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Abstract
We study the problem of finding a minimum-distortion embedding of the shortest path metric
of an unweighted graph into a “simpler” metric X. Computing such an embedding (exactly or
approximately) is a non-trivial task even when X is the metric induced by a path, or, equivalently,
into the real line. In this paper we give approximation and fixed-parameter tractable (FPT)
algorithms for minimum-distortion embeddings into the metric of a subdivision of some fixed
graph H, or, equivalently, into any fixed 1-dimensional simplicial complex. More precisely, we
study the following problem: For given graphs G, H and integer c, is it possible to embed G

with distortion c into a graph homeomorphic to H? Then embedding into the line is the special
case H = K2, and embedding into the cycle is the case H = K3, where Kk denotes the complete
graph on k vertices. For this problem we give

an approximation algorithm, which in time f(H)·poly(n), for some function f , either correctly
decides that there is no embedding of G with distortion c into any graph homeomorphic to
H, or finds an embedding with distortion poly(c);
an exact algorithm, which in time f ′(H, c) · poly(n), for some function f ′, either correctly
decides that there is no embedding of G with distortion c into any graph homeomorphic to
H, or finds an embedding with distortion c.

Prior to our work, poly(OPT)-approximation or FPT algorithms were known only for embed-
ding into paths and trees of bounded degrees.
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1 Introduction

Embeddings of various metric spaces are a fundamental primitive in the design of algorithms
[16, 18, 23, 22, 1, 2]. A low-distortion embedding into a low-dimensional space can be used
as a sparse representation of a metrical data set (see e.g. [17]). Embeddings into 1- and
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2-dimensional spaces also provide a natural abstraction of vizualization tasks (see e.g. [9]).
Moreover embeddings into topologically restricted spaces can be used to discover interesting
structures in a data set; for example, embedding into trees is a natural mathematical
abstraction of phylogenetic reconstruction (see e.g. [11]). More generally, embedding into
“algorithmically easy” spaces provides a general reduction for solving geometric optimization
problems (see e.g. [7, 12]).

A natural algorithmic problem that has received a lot of attention in the past decade
concerns the exact or approximate computation of embeddings of minimum distortion of a
given metric space into some host space (or, more generally, into some space chosen from a
specified family). Despite significant efforts, most known algorithms for this important class
of problems work only for the case of the real line and trees.

In this work we present exact and approximate algorithms for computing minimum
distortion embeddings into arbitrary 1-dimensional topological spaces of bounded complexity.
More precisely, we obtain algorithms for embedding the shortest-path metric of a given
unweighted graph into a subdivision of an arbitrary graph H. The case where H is just one
edge is precisely the problem of embedding into the real line. We remark that prior to our
work, even the case where H is a triangle, which corresponds to the problem of embedding
into a cycle, was open.

We remark that the problem of embedding shortest path metrics of finite graphs into any
fixed finite 1-dimensional simplicial complex C is equivalent to the problem of embedding into
arbitrary subdivisions of some fixed finite graph H, where H is the abstract 1-dimensional
simplicial complex corresponding to C1. Since we are interested in algorithms, for the
remainder of the paper we state all of our results as embeddings into subdivisions of graphs.

1.1 Our contribution
We now formally state our results and briefly highlight the key new techniques that we
introduce. The input space consists of some unweighted graph G. The target space is
some unknown subdivision H ′ of some fixed H; we allow the edges in H ′ to have arbitrary
non-negative edge lengths.

We first consider the problem of approximating a minimum-distortion embedding into
arbitraryH-subdivisions. We obtain a polynomial-time approximation algorithm, summarized
in the following. The proof is given in Section 5.

I Theorem 19. There exists a 8hnO(1) time algorithm that takes as input an n-vertex graph
G, a graph H on h vertices, and an integer c, and either correctly concludes that there is
no c-embedding of G into a subdivision of H, or produces a cALG-embedding of G into a
subdivision of H, with cALG ≤ 64 · 106 · c24(h+ 1)9.

In addition, we also obtain a FPT algorithm, parameterized by the optimal distortion
and H. The proof is given in Section 6.

I Theorem 20. Given an integer c > 0 and graphs G andH, it is possible in time f(H, c)·nO(1)

to either find a non-contracting c-embedding of G into a subdivision of H, or correctly
determine that no such embedding exists.

1 Here, a d-dimensional simplicial complex, for some integer d ≥ 1, is the space obtained by taking a set
of simplices of dimension at most d, and identifying pairs of faces of the same dimension. An abstract
d-dimensional simplicial complex A is a family of nonempty subsets of cardinality at most d + 1 of some
ground set X, such that for all Y ′ ⊂ Y ∈ A, we have Y ′ ∈ A; in particular, any 1-dimensional simplicial
complex corresponds to the set of edges and vertices of some graph.
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1.2 Related work

1.2.0.1 Embedding into 1-dimensional spaces.

Most of the previous work on approximation and FPT algorithms for low-distortion embedding
(with one notable recent exception [27]) concerns embeddings of a more general metric space
M into the real line and trees. However, even in the case of embedding into the line, all
polynomial time approximation algorithms make assumptions on the metric M such as
having bounded spread (which is the ratio between the maximum and the minimum point
distances in M) [3, 26] or being the shortest-path metric of an unweighted graph [5]. This
happens for to a good reason: as it was shown by Bădoiu et al. [3], computing the minimum
line distortion is hard to approximate up to a factor polynomial in n, even when M is the
weighted tree metrics with spread nO(1).

Most relevant to our approximation algorithm is the work of Bădoiu et al. [5], who gave
an algorithm that for a given n-vertex (unweighted) graph G and c > 0 in time O(cn3) either
concludes correctly that no c-distortion of G into line exists, or computes an O(c)-embedding
of G into the line. Similar results can be obtained for embedding into trees [5, 6]. Our
approximation algorithm can be seen as an extension of these results to much more general
metrics.

Parameterized complexity of low-distortion embeddings was considered by Fellows et
al. [13], who gave a fixed parameter tractable (FPT) algorithm for finding an embedding of
an unweighted graph metric into the line with distortion at most c, or concludes that no such
embedding exists, which works in time O(nc4(2c+ 1)2c). As it was shown by Lokshtanov et
al. [24] that, unless ETH fails, this bound is asymptotically tight. For weighted graph metrics
Fellows et al. obtained an algorithm with running time O(n(cW )4(2c+ 1)2cW ), where W is
the largest edge weight of the input graph. In addition, they rule out, unless P=NP, any
possibility of an algorithm with running time O((nW )h(c)), where h is a function of c alone.
The problem of low-distortion embedding into a tree is FPT parameterized by the maximum
vertex degree in the tree and the distortion c [13].

Due to the intractability of low-distortion embedding problems from approximation
and parameterized complexity perspective, Nayyeri and Raichel [26] initiated the study of
approximation algorithms with running time, in the worse case, not necessarily polynomial
and not even FPT. In a very recent work Nayyeri and Raichel [27] obtained a (1 + ε)-
approximation algorithm for finding the minimum-distortion embedding of an n-point metric
space M into the shortest path metric space of a weighted graph H with m vertices. The
running time of their algorithm is (cOPT∆)ω·λ·(1/ε)λ+2·O((cOPT)2λ) · nO(ω) ·mO(1), where ∆ is
the spread of the points of M , ω is the treewidth of H and λ is the doubling dimension
of H. Our approximation and FPT algorithms and the algorithm of Nayyeri and Raichel
are incomparable. Their algorithm is for more general metrics but runs in polynomial time
only when the optimal distortion cOPT is constant, even when H is a cycle. In contrast,
our approximation algorithm runs in polynomial time for any value of cOPT. Moreover, the
algorithm of Nayyeri and Raichel is (approximation) FPT with parameter cOPT only when
the spread ∆ of M (which in the case of the unweighted graph metric is the diameter of the
graph) and the doubling dimension of the host space are both constants; when cOPT = O(1)
(which is the interesting case for FPT algorithms), this implies that the doubling dimension of
M must also be constant, and therefore M can contain only a constant number of points, this
makes the problem trivially solvable in constant time. The running time of our parameterized
algorithm does not depend on the spread of the metric of M .
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1.2.0.2 Embedding into higher dimensional spaces.

Embeddings into d-dimensional Euclidean space have also been investigated. The problem of
approximating the minimum distortion in this setting appears to be significantly harder, and
most known results are lower bounds [25, 10]. Specifically, it has been shown by Matoušek and
Sidiropoulos [25] that it is NP-hard to approximate the minimum distortion for embedding
into R2 to within some polynomial factor. Moreover, for any fixed d ≥ 3, it is NP-hard to
distinguish whether the optimum distortion is at most α or at least nβ , for some universal
constants α, β > 0. The only known positive results are a O(1)-approximation algorithm for
embedding subsets of the 2-sphere into R2 [5], and approximation algorithms for embedding
ultrametrics into Rd [4, 9].

1.2.0.3 Bijective embeddings.

We note that the approximability of minimum-distortion embeddings has also been studied
for the case of bijections [28, 15, 19, 21, 8, 20, 10]. In this setting, most known algorithms
work for subsets of the real line and for trees.

2 Notation and definitions

For a graph G, we denote by V (G) the set of vertices of G and by E(G) the set of edges of
G. For some U ⊆ V (G), we denote by G[U ] the subgraph of G induced by U . Let degmax(G)
denote the maximum degree of G.

Let M = (X, d), M ′ = (X ′, d′) be metric spaces. An injective map f : X → X ′ is called
an embedding. The expansion of f is defined to be expansion(f) = supx′ 6=y′∈X

d′(f(x′),f(y′))
d(x′,y′)

and the contraction of f is defined to be contraction(f) = supx 6=y∈X
d(x,y)

d′(f(x),f(y)) . We say that
f is non-expanding (resp. non-contracting) if expansion(f) ≥ 1 (resp. contraction(f) ≥ 1).
The distortion of f is defined to be distortion(f) = expansion(f) · contraction(f). We say that
f is a c-embedding if distortion(f) ≤ c.

For a metric space M = (X, d), for some x ∈ X, and r ≥ 0, we write ballM (x, r) = {y ∈
X : d(x, y) ≤ r}, and for some Y ⊆ X, we define diamM (Y ) = supx,y∈Y d(x, y). We omit the
subscript when it is clear from the context. We also write diam(M) = diamM (X). When
M is finite, the local density of M is defined to be δ(M) = maxx∈X,r>0

|ballM (x,r)−1|
2r . For a

graph G, we denote by dG the shortest-path distance in G. We shall often use G to refer to
the metric space (V (G), dG).

For graphs H and H ′, we say that H ′ is a subdivision of H if it is possible, after replacing
every edge of H by some path, to obtain a graph isomorphic to H ′.

3 Overview of our results and techniques

Here we present our main theorems and algorithms, with a short discussion. Formal proofs
and detailed statements of the algorithms are left to later sections in the paper.

3.0.0.1 Approximation algorithm for embedding into an H-subdivision for general
H.

Here, we briefly highlight the main ideas of the approximation algorithm for embedding into
H-subdivisions, for arbitrary fixed H. A key concept is that of a proper embedding: this
is an embedding where every edge of the target space is “necessary”. In other words, for
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every edge e of H ′ there exists some vertices u, v in G, such that the shortest path between
u and v in H ′ traverses e. Embeddings that are not proper are difficult to handle. We
first guess the set of edges in H such that their corresponding subdivisions in H ′ contain
unnecessary edges; we “break” those edges of H into two new edges having a leaf as one
of their endpoint. There is a bounded number of guesses (depending on H), and we are
guaranteed that for at least one guess, there exists an optimal embedding that is proper. By
appropriately scaling the length of the edges in H ′ we may assume that the embedding we
are looking for has contraction exactly 1. The importance of using proper embeddings is that
a proper embedding which is “locally” non-contracting is also (globally) non-contracting,
while this is not necessarily true for non-proper embeddings.

A second difficulty is that we do not know the number of times that an edge in H is being
subdivided. Guessing the exact number of times each edge is subdivided would require nf(H)

time, which is too much. Instead we set a specific threshold `, based on c. The threshold ` is
approximately c3, and essentially ` is a threshold for how many vertices a BFS in G needs to
see before it is able to distinguish between a part of G that is embedded on an edge, and a
part of G that is embedded onto in an area of H ′ close to a vertex of degree at least 3. In
particular, parts of G that are embedded close to the middle of an edge can be embedded
with low distortion onto the line, while parts that are embedded close to a vertex of degree
3 in H can not - because G “grows in at least 3 different directions” in such parts. Since
BFS is can be used as an approximation algorithm for embedding into the line, it will detect
whether the considered part of G is close to a degree ≥ 3 vertex of H or not.

Instead of guessing exactly how many times each edge of H is subdivided, we guess
for every edge whether it is subdivided at least ` times or not. The edges of H that are
subdivided at least ` times are called “long”, while the edges that are subdivided less than `
times are called “short”. We call the connected components of H induced on the short edges
a cluster. Having defined clusters, we now observe that a cluster with only two long edges
leaving it can be embedded into the line with (relatively) low distortion, contradicting what
we said in the previous paragraph! Indeed, the parts of G mapped to a cluster with only
two long edges leaving it are (from the perspective of a BFS), indistinguishable from the
parts that are mapped in the middle of an edge! For this reason, we classify clusters into two
types: the boring ones that have at most two (long) edges leaving them, and the interesting
ones that are incident to at least 3 long edges.

Any graph can be partitioned into vertices of degree at least 3 and paths between these
vertices such that every internal vertex on these paths has degree 2. Thinking of clusters
as “large” vertices and the long edges as edges between clusters, we can now partition the
“cluster graph” into interesting clusters (i.e vertices of degree 3), and chains of boring clusters
between the interesting clusters – these chains correspond to paths of vertices of degree 2.

The parts of G that are embedded onto a chain of boring clusters can be embedded into
the line with low distortion, and therefore, for a BFS these parts are indistinguishable from
the parts of G that are embedded onto a single long edge. However, the interesting clusters
are distinguishable from the boring ones, and from the parts of G that are mapped onto long
edges, because around interesting clusters the graph really does “grow in at least 3 different
directions” for a long enough time for a BFS to pick up on this.

Using the insights above, we can find a set F of at most |V (H)| vertices in G, such
that every vertex in F is mapped “close” to some interesting cluster, and such that every
interesting cluster has some vertex in F mapped “close” to it. At this point, one can
essentially just guess in time O(hh) which vertex of F is mapped close to which clusters
of H. Then one maps each of the vertices that are “close” to F (in G) to some arbitrarily
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chosen spot in H which is close enough to the image of the corresponding vertex of F . Local
density arguments show that there are not too many vertices in G that are “close” to F , and
therefore this arbitrary choice will not drive the distortion of the computed mapping up too
much.

It remains to embed all of the vertices that are “far” from F in G. However, by the choice
of F we know that all such vertices should be embedded onto long edges, or onto chains of
boring clusters. Thus, each of the yet un-embedded parts of the graph can be embedded with
low distortion into the line! All that remains is to compute such low distortion embeddings
for each part using a BFS, and assign each part to an edge of H. Stitching all of these
embeddings together yields the approximation algorithm.

There are multiple important details that we have completely ignored in the above
exposition. The most important one is that a cluster can actually be quite large when
compared to a long edge. After all, a boring cluster contains up to E(H) short edges, and
the longest short edge can be almost as long as the shortest long edge! This creates several
technical complications in the algorithm that computes the set F . Resolving these technical
complications ends up making it unnecessary to guess which vertex of F is mapped to which
vertex of H, instead one can compute this directly, at the cost of increasing the approximation
ratio.

3.0.0.2 FPT algorithm for embedding into an H-subdivision for general H.

Our FPT algorithm for embedding graphs G into H-subdivisions (for arbitrary fixed H)
draws inspiration from the algorithm for the line used in [14, 5], while also using an approach
similar to the approximation algorithm for H-subdivisions. The result here is an exact
algorithm with running time f(H, cOPT) · nO(1).

A naive generalization of the algorithm for the line needs to maintain the partial solution
over f(H) intervals, which results in running time ng(H), which is too much. Supposing
that there is a proper c-embedding of G into some H-subdivision, we attempt to find this
embedding by guessing the short and long edges of H. Using this guess, we partitions H into
connected clusters of short and long edges (we call the clusters of short edges “interesting”
clusters, and the clusters of long edges “path” clusters). We show that if a c-embedding exists,
we can find a subset of V (G), with size bounded by a function of |H| and c, that contains all
vertices embedded into the interesting clusters of H. From this, we make further guesses as
to which specific vertices are embedded into which interesting clusters, then how they are
embedded into the interesting clusters. We also make guesses as to what the embedding
looks like for a short distance (for example, O(c2)) along the long edges which are connected
to the important clusters.

(a) (b)

(c)

Figure 1 The FPT algorithm follows this process: (a) A quasi-subgraph of the target graph is
chosen. (b) Short (solid line) and long (dotted line) edges are chosen. (c) The graph is divided into
interesting (left 2) and path (right 3) components.

Since the number of guesses at each step so far can be bounded in terms of c and H, we
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can iterate over all possible configurations. Once our guesses have found the correct choices
for the interesting clusters and for a short distance along the paths leaving these clusters,
we are able to partition the remaining vertices of G, and guess which path clusters these
partitions are embedded into. Due to the “path-like” nature of the path clusters, when we
pair the correct partition and path cluster, we are able to use an approach inspired by [14, 5]
to find a c-embedding of the partition into the path cluster, which is compatible with the
choices already made for the interesting clusters. The formal description and analysis of this
algorithm is quite lengthy, and deferred to Section 6.

4 Preliminaries on embeddings into general graphs

Let G, H be connected graphs, with a fixed total order < on V (G) and V (H). A non-
contracting, cOPT-embedding of G to H is a function fOPT : V (G)→ (HOPT, wOPT), where
HOPT is a subdivision of H, wOPT : E(HOPT)→ R>0, and for all u, v ∈ V (G),

dG(u, v) ≤ d(HOPT,wOPT)(fOPT(u), fOPT(v)) ≤ cOPT · dG(u, v),

where d(HOPT,wOPT) is the shortest path distance in HOPT with respect to wOPT. Stated
formally, for all h1, h2 ∈ V (HOPT), if P is the set of all paths from h1 to h2 in HOPT, then

d(HOPT,wOPT)(h1, h2) = min
P∈P

{∑
e∈P

wOPT(e)
}
.

I Definition 1. For a graph G1 and subdivision G′1 of G1, for e ∈ E(G1), let SUBG′
1
(e) be

the subdivision of e in G′1. For convenience, for each e ∈ E(H), we shall use eOPT to indicate
the subdivision of e in HOPT.

The following notion of consecutive vertices will be necessary to describe additional
properties we will want our embeddings to have.

I Definition 2. Suppose there exists u, v ∈ V (G) and e ∈ E(H) such that fOPT(u), fOPT(v) ∈
V (eOPT) and fOPT(u) < fOPT(v). If for all w ∈ V (G) \ {u, v}, fOPT(w) is not in the path in
eOPT between fOPT(u) and fOPT(v), then we say that u and v are consecutive w.r.t. e, or we
say that u and v are consecutive.

The first property we will want our embeddings to have is that they are “pushing”. The
intuition here is that we want our embedding to be such that we cannot modify the embedding
by contracting the distance further between two consecutive vertices.

I Definition 3. If for all u, v ∈ V (G) and e ∈ E(H) such that u and v are consecutive
w.r.t. e we have that

deOPT(fOPT(u), fOPT(v)) = dG(u, v),

then we say that fOPT is pushing.

A B

C D

A B C D

Figure 2 A pushing embedding of the cycle on 4 vertices into a path of length 5.
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The next property we want for our embeddigns is that they are “proper”, meaning that
all edges of the target graph are, in a loose sense, covered by an edge of the source graph.

I Definition 4. For any z ∈ V (HOPT), if there exists {u, v} ∈ E(G) such that

d(HOPT,wOPT)(fOPT(u), fOPT(v)) = d(HOPT,wOPT)(z, fOPT(u)) + d(HOPT,wOPT)(z, fOPT(v))

then we say that z is proper w.r.t. fOPT. If for all x ∈ V (G), x is proper w.r.t. fOPT, then we
say that fOPT is proper.

A B

C D

A B C D

A B C D

Figure 3 The cycle on 4 vertices, embedded into the two graphs on the left. The first embedding
is not proper. The second embedding is proper.

Given some target graph to embed into, there may not necessarily be a proper embedding.
However, for some “quasi-subgraph” (defined below) of our target, there will be a proper
embedding, which can be used to find an embedding into the target graph.

I Definition 5. Let J and J ′ be connected graphs. We say J ′ is a quasi-subgraph of J if J
can be made isomorphic to J ′ by applying any sequence of the following rules to J :
1. Delete a vertex in V (J).
2. Delete an edge in E(J).
3. Delete an edge {u, v} ∈ E(J), add vertices u′, v′ to V (J), and add edges {u, u′}, {v, v′}

to E(J).

Figure 4 K4 and three quasi-subgraphs of K4.

We now show that by examining the quasi-subgraphs of our target graph, we can restrict
our search to proper, pushing, non-contracting embeddings.

I Lemma 6. There exists a proper, pushing, non-contracting cOPT-embedding of G to some
(Hq, wq), where Hq is the subdivision of some quasi-subgraph of H, and wq : E(Hq)→ R>0.
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Proof. If fOPT yields a non-contracting cOPT-embedding of G to the line, then by a theorem
of [14], there exists a pushing, non-contracting cOPT-embedding of G to the line. Since G
is connected, a line embedding must also be proper. Therefore, in this case the claim of
the lemma is true. For the rest of the proof, we shall assume fOPT does not yield such an
embedding.

Suppose that fOPT is not proper. Let

E¬ = {e ∈ E(H) : ∃z ∈ V (eOPT) such that z is not proper w.r.t. fOPT}

and

V ¬ = {v ∈ V (H) : v is not proper w.r.t. fOPT}.

Suppose that for some e ∈ E(H) there exists z1, z2 ∈ V (eOPT) such that z1 and z2 are both
not proper w.r.t. fOPT, and there exists v ∈ V (G) such that fOPT(v) is in the path in eOPT
from z1 to z2. Since G is a connected graph, we therefore have that fOPT embeds all of V (G)
to the path in eOPT from z1 to z2. Therefore, fOPT yields a non-contracting cOPT-embedding
of G to the line, contradicting our assumption above. Thus, for any vertex z3 in the path in
eOPT from z1 to z2, we have that z3 is not proper w.r.t. fOPT.

Using the following procedure, we can modify fOPT, (HOPT, wOPT) so that fOPT is still a
cOPT-embedding of G to (HOPT, wOPT and |V ¬|+ |E¬| is reduced by at least one.

If V ¬ 6= ∅, choose z ∈ V ¬. Modify HOPT by applying rule 2 of Definition 5 to all
e ∈ E(HOPT) adjacent to z, and then rule 1 to z. With these modifications, HOPT is now
a subdivision of the quasi-subgraph of H found by applying rule 3 to all edges in E(H)
adjacent to z, and then rule 1 to all vertices in the component containing z. Before these
modification, for all u, v ∈ V (G), there exists a path Pu,v ∈ (HOPT, wOPT) from fOPT(u) to
fOPT(v) such that |Pu,v| = d(HOPT,wOPT)(fOPT(u), fOPT(v)) and z 6∈ V (Pu,v). Therefore, after
the modifications, a corresponding path P ′u,v exists in (HOPT, wOPT), with |Pu,v| = |P ′u,v|.
Thus after these modifications, fOPT is again a non-contracting, cOPT-embedding of G to
(HOPT, wOPT), and |V 6=| is reduced by at least 1.

If V ¬ = ∅, choose {a, b} ∈ E¬. Modify HOPT by applying rule 1 of Definition 5 to
every z ∈ Z = {e ∈ V (eOPT) : e is not proper w.r.t. fOPT}. Before these modifications, for
all u, v ∈ V (G), there exists a path Pu,v ∈ (HOPT, wOPT) from fOPT(u) to fOPT(v) such
that |Pu,v| = d(HOPT,wOPT)(fOPT(u), fOPT(v)) and Z ∩ V (Pu,v) = ∅. Therefore, after the
modifications, path Pu,v exists in (HOPT, wOPT). Therefore, there is a single connected
component C of (HOPT, wOPT) \ Z such that fOPT(V (G)) ⊆ (C,wOPT). Modify HOPT again
by applying rule 1 to any v ∈ V (H) such that fOPT(v) /∈ C. Thus fOPT remains a non-
contracting, cOPT-embedding of G to (HOPT, wOPT), and |E¬| is reduced by one.

The sum |V ¬|+ |E¬| is finite, and so a finite number of iterations of the procedure above
will yield a proper, non-contracting cOPT embedding of G to (HOPT, wOPT), where HOPT is
some quasi-subgraph of H.

Suppose fOPT is a proper, non-contracting cOPT-embedding of G to (HOPT, wOPT), where
HOPT is some quasi-subgraph of H, and fOPT is not pushing. Therefore, there exists
a, b ∈ V (G) such that a, b are consecutive w.r.t some edge e ∈ E(HOPT), and since fOPT is
non-contracting,

deOPT(fOPT(a), fOPT(b)) > dG(a, b).

Modify HOPT to replace the path in eOPT between fOPT(a), fOPT(b) with a single edge
{fOPT(a), fOPT(b)}. Modify wOPT so that

wOPT({fOPT(a), fOPT(b)}) = dG(a, b).
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Then for all u, v ∈ V (G), we either have that

d(HOPT,wOPT)(fOPT(u), fOPT(v))

is unchanged by the modification to eOPT, or

d(HOPT,wOPT)(fOPT(u), fOPT(v)) = d(HOPT,wOPT)(fOPT(u), fOPT(a))
+ d(HOPT,wOPT)(fOPT(b), fOPT(v)) + dG(a, b)

< d(HOPT,wOPT)(fOPT(u), fOPT(v)),

or

d(HOPT,wOPT)(fOPT(u), fOPT(v)) = d(HOPT,wOPT)(fOPT(v), fOPT(a))
+ d(HOPT,wOPT)(fOPT(b), fOPT(u)) + dG(a, b)

< d(HOPT,wOPT)(fOPT(u), fOPT(v))

If it is that case that

d(HOPT,wOPT)(fOPT(u), fOPT(v)) = d(HOPT,wOPT)(fOPT(u), fOPT(a))
+ d(HOPT,wOPT)(fOPT(b), fOPT(v)) + dG(a, b)

< d(HOPT,wOPT)(fOPT(u), fOPT(v)),

then by the triangle inequality we have that

d(HOPT,wOPT)(fOPT(u), fOPT(a))
+d(HOPT,wOPT)(fOPT(b), fOPT(v)) + dG(a, b)

≥ dG(u, a) + dG(b, v) + dG(a, b)
≥ dG(u, v)

and therefore

dG(u, v) ≤ d(HOPT,wOPT)(fOPT(u), fOPT(v))
< d(HOPT,wOPT)(fOPT(u), fOPT(v))
≤ cOPT · dG(u, v).

Similarly, if it is the case that

d(HOPT,wOPT)(fOPT(u), fOPT(v)) = d(HOPT,wOPT)(fOPT(v), fOPT(a))
+ d(HOPT,wOPT)(fOPT(b), fOPT(u)) + dG(a, b)

< d(HOPT,wOPT)(fOPT(u), fOPT(v))

then we have that

dG(u, v) ≤ d(HOPT,wOPT)(fOPT(u), fOPT(v))
< dL(HOPT,wOPT)(fOPT(u), fOPT(v))
≤ cOPT · dG(u, v).

Therefore, after these modifications fOPT remains a cOPT-embedding of G to (HOPT, wOPT).
By repeated modifications as described above, fOPT can be modified until it is a proper,

pushing, non-contracting cOPT-embedding of G to (HOPT, wOPT), with HOPT a quasi-subgraph
of H. J
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Finally, we show the local density lemma.

I Lemma 7 (Local Density). Let fOPT be a non-contracting cOPT-embedding of G to some
(Hq, wq), where Hq is the subdivision of some quasi-subgraph of H, and wq : E(Hq)→ R>0.
Then for all v ∈ V (G), for any r ≥ 0,

|ballG(v, r)| ≤ 2r · cOPT · |E(H)|.

Proof. Since fOPT is a non-contracting cOPT-embedding, for any u ∈ V (G) such that

dG(u, v) ≤ r

we have that

1 ≤ d(HOPT,wOPT)(fOPT(u), fOPT(v))
≤ dG(u, v)
≤ cOPT · d(HOPT,wOPT)(fOPT(u), fOPT(v))
≤ cOPT · r.

Therefore, for each edge e ∈ E(H), there are at most 2cOPT · r vertices x ∈ ballG(v, r) such
that fOPT(x) ∈ eOPT, and therefore

|ballG(v, r)| ≤ 2r · cOPT · |E(Hq)|.

Thus, by Definition 5,

|ballG(v, r)| ≤ 4r · cOPT · |E(H)|.

J

5 An approximation algorithm for embedding into arbitrary graphs

In this section we give our approximation algorithm for embedding into arbitrary graph. In
particular, we prove Theorem 19. By Lemma 6 there is a proper, pushing cOPT embedding of
G into a quasi-subgraph Hq of H with edge weight function wq. Furthermore, by subdividing
each edge of H sufficiently many times, for any ε > 0 any c-embedding of G into (Hq, wq)
can be turned into an (c+ ε)-embedding of G into a subdivision of H.

The weighted quasi-subgraph (Hq, wq) of H is a subdivision of a subgraph Hsub of H.
Since H only has 2|E(H)+V (H)| subgraphs our algorithm can guess Hsub. Thus, for the
purposes of our approximation algorithm, it is sufficient to find an embedding of G into a
weighted subdivision (HALG, wALG) of Hsub under the assumption that a proper, pushing
cOPT embedding of G into some weighted subdivision of Hsub exists. Furthermore, any proper
and pushing embedding is non-contracting and has contraction exactly equal to 1. Such an
embedding f is a c-embedding if and only if for every edge

uv ∈ E(G), d(H,w)(f(u), f(v)) ≤ c. (1)

Thus, to prove that our output embedding is a c-embedding (for some c) we will prove that
it is proper, pushing and that (1) is satisfied. Thus, the main technical result of this section
is encapsulated in the following lemma.

I Lemma 8. There is an algorithm that takes as input a graph G with n vertices, a graph
H and an integer c, runs in time 2h · nO(1) and either correctly concludes that there is no
c-embedding of G into a weighted subdivision of H, or produces a proper, pushing c′-embedding
of G into a weighted subdivision of a subgraph H ′ of H, where cALG = O(c24h9).
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5.0.0.1 Definitions.

To prove Lemma 8 we need a few definitions. Throughout the section we will assume
that there exists a weighted subdivision (HOPT, wOPT) and a c-embedding fOPT : V (G)→
V (HOPT). This embedding is unknown to the algorithm and will be used for analysis
purposes only. Every edge e = uv in H corresponds to a path Pe in HOPT from u to v.
Based on the embedding fOPT : V (G)→ V (HOPT) we define the embedding pattern function
f̂OPT : V (G)→ V (H) ∪ E(H) as follows. For every vertex v ∈ V (G) such that fOPT maps v
to a vertex of HOPT that is also a vertex of H, f̂OPT maps v to the same vertex. In other
words if fOPT(v) = u for u ∈ V (H), then f̂OPT(v) = u. Otherwise fOPT maps v to a vertex u
on a path Pe corresponding to an edge e ∈ E(H). In this case we set f̂OPT(v) = e.

We will freely make use of the “inverses” of the functions fOPT and f̂OPT. For a vertex set
C ⊆ V (HOPT) we define f−1

OPT = {v ∈ V (G) : fOPT(v) ∈ C}. We will also naturally extend
functions that act on elements of a universe to subsets of that universe. For example, for a set
F ⊆ E(HOPT) we use wOPT(F ) to denote

∑
e∈F wOPT(e). We further extend this convention

to write wOPT(Pe) instead of wOPT(E(Pe)) for a path (or a subgraph) of HOPT. We extend
the distance function to also work for distances between sets

Throughout the section we will use the following parameters, for now ignore the paren-
thesized comments to the definitions of the parameters, these are useful for remembering the
purpose of the parameter when reading the proofs.

h = |E(H)| (the number of edges in H),
c (the distortion of fOPT),
` = 20c3 (long edge threshold)
r = 5`h (half of covering radius)
cALG = 64 · 106 · c24(h+ 1)9 (distortion of output embedding)

Using the parameter ` we classify the edges of H into short and long edges. An edge
e ∈ E(H) is called short if wOPT(Pe) ≤ ` and it is called long otherwise. The edge sets
Eshort and Elong denote the set of short and long edges in H respectively. A cluster in H is
a connected component C of the graph Hshort = (V (H), Eshort). We abuse notation and
denote by C both the connected component and its vertex set. The long edge degree of a
cluster C in H is the number of long edges in H incident to vertices in C. Here a long edges
whose both endpoints are in C is counted twice. A cluster C of long edge degree at most 2 is
called boring, otherwise it is interesting. Most of the time when discussing clusters, we will
be speaking of clusters in H. However we overload the meaning of the word cluster to mean
something else for vertex sets of G. A cluster in G is a set C such that there exists a cluster
CH of H such that C = {v ∈ V (G) : f̂OPT(v) ∈ V (CH) ∪ E(CH)}. Thus there is a one to
one correspondence between clusters in G and H.

The following lemma is often useful when considering embeddings into the line, or “line-
like structures”. We will need this lemma to analyze the parts of the graph G that the
embedding fOPT maps to long edges of H

I Lemma 9. Suppose there exists a c-embedding fOPT of G into (HOPT, wOPT), and let a, b
and v be vertices of G such that dG(a, v) = dG(b, v) and a shortest path from a to v in G

contains a vertex w such that dH(fOPT(w), fOPT(b)) ≤ c. Then dG(a, b) ≤ 2c.

Proof. We have that dG(b, v) = dG(a, v) = dG(a,w) + dG(w, s) And also that dG(b, v) ≤
dG(b, w)+d(w, s), but fOPT is non-contracting so dG(b, w) ≤ dH(fOPT(w), fOPT(b))+d(w, s) ≤
c+ d(w, s). We conclude that dG(a,w) + dG(w, s) ≤ c+ d(w, s), and cancelling d(w, s) on
both sides yields dG(a,w) ≤ c. Finally we have that dG(a, b) ≤ dG(a,w) + dG(w, b) ≤
c+ dH(fOPT(w), fOPT(b)) ≤ 2c, concluding the proof. J
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A cluster-chain is a sequence C1, e1, C2, e2, . . . , et−1, Ct such that the following conditions
are satisfied. First, the Ci’s are distinct clusters in H, except that possibly C1 = Ct. Second,
C1 and Ct are interesting, while C2, . . . Ct−1 are boring. Finally, for every i < t the edge ei
is a long edge in H connecting a vertex of Ci to a vertex of Ci+1.

5.1 Using Breadth First Search to Detect Interesting Clusters
In this subsection we prove a lemma that is the main engine behind Lemma 8. Once the
main engine is set up, all we will need to complete the proof of Lemma 8 will be to complete
the embedding by running the approximation algorithm for embedding into a line for each
cluster-chain of H, and stitching these embeddings together.

Before stating the lemma we define what it means for a vertex set F in G to cover a
cluster. We say that a vertex set F ⊆ V (G) r-covers a cluster C in G if some vertex in F is
at distance at most r from at least one vertex in C. A vertex set F ⊆ V (G) covers a cluster
C in H if F covers the cluster CG corresponding to C in G.

I Lemma 10 (Interesting Cluster Covering Lemma). There exists an algorithm that takes as
input G, H and c, runs in time 2hnO(1) and halts. If there exists a proper c-embedding f̂OPT
from G to a weighted subdivision of H, the algorithm outputs a family F such that |F| ≤ 2h,
every set F ∈ F has size at most h, and there exists an F ∈ F that 2r-covers all interesting
clusters of H.

Towards the proof of Lemma 10 we will design an algorithm that iteratively adds vertices
to a set F . During the iteration the algorithm will make some non-deterministic steps, these
steps will result in the algorithm returning a family of sets F rather than a single set F .

5.2 The SEARCH algorithm
We now describe a crucial subroutine of the algorithm of Lemma 10 that we call the SEARCH
algorithm. The algorithm takes as input G, c, a set F ⊆ V (G) and a vertex v. The algorithm
explores the graph, starting from v with the aim of finding a local structure in G that on
one hand, can not be embedded into the line with low distortion, while on the other hand
is far away from F . It will either output fail, meaning that the algorithm failed to find a
structure not embeddable into the line, or success together with a vertex û, meaning that
the algorithm succeeded to find a structure not embeddable into the line, and that u is close
to this structure. We begin with describing the algorithm, we will then prove a few lemmata
describing the behavior of the algorithm.

5.2.0.1 Description of the SEARCH algorithm

The algorithm takes as input G, c, a set F ⊆ V (G) and a vertex v. It performs a breadth
first search (BFS) from v in G. Let X1, X2, etc. be the BFS layers starting from v. In other
words Xi = {x ∈ V (G) : dG(v, x) = i}. The algorithm inspects the BFS layers X1, X2, . . .

one by one in increasing order of i.
For i < 2c2 the algorithm does nothing other than the BFS itself. For i = 2c2 the

algorithm proceeds as follows. It picks an arbitrary vertex vL ∈ Xi and picks another vertex
vR ∈ Xi at distance at least 2c+ 1 from vL in G. Such a vertex vR might not exist, in this
case the algorithm proceeds without picking vR. The algorithm partitions Xi into XL

i and
XR
i in the following way. For every vertex x ∈ Xi, if dG(x, vL) ≤ 2c then x is put into XL

i .
If dG(x, vR) ≤ 2c then x is put into XR

i . If some vertex x ∈ Xi is put both into XL
i and in

XR
i , or neither into XL

i nor into XR
i the algorithm returns success together with û = v.
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For i > 2c2 the algorithm proceeds as follows. If any vertex in Xi is at distance at most
r from any vertex in F (in the graph G), the algorithm outputs fail and halts. Otherwise,
the algorithm partitions Xi into XL

i and XR
i . The vertex x ∈ Xi is put into XL

i if x has
a neighbor in XL

i−1 and into XR
i if x has a neighbor in XR

i−1. Note that x has at least one
neighbor in Xi−1, and so x will be put into at least one of the sets XL

i or XR
i . If x is put into

both sets XL
i and XR

i , the algorithm outputs success with û = x and halts. If |XL
i | > 2c2 or

if two vertices in XL
i have distance at least 2c+ 1 from each other in G the algorithm picks a

vertex x ∈ XL
i and returns success with û = x. Similarly, if |XR

i | > 2c2 or if two vertices in
XR
i have distance at least 2c+ 1 from each other in G the algorithm picks a vertex x ∈ XR

i

and returns success with û = x. If the BFS stops, (i.e Xi = ∅), the algorithm outputs fail.

5.2.0.2 Properties of the SEARCH algorithm.

We will only give guarantees on the behavior of the SEARCH algorithm provided that there
exists a c-embedding fOPT of G into (HOPT, wOPT), and that v is at distance at least 4c2 from
every cluster C in G. Therefore within this subsection, v refers to the vertex SEARCH is
started from, and all lemmas assume that these two conditions are satisfied. In this case we
have that f̂OPT(v) = e for a long edge e ∈ E(H). The edge e belongs to a unique cluster-chain
C1, e1, C2, e2, . . . , et−1, Ct. For some q ≤ t− 1 we have that eq = e.

The vertex v splits the cluster-chain in two parts, C1, e1, C2, e2, . . . , Cq−1 and Cq, eq+1, . . . , Ct,
we may think of these as the “left” and the “right” part of the chain. The edge e = eq
is “split down the middle” in the following sense, the path Pe is divided in two parts PLe ,
defined as the sub-path of Pe from the endpoint in Cq−1 to fOPT(v), and PRe , defined as the
sub-path of Pe from fOPT(v) to the endpoint in Cq. We now define the left and the right
part of the chain:

L =

 ⋃
i≤q−1

f̂−1
OPT(Ci) ∪ f̂−1

OPT(ei)

 ∪ f̂−1
OPT(Cq) ∪ f−1

OPT(PLe )

R = f−1
OPT(PRe ) ∪

 ⋃
i≥q+1

f̂−1
OPT(Ci) ∪ f̂−1

OPT(ei)


Note that L and R are vertex sets in G. The sets L and R intersect only in v, unless C1 = Ct,
in which case both L and R contain f̂−1

OPT(C1) = f̂−1
OPT(Ct). No other vertices are common to

L and R. We define ζ = L ∪R to be the set of all vertices of G on the chain.
We will say that the left and right side of the search met in iteration i if SEARCH put

some vertex x ∈ Xi both in XL
i and in XR

i . In this case the algorithm outputs success and
halts in this iteration. We also say that the algorithm left-succeeded (right-succeeded) if it
output success with û ∈ XL

i (û ∈ XR
i ) for some i.

The focus of our analysis is on how SEARCH explores ζ. We say that SEARCH leaves
ζ in iteration i if i is the lowest number Xi \ ζ 6= ∅. We say that the inner part of ζ is
ζinner = ζ \ (f̂−1

OPT(C1) ∪ f̂−1
OPT(Ct)). We say that SEARCH leaves the inner part of ζ in

iteration i if i is the lowest number such that Xi \ ζinner 6= ∅. The next lemma shows that
that XL

i and XR
i correctly classify the vertices of ζ into L and R as long as SEARCH has

not yet left ζ, and as long as the left and right side of the search have not met.

I Lemma 11. if i ≥ 2c2, and SEARCH does not halt or leave ζ in any iteration j ≤ i, and
vL ∈ L then

XL
i = Xi ∩ L and XR

i = Xi ∩R.
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If vL ∈ R then
XL
i = Xi ∩R and XR

i = Xi ∩ L.

Proof. We show the lemma when vL ∈ L, the case when vL ∈ R is symmetric. We
first show the statement of the lemma for i = 2c2, and start by proving that vR ∈ R.
Suppose not, then either the shortest path from vR to v in G contains a vertex w such
that dHOPT,wOPT(fOPT(w), fOPT(vL)) ≤ c or the shortest path from vL to v in G contains a
vertex w such that dHOPT,wOPT(fOPT(w), fOPT(vR)) ≤ c. In either case, Lemma 9 shows that
dG(vL, vR) ≤ 2c, contradicting the choice of vR. We conclude that vR /∈ L and therefore that
vR ∈ R (if it exists).

We have that Xi ∩R 6= ∅ because the embedding fOPT is proper. Furthermore we have
that

dHOPT,wOPT(fOPT(vL), fOPT(v)) ≥ 2c2

and that for any x ∈ Xi ∩R we have that

dHOPT,wOPT(fOPT(x), fOPT(v)) ≥ 2c2.

Thus

dHOPT,wOPT(fOPT(x), fOPT(vL)) ≥ 4c2

implying that dG(x, vL) ≥ 4c. Thus, the SEARCH algorithm does indeed pick a vertex
vR ∈ R.

Now, for any vertex v′L ∈ Xi ∩ L we have that either the shortest path from v′L to v in G
contains a vertex w such that dHOPT,wOPT(fOPT(w), fOPT(vL)) ≤ c or the shortest path from
vL to v in G contains a vertex w such that dHOPT,wOPT(fOPT(w), fOPT(v′L)) ≤ c. In either case,
Lemma 9 shows that dG(vL, v′L) ≤ 2c, implying that v′L ∈ XL

i . An identical argument shows
that every v′R ∈ Xi ∩R is in XR

i . Since XL
i and XR

i form a partition of Xi this proves the
statement of the lemma for i = 2c2.

Suppose now that the statement of the lemma holds for every i′ < i (with i′ ≥ 2c2), we
prove the lemma for i. If SEARCH halts in iteration i there is nothing to prove, so assume
that SEARCH does not halt in iteration i. Then the left and right side of the search did
not meet in iteration i. This means that every vertex u in Xi either has a neighbor u′ in
XL
i−1 = Xi ∩ L or in XR

i−1 = Xi ∩R, but not both.
If u′ ∈ XL

i−1 then SEARCH puts u into XL
i . Furthermore we have that u′ is in L, and

dHOPT,wOPT(fOPT(u′), fOPT(v)) ≥ 2c2,

while dHOPT,wOPT(fOPT(u′), fOPT(u)) ≤ c. Thus we conclude that u ∈ L. By an identical
argument, if u′ ∈ XR

i−1 then SEARCH puts u into XR
i and u ∈ R. Since both XL

i , X
R
i and

Xi ∩ L,Xi ∩R form partitions of Xi the lemma follows. J

I Lemma 12. If SEARCH leaves the inner chain in iteration i, then before reaching iteration
i+ c+ ` · h+ 4c2, SEARCH either succeeds or fails by finding a vertex within distance r from
F .

Proof. In iteration i, SEARCH visits a vertex u ∈ Xi \ ζinner, u has a neighbor u′ ∈
ζinner ∩Xi−1. We have that u′ is either in L or in R, without loss of generality we have that
u′ ∈ L. Since u /∈ ζ it follows that f̂OPT(u′) = e1. Since u′u ∈ E(G) and u /∈ ζinner it follows
that dHOPT,wOPT(fOPT(u′), C1) ≤ c. In HOPT the distance between all vertices of C1 is at most
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` · h. Since fOPT is non-contracting a BFS (and thus SEARCH) will visit all of f−1
OPT(C1) by

iteration i+ c+ ` · h.
At this point, either the left and right side of the search have already met (in which case

the algorithm succeeded), the algorithm encountered a vertex at distance at most r from F

(in which case it failed), or it leaves ζ within iteration i+ c+ ` · h+ 1. Since the embedding
is proper, we have that for some iteration j ≤ i+ c+ ` · h+ 4c2, the search visits a vertex
x ∈ Xj such that f̂OPT(x) = ex for ex 6= e1 and 4c2 ≥ dHOPT,wOPT(fOPT(x), C1) ≤ 4c2 + c. Let
j be the first iteration such that this event occurs, and x and ex as defined above for this
iteration j. We remark that technically ex might not be an edge different from e1 but rather
the other endpoint of e1. This does not affect the proof other than in notation, so we will
treat ex and e1 as different edges.

We claim that unless SEARCH already has halted, in iteration j, XL
j contains a vertex

y′ at distance more than 2c from x, making SEARCH succeed. This is all that remains to
prove in order to prove the statement of the lemma.

Since C1 is an interesting cluster, C1 is incident to at least one more long edge ey distinct
from e1 and ex. Again, technically ey could be the other endpoint of the ex or e1, however
this does not affect the proof and thus we treat them as separate edges. Let y be a vertex
in G such that f̂OPT(y) = ey and 4c2 ≥ dHOPT,wOPT(fOPT(y), C1) ≤ 4c2 + c. We have that
dG(u′, y) ≤ dHOPT,wOPT(fOPT(u′), fOPT(y)) ≤ c+ ` · h+ 4c2. By the choice of x we have that
y is not discovered by SEARCH before x is.

The subgraph of HOPT corresponding to the cluster C1 and the sub-path of Pey from C1
to fOPT(y) is connected, and therefore there is an index j′ ≥ j such that j′ ≤ j + c

such that XL
j′ contains a vertex y∗ such that f̂OPT(y∗) ∈ C1 ∪ {ey}. We have that

dHOPT,wOPT(fOPT(y∗), fOPT(x)) ≥ 4c2, hence dG(y∗, x) ≥ 4c. However there exists a pre-
decessor y′ of y∗ in the BFS such that y′ ∈ XL

j and dG(y, y′) ≤ c. The triangle inequality
yields that dG(y′, x) > 4c− c > 2c and the statement follows. J

Finally we show that whenever SEARCH succeeds, the vertex it outputs is near a cluster.

I Lemma 13. If SEARCH outputs success and a vertex û, then there exists a cluster C in
G such that dG(û, C) ≤ 2c+ ` · h+ 4c2 ≤ 2`h.

Proof. SEARCH can succeed either because the left and right side of the search meet, or
because SEARCH left-succeeds or because it right-succeeds. If the left and right side of
the search meet in iteration i, it means that in this or one of the previous iterations the
search has visited a vertex u such that dHOPT,wOPT(fOPT(u), C1) ≤ c. By Lemma 12 it follows
that SEARCH halts within 2c+ ` · h+ 4c2 iterations and outputs a vertex û within distance
2c+ ` · h+ 4c2 from C1.

Suppose now that SEARCH left-succeeds in iteration i, and assume for contradiction that
dG(û, C) > 2c+ ` · h+ 4c2 for every cluster C in G. If the output vertex û is not in ζinner,
then Lemma 12 again yields that dG(û, f̂−1

OPT(C1)) ≤ c+ ` · h+ 4c2. Therefore, assume that
û ∈ ζinner. In this case there is an edge ep on the cluster-chain of v such that f̂OPT(û) = ep.
The edge ep connects the clusters Cp and Cp+1. Since dG(û, f̂−1

OPT(Cp ∪ Cp+1)) ≥ 10c2 we
have that dHOPT,wOPT(fOPT(û), Cp ∪ Cp+1) ≥ 10c2. Let u′ be the predecessor of û in the BFS,
we have that u′ ∈ XL

i−1. Since SEARCH did not succeed in iteration i − 1 we have that
dG(u′, u′′) ≤ 2c for every u′′ ∈ XL

i−1. Since every vertex in XL
i has a predecessor in XL

i−1
we conclude that every vertex in XL

i is at distance at most 2c + 2 from û in G. Thus,
every vertex in fOPT(XL

i ) is at distance at most 2c2 + 2c in (HOPT, wOPT) from fOPT(û).
Most importantly f̂OPT(u′′) = ep for every u′′ ∈ XL

i . Therefore, for every pair of vertices
u′′ and u∗ in XL

i , either the shortest path from u′′ to v contains a vertex w such that
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dHOPT,wOPT(fOPT(w), fOPT(u∗)) ≤ c or the shortest path from u∗ to v contains a vertex w such
that dHOPT,wOPT(fOPT(w), fOPT(u′′)) ≤ c. It follows from Lemma 9 that dG(u∗, u′′) ≤ c. Since
this holds for every pair of vertices u′′ and u∗ in XL

i this contradicts that the algorithm
left-succeeded in iteration i. The proof if the algorithm right-succeeded is symmetric. J

5.2.0.3 The COVER algorithm

We are now almost in position to prove Lemma 10. We begin by describing the COVER
algorithm, and then prove that it satisfies the conditions of Lemma 10. We will describe
the COVER algorithm as a non-deterministic algorithm that takes as input G, H and c,
runs in time polynomial time, and outputs a single set vertex set F ⊆ V (G) of size at most
h. If there exists a proper c-embedding f̂OPT from G to a weighted subdivision of H, then
in at least one of the computation paths of the algorithm, the output set F 2r-covers all
interesting clusters of H. The algorithm will use only h non-deterministic bits. By defining
F to be the family containing all sets F output by the computation paths of COVER, the
family F satisfies the conditions of Lemma 10.

The COVER algorithm proceeds as follows, given G, H and c, it initializes F = ∅.
It then proceeds in stages. In stage i the algorithm loops over all choices of a vertex
v ∈ V (G)\ballG(F, r), and runs SEARCH on G, starting from v, with the set F . If SEARCH
fails for all choices of v the COVER algorithm terminates and outputs F . Otherwise, let v
be the first vertex that made SEARCH succeed in stage i, and let û be the vertex output by
SEARCH. The algorithm makes a non-deterministic choice: in one computation path v is
added to F , in the other computation path û is added to F . Then the algorithm proceeds to
stage i+ 1. If the algorithm reaches stage h+ 1 it terminates without outputting any set.
This concludes the description of the algorithm.

Proof of the Interesting Cluster Covering Lemma (Lemma 10). Each stage of the COVER
algorithm ends when SEARCH started from a vertex v succeeds and outputs a vertex û. The
entire analysis of SEARCH is only valid if v is at distance at least 4c2 from every cluster C in
G. The non-deterministic guess of the COVER algorithm is whether this assumption is valid;
i.e whether GG(v, C) ≥ 4c2 for every cluster C. We proceed analyzing the computation path
where the non-deterministic guess is correct.

If v is at distance at least 4c2 from every cluster C in G, the COVER algorithm adds
û to F , otherwise COVER adds v to F . In either case the vertex added to F is at least at
distance r + 1 from every other vertex in F . Furthermore, if COVER adds v to F then v is
within distance 4c2 from some cluster C in G. On the other hand, if COVER adds û to F
then, by Lemma 13 there exists a cluster C in G such that dG(û, C) ≤ 2c+ ` · h+ 4c2 ≤ 2`h.

Since every pair of vertices in a cluster C are at distance at most ` · h apart in G, every
vertex in F is at distance at most 2c+ ` · h+ 4c2 ≤ 2`h away from a cluster, and every pair
of vertices in F are at distance at least r ≥ 5`h apart, we have that in the computation path
that makes the correct guesses the algorithm terminates and outputs a set F of size at most
h before reaching stage h+ 1.

To complete the proof we need to show that every cluster in C is 2r-covered by F . Suppose
not, and consider an un-covered cluster C in the last stage of the COVER algorithm. In this
stage, SEARCH failed when starting from every vertex v of G. Let v be a vertex at distance
exactly 4c2 from C such that such that f̂OPT(v) is a long edge incident to the cluster in H
corresponding to C. By Lemma 12, starting SEARCH from v will result in the algorithm
halting within 4c2 + c+ ` · h 4c2 ≤ 2`h iterations. Furthermore, if the algorithm does not
succeed (which it does not, since this was the last stage of COVER), it finds a vertex u at
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distance at most r from F . But then dG(F,C) ≤ dG(F, u) + dG(u,C) ≤ r + 2`h+ 4c2 ≤ 2r,
completing the proof. J

5.3 STITCHing Together Approximate Line Embeddings
We now describe the STITCH algorithm. This algorithm takes as input G, H, c and
F ⊆ V (G), runs in polynomial time and halts. We will prove that if there exists a c-
embedding fOPT of G into a weighted subdivision (HOPT, wOPT) of H such that all F
2r-covers all interesting clusters of G, the algorithm produces a cALG-embedding fALG of G
into a weighted subdivision (HALG, wALG) of a subgraph H ′ of H. Throughout this section
we will assume that such an embedding fOPT exists.

The STITCH algorithm starts by setting R = 4r, ∆ = 4r and then proceeds as follows.
As long as there are two vertices vi and vj in F such that 2R ≤ dG(u, v) ≤ 2R + ∆, the
algorithm increases R to R+∆. Note that this process will stop after at most

(|F |
2
)
iterations,

and therefore when it terminates we have R ≤ 4r · h2 ≤ 400c3h3. Define B = ballG(F,R),
and B to be the family of connected components of G[B]. Notice that the previous process
ensures that for any B1, B2 ∈ B we have dG(B1, B2) ≥ ∆. Notice further that for every
interesting cluster C in H we have that ballG(f̂−1

OPT(C), r) ⊆ G.
We now classify the connected components of G−B. A component Z of G−B is called

deep if it contains at least one vertex at distance(in G) at least ∆
2 from F , and it is shallow

otherwise. The shallow components are easy to handle because they only contain vertices
close to F .

I Lemma 14. For every shallow component Z of G − B, there is at most one connected
component B1 ∈ B that contains neighbors of Z

Proof. Suppose not, then there are two vertices v1 and v2 in Z that are neighbors, such that
the closest vertex in B to v1 is in B1 while the closest vertex in B to v2 is in B2, for distinct
components B1 and B2 ∈ B. The distance from v1 to B1 is at most ∆

2 − 1, the distance from
v2 to B2 is at most ∆

2 − 1, and hence, by the triangle inequality, the distance between B1
and B2 is at most ∆− 1, contadicting the choice of R. J

The next sequence of lemmas allows us to handle deep components. We say that a
component Z in G−B lies on the cluster-chain χ = C1, e1, . . . , Ct if

Z ⊆

⋃
i≤t

f̂−1
OPT(Ci) ∪ f̂−1

OPT(ei)

 \ f̂−1
OPT(C1 ∪ Ct).

I Lemma 15. Every component Z of G−B lies on some cluster-chain.

Proof. Z does not contain any vertices in interesting clusters, or even within distance r of
interesting clusters. No two vertices that (a) are at least c from all interesting clusters and
(b) are mapped by fOPT on different cluster-chains can be adjacent, because the distance
between their fOPT images in H is at least 2c. The lemma follows. J

I Lemma 16. No two deep components Z1, Z2 of G−B can lie on the same cluster-chain χ

Proof. Suppose to such deep components exist. Because ∆ = 4r and r > ` · h, and every
cluster of G has at most ` · h vertices, it follows that Z1 contains a vertex v1 such that the
distance from v1 to any cluster in G is at least 2c2 and dG(v1, B) ≥ ∆/4. Thus f̂OPT(v1) = ei
for an edge ei on the cluster chain χ. By an identical argument there is a vertex v2 in Z2
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such that the distance from v2 to any cluster in G is at least 2c2 and d(v2, B) ≥ ∆/4. Thus
f̂OPT(v2) = ej for an edge ej on the cluster chain χ.

Without loss of generality i ≤ j and if i = j then fOPT(v1) is closer than fOPT(v2) to the
endpoint of Pei that lies in Ci.

The graph HOPT \ fOPT({v1, v2}) has two connected components, one that contains C1
and Ct, and one that does not. Consider the connected component ζ that does not. Because
the embedding fOPT is proper, G[f−1

OPT(ζ)] contains a path P with one endpoint within
distance at most c2 from v1, and the other within distance at most c2 from v2. Since
d({v1 ∪ v2}, B) ≥ ∆/4 we have that one endpoint of P is in Z1 and the other is in Z2. But
any path from Z1 to Z2 (and in particular P ) must contain a vertex from B. This implies
that ζ ∩B 6= ∅.

This yields a contradiction: we have that the component Bi of G[B] that has non-empty
intersection with ζ also has non-empty intersection with an interesting cluster. It follows
that Bi contains a vertex within distance at most c from either v1 or v2, contradicting the
choice of {v1, v2}. J

I Lemma 17. There is a polynomial time algorithm that given G, B and a component Z of
G− B computes an embedding of Z components of G− B into the line with distortion at
most (` · h · c)4. Furthermore, all vertices in Z with neighbors outside Z are mapped by this
embedding within distance (` · h · c)6 from the end-points.

Proof. Let Z be a component of G − B. By Lemma 15, Z lies on a cluster-chain χ =
C1, e1, . . . , Ct. Define a following total ordering of the vertices in Z: If f̂OPT(a) ∈ Ci ∪ {ei}
and f̂OPT(b) ∈ Cj ∪ {ej} and i < j, then a comes before b. If f̂OPT(a) ∈ Ci and f̂OPT(b) = ei
then a comes before b. If f̂OPT(a) = f̂OPT(b) = ei and fOPT(a) is closer than fOPT(b) to Ci−1,
then a comes before b. If f̂OPT(a) ∈ Ci and f̂OPT(b) ∈ Ci break ties arbitrarily.

At most ` · h vertices are mapped to any boring cluster Ci, and the distance between
any two vertices in the same boring cluster in HOPT is at most ` · h. Thus the distance (in
G) between any two consecutive vertices in this ordering is at most ` · h · c. The number of
vertices appearing in the ordering between the two endpoints of an edge is at most ` ·h (all the
vertices of a boring cluster). Thus, if the ordering is turned into a pushing, non-contracting
embedding into the line, the distortion of this embedding is at most (` · h)2 · c. Using the
known polynomial time approximation algorithm for embedding into the line [5] we can find
an embedding of Z into the line with distortion at most (` · h · c)4 in polynomial time.

Because B is a union of at most h balls, it follows that at most c2 · h2 vertices in Z have
neighbors in G, and that all of these vertices are among the ` · h first or last ones in the
above ordering. Since any two low distortion embeddings of a metric space into the line map
the same vertices close to the end-points, it follows that all vertices in Z with neighbors
outside Z are mapped by this embedding within distance (` · h · c)6 from the end-points. J

The STITCH algorithm builds the graph H ′ as follows. Every vertex of H ′ corresponds
to a connected component B ∈ B. Every deep component Z of G − B corresponds to an
edge between the (at most two) sets B1 and B2 ∈ B that have non-empty intersection with
NG(Z). Note that the graph H ′ is a multi-graph because it may have multiple edges and
self loops. However, since each set B ∈ B has a connected image in H under f̂ , Lemmata 15
and 16 imply that H ′ is a topological subgraph of H. Hence any weighted subdivision of H ′
is a weighted subdivision of a subgraph of H.

The STITCH algorithm uses Lemma 17 to compute embeddings of each deep connected
component Z of G \B. Further, for each component Bi ∈ B the algorithm computes the set
B?i which contains Bi, as well as the vertex sets of all shallow connected components whose
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neighborhood is in Bi. By Lemma 14 the B?i ’s together with the deep components of G−B
form a partition of V (G).

What we would like to do is to map each set B?i onto the vertex of H ′ that it corresponds
to, and map each deep connected component Z of G − B onto the edge of H ′ that it
corresponds to. When mapping Z onto the edge of H we use the computed embedding of Z
into the line, and subdivide this edge appropriately.

The reason this does not work directly is that we may not map all the vertices of B?i onto
the single vertex vi in H ′ that corresponds to Bi. Instead, STITCH picks one of the edges
incident to vi, sub-divides the edge an appropriate number of times, and maps all the vertices
of B?i onto the newly created vertices on this edge. The order in which the vertices of B?i are
mapped onto the edge is chosen arbitrarily, however all of these vertices are mapped closer to
vi than any vertices of the deep component Z that is mapped onto the edge. This concludes
the construction of HALG and fALG. The STITCH algorithm defines a weight function wALG
on the edges of HALG, such that the embedding is pushing and non-contracting.

I Lemma 18. fALG is a cALG-embedding of G into (HALG, wALG).

Proof. It suffices to show that the distance in (HALG, wALG) between the image of two
endpoints of an edge uv ∈ E(G) is never more than cALG. To that end, the main observation
is every Bi ∈ B is the union of at most h balls of radius R. Every vertex of B?i is within
distance ∆/2 ≤ R from some vertex in Bi. Hence, for any two vertices a, b ∈ B?i we have that
dG(a, b) ≤ 2·R·(h+1). Thus, by Lemma 7 we have that |Bi| ≤ 4Rh(h+1). Therefore, for any
B?i , the embedding fALG embeds B?i on a path of length at most 8R2h(h+ 1)2 ≤ 8R2(h+ 1)3

in (HALG, wALG).
Every edge with both endpoints in B?i is therefore stretched at most 8R2(h+ 1)3 by fALG.

By Lemma 17, every edge with both endpoints in a deep component Z of G \B is stretched
at most (` · h · c)4. Furthermore, by Lemma 17, any edge with one endpoint in B?i and the
other in Z is stretched at most 8R2(h+ 1)3 + (` · h · c)6. Hence every edge is stretched at
most cALG completing the proof. J

5.4 The Approximation Algorithm
We are now ready to prove Lemma 8, for convenicence we re-state the lemma here.

Lemma 8. There is an algorithm that takes as input a graph G with n vertices, a graph H and
an integer c, runs in time 2h ·nO(1) and either correctly concludes that there is no c-embedding
of G into a weighted subdivision of H, or produces a proper, pushing cALG-embedding of G
into a weighted subdivision of a subgraph H ′ of H, where cALG = 64 · 106 · c24(h+ 1)9.

Proof. The algorithm runs the COVER algorithm, to produce a collection F , such that
|F| ≤ 2h, every set in F has size at most h, and such that if G has a c-embedding fOPT of
into a weighted subdivision of H, then some F ∈ F 2r-covers all interesting clusters (of fOPT)
in G. For each F ∈ F the algorithm runs the STITCH algorithm, which takes polynomial
time. If STITCH outputs a cALG-embedding of G into a weighted subdivision of a subgraph
H ′ of H, the algorithm returns this embedding.

By Lemma 18, for the choice of F ∈ F that 2r-covers all interesting clusters, the STITCH
algorithm does output a cALG-embedding of G into a weighted subdivision of a subgraph H ′
of H. This concludes the proof. J

The discussion prior to the statement of Lemma 8 immediately implies that Lemma 8 is
sufficient to give an approximation algorithm for finding a low distortion (not necessarily
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pushing, proper or non-contracting) embedding G into a (unweighted) subdivision of H. The
only overhead of the algorithm is the guessing of the subgraph Hsub of H, this incurs an
additional factor of 2|V (H)|+|E(H)| ≤ 4h in the running time, yielding the following theorem.

I Theorem 19. There exists a 8hnO(1) time algorithm that takes as input an n-vertex graph
G, a graph H on h vertices, and an integer c, and either correctly concludes that there is
no c-embedding from G to a subdivision of H, or produces a cALG-embedding of G into a
subdivision of H, with cALG ≤ 64 · 106 · c24(h+ 1)9.

Finally, we remark that at a cost of a potentially higher running time in terms of h, one
may replace the (h+ 1)9 factor with c9. If c ≥ h+ 1 we have that cALG ≤ 64 · 106 · c33. On
the other hand, if c ≤ h + 1 we may run the algorithm of Theorem 20 in time f(H)nO(1)

instead and solve the problem optimally.

6 A FPT algorithm for embedding into arbitrary graphs

In this section we design our FPT algorithm for embedding into arbitrary graph. In particular
we show the following result in this section.

I Theorem 20. Given an integer c > 0 and graphs G and H, it is possible in time f(H, c) ·
nO(1) to either find a non-contracting c-embedding of G into some subdivision of H, or
correctly determine that no such embedding exists.

The proof of Theorem 20 will come at the end of the section. Using Lemma 6, for the rest
of this section we shall assume w.l.o.g. that fOPT is a proper, pushing, non-contracting cOPT-
embedding of G into (HOPT, wOPT), where HOPT is a subdivision of Hq, some quasi-subgraph
of H, and wOPT : E(Hq)→ R>0.

I Definition 21. For any e ∈ E(Hq), we say e is short if wq(e) ≤ 16(cOPT)4. Otherwise, e
is long.

Based on this definition of short and long edges, we define the following notions of clusters
in Hq.

I Definition 22. Let C the set of connected components of Hq \ {e ∈ E(H) : e is long}. We
say that C ∈ C is an interesting cluster of Hq if there exist at least 3 paths leaving C in Hq.
Let

C≥3 = {C ∈ C : Cis an interesting clusters of Hq}

and let

C<3 = C \ C≥3.

I Definition 23. For each connected component C of Hq \ C≥3, we say C is a path cluster
of Hq. Let P be the set of path clusters of Hq.

The following lemma describes the 3 categories these path clusters may fall into.

I Lemma 24. For all P ∈ P, one of the following cases holds:
Case 1. There exists k > 0 and a sequence

e1, C1, . . . , ek, Ck

such that
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1. e1, . . . , ek are long edges of Hq.
2. C1, . . . , Ck ∈ C<3.
3. P = e1 ∪ C1 ∪ . . . ∪ ek ∪ Ck.
4. There exists C ∈ C≥3 such that C ∩ e1 6= ∅.

Case 2. There exists k > 0 and a sequence

e1, C1, . . . , ek, Ck, ek+1

such that
1. e1, . . . , ek+1 are long edges of Hq.
2. C1, . . . , Ck ∈ C<3.
3. P = e1 ∪ C1 ∪ . . . ∪ ek ∪ Ck.
4. There exists C ∈ C≥3 such that C ∩ e1 6= ∅ and for all C ′ ∈ C≥3, C ′ ∩ ek+1 = ∅.

Case 3. There exists k > 0 and a sequence

e1, C1, . . . , ek, Ck, ek+1

such that
1. e1, . . . , ek+1 are long edges of Hq.
2. C1, . . . , Ck ∈ C<3.
3. P = e1 ∪ C1 ∪ . . . ∪ ek ∪ Ck.
4. There exists C,C ′ ∈ C≥3 such that C ∩ e1 6= ∅ and C ′ ∩ ek+1 6= ∅.

Proof. Let H ′ be the graph which results from contracting all short edges of Hq. In H ′,
each C ∈ C<3 is expressed as a vertex of degree 1 or 2, and each C ′ ∈ C≥3 as a vertex of
degree 3 or more. If all vertices of degree 3 are removed, the remaining components must be
paths. Since Hq is a connected graph, each path component was connected to some vertex
of degree 3 through one or both of the endpoints of the path. J

To find an embedding, it will be necessary to partition the vertices of G into those
which must be embedded near an interesting cluster, and those which do not. The following
definition defines which vertices these will be. The theorem and lemma following the definition
show that finding these vertices is a tractable problem.

I Definition 25. Let v ∈ V (G) and α ≥ 1. We say that v is α-interesting if the metric space
(ballG(v, α), dG) does not admit a cOPT-embedding into the line.

I Theorem 26 (Fellows et al. [14]). There exists an algorithm which given a weighted graph
Γ, with weights in {1, . . . ,W}, and some c ≥ 1, decides whether Γ admits a c-embedding into
the line in time O(n(cW )4(2c+ 1)2cW ).

I Lemma 27 (Importance is tractable). There exists an algorithm which given v ∈ V (G) and
α ≥ 0, decides whether v is α-interesting, in time O(n(cOPT2α)4(2cOPT + 1)4cOPTα).

Proof. Let Γ be the complete weighted graph with V (Γ) = ballG(v, α), and such that for all
{x, y} ∈

(
V (Γ)

2
)
, the length of {x, y} is set to dG(x, y). By the triangle inequality, it follows

that the maximum edge length in Γ is at most 2α. Thus, by Theorem 26 we can decide
whether Γ admits a cOPT-embedding into the line in time O(n(cOPT2α)4(2cOPT + 1)4cOPTα),
as required. J

Our algorithm will proceed by finding partial embeddings of G into the interesting and
path clusters. Later, these partial embeddings will be “stitched” together to form a complete
embedding. To aid in the stitching process, we define a notion of compatibility between
partial embeddings on quasi-subgraphs of H.
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I Definition 28. Let H1, H2 be quasi-subgraphs of H such that there exists {a, b} ∈
E(H1) ∩ E(H2) so that a is a leaf node in H1, and b is a leaf node in H2. Let f1 and f2
be pushing, non-contracting cOPT-embeddings of subgraphs G1, G2 of G into (Hq

1 , w1) and
(Hq

2 , w2). We say f1 and f2 are compatible on {a, b} if
1. For all v ∈ V (G1) ∩ V (G2), f1(v) ∈ SUBH1({a, b}) and f2(v) ∈ SUBH2({a, b})
2. For all u, v ∈ V (G1) ∩ V (G2), we have u, v are consecutive w.r.t. {a, b} if and only if u, v

are consecutive w.r.t. {a, b}.
3. There exists u′ ∈ V (G1) ∩ V (G2) such that f1(u′) = a.
4. There exists v′ ∈ V (G1) ∩ V (G2) such that f1(v′) = b.
If f1 and f2 are compatible on {a, b}, then we can combine f1, f2 in the following way:
1. For every u ∈ V (G1) ∩ V (G2), let f1(u) = f2(u).
2. For any u, v ∈ V (G1) ∩ V (G2) consecutive w.r.t. {a, b}, replace the shortest path in G1

from f1(u) to f1(v) and the shortest path in G2 from f2(u) to f2(v) with a single edge of
weight dG(u, v). All other edges have their weight from w1 or w2.

The a parameter ∆ will appear in several places within the algorithm. We set the value
of ∆ now.

I Definition 29. Let

∆ = diam(Hq) + 8 · (cOPT)4.

Our algorithm will make use of two sub-procedures, CLUSTER and PATH.

6.1 CLUSTER algorithm
The CLUSTER algorithm will find embeddings restricted to the interesting clusters of Hq.
Let S ⊆ V (G), C a subgraph of Hq.

I Definition 30. Let e1, . . . , e|E(C)| be some fixed ordering of E(C), and for each i ∈
{1, . . . , |E(C)|}, let ei = {hi,1, hi,2}.

I Definition 31. We say fC , (C ′, w′) is a solution of CLUSTER(S,C) if C ′ is a subdivision
of C, w′ : E(C)→ R>0, and fC : S → (C ′, w′) such that:
1. For all u, v ∈ S,

dG(u, v) ≤ d(C′,w′)(fC(u), fC(v)) ≤ cOPT · dG(u, v).

2. For all u, v ∈ S, if u and v are consecutive then

d(C′,w′)(fC(u), fC(v)) = dG(u, v).

I Definition 32. A configuration of S,C consists of the following:
1. A partition E1, . . . , E|E(C)| of S.
2. An ordering Oi = oi,1, . . . , oi,|Ei| of each Ei. Let

|Oi| =
|Ei|−1∑
j=1

dG(oi,j , oi,j+1).

3. Let

χ(oi,1) = hi,1,

χ(oi,|Ei|) = hi,|Ei|,



XX:24 Algorithms for low-distortion embeddings into arbitrary 1-dimensional spaces

and

Ω = ∪|E(C)|
i=1 {oi,1, oi,|Ei|}.

For each x, y ∈ Ω, the configuration has a simple path Px,y in C from χ(x) to χ(y).

The following algorithm will be used to generate solutions to CLUSTER(S,C):
Step 1. For each choice of configuration of S,C:

Step 1.1.Minimize
∑|E(C)|
i=1 αi + βi subject to the following constraints:

For all i ∈ {1, . . . , |E(C)|,

αi ≥ 0

and

βi ≥ 0.

For all z ∈ Ω, if z = oi,1 for some i ∈ {1 . . . , |E(C)|}, then let

ω(z) = αi,

and if z = oi,|Ei| for some i, then let

ω(z) = βi.

For all a, b ∈ V (H), for each path P from a to b, let

|P | =
∑

ei∈E(P )

(αi + βi + |Oi|).

For all x, y ∈ Ω,

`x,y = ω(x) + ω(y) + |Px,y| ≥ dG(x, y)

and for all other simple paths P from χ(x) to χ(y),

ω(x) + ω(y) + |P | ≥ `x,y.

Step 1.2. Define the subdivision C ′. For each edge ei ∈ E(C), if

αi 6= 0 and βi 6= 0

then subdivide ei |Ei| many times. Otherwise, if

αi + betai 6= 0

then subdivide ei |Ei| − 1 many times. Otherwise, subdivide ei |Ei| − 2 many times.
Step 1.3. Define an embedding fC . For all i ∈ {1, . . . , |E(C)|}, let ei = {a, b}, a < b.
If αi = 0 then let

fC(oi,1) = a,

otherwise let fC(oi,1) be the first vertex in the subdivision of {a, b}. If βi = 0 then let

fC(oi,|Ei|) = b,

otherwise let fC(oi,1) be the last vertex in the subdivision of {a, b}. For each j ∈
{2, . . . , |Ei| − 1}, let fC(oi,j) be the fist vertex on the path in the subdivision of ei
from fC(oi,j−1) and b.
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Step 1.4. Define the weight function w′. For all ei = {a, b} ∈ E(C), a < b, if αi 6= 0 let

w′({a, fC(oi,1)}) = αi,

and if βi 6= 0 let

w′({ak, fC(oi,|Ei|)}) = βi,

and for all j ∈ {1, . . . , |Ei| − 1}, let

w′({fC(oi,j), fC(oi,j+1)}) = dG(oi,j , oi,j+1).

I Lemma 33. The above algorithm finds O(|E(C)||S| · |S|! · (|V (C)| − 2)!) solutions to
CLUSTER(S,C).

Proof. The algorithm finds one solution for each configuration of S,C. There are no more
than

|E(C)||S|

possible partitions E1, . . . , E|E(C)|. Given E1, . . . , E|E(C)|, there are no more than

|S|!

possible orderings O1, . . . , O|E(C)|. For any x, y ∈ V (C), there are no more than

(|V (C)| − 2)!

simple paths between x and y. Therefore, there are no more than

|E(C)||S| · |S|! · (|V (C)| − 2)!

configurations of S,C. J

6.2 PATH algorithm
The PATH algorithm will find embeddings restricted to the path clusters of Hq.

Let P be a path cluster of Hq such that

P = e1, C1, e2, C2, . . . , ej , Cj

or

P = e1, C1, e2, C2, . . . , ej , Cj , ej+1.

Let X ⊂ V (G), S = s1, . . . , s4(cOPT)2+1, T = t1, . . . , t4(cOPT)2+1 or T = ∅, be sequences of
vertices such that V (S) ∪ V (T ) ⊆ V (G) \X and V (S) ∩ V (T ) = ∅. Let

Z = X ∪ V (S) ∪ V (T )

and

Z` = {v ∈ X ∪V (S)∪V (T ) : |ballG(v, (4(cOPT)2 + 1) · cOPT))| ≤ (4(cOPT)2 + 1) · (cOPT)2}.

Here we adapt the idea of feasible partial embeddings from [14] to our needs.
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I Definition 34. A partial embedding of A ⊆ Z` is a bijective function

f : A→ {0, . . . , 4(cOPT)2 + 1}.

Let
1. fe be the embedding of Af into (e′, w′) derived in the following way:

a. Let e = {a, b} ∈ E(Hq), a < b.
b. Let e′ be the subdivision of e with 4(cOPT)2 + 1 vertices. Let v1, v2, . . . , v4(cOPT)2+1 be

the sequence of vertices encountered when traversing e′ from a to b.
c. For all a ∈ Af , let fe(a) = vf(a).
d. For all i ∈ {1, . . . , 4(cOPT)2 + 1}, let w′({vi, vi+1}) = dG(f−1(i), f−1(i+ 1)).

2. ALf = f−1({0, . . . , 2(cOPT)2}).
3. ARL = f−1({2(cOPT)2 + 1, . . . , 4(cOPT)2 + 1}).
4. L(A) is the union of the vertex sets of all connected components C of Z` \A such that C

has a neighbor in ALf , and the union of the vertex sets of all connected components C ′ of
Z` \A such that ballG(C ′, cOPT) ∩ C 6= ∅.

5. R(A) is the union of the vertex sets of all connected components C of Z` \A such that
C has a neighbor in ARf , and the union of the vertex sets of all connected components C ′
of Z` \A such that ballG(C ′, cOPT) ∩ C 6= ∅.

I Definition 35. A partial embedding f of A ⊆ Z` is called feasible if
1. fe is a proper, pushing, non-contracting cOPT-embedding of (Af , dG) into (e′, w′).
2. L(f) ∩R(f) = ∅.
3. ballG(f−1(2(cOPT)2), cOPT) is in A.
4. For all i ∈ {0, . . . , 4(cOPT)2},

dG(f−1(i), f−1(i+ 1)) ≤ cOPT.

I Lemma 36. The number of feasible partial embeddings of Z` is n · (cOPT)O(cOPT).

Proof. For every feasible partial embedding starting with v0, there exists a sequence
v0, v1, . . . , v4(cOPT)2+1 such that for all i ∈ {0, . . . , v4(cOPT)2} we have

dG(vi, vi+1) ≤ cOPT,

and therefore for all i ∈ {1, . . . , v4(cOPT)2+1} we have

dG(v0, vi) ≤ (4(cOPT)2 + 1) · cOPT.

Since for all v ∈ Z`, we have that

|ballG(v, (4(cOPT)2 + 1) · cOPT))| ≤ (4(cOPT)2 + 1) · (cOPT)2,

and so there are at most (4(cOPT)2+1)·(cOPT)2 vertices which can be in any partial embedding
starting with v0. Therefore, the number of possible such sequences is(

(4(cOPT)2 + 1) · (cOPT)2

4(cOPT)2

)
≤ (cOPT)O(cOPT)

for each v0 ∈ Z`. J

I Definition 37. Let f and g be feasible partial embeddings of Z`, with domains Af and
Ag. We say g succeeds f if
1. Af \ {f−1(0)} = Ag \ {g−1(4(cOPT)2 + 1)} = Af ∩Ag.
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2. For every a ∈ Af ∩ ag, f(a) = g(a) + 1.
3. {g−1(4(cOPT)2 + 1)} ⊆ R(f).
4. {f−1(0)} ⊆ L(g)

I Definition 38. A feasible partial embedding of W ⊆ Z is a 3-tuple F = (f, r, R) such that
1. f is a feasible partial embedding of Z`
2. r ∈ {0, 1, . . . , j}.
3. If r = j then R = ∅.
4. If r < j and ej+1 ∈ P then R is a solution to

CLUSTER(ballZ(Af ,∆) ∩ (Af ∪R(f)), er+1 ∪ Cr+1 ∪ er+2)

such that R and f are compatible w.r.t. er+1.
5. If r < j and ej+1 /∈ P then R is a solution to

CLUSTER(ballZ(Af ,∆) ∩ (Af ∪R(f)), er+1 ∪ Cr+1)

such that R and f are compatible w.r.t. er+1.

I Lemma 39. There are at most n · (cOPT)O(cOPT) · 2|E(H)| · |E(H)|O(|E(H)|2) feasible partial
embeddings of Z.

Proof. By Lemma 36, we have that there are

n · (cOPT)O(cOPT)

many feasible partial embeddings of Z`. Since P ⊆ Hq, we have that k ≤ 2|E(H)|, and thus

r ≤ 2|E(H)|.

Each of C1, . . . , Ck are subgraphs of Hq, and Z is a subgraph of G. Therefore, by Lemma
33, R is one of at most

O(2|E(H)|2cOPT·|E(H)|2 · (2cOPT · |E(H)|2)! · (2|V (H)| − 2)!) = |E(H)|O(|E(H)|2).

solutions.
Therefore, there are at most

n · (cOPT)O(cOPT) · 2|E(H)| · |E(H)|O(|E(H)|2)

feasible partial embeddings of Z. J

I Definition 40. Let F1 = (f1, r1, R1), F2 = (f2, r2, R2) be two feasible partial embeddings
of Z. We say F2 succeeds F1 if either of the following conditions are met:
1. r1 = r2 and f2 succeeds f1.
2. r2 = r1 + 1, er2 ∈ P , and f2, R1 are compatible on er2 .

I Definition 41. Let F1, . . . , Ft be a sequence of feasible partial embeddings of Z such that
L(F1) = ∅, R(Ft) = ∅, and for all i ∈ {2, . . . , t}, we have that Fi = (fi, ri, Ri), and Fi
succeeds Fi−1. Let fP , (P ′, w′) be the embedding of Z derived from the sequence in the
following way:
1. Step 1. While the r values do not change, proceed through the sequence in order, while

building fP , P ′, w′ in the obvious way, so that fP is a pushing embedding.
2. Step 2. If a value i is reached so that ri > ri−1, use Ri to find the subdivision, embedding,

and weights for Ci. Advance to edge eri where Ri left off, and return to Step 1.
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I Lemma 42. Let P be a path cluster of Hq, let

IP = {v ∈ V (Hq) : v connects P to some interesting cluster}

and let

ZP = {v ∈ V (G) : fOPT(v) ∈ SUB(HOPT,wOPT)(P ) and d(HOPT,wOPT)(v, IP ) ≥ (4(cOPT)2+1)·cOPT}

For any path cluster of Hq, there is a sequence F1, f2, . . . , Fk of feasible partial embeddings
of ZP such that L(F1) = ∅, R(Fk) = ∅, and for all i ∈ {2, . . . , k}, we have that Fi succeeds
Fi−1.

Proof. Since P is a path cluster of Hq, we have that 1 ≤ |IP | ≤ 2. Choose s ∈ IP , and
orient each long edge of P away from s. If both ends of P connect to P , forming a cycle,
choose a clockwise or counter-clockwise direction in which to orient the long edges.

Let

Z` = {v ∈ Z : |ballG(v, (4(cOPT)2 + 1) · cOPT))| ≤ (4(cOPT)2 + 1) · (cOPT)2}.

For each long edge e = {e1, e2} of P , let Ze be the sequence of vertices such that

V (Ze) = {v ∈ Z : fOPT(v) ∈ eOPT and d(HOPT,wOPT)(fOPT(v), {e1, e2}) ≥ (4(cOPT)2+1)·cOPT}

and Ze has the order imposed on V (ZE) by fOPT, traversing e along the orientation. For
any z ∈ V (Ze), we have that

|ballG(v, (4(cOPT)2 + 1) · cOPT))| ≤ (4(cOPT)2 + 1) · (cOPT)2,

since fOPT is a cOPT-embedding, and so fOPT must embed ballG(v, (4(cOPT)2 + 1) · cOPT))
within e. Therefore,

V (Ze) ⊆ Z`.

Let Zi be the contiguous subsequence of Ze starting from the i-th vertex of Ze such that
|Zi| = 4(cOPT)2 + 1. Let gi be a function such that for any zj ∈ V (Zi),

gi(zj) = j.

Thus gi is a partial embedding of V (Zi). Since fOPT is a proper, pushing, non-contracting
cOPT-embedding, gi is a feasible partial embedding of V (Zi), and for all i ∈ {2, . . . , |V (Zi)| −
4(cOPT)2 + 1}, we have that gi succeeds gi−1.

Let k be the number of long edges contained in P , so that

P = e1, C1, . . . , ek, Ck

or

P = e1, C1, . . . , ek, Ck

and e1 is connected to some interesting cluster of Hq. For j ∈ {1, . . . , k}, let gji be the i-th
feasible partial embedding created as described above for the j-th long edge of P .

If gji is that last feasible partial embedding for ej and j 6= k, we can construct Rji by
copying the embedding of fOPT restricted to SUB(HOPT,wOPT)(Cj) and the path of length
8(cOPT)2 + 1 on SUB(HOPT,wOPT)(ej+1) starting from SUB(HOPT,wOPT)(Cj). If gji is that last
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feasible partial embedding for ej , then take Rji to be the embedding fOPT restricted to the
subpath of SUB(HOPT,wOPT)(ej) from Agj

i
to Cj .

For each gji , if j 6= k then let

Rji = (gji , j, R
j
i )

and if j = k then let

Rji = (gji , j, ∅)

By construction, each Rji is a feasible partial embedding, and the sequence ordered by j, i
forms a sequence of succeeding feasible partial embeddings with the desired attributes. J

I Definition 43. Let D(Z`) be the directed graph with feasible partial embeddings of Z as
vertices, and a directed edge between vertices which succeed one another. We call this graph
the succession graph of Z.

We present here the PATH algorithm.
Step 1. Compute Z`.
Step 2. Construct D(Z`).
Step 3. Let FS = (fS , 0, ∅) be the feasible partial embedding of Z implied by S. If
FS /∈ V (D(Z`)) then halt.

Step 4. If P = e1, C1, e2, C2, . . . , ej , Cj :
Step 4.1. Perform a DFS of D(Z`), starting from FS . If a node with out-degree 0 is
discovered, output the embedding described in Definition 41.

Step 5. If P = e1, C1, e2, C2, . . . , ej , Cj , ej+1:
Step 5.1. If T = ∅:

Step 5.1.1. Perform a DFS of D(Z`), starting from FS . If a node with out-degree 0
is discovered, output the embedding described in Definition 41.

Step 5.2. If T 6= ∅:
Step 5.2.1. Let FT = (fT , 0, ∅) be the feasible partial embedding of Z implied by T .
If FT /∈ V (D(Z`)) then halt.

Step 5.2.2. Perform a DFS of D(Z`), starting from FS . If FT is discovered, output
the embedding described in Definition 41.

I Lemma 44. The PATH algorithm runs in time n2 · f(H, cOPT).

Proof. For Step 1, for each vertex v ∈ Z, to decide if v ∈ Z`, explore the neighborhood
around v until it is revealed that

|ballG(v, 4(cOPT)2
1) · cOPT ≤ (4(cOPT)2 + 1) · (cOPT)2

or that

|ballG(v, 4(cOPT)2
1) · cOPT > (4(cOPT)2 + 1) · (cOPT)2.

Therefore, Step 1 can be performed in time O(n · (cOPT)2).
By Lemma 39, |V (D(Z`))| = (cOPT)O(cOPT), and so |E(D(Z`))| = (cOPT)O(cOPT). For

F1 = (f1, r1, R1), F2 = (f2, r2, R2) ∈ V (D(Zt)), there is an edge from F1 to F2 if F2 succeeds
F1. We can check if f2 succeeds f1 in time O(n · 4(cOPT)2), and check if R1 and g2 are
compatible on er2 in time O(n · 4(cOPT)2).

For Step 3, we need time (cOPT)O(cOPT) to find FS in V (D(Z`)).
For Steps 4.1, 5.1, and 5.2, we use DFS to find an a path in D(Z`), which take time

(cOPT)O(cOPT).
Therefore, the PATH algorithm tuns in time n2 · f(H, cOPT). J
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6.3 FPT algorithm
Given as input G, H, and an integer c > 0, the following algorithm either produces a non-
contracting c-embedding of G into (HALG, wALG), HALG a subdivision of some quasi-subgraph
of H, or correctly decides that no such embedding exists.

We provide first an informal summary of the algorithm:
Step 1. Choose a quasi-subgraph H ′ of H, and a set of short edges of H ′.

Step 1.1. Find and order the interesting clusters of H ′.
Step 1.2. Find the ∆-interesting vertices of G, and choose a subset I. Choose an
assignment of the vertices in I into the interesting clusters.:
Step 1.2.1. For each interesting cluster, use the CLUSTER algorithm to choose an
arrangement of the interesting vertices in the cluster, and along the start of the
long edges leaving the cluster.
Step 1.2.1.1. Find the path clusters of H ′ and T , which is the set of connected
components of G \ I.

Step 1.2.1.2. For each connected component in T , choose a path cluster f H ′ to
try embedding it into.
Step 1.2.1.2.1. and Step 1.2.1.2.2. Using the results of the cluster algorithm
above, we know what the embedding into the path cluster should look like
near where the path cluster meets an interesting cluster. This determines our
inputs to the PATH algorithm in the next step.

Step 1.2.1.2.3. For each path cluster Pj , use PATH to find an embedding.
Step 1.2.1.2.3.1. By construction the embeddings for the interesting and
path clusters are compatible on the edges they meet on, so they can be
combined into fALG and (HALG, wALG).

Step 1.2.1.2.3.2. Test fALG and (HALG, wALG) to see if fALG is a non-
contracting c-embedding of G into (HALG, wALG). If it is, we halt and output
fALG, (HALG, wALG). Otherwise, we continue with different choices.

Step 2. If no embedding is found after all choices are exhausted, output NO.

Here we provide the formal algorithm:

Step 1. For each quasi-subgraph H ′ of H and S ⊆ E(H ′):

Step 1.1. Supposing that S is the set of short edges of H ′, let C≥3
H′ be the set of

interesting clusters of H ′. Let k = |C≥3
H′ |. Fix an ordering C1, . . . , Ck of C≥3

H′ .
Step 1.2. Let I∆ be the set of ∆-interesting vertices of G. For each I ⊆ I∆ and
partition UC1 , . . . , UCk of I:
Step 1.2.1. For each i ∈ {1, . . . , k}, let Di = Ci ∪ {e ∈ E(H ′) : e is incident to Ci},
and choose a solution fi, (D′i, w′i) of CLUSTER(I,Di) such that for every long edge
e incident to Ci we have that 8c2 + 2 ≤ |{v ∈ V (G) : fi(v) ∈ SUBD′

i
(e)}|. Perform

the following:
Step 1.2.1.1. Let PH′ be the set of path clusters of H ′. Let p = |PH′ |. Fix an
ordering P1, . . . , Pp of P. Let T be the set of connected components of G \ I.

Step 1.2.1.2. For each partition Q1, . . . , Qp of T , and for each i ∈ {1, . . . , p}, let
Wj = ∪T∈QjV (T ):
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Step 1.2.1.2.1. For each j ∈ {1, . . . , p}, let xj ∈ {1, . . . , k} such that Pj∩Dxj 6=
∅. Let {a, b} ∈ E(H ′) be a long edge connecting Pj and Dxj with a ∈ Cxj .
Let Sj = s1, . . . , s4c2+1 be the sequence of the last 4c2 + 1 consecutive vertices
fxj embeds into SUBD′

xj
({a, b}), going from a to b.

Step 1.2.1.2.2. If there exists a second long edge {a′, b′} ∈ E(H ′) connecting
Pj to Dx′

j
from some x′j ∈ {1, . . . , k} with a′ ∈ Cx′

j
then let Tj = t1, . . . , t4c2+1

be the sequence of the last 4c2 + 1 consecutive vertices fxj embeds into {a, b},
going from a to b. Otherwise, let Tj = ∅.

Step 1.2.1.2.3. For each j ∈ {1, . . . , p}, let gj , (P ′j , w′j) be the output of
PATH(Wj , Pj , Sj , Tj):

Step 1.2.1.2.3.1. Construct fALG, (HALG, wALG) from the outputs of the
CLUSTER and PATH algorithms as follows: For all i ∈ {1, . . . , k} and
j ∈ {1, . . . , p}, if Ci and Pj are connected by an edge e, then by construction,
fi and gj are compatible on edge e. Combine fi, gi. Call the weighed graph
which results from these combinations (HALG, wALG). Let fALG be the
embedding of G into (HALG, wALG).

Step 1.2.1.2.3.2. If fALG is a non-contracting, c-embedding of G into
(HALG, wALG), then output fALG, (HALG, wALG) and halt.

Step 2. Output NO.

I Lemma 45. If v ∈ V (G) is ∆-interesting, then there exists z ∈ V (Hq) such that

d(HOPT,wOPT)(fOPT(v), z) ≤ 2cOPT ·∆.

Proof. Let v ∈ V (G) be a ∆-interesting vertex. Suppose that for all p ∈ V (Hq) we have
that

d(HOPT,wOPT)(fOPT(v), p) > 2cOPT ·∆,

and we shall find a contradiction.
Since fOPT is a non-contracting cOPT-embedding, for all x ∈ ballG(v,∆), we have

d(HOPT,wOPT)(fOPT(v), fOPT(x)) ≤ cOPT ·∆,

and for all x, y ∈ ballG(v,∆),

d(HOPT,wOPT)(fOPT(x), fOPT(y)) ≤ d(HOPT,wOPT)(fOPT(v), fOPT(x)) + d(HOPT,wOPT)(fOPT(v), fOPT(y))
≤ 2cOPT ·∆.

Since for all p ∈ V (Hq) we have that d(HOPT,wOPT)(fOPT(v), p) > 2cOPT ·∆, we have that fOPT
embeds all x ∈ ballG(v,∆) into {a, b}OPT, for some {a, b} ∈ E(Hq). From the limits stated
above, we have that

min
x∈ballG(v,∆)

{d(HOPT,wOPT)(a, fOPT(x))} > cOPT ·∆

and

min
x∈ballG(v,∆)

{d(HOPT,wOPT)(b, fOPT(x))} > cOPT ·∆.
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Therefore, for any x, y ∈ ballG(v,∆), the shortest path from fOPT(x) to fOPT(y) in (HOPT, wOPT)
is the path from fOPT(x) to fOPT(y) contained in {a, b}OPT. Let

z = argminx∈ballG(v,∆){d(HOPT,wOPT)(a, fOPT(x))},

and let g be a function so that for any x ∈ ballG(v,∆),

g(x) = d(HOPT,wOPT)(fOPT(z), fOPT(x)).

Then for all s, t ∈ V (G), we have that

|g(s)− g(t)| = |d(HOPT,wOPT)(fOPT(s), fOPT(z))− d(HOPT,wOPT)(fOPT(t), fOPT(z))|
= d(HOPT,wOPT)(fOPT(s), fOPT(t))

and therefore

dG(s, t) ≤ |g(s)− g(t)| ≤ cOPT · dG(s, t).

Therefore, g is a non-contracting, cOPT-embedding of ballG(v,∆) into the line, which is a
contradiction. Thus the supposition, that for all p ∈ V (Hq)

d(HOPT,wOPT)(fOPT(v), p) > 2cOPT ·∆,

is false. J

I Lemma 46. Let I∆ be the set of ∆-interesting vertices of G. Then

|I∆| ≤ 8cOPT ·∆ · |E(H)|.

Proof. By Lemma 45, each ∆-interesting vertex is within distance 2cOPT ·∆ of a vertex of
V (Hq). Since fOPT is non-contracting, for each e ∈ E(Hq), fOPT can map at most

2cOPT ·∆ + 2cOPT ·∆

∆-interesting vertices to e. Therefore, there are at most

4cOPT ·∆ · |E(Hq)|

∆-interesting vertices in G. Thus,

|I∆| ≤ 8cOPT ·∆ · |E(H)|.

J

I Lemma 47. Let C be any interesting cluster of Hq. For any v ∈ V (G) such that

d(HOPT,wOPT)(fOPT(v), fOPT(C)) ≤ 8cOPT,

we have that v is diam(C)-interesting.

Proof. Since C is an interesting cluster of Hq, there exist long edges e1, e2, e3 ∈ E(Hq)
adjacent to C. Since fOPT is proper, there exists vertices a1, a2, a3, b1, b2, b3 ∈ V (G) such
that for all i ∈ {1, 2, 3},

fOPT(ai) ∈ eiOPT,
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fOPT(bi) ∈ eiOPT,

4(cOPT)3 + 2cOPT ≤ d(HOPT,wOPT)(fOPT(ai), V (C)) ≤ 4(cOPT)3 + 4cOPT,

and

0 ≤ d(Hq,wq)(fOPT(bi), V (C)) ≤ 2cOPT.

Since fOPT is a cOPT-embedding, for each i ∈ {1, 2, 3} we have that

4(cOPT)3 ≥ dG(ai, bi) ≥ 4(cOPT)2.

Let

VC = {v ∈ V (G) : d(Hq,wq)(fOPT(v), (C,wq)) ≤ 2(cOPT)2}.

Suppose that b1 and b2 are in distinct connected components C1, C2 of G[VC ]. Let P1,2
be the shortest path in ball(HOPT,wOPT)(C, (cOPT)2) from fOPT(b1) to fOPT(b2). Let p1 be the
vertex in C1 such that fOPT(p1) ∈ P1,2 and d(HOPT,wOPT)(fOPT(b1), fOPT(p1)) is maximal. Let
p ∈ V (G) \ V (C1) such that fOPT(p) is in the subpath of P1,2 from fOPT(p1) to fOPT(b2) and
d(HOPT,wOPT)(fOPT(p1), fOPT(p)) is minimal. Since fOPT is proper we have

d(HOPT,wOPT)(fOPT(p1), fOPT(p)) ≤ 2cOPT,

and since fOPT is non-contracting we have

dG(p1, p) ≤ 2cOPT.

Let S ⊆ V (G) be the set of vertices in the shortest path from p1 to p in G. For all s ∈ S,

fOPT(s) ∈ ball(HOPT,wOPT)(fOPT(p1), 2cOPT · cOPT),

and since fOPT(p1) ∈ P1,2, we have

fOPT(s) ∈ ball(HOPT,wOPT)(C, 2(cOPT)2).

Therefore, p1 and p are in the same connected component of G[VC ], and thus p and b1 are
in the same connected component of G[VC ]. Therefore p ∈ C1 and p ∈ V (G) \ V (C1), a
contradiction. Therefore, b1 and b2 are in the same connected component of G[VC ], and by a
similar argument, b2 and b3 are in the same connected component of G[VC ]. Thus, b1, b2, b3
are all in the same connected component of G[VC ].

For all i ∈ {1, 2, 3}, let Pi be the set containing the vertices in the shortest path in G
from ai to bi, and let P cOPT

i be the set containing the first cOPT vertices in the shortest path
in G from ai to bi. Suppose there exists i, j ∈ {1, 2, 3}, i 6= j, such that

P cOPT
i ∩ P cOPT

j 6= ∅.

Then there exists y ∈ P cOPT
i ∩ P cOPT

j , and

dG(y, ai) ≤ cOPT

and

dG(y, aj) ≤ cOPT.
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Therefore, since fOPT is a cOPT-embedding, we have that

d(HOPT,wOPT)(fOPT(y), fOPT(ai)) ≤ c2OPT

and

d(HOPT,wOPT)(fOPT(y), fOPT(aj)) ≤ c2OPT.

Since fOPT(ai), fOPT(aj) are not in the same edge of (HOPT, wOPT), and each are of distance
greater than (cOPT)2 from either of the endpoints of the edges containing fOPT(ai), fOPT(aj),
this is a contradiction. Therefore, for all i, j ∈ {1, 2, 3}, i 6= j, we have that

P cOPT
i ∩ P cOPT

j = ∅.

Furthermore, since for all i ∈ {1, 2, 3} we have that

4(cOPT)3 + 2cOPT ≤ d(HOPT,wOPT)(fOPT(ai), (C,q )) ≤ 4(cOPT)3 + 4cOPT,

for all p ∈ P cOPT
i , we have that

d(HOPT,wOPT)(fOPT(p), V (C)) ≥ 4(cOPT)3 + 2cOPT − (cOPT)2

≥ 3(cOPT)3 + 2cOPT,

and therefore P cOPT
i ∩ VC = ∅.

Let C1,2,3 be the connected component of G[VC ∪ P1 ∪ P2 ∪ P3] containing b1, b2, b3. For
all i ∈ {1, 2, 3}, C1,2,3 contains a path connecting ai and bi, with at least cOPT vertices not in
VC . Therefore, C1,2,3 consists of a central component with at least 3 paths of length ≥ cOPT
leaving the central component. Such a structure cannot be embedding into the line with
distortion cOPT.

Let v ∈ ball(HOPT,wOPT)(V (C), diam(C) + 2(cOPT)2). Then for all z ∈ V (C1,2,3), we have

dG(v, z) ≤ d(Hq,wq)(fOPT(v), fOPT(z))
≤ max
i∈{1,2,3}

d(Hq,wq)(fOPT(v), fOPT(ai))

≤ diam(C) + 8(cOPT)3.

Therefore, for all v ∈ ball(HOPT,wOPT)(V (C), diam(C) + 2(cOPT)2), we have that

ballG(v, diam(C) + 8(cOPT)3) ⊆ ballG(v,∆)

does not embed into the line. Therefore, v is ∆-interesting. J

I Lemma 48. Let

IOPT = {v ∈ V (G) : ∃C ∈ C≥3 such that v ∈ ball(HOPT,wOPT)(C, 2(cOPT)2)},

and let CG be any connected component of G \ IOPT. Then there exists a path cluster P of
(HOPT, wOPT) such that fOPT(V (CG)) ⊆ (P,wOPT).

Proof. Suppose there exists C, a connected component of G \ IOPT such that for some
x, y ∈ V (C), we have that fOPT(x) and fOPT(y) are in different path clusters of Hq. Therefore,
any path in (HOPT, wOPT) between fOPT(x) and fOPT(y) must intersect the subdivision of an
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interesting cluster of Hq. So for any path in G between x and y, the path must contain a
vertex z such that, for C ′ the subdivision of some interesting cluster of Hq,

d(HOPT,wOPT)(fOPT(z), V (C ′)) ≤ cOPT,

and thus x and y cannot be in the same connected component of G \ IOPT. Therefore, for
all connected components C of G \ IOPT, there exists a path cluster P of Hq such that
fOPT(C) ⊆ P . J

I Lemma 49. Let

IOPT = {v ∈ V (G) : ∃C ∈ C≥3 such that v ∈ ball(HOPT,wOPT)(C, 2(cOPT)2)},

and let T be the set of connected components of G \ IOPT. Then |T | ≤ (4cOPT · |E(H)|)2.

Proof. Let CG be a connected component of G \ IOPT. Since G is a connected graph, we
have that

ballG(V (CG), 1) ∩ IOPT 6= ∅.

Let z ∈ ballG(V (CG), 1) ∩ IOPT. Since fOPT is a cOPT-embedding, we have that

z ∈ IOPT \ {v ∈ V (G) : ∃C ∈ C≥3 such that v ∈ ball(HOPT,wOPT)(C, 2(cOPT)2 − cOPT)}.

For each edge in E(Hq), there are at most 2cOPT vertices in v ∈ V (G) such that

v ∈ IOPT \ {v ∈ V (G) : ∃C ∈ C≥3 such that v ∈ ball(HOPT,wOPT)(V (C), 2(cOPT)2 − cOPT)},

and so there are at most 2cOPT · |E(Hq)| ≤ 4cOPT · |E(H)| vertices to which each connected
component of G \ IOPT is connected to one or more. From Lemma 7, for all v ∈ V (G), we
have that

|ballG(v, 1)| ≤ 4cOPT · |E(H)|.

Therefore, there are at most (4cOPT · |E(H)|)2 connected components of G \ IOPT. J

I Lemma 50. The FPT Algorithm runs in time nO(1) · f(H, cOPT).

Proof. For Step 1, when creating a quasi-subgraph, the only rule which increases the number
of edges is rule 3. Since The quasi-subgraph must be connected, rule 3 can be applied at
most once for each edge in E(H). Therefore,

|E(H ′)| ≤ 2|E(H)|

and

|V (H ′)| ≤ 2|V (H)|.

We can find an upper bound on the number of quasi-subgraphs of H by first selecting a
subset of edges of H to apply rule 3 to, in which we have 2|E(H)| choices, and then selecting
subsets of vertices and edges for deletion, of which there are at most 22|V (H)| and 22|E(H)|

sets to choose from. There are therefore at most

2|E(H)| · 22|V (H)| · 22|E(H)| = 2|V (H)| · 23|E(H)|
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choices for quasi-subgraph of H, and therefore

23|E(H)| · 22|E(H)| = 25|E(H)|

possible choices for Step 1.
For Step 1.1, we can find the interesting clusters of H ′ in time f(H).
For Step 1.2, Lemma 46 tells us that

|I∆| ≤ 8cOPT ·∆ · |E(H)|.

Therefore, there are at most

28cOPT·∆·|E(H)|

subsets of I∆. Each interesting cluster of H ′ must contain a vertex of H ′, and so there are
at most

2|V (H)||I| ≤ 2|V (H)|8cOPT·∆·|E(H)|

possible partitions of I. Therefore, there are at most

28cOPT·∆·|E(H)| · 2|V (H)|8cOPT·∆·|E(H)|

choices for Step 1.2.
For Step 1.2.1, we have that

|I| ≤ |I∆| ≤ 8cOPT ·∆ · |E(H)|,

and each Di is a subgraph of H ′, and thus by Lemma 33, each instance of CLUSTER(I,Di)
has at most

O(2|E(H)||I| · |I|! · (2|V (H)| − 2)!) = |E(H)|O(|E(H)|

solutions.
For Step 1.2.1.1, we can find the connected components of G \ I in time O(n).
For Step 1.2.1.2, by Lemma 49, we have that

|T | ≤ (4cOPT · |E(H)|)2.

Each path cluster contains at least one long edge of H ′, so there are at most 2|E(H)| path
clusters. Therefore, there are at most

(2|E(H)|)|T | = (2|E(H)|)(4cOPT·|E(H)|)2

possible partitionings of T .
Steps 1.2.1.2.1 and 1.2.1.2.2 can be done in time f(H, c).
For Step 1.2.1.2.3, by Lemma 44, the PATH algorithm runs in time n2 · f(H, cOPT).
Step 1.2.1.2.3.1 can be done in time O(n), by checking where each vertex in G is embedded.
Step 1.2.1.2.3.2 can be done by computing all-pairs shortest path on both G and

(HALG, wALG), then for each u, v ∈ V (G), compare dG(u, v) and d(HALG,wALG)(fALG(u), fALG(v)).
Since each edge of Hq is subdivided no more than cOPT ·n times, |V (HALG)| ≤ 2|V (H)|cOPT ·n,
and so this check can be performed in time O(f(H, cOPT) · n3).

Therefore, the algorithm runs in time nO(1) · f(H, cOPT). J
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I Lemma 51. If H contains an interesting cluster and c ≥ cOPT, then the FPT Algorithm out-
puts fALG, (HALG, wALG), where fALG is a non-contracting c-embedding of G into (HALG, wALG).

Proof. Since the algorithm iterates over all possible choices of quasi-subgraphs and short
edges, we may assume that for some iteration, H ′ = Hq, and the correct short edges are
chosen. By Lemma 27, we can find all ∆-interesting vertices. By Lemma 47 and Definition
29, we have that all vertices which fOPT embeds into a radius of 8 · (cOPT)4 of any interesting
cluster is ∆-interesting. Therefore, since the algorithm tries all assignments of ∆-interesting
vertices to interesting clusters, and all possible orders in which the vertices might be embedded
along the edges of and incident to the interesting clusters, we may assume that the algorithm
will reach a state where for each interesting cluster C, fOPT and the algorithm match for
each edge e ∈ E(C) on the vertices embedded into e, the order of the vertices on e, and the
order of vertices embedded into long edges leaving C, up to distance at least 8 · (cOPT)2 + 2.

For each path cluster, for each long edge in the path cluster connected to an interesting
cluster, the PATH algorithm is given as input a sequence of 4(cOPT)2 + 1) vertices of distance
at least 4(cOPT)2 + 1) from the interesting cluster, and in the order they are embedded, when
traversing the edge away from the interesting cluster. By Lemma 42, for each path cluster
P , there exists a solution to the PATH algorithm such that if P is connected by long edge
e = {a, b} to interesting cluster C, and a ∈ V (C), then the solution is compatible with fOPT
restricted ball(HOPT,wOPT)(V (C), 8(cOPT)2).

Therefore, we may assume that the algorithm computes fALG, (HALG, wALG) such that
1. HALG is a subdivision of Hq.
2. For each interesting cluster CI of Hq, for each e ∈ E(CI),

fOPT(V (G)) ∩ eOPT = fALG(V (G)) ∩ SUB(HALG,wALG)(e)

and the order from imposed on fOPT(V (G)) ∩ eOPT by fOPT is the same as the order
imposed on fALG(V (G)) ∩ SUB(HALG,wALG)(e) by fALG.

3. For each path cluster CP in Hq, we have that

fOPT(V (G)) ∩ SUB(HOPT,wOPT)(CP ) = fALG(V (G)) ∩ SUB(HALG,wALG)(CP )

4. For any path cluster CP inHq, for any {a, b} ∈ E(G) such that fOPT(a) ∈ SUB(HOPT,wOPT)(CP )
and fOPT(b) ∈ SUB(HOPT,wOPT)(CP ), we have that

1 ≤ d(HALG,wALG)(fALG(a), fALG(b)) ≤ cOPT.

5. For any path cluster CP inHq, for any u, v ∈ V (G) such that fOPT(u) ∈ SUB(HOPT,wOPT)(CP )
and fOPT(v) ∈ SUB(HOPT,wOPT)(CP ), we have that

d(HALG,wALG)(fALG(u), fALG(v)) ≥ d(HOPT,wOPT)(fOPT(u), fOPT(v)).

Let u, v ∈ V (G), and let Pu,v be the shortest path in G from u to v.
If there exists an interesting cluster CI in Hq such that fOPT(Pu,v) ∈ SUB(HOPT,wOPT)(CI),

then the CLUSTER algorithm has ensured that

dG(u, v) ≤ d(HALG,wALG)(fALG(u), fALG(v)) ≤ cOPT · dG(u, v).

If there exists a path cluster CP in Hq such that fOPT(Pu,v) ∈ SUB(HOPT,wOPT)(CP ), then
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by the observations above, we have that

dG(u, v) ≤ d(HOPT,wOPT)(fOPT(u), fOPT(v))
≤ d(HALG,wALG)(fALG(u), fALG(v))

≤
∑

e∈Pu,v

cOPT

≤ cOPT · dG(u, v).

If u and v are not in the same interesting or path cluster, then there is some minimum
sequence C1, C2, . . . , Ck such that fOPT(Pu,v) ∈ SUB(HOPT,wOPT)(C1∪C2∪ . . .∪Ck). Since the
embeddings on these clusters are compatible, for each i ∈ {1, . . . , k − 1}, there is a sequence
of 4(cOPT)2 + 1 consecutive vertices embedded in the edge connecting Ci and Ci+1. For each
i ∈ {1, . . . , k − 1}, there exists vi ∈ V (Pu,v) such that vi intersects the sequence between Ci
and Ci+1. Therefore,

d(HALG,wALG)(fALG(u), fALG(v)) = d(HALG,wALG)(fALG(u), fALG(v1)) + . . .+ d(HALG,wALG)(fALG(vk−1), fALG(v))
≤ cOPT · dG(u, v1) + . . .+ cOPT · dG(vk−1, v)
= cOPT · dG(u, v).

Since the CLUSTER and PATH algorithms do not allow contraction of distances, we also
have that

d(HALG,wALG)(fALG(u), fALG(v)) = d(HALG,wALG)(fALG(u), fALG(v1)) + . . .+ d(HALG,wALG)(fALG(vk−1), fALG(v))
≥ dG(u, v1) + . . .+ dG(vk−1, v)
= dG(u, v).

Therefore, fALG is a non-contracting, cOPT-embedding of G into (HALG, wALG), where
HALG is some subdivision of Hq, and Hq is a quasi-subgraph of H. J

We are now ready to prove Theorem 20.

Proof of Theorem 20. To ensure the existence of interesting vertices in G, and thus inter-
esting clusters in H, we make the following modifications to G and H.

Let k = 8c · |E(H)|, and Kk the complete graph on k vertices. Note that there cannot be a
non-contracting c-embedding of Kk into H, since for at least one edge of any quasi-subgraph
Hq of H and |E(Hq)| ≤ 2|E(H)|, by the pigeonhole principle, for any embedding, at least
4c vertices of G would be embedded into the same subdivsion of an edge of Hq, and so two
vertices adjacent in Kk would be embedded with distance greater than c.

We will now describe how to use Kk to find a non-contracting c embedding of G into H,
if such an embedding exists.

Create a new graph G′ in the following way: Connect a single copy of Kk to G by creating
3 paths of length 16c4 + 1 from a single vertex of Kk to 3 arbitrary vertices v1, v2, v3 in G.
Let Hk be the set of graphs creating in the following way: For all A ⊂ V (H) ∪ E(H) with
|A| = 3, connect single copy of Kk to H by connecting Kk to each a ∈ A through a single
vertex of Kk. If a ∈ V (H) then this connection is by an edge from Kk to a, and if a ∈ E(H)
then the connection is by subdividing a and connecting Kk to the new vertex.

If there exists a non-contracting c-embedding of G into H, then there must exist H ′ ∈ Hk
such that there is a non-contracting c-embedding of G′ into H ′. This is easy to see by taking
the embedding of G into H and extending it. Construct H ′′ by connecting a vertex of Kk
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to the subdivision of H (call this subdivision Hs) used for the embedding with 3 paths of
length 16c4 + 1 to the vertices v1, v2, v3 are embedded to. Using the embedding of G into
H, it is clear that there exists H ′ ∈ Hk such that a subdivision of H ′ matches H ′′. By
how H ′′ was constructed, the additional vertices in V (G′) \ V (G) are all embedded into
vertices in V (H ′′) \ V (Hs). By modifying our algorithm so that only embeddings of this
type are considered, if a non-contracting c-embedding of G into H exists, the corresponding
non-contracting c-embedding of G′ into H ′ can be found, and then the corresponding
non-contracting c-embedding of G into H can be extracted.

The rest of the theorem follows immediately from Lemma 51 and Lemma 50. J
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