
Solving Multicut Faster than 2n

Daniel Lokshtanov1, Saket Saurabh1,2, and Ondřej Suchý3

1 University of Bergen, Norway. daniello@ii.uib.no
2 Institute of Mathematical Sciences, India. saket@imsc.res.in

3 Czech Technical University in Prague, Czech Republic. ondrej.suchy@fit.cvut.cz

Abstract. In the Multicut problem, we are given an undirected graph
G = (V,E) and a family T = {(si, ti) | si, ti ∈ V } of pairs of requests
and the objective is to find a minimum sized set S ⊆ V such that every
connected component of G \ S contains at most one of si and ti for any
pair (si, ti) ∈ T . In this paper we give the first non-trivial algorithm for
Multicut running in time O(1.987n).

1 Introduction

Cuts and flows represent one of the most fundamental fields of studies in net-
work design. Given two distinguished vertices in a graph one can determine the
minimum size of a vertex or edge cut separating them in polynomial time using
the well known min-cut max-flow duality. However, when one wants to separate
more than two terminals from each other, the duality no longer works and the
problem of determining the smallest size cut becomes NP-hard for every fixed
number of at least three terminals [8].

In this paper we consider a generalization of the above problem, where one is
given several pairs of vertices (requests) and the task is to determine the mini-
mum size of a set of vertices that separates each pair. More formally, we consider
the following problem:

Multicut

Input: An undirected graph G = (V,E) and a family T = {(si, ti) | si, ti ∈ V }.
Task: Find a minimum size set S ⊆ V such that every connected component

of G \ S contains at most one of si and ti for any pair (si, ti) ∈ T .

Note specifically, that we allow the terminals itself to be deleted, i.e., we consider
the unrestricted variant of the problem as named in [2]. However, the version
where the terminals are forbidden to delete reduces to the version we investigate
(see Observation 1 for more details). If a set S ⊆ V has the requested properties,
than we call it a cut-set for (G, T). As the roles of si and ti in the pairs of T are
symmetric, we consider the pairs unordered, i.e., if (s, t) ∈ T , then we also say
(t, s) ∈ T . Moreover, for technical reasons we allow s = t = v for a pair (s, t) ∈ T
and v ∈ V . In this case, obviously, v must be in any cut-set, as otherwise the
component containing v contains both s and t.

Multicut generalizes Multiway Cut, where one is given a set of terminals
and the task is to separate each two of them. Therefore, Multicut is NP-hard
already for three requests [8]. Moreover, there is no constant factor approxima-
tion for the problem, unless the Unique Games Conjecture fails [3]. Furthermore,
the edge variant of Multicut is MaxSNP-hard already on stars [12].

Hence, we turn our attention to exact algorithms working in exponential time.
Since one can try all subset of vertices, the problem admits a trivial O(2nn3)-
time algorithm, where n is the number of vertices of the input graph. In this
work we break the 2n barrier. Namely we prove the following theorem.

Theorem 1. Multicut on an n vertex graph can be solved in O(1.987n)-time.

Related work. Deleting vertices of the input graph such that the resulting graph
satisfies some interesting properties is one of the most well studied directions
in exact exponential algorithms. This includes the classical O(1.2109n)-time al-
gorithm of Robson [18] for Maximum Independent Set, an O(1.7356n)-time
algorithm for Feedback Vertex Set [19], or an O(1.4689n)-time algorithm
for Dominating Set [13], to name at least a few of them. For Multiway Cut,
such an algorithm was presented by Fomin et al. [11] achieving O(1.8638n)-
time. This was recently improved to O(1.4766n)-time by Chitnis et al. [5]. For
Multicut, however, no algorithm faster than the trivial O(2n · nO(1))-time is
known.

Concerning approximation algorithms, Garg et al. [12] show that Multicut
can be approximated within O(log k) factor, where k = |T |. Cut problems are
also well studied from the perspective of parameterized algorithms. Marx [14]
was the first to consider cut problems in the context of parameterized complex-
ity. He gave an algorithm for parameterized Multiway Cut with running time
O(4k

3

nO(1)) with the current fastest algorithm running in time O(2knO(1)) [7].
The notions used in this paper has been useful in settling parameterized com-
plexity of variety of problems including Directed Feedback vertex Set [4],
Almost 2 SAT [17] and Above Guarantee Vertex Cover [17,16]. Recently,
Marx and Razgon [15] and Bousquet, Daligault and Thomassé [1] independently
showed that Multicut, finding k vertices to disconnect given pairs of termi-
nals is FPT. Continuing this line of study, Chitnis, Hajiaghayi and Marx studied
Multiway Cut on directed graphs and showed it to be FPT [6].

2 Preliminaries

Our notation for graph theoretic notions is standard. We summarize some of
the frequently used concepts here. For a finite set V , a pair G = (V,E) such
that E ⊆ V 2 is a graph on V . The elements of V are called vertices, while pairs
of vertices {u, v} such that {u, v} ∈ E are called edges. In the following, let
G = (V,E) and G′ = (V ′, E′) be graphs, and U ⊆ V some subset of vertices
of G. Let G′ be a subgraph of G. If E′ contains all the edges {u, v} ∈ E with
u, v ∈ V ′, then G′ is an induced subgraph of G, induced by V ′, denoted by G[V ′].

2

For any U ⊆ V , G \ U = G[V \ U]. For v ∈ V , NG(v) = {u | {u, v} ∈ E}. A set
of vertices C of V is said to be clique if there is an edge for every pair of vertices
in C.

3 Basic observations

Our algorithm applies the following two operations on vertices of the graph:

Definition 1. 1. By deleting a vertex v from the instance (G, T) we mean
removing the vertex v from the vertex set of G together with all its incident
edges as well as removing all pairs containing v from T . I.e., we continue
with the instance (G′, T ′), where G′ = G\{v} and T ′ = T \{(u, v) | u ∈ V }.

2. By contracting a vertex v in the instance (G, T) we mean first turning the
neighborhood of v into a clique and adding into T the pair (u,w), whenever
(v, w) was in T and u is a neighbor of v in G. Finally, we remove the
vertex v from V together with all its incident edges from E and all pairs
containing v from T . I.e., we continue with the instance (G′, T ′), where G′ =
(V \{v}, E′), E′ = E ∪{{u,w} | u,w ∈ NG(v)}\{{v, u} | u ∈ V }, and T ′ =
T ∪ {(u,w) | u ∈ NG(v) ∧ (v, w) ∈ T } \ {(v, w) | w ∈ V }.

The following two lemmata show, that the two operations correspond to
taking and not taking the vertex into the constructed solution, respectively.

Lemma 1. If (G′, T ′) is obtained from (G, T) by deleting a vertex v, then S ⊆ V
containing v is a cut-set for (G, T) if and only if S \{v} is a cut-set for (G′, T ′).

Proof. First, if S is a cut-set for (G, T), then S \ {v} is a cut-set for (G′, T ′),
since we have G′ \ (S \ {v}) = G \ S and T ′ ⊆ T .

Let us now assume, that S \ {v} is a cut-set for (G′, T ′) and v ∈ S. Then
again G \ S = G′ \ (S \ {v}), each connected component of G \ S contains at
most one vertex of each pair in T ′ and, since all pairs in T \ T ′ contain v, also
of each pair in T . ut

Lemma 2. If (G′, T ′) is obtained from (G, T) by contracting a vertex v and
(v, v) /∈ T , then S ⊆ V \ {v} is a cut-set for (G, T) if and only if S is a cut-set
for (G′, T ′).

Proof. Suppose first that S ⊆ V \ {v} is not a cut-set for (G, T). Hence there is
a pair (x, y) ∈ T such that there is an x-y-path in G \ S. If this path does not
contain v then it is also present in G′ \ S, (x, y) ∈ T ′, and S is not a cut-set
for (G′, T ′). If v /∈ {x, y} but the x-y-path contains v, then we may omit it from
the path to obtain a path in G′ \ S, as all the neighbors of v are connected by
edges in G′. Thus again S is not a cut-set for (G′, T ′). Finally, if v ∈ {x, y}, we
may assume without loss of generality, that v = x and v 6= y as (v, v) /∈ T . Let u
be the neighbor of v on the path. The graph G′ \ S contains the u-y-path and
(u, y) ∈ T ′ by the construction of T ′. Hence also in this case S is not a cut-set
for (G′, T ′).

3

Now suppose that S is not a cut-set for (G′, T ′). Therefore there is a pair
(x, y) ∈ T ′ such that there is an x-y-path in G′ \ S. If (x, y) ∈ T and the path
contains at most one neighbor of v, then this path is also contained in G \ S.
If the path contains at least two neighbors of v, then we may go from the first
neighbor of v on the path to v and from v to the last neighbor of v on the
path, obtaining an x-y-path in G \ S. If (x, y) /∈ T , then assume without loss of
generality that (v, y) ∈ T and x is a neighbor of v. Furthermore, as all neighbors
of v have a request to y in T ′ in this case, we may assume that the path does not
contain any further neighbor of v, except for x. Now we can prolong the path
by adding v to the beginning to obtain a v-y-path in G \ S. Summing up, S is
not a cut-set for (G, T), finishing the proof. ut

As we have said, if (v, v) ∈ T for some v ∈ V , then v is in any cut-set. Hence
we apply the following reduction rule as often as possible.

Reduction Rule 1 If (v, v) ∈ T , then delete v from (G, T).

Observe now, that one can obtain an O(2n · nO(1))-time algorithm for Mul-
tiCut by branching for each vertex into two branches — either the vertex is
deleted or contracted. Lemmata 1 and 2 give recipe how the minimum cut-sets
returned by the recursive calls need to be modified to obtain the minimum cut-
set for the instance (see Function Cut).

Function Cut(G, T)

begin
if T = ∅ then

return ∅;
Let v be an arbitrary vertex of G;
(G′, T ′)←Delete(v, (G, T));
S1 ← {v}∪ Cut(G′, T ′);
if (v, v) ∈ T then

return S1;
(G′, T ′)←Contract(v, (G, T));
S2 ←Cut(G′, T ′);
if |S1| ≤ |S2| then

return S1;
else

return S2;

end

As our algorithm is based on the same operations, we will no longer describe
how the minimum cut-set is actually obtained, for brevity. The speed up of
our algorithm is achieved by carefully choosing the vertices to branch on and
omitting the branches that cannot lead to a (minimum) cut-set.

4

To conclude this section, we show that the variant of Multicut, where the
terminals are forbidden to delete can be reduced to Multicut.

Observation 1 Multicut with Undeletable Terminals can be reduced in
polynomial to Multicut with at most the same number of vertices.

Proof. It is enough to contract all terminals. By Lemma 2, a subset of vertices
is a cut-set in the original instance not containing the terminals, if and only if it
is a cut set in the resulting instance. The contraction can be clearly carried out
in polynomial time and does not increase the number of vertices. ut

4 Our algorithm

To guide the branching, our algorithm maintains a clique C, which we call the
active clique. Hence, in the recursive calls, we give G, T , and C as arguments.
We should explain how our two operations affect the active clique. If v /∈ C,
then C stays untouched after the operations. If v ∈ C and we delete v, then we
let C := C \ {v} whereas if we contract v we let C := C \ {v} ∪N(v). Note that
in the last case the new C is indeed a clique, as originally C must have been a
subset of N [v].

The bigger C is, the closer together are the vertices of the graph, which
is beneficial for the algorithm. Hence, if the graph has a big active clique, we
consider it little smaller. More precisely, we use the Measure and Conquer ap-
proach [9] and our measure µ for the size of the instance (G, T , C) is given by
the following formula:

µ = |V | − α|C|,

where 0 < α < 0.1.
Along with the Reduction Rule 1 we apply also the following two reduction

rules:

Reduction Rule 2 If vertex v is isolated in G and Reduction Rule 1 does not
apply, then contract v in (G, T).

Note that vertex v does not influence whether a set is a cut-set, since it
always forms a component for itself and (v, v) /∈ T , justifying the correctness of
the rule.

Reduction Rule 3 If C = ∅, then pick any vertex v ∈ V and let C = {v}.

Note that each of the reduction rules decreases the value of µ.
We now describe the branching rules. We apply them in the given order,

that is, a latter branching rule is only applied if none of the earlier ones ap-
plies. Moreover, we apply the reduction rules exhaustively before applying any
of the branching rules. We argue the correctness of the rules, but postpone the
discussion of the running time of the whole algorithm.

5

Rule 1 If there is (x, y) ∈ T such that the shortest path P between x and y in G
is of length at most 3, then denote V (P) = {v1, . . . , vt} for some t ∈ {2, . . . 4}
in such a way that V (P) \C = {v1, . . . , vs} for some s ∈ {t− 2, t− 1, t}. Branch
into following ways:

• v1 is deleted;
• v1 is contracted, v2 is deleted;

• v1, v2 are contracted, v3 is deleted;
...
• v1, . . . , vt−1 are contracted, vt is deleted.

In the case described in Rule 1 at least one of the vertices v1, . . . , vt must be
deleted and the rule explores all such options. It follows that the rule is correct.

Rule 2 Let N(C) =
⋃
c∈C N(c) \ C. If |N(C)| ≤ 2

3 |C| then for every S0 ⊆
(C ∪ N(C)) with |S0| ≤ |N(C)| branch in the following way: delete all vertices
in S0 and contract all vertices in (C ∪N(C)) \ S0.

The correctness of the rule follows from the following lemma:

Lemma 3. If the situation is as in Rule 2, then there is a minimal cut-set S
such that |S ∩ (C ∪N(C))| ≤ |N(C)|.

Proof. Let S be a minimal cut-set such that |S ∩ (C ∪ N(C))| > |N(C)|. We
claim that S′ = (S \ C) ∪ N(C) is also a cut-set, contradicting the minimality
of S as |S′| < |S|. Suppose S′ is not a cut-set. Then there is a pair (x, y) ∈ T
such that there is an x-y-path P in G \ S′. If V (P)∩ (C ∪N(C)) = ∅, then P is
also present in G \S contradicting S being a cut-set. If V (P)∩ (C ∪N(C)) 6= ∅,
then either V (P) ∩N(C) 6= ∅ or V (P) ⊆ C. The former case cannot appear as
V (P) ⊆ (V (G)\S′) and S′ contains N(C) and the later case implies that P is of
length at most 1. However, in this case Rule 1 would apply, a contradiction. ut

The correctness of Rule 2 now follows from Lemmata 1 and 2 as we exhaus-
tively try all possible intersections of the minimal cut-set with C ∪N(C).

Rule 3 If there is a vertex v ∈ C such that |N(v)\C| ≥ 3, then branch into the
following canonical ways:

• delete v;
• contract v.

As the branching explores the two canonical options, the correctness is clear.
The following explains the significance of the coming rules.

Lemma 4. If the Rules 2 and 3 do not apply, then there is a vertex v in N(C)
with |N(v) ∩ C| ≤ 2.

6

Proof. Suppose there is no such vertex and let us count the number z of edges
between C and N(C) in G. Since Rule 3 does not apply, we know that z ≤ 2|C|.
On the other hand, we know that z ≥ 3|N(C)| as otherwise there is a vertex
in N(C) incident to at most two edges with the other endpoint in C. As Rule 2
does not apply, we have 3|N(C)| > 3 · 23 |C| = 2|C|. Hence 2|C| < 3|N(C)| ≤ z ≤
2|C|— a contradiction. ut

Rule 4 If v is a vertex in N(C) with |N(v) ∩ C| ≤ 2 and |N(v) \ C| ≤ 3, then
denote N(v) = {u1, . . . , ut} such that N(v) ∩ C = {us+1, . . . , ut} for some t ∈
{1, . . . , 5} and s ∈ {t− 2, t− 1}. Branch into the following ways:

• u1 is contracted;
• u1 is deleted, u2 is contracted;

...
• u1, . . . , ut−1 are deleted, ut is contracted;
• u1, . . . , ut are deleted, v is contracted.

To see the correctness of this rule, observe that the first t branches correspond
to one of the neighbors of v not being part of the cut-set constructed, while the
last one corresponds to the whole neighborhood of v being part of the cut-set
constructed. In this sense the branching is exhaustive. In the last branch the
vertex v is contracted by Reduction Rule 2.

Rule 5 If v is a vertex in N(C) with |N(v) ∩ C| ≤ 2 and |N(v) \ C| ≥ 4, then
let u ∈ C ∩N(v) and branch into the following ways:

• v is deleted;
• v is contracted, u is deleted;
• v and u are contracted.

Since the rule only applies the canonical branching to v and then to u in one
of the branches, the correctness is clear.

5 Time complexity

In this section we analyze the time complexity of our algorithm. As the algorithm
is recursive, we first bound the number of recursive calls and then the time spent
per each call.

Let us first bound the number of terminal calls T (µ) produced, when the
algorithm is executed on an instance with measure at most µ. Recall that µ =
|V |−α|C| and, since α < 0.1, we have 0.9|V | < µ ≤ |V |. We claim that T (µ) ≤ λµ
for λ = 1.9865, α = 0.032, and all values of µ ≥ 0. We prove the claim by
induction on µ.

If µ ≤ 0, then the graph is empty and the instance can be resolved by
outputting ∅, giving one terminal call. For 0 < µ ≤ 1, the graph contains at
most one vertex and Reduction Rule 1 or 2 applies, reducing to previous case
and giving one terminal call. This gives the base of the induction.

7

Now suppose we are facing an instance of measure µ and the claim holds for
instances with measure µ′ where µ′ < µ. Note, that the measure is decreased by
one for each vertex not in C deleted or contracted, by at least 1 − α for each
vertex in C contracted or deleted, and by α for each vertex newly put in C (e.g.,
due to contraction of its neighbor).

If any of the reduction rules applies to the instance, then the measure gets
decreased without increasing the number of terminal calls and the claim follows.
Now let us distinguish, which of the branching rules applies.

If Rule 1 applies, then in the branch i (the one where vi is deleted) the
measure is reduced by at least i if i ≤ s and by at least s + (1 − α)(i − s) =
i − α(i − s) if i > s. It follows that T (µ) ≤

∑s
i=1 T (µ − i) +

∑t
i=s+1 T (µ − i +

α(i− s)). Hence to prove the claim it is enough to prove that λµ ≥
∑s
i=1 λ

µ−i +∑t
i=s+1 λ

µ−i+α(i−s) which is equivalent to 1 ≥
∑s
i=1 λ

−i +
∑t
i=s+1 λ

−i+α(i−s).
Observe that decreasing s increases the right hand side, as λ > 1 and α > 0.
Hence, it suffices to prove the inequality for s = t− 2.

Distinguishing the value of t the claim follows from that

• 1 ≥ λ−1+α + λ−2+2α .
= 0.778 (t = 2),

• 1 ≥ λ−1 + λ−2+α + λ−3+2α .
= 0.896 (t = 3), and

• 1 ≥ λ−1 + λ−2 + λ−3+α + λ−4+2α .
= 0.954 (t = 4), for λ = 1.9865 and

α = 0.032.

If Rule 2 applies, let us denote a = |C|, b = |N(C)|, m = a+ b, and β = b
m .

The measure drops in each case by at least b + a(1 − α) = m(1 − α) + bα.

Hence T (µ) ≤
∑b
c=0

(
m
c

)
T (µ −m(1 − α) − bα). To prove the claim we need to

show that 1 ≥
∑b
c=0

(
m
c

)
λ−m(1−α)−bα for any b ≤ 2

3a. By [10, Lemma 3.13]

we have that
∑b
c=0

(
m
c

)
λ−m(1−α)−bα ≤ λ−m(1−α)−bα · (1

β)βm(1
1−β)(1−β)m =(

1
λ1−α (1

βλα)β(1
1−β)1−β

)m
and it remains to prove that f(β) = 1

λ1−α · (1
βλα)β ·

(1
1−β)1−β ≤ 1 for every 0 ≤ β ≤

2
3

1+ 2
3

= 2
5 . We first show that this func-

tion is nondecreasing on the interval (0, 25]. To this end, consider the function
g(β) = ln f(β) = −(1− α) lnλ− β(lnβ + α lnλ)− (1− β) ln(1− β). Function g
is well defined on the interval and if g is nondecreasing, then so is f . For the
derivative we have g′(β) = −(lnβ+α lnλ)− β

β +ln(1−β)+ 1−β
1−β = ln 1−β

βλα . Thus,

g(β) is nondecreasing as long as 1−β
β ≥ λα. But since 3

2 > λα
.
= 1.02, function g

and, hence, also f is non-decreasing for all β ∈ (0, 25]. Therefore, it is enough to

notice that 1 ≥ f(2
5) = 1

λ1−α (5
2)

2
5 (5

3)
3
5
.
= 0.99982 and 1 ≥ f(0) = 1

λ1−α

.
= 0.51

for λ = 1.9865 and α = 0.032.
If Rule 3 applies, then the measure gets reduced by 1 and at least 1 + 2α,

respectively, as in the latter case v is removed from C, while its at least 3
neighbors become part of C. Hence, we have T (µ) ≤ T (µ− 1) + T (µ− 1− 2α).
To prove the claim it is enough to observe that 1 ≥ λ−1 + λ−1−2α

.
= 0.985.

If Rule 4 applies, then in the branch i (the one where ui is contracted) the
measure is reduced by at least i if i ≤ s and by at least s+ (1− α)(i− s) + α =
i−α(i−s−1) if t ≥ i > s, as in this case v becomes part of C, whereas in the last

8

branch it is reduced by s+(1−α)(t−s)+1 = t−α(t−s)+1. It follows that T (µ) ≤∑s
i=1 T (µ− i)+

∑t
i=s+1 T (µ− i+α(i−s−1))+T (µ− t+α(t−s)+1). Hence to

prove the claim it is enough to prove that 1 ≥
∑s
i=1 λ

−i+
∑t
i=s+1 λ

−i+α(i−s−1)+

λ−t+α(t−s)−1. Observe that decreasing s increases the right hand side, as λ > 1
and α > 0. Hence, it suffices to prove the inequality for s = t− 2.

Distinguishing the value of t we have that

• 1 ≥ λ−1 + λ−2+α
.
= 0.762 (t = 1),

• 1 ≥ λ−1 + λ−2+α + λ−3+2α .
= 0.896 (t = 2),

• 1 ≥ λ−1 + λ−2 + λ−3+α + λ−4+2α .
= 0.954 (t = 3),

• 1 ≥ λ−1 + λ−2 + λ−3 + λ−4+α + λ−5+2α .
= 0.984 (t = 4),

• 1 ≥ λ−1+λ−2+λ−3+λ−4+λ−5+α+λ−6+2α .
= 0.9986 (t = 5), for λ = 1.9865

and α = 0.032.

Finally, if Rule 5 applies, then the measure is decreased by 1, by 2 − α,
and by at least 2 + 3α, respectively, as in the last branch the neighbors of v
outside C become part of C, but u is removed from C. Therefore, we have
T (µ) ≤ T (µ− 1) +T (µ− 2 +α) +T (µ− 2− 4α). To prove the claim it is enough
to observe that 1 ≥ λ−1 + λ−2+α + λ−2−3α

.
= 0.99968.

Now to compute the total number of recursive call, observe that each branch-
ing rule reduces the number of vertices in the graph in each branch, and, hence,
the total number of recursive calls is at most n ·λµ. In each recursive call we first
apply the reduction rules exhaustively and then check which of the branching
rules applies. Reduction Rule 1 can be applied to each relevant vertex in O(n),
without creating new opportunities to apply it. Therefore, it can be applied ex-
haustively in O(n2) time. Similarly, Reduction Rule 2 can be applied to each
vertex in O(n) time and this does not create any new opportunities to apply this
rule or the previous one. Reduction Rule 3 can be always applied in constant
time.

To apply Rule 1 we compute the distance between every pair of vertices
in O(n3) time and then check for each pair (u, v) ∈ T their distance. To delete a
vertex from a graph takes O(n) time whereas contracting a vertex takes O(n2).
Thus, the whole preparation of the graph for each branch takes O(n2) time in
this case.

The size of the neighborhood N(C) can be computed inO(n2) time. It follows
from the above ideas that a graph can be prepared for each branch in O(n3)
time. Therefore, Rule 2 can be applied in O(n3) time, accounting the time for
the preparation of the graph to the call executed.

Rules 3–5 can be applied in O(n2) time, since we only have to compute for
each vertex the number of its neighbors in C and outside C and then prepare
graphs for constant number of branches, each deleting or contracting only con-
stant number of vertices.

Altogether we spend only O(n3) time per a recursive call. Since µ is always
at most n we obtain O(1.9865n · n4) = O(1.987n) running time for the whole
algorithm. We only need a polynomial space. This completes the proof of our
theorem.

9

6 Conclusions

In this paper we gave an algorithm for Multicut running in time O(1.987n),
the first algorithm breaking the barrier of 2n. One can obtain an algorithm for
edge variant of Multicut running in time 2nnO(1). It is an interesting problem
to obtain an algorithm for Edge Multicut running in time (2 − ε)nnO(1) for
some fixed ε > 0. Finally, it would also be interesting to obtain an algorithm for
Multicut in directed graphs running in time (2−ε)nnO(1) for some fixed ε > 0.

References

1. Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is fpt. In
Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing,
STOC ’11, pages 459–468, New York, NY, USA, 2011. ACM. 2

2. Gruia Calinescu, Cristina G. Fernandes, and Bruce Reed. Multicuts in unweighted
graphs and digraphs with bounded degree and bounded tree-width. Journal of
Algorithms, 48(2):333 – 359, 2003. 1

3. Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivaku-
mar. On the hardness of approximating multicut and sparsest-cut. computational
complexity, 15(2):94–114, 2006. 2

4. Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-
parameter algorithm for the directed feedback vertex set problem. J. ACM, 55(5),
2008. 2

5. Rajesh Chitnis, FedorV. Fomin, Daniel Lokshtanov, Pranabendu Misra, M.S. Ra-
manujan, and Saket Saurabh. Faster exact algorithms for some terminal set prob-
lems. In Gregory Gutin and Stefan Szeider, editors, Parameterized and Exact
Computation, volume 8246 of Lecture Notes in Computer Science, pages 150–162.
Springer International Publishing, 2013. 2

6. Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-
parameter tractability of directed multiway cut parameterized by the size of the
cutset. In SODA, pages 1713–1725, 2012. 2

7. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk.
On multiway cut parameterized above lower bounds. IPEC, 2011. 2

8. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing,
23:864–894, 1994. 1, 2

9. Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer
approach for the analysis of exact algorithms. J. ACM, 56(5):25:1–25:32, August
2009. 5

10. Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in The-
oretical Computer Science. An EATCS Series. Springer Berlin Heidelberg, 2010.
8

11. FedorV. Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and Yn-
gve Villanger. Enumerating minimal subset feedback vertex sets. Algorithmica,
69(1):216–231, 2014. 2

12. N. Garg, V.V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997. 2

10

13. Yoichi Iwata. A faster algorithm for dominating set analyzed by the potential
method. In Proceedings of the 6th International Conference on Parameterized
and Exact Computation, IPEC’11, pages 41–54, Berlin, Heidelberg, 2012. Springer-
Verlag. 2

14. Dániel Marx. Parameterized graph separation problems. Theoret. Comput. Sci.,
351(3):394–406, 2006. 2

15. Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parame-
terized by the size of the cutset. In STOC, pages 469–478, 2011. 2

16. Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Paths, flowers and vertex
cover. In ESA, pages 382–393, 2011. 2

17. Igor Razgon and Barry O’Sullivan. Almost 2-sat is fixed-parameter tractable. J.
Comput. Syst. Sci., 75(8):435–450, 2009. 2

18. J.M Robson. Algorithms for maximum independent sets. Journal of Algorithms,
7(3):425 – 440, 1986. 2

19. Mingyu Xiao and Hiroshi Nagamochi. An improved exact algorithm for undirected
feedback vertex set. In Peter Widmayer, Yinfeng Xu, and Binhai Zhu, editors,
Combinatorial Optimization and Applications, volume 8287 of Lecture Notes in
Computer Science, pages 153–164. Springer International Publishing, 2013. 2

11

