED DOMINATING
SET. Let I = (G, k,c) be a GRAPH MOTIF instance. Consider a graph G$% constructed as follows:
we first take G = G and then, for every color i € [k], we add two vertices w; and w¢, connected
by an edge, and make w; adjacent to ¢~!(i), that is, to all vertices of G of color i. It is easy to
observe the following.

Lemma 5.2 ([6]). I is a yes-instance to GRAPH MOTIF if and only if G¢* admits a connected
dominating set of size at most 2k.

Proof. Let W = {w; : 1 <i < k}. Observe that W is a dominating set in G}ds. If k=1, then W
is also connected and the claim is trivial, so assume k > 2.

In one direction, observe that if X is a solution to GRAPH MOTIF instance, then X UW is a
connected dominating set in G of size 2k: W dominates V(G), while G[X] is connected and every
w; € W has a (unique) neighbor in X N¢71(4).

In the other direction, let Y be a connected dominating set of size at most 2k in G}’ds. Observe
that, due to pendant vertices wy, the set Y needs to contain W. Since k£ > 2, to make W C Y
connected, for every 1 < ¢ < k the set Y needs to contain a vertex y; € cfl(i). Since |Y| < 2k,
we have already enumerated all vertices of Y: YV = {w; : 1 < i < k}U{y; : 1 <i < k}. Thus,
every w; is of degree one in GS%[Y] and, consequently, G$%[{y; : 1 < i < k}] is connected. Hence,
{yi : 1 <i <k} is a solution to GRAPH MOTIF on . O

In is easy to see that the reduction from I = (G, k, c) to G$% described above translates not only
NP-hardness, but also kernelization lower bound: any polynomial compression for CONNECTED DOM-
INATING SET, pipelined with the aforementioned reduction, would give a polynomial compression
for GRAPH MOTIF.

As observed in [6], if G is a tree, then G$% is 2-degenerate. However, G may not be of
bounded expansion, due to arbitrary connections in the graph introduced by the edges incident to
vertices w;. Our main goal for the rest of this section is to tweak the reduction described above
to make G‘}ds of bounded expansion.

To control the expansion of G?ds — and prove Theorem 1.4 — we need to control how the colors
of I can neighbor each other. More formally, given an instance I = (G, k, c¢) of GRAPH MOTIF, let
us define the color graph H$® to be a graph with vertex set V (H$®!) = [k] and ij € E(H$®) if and
only if there exists an edge xy € E(G) with ¢(x) = ¢ and ¢(y) = j. The next lemma shows that

if we can control the maximum degree of HfOI, then G?ds is of bounded expansion.

Lemma 5.3. Let (G,k,c) be a GRAPH MOTIF instance. Assume that the mazimum degree of G is
at most Ag, and the mazimum degree of H§% is at most Ay. Then, for every r > 1, every r-shallow

topological minor of G§% is max(Ag + 1, (Ay + 1)?")-degenerate.

Proof. Fix r > 1. Let H be an r-shallow topological minor of G‘}ds. To prove the lemma, it suffices
to show that H contains a vertex of degree at most max(Ag +1, (Ay +1)?" +1); the same reasoning
can be performed for every induced subgraph of H. Let us fix one model of H in G‘jds, and consider
one vertex x € V(H) mapped to a root vertex v € V(G$%).

If v € V(G), then the degree of v in G$% is at most Ag + 1, and the same bound holds for the
degree of x in H. If v = w; for some 1 < i < k, then the degree of v in G}ds is 1, and the degree of
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x in H is at most 1. Thus, it remains to consider the case where every vertex = € V(H) is mapped
to some vertex w;, 1 < i < k.

Consider then a vertex w;. For an integer d > 1, we say that a color j is reachable within distance
d from w; if there exists a vertex v € V(G$%) within distance d from w; such that ¢(v) = j. Let
L4 be the set of colors reachable from w; within distance d. Observe that the bound on the degree
of Hf"l implies the following:

Claim 5.4. For every d > 1 it holds that |Lg| < (Ag + 1)1

Proof. We prove by induction on d. For d = 1, observe that L = {i}.

Consider now j € Lg.1 \ Lg. Since j ¢ Ly and every vertex w, has only neighbors in ¢=*(1)
(apart from the pendant w?), there exists a color j* € Ly and an edge zy € E(G) such that ¢(z) = j
and c¢(y) = j'. Consequently, jj € E(H$!). Since the maximum degree of H¢! is bounded by Ay,
we have |Lgiq \ Lg| < Apg|Lg| and the claim follows. 4

By Claim 5.4, for a fixed vertex w;, at most (Ag + 1)?" other vertices w; are within distance
at most 2r + 1 in G‘}ds from w;. Consequently, no r-shallow topological minor with roots in vertices
w; can have a vertex of degree more than (Ag + 1)?". This concludes the proof of the lemma. [

By Lemma 5.3, to prove Theorem 1.4 it suffices to show that the lower bounds of Theorem 5.1
still hold if we restrict the maximum degree of H}Ol. Luckily, this turns out to be quite an easy
task (see also Figure 4 for an illustration of the gadget used).

,21-1,1,1—1

Figure 4: Part of the graph corresponding to a vertex u of color ¢(u) = 2, with neighbors of colors
1, 4 and 6, and assuming k = 6 and Ag = 3. The numbers on edges correspond to their colors
in the coloring f.

Lemma 5.5. There exists a polynomial algorithm that, given a GRAPH MOTIF instance (G, k,c)
where the mazimum degree of G is bounded by Ag, outputs an equivalent GRAPH MOTIF instance
I' = (G' K, ) where k' = k + (Ag + 1)k?, the mazimum degree of G' is bounded by 2A¢g + 2, and
the maximum degree of HIC,OZ is bounded by max(2A¢g + 2,3).

Proof. For clarity of presentation, we identify the new set of colors, [k'], with [k]U([k] X [k] x [Ag+1]).
By Vizing’s theorem, the edges of G can be colored with Ag + 1 colors such that no two incident
edges have the same color. Moreover, such a coloring can be found in polynomial time [24]. Let
f: E(G) = [Ag + 1] be any such coloring.
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For integers i,a,b € [k] and o € [Ag + 1] with a < b we define an (i, o; a, b)-path to be a path
on b —a+ 1 vertices denoted z; j o for a < j < b and with colors ¢(z; ;o) = (4, ], ).

We construct the instance I’ as follows. We start with V(G’) = V(G) and ¢ = ¢. Then, for
every edge uv we make the following construction. Assume c(u) =i, ¢(v) = j, and f(uv) = a. We
first take an (i, a5 1, j)-path P and an (j, «; 1,4)-path P%, and connect them as follows: we make
T; 1,0 on P adjacent to u, x; 1, on Py adjacent to v, and z; j, on P adjacent to x;;, on P'. In
this way we have added a path P U P between u and v of length j + ¢+ 1. Second, if 7 < k we
take a (i,a;j + 1, k)-path Qf and make x; 1 o on this path adjacent to w. Similarly, if i < k we take
a (j,o;i 4 1,k)-path Qf and make x; o on this path adjacent to v. If j = k or i = k, then the
corresponding path Q$ or Q5 is defined to be an empty path for the sake of further notation.

Furthermore, if for some u € V(G) and a € [Ag + 1] there does not exist an edge incident to
u colored (by f) with color ¢, then we create a (c(u), o; 1, k)-path QF and make z; ;o on this path
adjacent to wu.

This concludes the description of the instance I’ = (G', k¥, ). In the next three claims we prove
the desired properties of I'.

Claim 5.6. The instances I and I' are equivalent.

Proof. For u € V(G), let W, be the set of vertices of G’ associated with u, that is, the vertex u
as well as all vertices on all paths P and QF, a € [Ag + 1]. Observe that, by construction, the set
W, contains exactly one vertex of every color of {c(u)} U ({c(u)} x [k] X [Ag + 1]), and no vertices
of other colors. Furthermore, G[W,] is connected. Consequently, if X C V(G) is a solution to the
GRAPH MOTIF instance I, then X' := (J,cx Wy is a solution to I': for every edge uv € E(G[X]),
the corresponding path P! ) Pl (W) 4 completely contained in G'[X].

In the other direction, let X’ C V(G’) be a solution to I'. We claim that X := X' N V(G) is
a solution to I. If kK = 1, then the claim is trivial, so assume k > 2. Clearly, X contains exactly
one vertex of every color of [k]. Consider the following graph Gx: V(Gx) = X and uwv € E(Gx) if
and only if there exists a path in G'[X'] between u and v with no internal vertex in X. Clearly, the
connectivity of G'[X’] implies that G x is connected as well. Furthermore, observe that every vertex
of V(G")\V(G) in G' is of degree at most 2. Consequently, for every uv € E(Gx), the corresponding
path in G’[X’] has to be equal to Pl G pf). in particular, uv € E(G). We infer that Gx is
a subgraph of G[X] and, hence, G[X] is connected. This finishes the proof of the claim. 4

Claim 5.7. The mazimum degree of G' is at most 2A¢q + 2.

Proof. Every vertex of V(G') \ V(G) is of degree at most two in G'. Every vertex v € V(G) is
adjacent in G’ to at most one vertex of every color of {c(v)} x {1,k} x [Ag + 1], and thus is of
degree at most 2(Ag + 1). 4

Claim 5.8. The mazimum degree of H§?' is at most max(3,2A¢q + 2).

Proof. As already observed, every vertex v € V(@) is adjacent to at most one vertex of every color
of {c(v)} x {1,k} x [Ag + 1]. Thus, the degree of the color i € [k] in HS! is at most 2(Ag + 1).
Furthermore, observe that a vertex of color (i, 7, ) € [k] x [k] x [Ag + 1] can be adjacent only to
vertices of colors: (j,4,a), (i,7+ 1,a) if j <k, (i,j —1,a) if j > 1, and i if j € {1,k}. Thus, the
degree of the color (i, j, ) in H$! is at most 3. N

The above three claims conclude the proof of Lemma 5.5. O
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Lemma 5.5 translates the lower bounds of Theorem 5.1 to the case of bounded degree of H$,

by setting Ag = 3.

Corollary 5.9. The GRAPH MOTIF problem, restricted to instances I = (G, k,c) where the mazx-
imum degree of G and the maximum degree of Hf"l is at most 8, is NP-complete and does not admit

a polynomial compression when parameterized by k unless NP C coNP /poly.

Let us conclude with a wrap up of the proof of Theorem 1.4. Let G be the class of graphs where,
for every r > 1, every r-shallow topological minor is 9%"-degenerate. Assume we have a polynomial
compression algorithm A for CONNECTED DOMINATING SET restricted to G. Let I = (G, k,c) be
a GRAPH MOTIF instance where the maximum degree of G and the maximum degree of H}’Ol is
at most 8. By Lemma 5.3, GS% € G. Thus, by applying A to G$% for every such instance I, we
obtain a polynomial compression for GRAPH MOTIF for instances with the maximum degree of G
and H$! bounded by 8. Theorem 1.4 follows then from Corollary 5.9.

6 Conclusions and Further Research

In this paper we have presented the first linear kernel for DOMINATING SET on graph classes of
bounded expansion, and the first almost linear linear kernel for the problem on nowhere dense graph
classes. We would like to point out several features of our algorithm that at first glance may be
not apparent from its description.

First of all, in our proofs we did not use the full power of nowhere dense and bounded expansion
graph classes, since the whole reasoning used V,.(G) only for r < 4. Therefore, our kernelization
algorithm works equally well on graph classes that have finite V4(G). An example of such a graph
class is the class of subgraphs of cliques with every edge subdivided 9 times; observe that this class
is actually somewhere dense. We suspect that when fully understood, our arguments in fact use only
Va2(G). More precisely, the term Vj(G) appears usually as a bound on V;(G’) for some G' € GV 1,
but the actually examined 1-shallow minor of a 1-shallow minor of G is usually not only a 4-shallow
minor of GG, but in fact a 2-shallow minor. However, tracing the exact shallowness of examined
minors would be cumbersome, especially since the argumentation of Lemma 2.10 that uses weak
colorings would need to be investigated as well. Therefore, we decided to trade the tightness for
simplicity with this respect and base all our upper bounds on Vj4(G).

Secondly, we would like to point out that the algorithm in fact does not necessarily need to have
an a priori knowledge of the values of V,.(G) for 0 < r < 4. In fact, the algorithm can be run with
a hypothetical upper bound on Vj(G), and it will either succeed in finding a correct kernel, or it
will find a proof that the actual value of Vj(G) is larger than assumed. Indeed, the crucial exchange
argument in the proof of Lemma 3.11 only compares the actual number of vertices in the subclass A
with the actual total number of exchanged vertices in the X-neighborhoods of classes neighboring «.
Hence, whenever this comparison reveals that any member of A is an irrelevant dominatee, this
conclusion is drawn independently of the actual value of V4(G), and hence is always correct. As a
result, the algorithm can be run with larger and larger hypothetical bounds up to the point when a
kernel is constructed. Therefore, after easy modifications the algorithm can be applied to basically
any graph in hope of finding a reasonable kernel, and our analysis only shows guarantees on the
output size in terms of the graph’s densest 4-shallow minor.

Thirdly, whereas the constant in the kernel size may seem impractical, we would like to point out
that it provides a major improvement over the previous works. The kernels for H-minor-free and H-
topological-minor-free graphs of [16,17] are based on arguments originating in bidimensionality theory,
graph minors, and finite-state properties of DOMINATING SET. Therefore, the dependence of the
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constant in the kernel size on the size of H is very difficult to trace. Even very crude estimations show
that it is multiple-exponential, however still elementary. Our analysis shows that the kernel given
by Theorem 1.1 has size 20(V(9)Va(9) . | whereas for G being the class of H-minor-free graphs we

have that V(G) = Vi(G) = O(|V(H)| - /log |V (H)]) [26, Lemma 4.1]. Thus, the constants obtained
using our general technique are not only explicit, but also much lower than the ones obtained earlier.
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Figure 5: An overview over results contained in past publications (circles) and this paper (diamonds)
for DOMINATING SET, 7-DOMINATING SET and CONNECTED DOMINATING SET. The dashed lines
and question marks are conjectures. The dotted lines represent the (unclear) transition of the
complexity between nowhere dense graph classes and general graphs through larger and larger
classes of somewhere dense graphs.

The presented work leaves, however, a number of nurturing open questions and interesting
prospects of future work.

In order to make the algorithm more practical it is necessary to implement it in time linear in the
size of the graph. In the current presentation we have not estimated the exact running time of the
kernelization procedure; however, it is at least quadratic due to removing vertices from the domination
core one by one. We expect that with more technical insight, the irrelevant dominatees can be removed
in larger portions, which would lead to linear running time. However, we wanted to keep the current
presentation as simple as possible, and hence we deferred optimizing the running time to future work.

From the theoretical point of view, the most important question left is the complexity of
r-DOMINATING SET, where every vertex dominates a ball of radius r around it. So far, a linear
kernel for this problem has been given only for bounded genus graphs [4], and the status of its
kernelization complexity is open even in H-minor-free graphs. Actually, on H-minor free graphs it
is not even known whether r~-DOMINATING SET admits a subexponential parameterized algorithm.
We expect, however, that r-DOMINATING SET indeed admits a linear kernel on graph classes of
bounded expansion and an almost linear kernel on nowhere dense graph classes.

This conjecture leads us to an interesting direction of investigating the limits of efficient
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kernelization of DOMINATING SET on sparse graph classes, mirroring the tight situation for model
checking first order logic [11,21]. As we have argued, for the standard variant of this problem
the nowhere dense classes are not the ultimate limit, since our algorithm works well on subgraphs
of 9-times subdivided cliques, which form a somewhere dense class. Hence, we expect that the
border of tractability for the standard variant of DOMINATING SET is unclear and difficult to grasp.
However, for the more general r-DOMINATING SET there is no obstacle of this form. In fact, using
the same technical characterization of somewhere dense classes as Dvorak et al. [11] in their proof of
intractability of model checking first order logic formulae, we are able to prove the following statement:

Theorem 6.1. [x| For every somewhere dense graph class G that is closed under taking subgraphs,
there exists an integer r such that r-DOMINATING SET is W[2]-hard on graphs from G.

Hence, it is even implausible that on a somewhere dense graph class there are FPT algorithms
for all the r~-DOMINATING SET problems, not to mention the existence of polynomial kernels. Thus,
a positive result for r-DOMINATING SET on nowhere dense graph classes would confirm the following
conjecture that we pose: A class G that is closed under taking subgraphs is nowhere dense if and
only if for every integer r» > 1 and real € > 0, -DOMINATING SET admits an O(k'*¢) kernel on G.
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Appendix

Lemma 2.3. Let G be a graph and let G' be obtained from G by adding a universal vertex to G,
i.e., a vertez that is adjacent to every vertex of V(G). Then

V. (G) < Vi (G') < V.(G) + 1.

Proof. The first inequality follows immediately from the fact that if M is an r-shallow minor of G,
then M is an r-shallow minor of G’. For the second inequality, let M’ be an r-shallow minor of G’
with density(M') = V,.(G”). If the minor model of M’ in G’ does not contain the universal vertex,
we have that V,.(G') = V,.(G). So suppose it contains the universal vertex. Then, by using the same
minor model in G but removing the branch set that contains the universal vertex, we obtain an
r-shallow minor M of G which lacks one vertex and at most |M’'| — 1 edges with respect to M’.
Hence, we have the following:

. [|M'|| = |M'|+1
V,(G) > density (M) > =1 =
|| M7]] :
= w —1 = denSIty(M/) —1= VT(G/) — 1.

O

The topological grad ﬁu(G) of a graph G is defined similarly to the grad, but we restrict ourselves
to topological r-shallow minors, i.e., we may only contract vertex disjoint paths as follows: A shallow
topological minor of a given graph G at depth r, for some half-integral r, is a graph H obtained
from G by taking a subgraph and then contracting internally vertex disjoint paths of length at
most 2r + 1 to edges. We denote the set of r-shallow topological minors of G by G Vr. Then the
definition of a topological grad follows:

Definition 6.2 (Topological grad (top-grad)). Let G be a graph and r a half-integral. Then we
define the topological grad as

Vi (G) = ax density(H).

It is known that topological grads are comparable to normal ones; for the following inequalities
see Corollary 4.1 of [26]:
Vi(G) < V(@) < 4(VH(G) (3)

Using the notion of topological grad as a pivot parameter, we can now prove Lemma 2.7.

Lemma 2.7. For any graph G and non-negative integers ¢ > 1 and r we have that
V(G o K.) <ABc(r+c) - Vp(G) + 4¢) 7,
Proof. The following inequality has been proven in [26, Proposition 4.6]:
V(G o K.) <max{2r(c—1)+1,¢%} - Vi(G) + ¢ — 1.

We remark that even though Proposition 4.6 of [26] assumes that ¢ > 2, the claim holds also for
¢ = 1. We now observe that

max{2r(c —1) +1,c?} < 2r(c — 1) + 14 ¢* < 2¢(r +¢),
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and hence

Vi(G o K.) <2c(r+c) -V, (G)+c (4)
By combining (3) and (4) we obtain
< AUV (G o K,))rtD?
< ABc(r +¢) - Vp(G) + 4o) 0+
<ABe(r +¢) - Vo(G) + 4e) T+’

V(G e K,)

as claimed. O

Theorem 2.11. There is a polynomial-time algorithm that given a graph G and an integer k, either
finds a dominating set of size at most 229V, (G)2k or a 2-scattered set of size at least k + 1 in G.

Proof. The core argument of Dvorédk [10] lies in the following statement; here «,,(G) denotes the
maximum size of an m-scattered set in G.

Theorem 6.3 (Theorem 4 of [10]). If 1 < m < 2k + 1 and G satisfies wcol,,(G) < ¢, then
ds(G) < Pan(G). Furthermore, if an ordering o of V(G) such that | B, (v)| < ¢ for every v € V(G)
is given, then a k-dominating set D and an m-scattered set A such that |D| < ¢2|A| can be found
in O(c? - max(k,m) - |V(G)]|) time.

If we set k =1 and m = 2, then the proof of Theorem 2.11 boils down to finding an ordering
of V(G) with a near-optimal 2-weak coloring number. As Dvorak observes, this can be done using
the notion of m-admissibility, which is a similar measure of orderings of V(G) as weak colorings. In
particular (see Lemma 5 in [10] and the discussion after it), an ordering of V(G) of 2-admissibility
¢ has weak coloring number at most (c(c — 1) + 1)2. Also, as Dvotak [10], argues m-admissibility
admits a simple polynomial-time m-approximation algorithm. By applying this algorithm we can
thus obtain an ordering of V(G) with weak coloring number at most (2¢(2c — 1) 4 1)? < 16¢2, where
¢ = admgy(Q) is the optimum 2-admissibility of G.

We are left with bounding the 2-admissibility of a graph in terms of its grads. For this, we use
a trivial bound adms(G) < cola(G) (see Exercise 4.5 in [26]) and the bound

cola(G) < 1+ 8V1(G)?,

following from Theorem 7.11 in [26]. Thus adms(G) < 8Vi(G)?, and hence the approximation
algorithm for 2-admissibility outputs an ordering with weak coloring number at most

16 - (8V1(G)?)? = 219V, (G)°S.

By applying the algorithm of Theorem 6.3 we can either find a 2-scattered set A of size at least
k+ 1, or a dominating set D of size at most 220V, (G)!? - k, as claimed. O

Lemma 2.18. Let G be a nowhere dense graph class. Then there exists a function feng(-) such that
the following holds. For any ¢ > 0 and any bipartite graph G = (X,Y, E) € G such that every vertex
from'Y has a nonempty neighborhood in X and no two vertices of Y have the same neighborhood
in X, there exists a mapping ¢: Y — X with the following properties:

e up(u) € E for each u €Y;
o [0 (V)| < fenrg() - |GIF for each v € X.
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Proof. Without loss of generality assume that G is closed under taking subgraphs, since otherwise
we can consider the closure of G under this operation, which is also nowhere dense.

We mimic the proof of Lemma 2.10. Let us fix G = (X, Y, F) and £ > 0. Using Lemma 2.9 we infer
that there exists an ordering o € I1(G) such that for every vertex v, we have | B (v)| < (8V1(G)3+1)2.
By applying Proposition 2.14, point (1), for 7 = 1 and £/12, we obtain that |B§ (v)| < fo(e) - |G|7/?,
for some value fy(e) depending on fy(1,e/12).

As in the proof of Lemma 2.10, construct ¢ by setting ¢(u) to the last vertex of N(u) in o.
Again, the definition is valid since Y does not contain any isolated vertices, and the first condition
is trivially satisfied.

To prove the second condition, fix a vertex v € X and consider all the vertices v with ¢(u) = v.
Let U ={u: vueYA¢p(u)=vAu<svland U" ={u: ueY A¢(u) =vAv <, u}. Similarly
as in the proof of Lemma 2.10, we have that U~ C Bf(v) and hence

U™ < IB7(v)] < B3 (0)] < fole) - |GI72.

Also, for all vertices u € U we have that N(u) C BJ(v) U{v}. Since every pair of vertices in ¥
have different neighborhoods in X, we can apply Lemma 2.17 to the bipartite graph induced in G
between B (v) and U™ (note that this graph belongs to G since G is closed under taking subgraphs)
and parameter 1, and conclude that

U] < frei(1) - 1B (0)* < fuei(1) - fole)? - |G

Concluding,
67 ()] = U]+ [UF] < fole) - IGI7? + faei(1) - fo(e)? - |GI*.

Hence we can take fenrg(e) = fo(€) + fei(1) - fo(e)?. O

Theorem 6.1. For every somewhere dense graph class G that is closed under taking subgraphs,
there exists an integer r such that r-DOMINATING SET is W[2]-hard on graphs from G.

Proof. Let ‘H, be the class of p-subdivisions of all the simple graphs, that is, the class comprising
all the graphs that can be obtained from any simple graph by replacing every edge by a path of
length p. We need the following claim, which Dvorédk et al. [11] attribute to Nesettil and Ossona
de Mendez [25]. Unfortunately, in [25] we could not find the proof of this exact statement, so for
the sake of completeness we prove it ourselves.

Claim 6.4. For every somewhere dense graph class G that is closed under taking subgraphs, there
exists an integer ro such that H,, C G.

Proof. Since G is somewhere dense, by [25, Theorem 4.1 (iii)] we have there exists a constant rq
such that G contains every complete graph as a topological minor of depth 1. Since G is closed
under taking subgraphs, this means that for every n € N there exists a graph H,, € G that can be
obtained from a clique K, by replacing every edge by a path of length at most r9 := 2ry + 1.

For every n, let N(n) be the Ramsey number such that a complete graph on N(n) vertices with
edges colored with r9 colors always contains a monochromatic complete subgraph on n vertices.
Examine the complete graph Ky, and assign to every edge of Ky;,) a color from {1,2,...,m2}
depending on the length of the corresponding path in Hy,). By the definition of N(n) we infer
that there exists a color r(n) € {1,2,...,72} such that there is a monochromatic complete subgraph
on n vertices with every edge colored with r(n). This means that Hy, contains a subgraph that
is isomorphic to clique K, with every edge replaced by a path of length r(n). Thus, H N(n) contains
as subgraphs also all the r(n)-subdivisions of all the graphs on at most n vertices. We conclude
by taking ro to be any number that appears infinitely many times in the sequence (7(7));en. J
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Figure 6: Example of the reduction for U = [5],F = {A, B,C,D} and k = 3. The edges on the
right denote paths of length 27y, except those connecting b;, ¢; and u., ve whose length is rg.

By Claim 6.4, the proof of Theorem 6.1 reduces to proving that for any integer rg > 0 there
exists an integer r such that ~-DOMINATING SET is W][2]-hard on the class H,,. We prove this fact
for r = 3rg by a reduction from the SET COVER problem parameterized by the requested solution
size, which is known to be W[2]-hard [9,14]. Recall that the instance of the SET COVER problem
consists of (U, F, k), where U is a finite universe, F C 2V is a family of subsets of the universe, and
k is an integer. The question is whether there exists a subfamily G C F of size k such that every
element of U is covered by G, i.e., UG =U.

Given the instance (U, F, k), we construct a graph G as follows; see Figure 6 for an illustration.
First, for every i € [k] do the following:

e For each X € F, create a vertex a’; let A® = {a : X € F}. For every pair of distinct
sets X, X' € F, connect an and an, with a path of length 2rg, thus making the set A’ into
a 2rg-subdivided clique.

e Add a vertex b’ and connect it to every vertex of A’ using a path of length 2rq.

e Add a pendant path of length 7o with one endpoint at b’. Let the second endpoint of this
path be denoted by ¢'.

Next, for every e € U do the following:

e Create a vertex u. and connect it to every vertex a’y such that i € [k], X € F and e € X
using a path of length 2rg.

e Add a pendant path of length ry with one endpoint at w.. Let the second endpoint of this
path be denoted by ve.

This concludes the construction. It is easy to see that G € H,,, since G consists of the named vertices
connected by paths of length ¢ or 2r¢. It remains to show that instance (G, k) of 3rp-DOMINATING
SET is equivalent to the input instance (U, F, k) of SET COVER.

Claim 6.5. If instance (U, F,k) of SET COVER has a solution, then so does instance (G, k) of
3ro-DOMINATING SET.
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Proof. Let G = {X1,Xs,..., Xk} be an arbitrary enumeration of a solution G to (U, F,k). Let
D = {a%, : i€ [k]}. We claim that set D 3ro-dominates the graph G. Observe that, by the
construction, every vertex of G is at distance at most ro from some vertex of R := {b* : i €
[k} u{d : i€[k], X € F}U{u. : e € U}. Therefore, it suffices to prove that every vertex of
R is at distance at most 2rg from a vertex belonging to D.

Firstly, every vertex b’ for i € [k] is at distance 2ry from ag(i. Secondly, the same holds also for
every vertex ag(/ for every X’ € F, X' # X;. Finally, each vertex u, is at distance 2ry from vertex
ag(i for any X; such that e € X;; since U = |J G, such an index ¢ always exists. By considering all
the cases, we conclude that D is indeed a 3rg-dominating set in G. a

Claim 6.6. If instance (G,k) of 3rop-DOMINATING SET has a solution, then so does instance
(U, F,k) of SET COVER.

Proof. Let D be a solution to (G, k). For every i € [k], let C* be the set of vertices at distance at
most 3rg from c'; observe that C* comprises ¢/, b’, all the vertices of A%, and all vertices lying on
the paths connecting b® with vertices of {c'} U A’. As ¢ is 3ro-dominated by D, every set C* has a
nonempty intersection with D. As sets O are pairwise disjoint and |D| < k, we infer that |D| = k,
D C Ujep Ci and every set C" contains exactly one vertex of D. Define G = {X1, Xo,..., X} as
follows: if C* N D C A’ then let X; be such that C* N D = {d%,}, and otherwise set X; to be an
arbitrary set from F. We claim that G constructed in this manner is a solution to (U, F, k).

Take any e € U and consider the vertex v.. This vertex has to be dominated by D, however
the only vertices of Uz‘e[k] C; that are at distance at most 3rg from v, are vertices of the form a:"x
for i € [k] and X € F such that e € X. We infer that at least one of these vertices must belong to
D, so there exists an index i with the following property: set X; is chosen so that C* N D = {ag(i}
and moreover e € X;. Since e was chosen arbitrarily, we conclude that U C |JG. J

Claims 6.5 and 6.6 verify the correctness of the reduction, and thus the proof is concluded. [J
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