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Two of the most widely used approaches to obtain polynomial time approximation schemes

(PTASs) on planar graphs are the Lipton-Tarjan separator based approach and Baker’s approach.
In 2005 Demaine and Hajiaghayi strengthened both approaches using bidimensionality and ob-

tained efficient polynomial time approximation schemes (EPTASs) for several problems, includ-

ing Connected Dominating Set and Feedback Vertex Set. In this work, we unify the two
strengthened approaches to combine the best of both worlds. We develop a framework allowing to

design EPTAS on classes of graphs with the subquadratic grid minor (SQGM) property. Roughly
speaking, a class of graphs has the SQGM property if, for every graph G from the class, the fact

that G contains no t× t grid as a minor guarantees that the treewidth of G is subquadratic in t.

For example, the class of planar graphs, and more generally, classes of graphs excluding some fixed
graph as a minor, have the SQGM property. At the heart of our framework is a decomposition

lemma which states that for “most” bidimensional problems on a graph class G with the SQGM

property, there is a polynomial time algorithm which given a graph G ∈ G as input and an ε > 0,
outputs a vertex set X of size ε · OPT such that the treewidth of G − X is f(ε). Here, OPT is

the objective function value of the problem in question and f is a function depending only on

ε. This allows us to obtain EPTASs on (apex)-minor-free graphs for all problems covered by the
previous framework, as well as for a wide range of packing problems, partial covering problems

and problems that are neither closed under taking minors, nor contractions. To the best of our

knowledge for many of these problems including Cycle Packing, F-Packing, F-Deletion, Max
Leaf Spanning Tree, or Partial r-Dominating Set no EPTASs even on planar graphs were

previously known.
We also prove novel excluded grid theorems in unit disk and map graphs without large cliques.

Using these theorems, we show that these classes of graphs have the SQGM property. Based on

the developed framework, we design EPTASs and subexponential time parameterized algorithms
for various classes of problems on unit disk and map graphs.
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1. INTRODUCTION

While many interesting graph problems remain NP-complete even when restricted
to planar graphs, the restriction of a problem to planar graphs is usually consid-
erably more tractable algorithmically than the problem on general graphs. Over
the last four decades, it has been proved that many graph problems on planar
graphs admit subexponential time algorithms [Dorn et al. 2008; Fomin and Thilikos
2006; Lipton and Tarjan 1980], subexponential time parameterized algorithms [Al-
ber et al. 2002; Klein and Marx 2014; Marx 2013], (Efficient) Polynomial Time
Approximation Schemes ((E)PTAS) [Baker 1994; Grohe 2003; Dawar et al. 2006;
Eisenstat et al. 2012; Eppstein 2000; Gandhi et al. 2004; Khanna and Motwani
1996] and linear kernels [Alber et al. 2004; Bodlaender et al. 2016; Chen et al.
2007]. The theory of bidimensionality developed by Demaine et al. [Demaine and
Hajiaghayi 2008a; 2008b; Demaine et al. 2005b] is able to simultaneously explain
the tractability of many planar graphs problems within the paradigms of parame-
terized algorithms [Demaine et al. 2005b], approximation [Demaine and Hajiaghayi
2005] and kernelization [Fomin et al. 2010]. The theory is built on cornerstone
theorems from Graph Minor Theory of Robertson and Seymour, and allows not
only to explain the tractability of many problems, but also to generalize the re-
sults from planar graphs and graphs of bounded genus to graphs excluding a fixed
minor. Roughly speaking, a problem is bidimensional if the solution value for the
problem on a k × k grid is Ω(k2), and the contraction or removal of an edge does
not increase solution value. Many natural problems are bidimensional, including
Dominating Set, Feedback Vertex Set, Edge Dominating Set, Vertex
Cover, r-Dominating Set, Connected Dominating Set, Cycle Packing,
Connected Vertex Cover, and Graph Metric TSP.

A PTAS is an algorithm which takes an instance I of an optimization problem and
a parameter ε > 0, runs in time nO(f(1/ε)), and produces a solution that is within a
factor 1+ ε of being optimal. A PTAS with running time f(1/ε) ·nO(1), is called an
efficient PTAS (EPTAS). Prior to bidimensionality [Demaine and Hajiaghayi 2005],
there were two main approaches to design (E)PTASs on planar graphs. The first
one was based on the classic Lipton-Tarjan planar separator theorem [Lipton and
Tarjan 1979]. In the approach of Lipton and Tarjan, we split the input n-vertex
graph into two pieces of approximately equal size using a separator of size O(

√
n).

Then we recursively approximate the problem on the two smaller instances and glue
the approximate solutions at the separator. This approach was only applicable to
problems where the size of the optimal solutions was at least a constant fraction of
n. Recently the separators-based approach was also used to prove that certain local
optimization algorithms are PTASs on minor-free graphs and intersection graphs
of various geometric objects [Cabello and Gajser 2015; Chan and Har-Peled 2012;
Har-Peled and Quanrud 2015; Mustafa and Ray 2010].

The second, more widely used approach was given by Baker [Baker 1994], see
also [Hochbaum and Maass 1985]. The approach is widely used in approxima-
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tion algorithms, and is called the shifting technique, or simply Baker’s technique.
The main idea is to decompose the planar graph into subgraphs of bounded out-
erplanarity and then solve the problem optimally in each of these subgraphs using
dynamic programming. Later Eppstein [Eppstein 2000] generalized this approach
to work for larger class of graphs, namely apex minor free graphs. Khanna and
Motwani [Khanna and Motwani 1996] used Baker’s approach in an attempt to
syntactically characterize the complexity class of problems admitting PTASs, es-
tablishing a family of problems on planar graphs to which it applies. The same kind
of approach is also used by Dawar et al. [Dawar et al. 2006] to obtain EPTASs for
every minimization problem definable in first-order logic on every class of graphs
excluding a fixed minor. The shifting technique seemed to be limited to “local”
graph problems, where one is interested in finding a vertex/edge set satisfying a
property that can be checked by looking at constant size neighborhood around each
vertex.

Demaine and Hajiaghayi [Demaine and Hajiaghayi 2005] used bidimensionality
theory to strengthen and generalize both approaches. In particular they strength-
ened the Lipton-Tarjan approach significantly by showing that for a multitude of
problems one can find a separator of sizeO(

√
OPT) that splits the optimum solution

evenly into two pieces. Here OPT is the size of an optimum solution. This allowed
them to give EPTASs for several problems on planar graphs, and more generally,
on apex-minor-free graphs or H-minor free graphs. Two important problems to
which their approach applies are Feedback Vertex Set and Connected Dom-
inating Set. Earlier only a PTAS and no EPTAS for Feedback Vertex Set
on planar graphs was known [Kleinberg and Kumar 2001]. In addition, they also
generalize Baker’s approach by allowing more interaction between the overlapping
subgraphs.

Comparing the generalized versions of the two approaches, it seems that each
has its strengths and weaknesses. In the generalized Lipton-Tarjan approach of
Demaine and Hajiaghayi [Demaine and Hajiaghayi 2005] one splits the graph into
two pieces recursively. To ensure that the repeated application does not “increase”
the approximation factor, in each recursive step one needs to carefully reconstruct
the solution from the smaller ones. Additionally, to ensure that the separator splits
the optimum solution evenly, the framework of Demaine and Hajiaghayi [Demaine
and Hajiaghayi 2005] requires a constant factor approximation for the problem in
question. On the other hand, their generalization of Baker’s approach essentially
identifies a set X of vertices or edges that interacts in a limited way with the
optimum solution, such that the removal of X from the input graph leaves a graph
on which the problem can be solved optimally in polynomial time. The set X could
be as large as O(n) which in some cases makes it difficult to bound the amount of
interaction between the set X and the optimum solution.

In this paper we propose a framework which combines the best of both worlds—
the generalized Lipton-Tarjan and generalized Baker’s approaches. In particular,
we show that for most bidimensional problems there is a polynomial time algorithm
that given a graph G and an ε > 0, outputs a vertex set X of size ε ·OPT such that
the treewidth of G−X is f(ε). Because the size of X is bounded, the interaction
between X and the optimum solution is bounded trivially. Since X is only removed
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once, the difficulty faced by a recursive approach vanishes. In our framework to
obtain EPTASs, we demand that the problem in question is “reducible”, which is
nothing else than that the set X can be removed from the graph, disturbing the
optimum solution by at most O(ε·OPT). Finally, our algorithm to compute X does
not require an approximation algorithm for the problem in question, and relies only
on a sublinear treewidth bound. For most problems, such a bound can be obtained
via bidimensionality, whereas for other problems that are not bidimensional, one
can obtain the sublinear treewidth bound directly. Our framework allows to obtain
EPTASs for a broader set of problems, including several packing problems, partial
covering problems and problems that are neither closed under taking minors nor
contractions. For many of these problems no approximation schemes were known
prior to our work.

Furthermore, we extend our framework to classes of geometric graphs. (E)PTASs
have been studied for various classes of geometric graphs; most of these algorithms
use a variation of the shifting technique. In particular, Hunt et al. [Hunt et al.
1998] used the shifting technique to give polynomial time approximation scheme
(PTASs) for a number of problems such as Independent Set and Dominating
Set on unit disk graphs and λ-precision disk graphs. Independently, Erlebach et
al. [Erlebach et al. 2005] and Chan [Chan 2003] generalized the shifting technique
and gave PTASs for Independent Set and Vertex Cover on disk graphs and
on intersection graphs of fat objects. Marx in [Marx 2008] obtained an efficient
polynomial time approximation scheme (EPTAS) for Vertex Cover on unit disk
graphs. Chen in [Chen 2001] and Demaine et al. [Demaine et al. 2005a] used similar
approaches to obtain a PTAS for Independent Set and r-Dominating Set on
map graphs. The thesis [van Leeuwen 2009] contains an overview of approxima-
tion algorithms on different geometric graphs. As in the case with planar graphs,
the limitations of the shifting technique is that it generally only applies to local
problems such as Vertex Cover and variants of Dominating Set, and fails for
non-local problems such as Feedback Vertex Set and Cycle Packing.

Main results and organization of the paper. In Section 2, we collect technical
definitions and notations. We start building the framework in Section 3, where we
formally define optimization problems which are reducible, bidimensional, separa-
ble, and define treewidth-η-modulators. We also define in Section 3 the SQGM and
SQGC properties of graph classes. Basically, a graph class G has the subquadratic
grid minor property (SQGM) if for every graph G ∈ G the fact that G does not
contain a t × t grid as a minor, yields that the treewidth of G is bounded by a
subquadratic function of t. By the theorem of Robertson et al. [Robertson et al.
1994], planar graphs have the SQGM property. More generally, as it was shown in
[Demaine and Hajiaghayi 2008c], for every graph H, the class of graphs excluding
H as a minor, has the SQGM property. We are also able to obtain similar results
for a more general class of problems on more restricted graph classes. In Section 4,
we provide several examples of reducible bidimensional and separable problems.

In Section 5, we prove the technical lemma (Lemma 7) which is at the heart of
our main algorithmic result. It allows us to achieve the following “scaling”. Let G
be a graph from a graph class with the SQGM property. Let also X be a vertex
set of G such that the treewidth of G−X does not exceed some constant η. Then
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in polynomial time it is possible to scale down X to a set X ′ of size ε|X| such that
the treewidth of G−X ′ is also bounded by a constant depending only on ε and η.
Moreover, every connected component C of graph G−X ′ has a constant number of
neighbors in G. In the terminology of [Bodlaender et al. 2016], C is a protrusion.

Lemma 7 allows us to establish algorithmic results for treewidth-η-modulated
problems. Basically, for a constant η, an optimization problem Π is treewidth-
η-modulated or just η-modulated, if for every graph G, there is a vertex set X
such that |X| = O(OPT(Π)) and the treewidth of G − X does not exceed η. In
Section 6, we prove a meta-theorem (Theorem 1), which basically says that every
η-modulated and sufficiently “well-behaved” graph optimization problem Π has an
EPTAS on every hereditary graph class G with the SQGM property.

In order to apply Theorem 1, we need to establish which optimization problems
are η-modulated. Towards this goal, we also prove in Section 6, that for every
minor-bidimensional linear-separable problem Π on a graph class with the SQGM
property, there exists a constant η such that Π is η-modulated. By our theorem,
this immediately implies the existence of EPTAS for many interesting problems
including Vertex Cover, Feedback Vertex Set, Treewidth-η Modulator,
and Cycle Packing.

In Section 7, we provide further non-trivial applications of Theorem 1. In par-
ticular, we obtain EPTASs for various maximum induced subgraph and packing
problems, partial domination and vertex cover problems, where the task is to opti-
mally cover a certain number of vertices or edges.

In Section 8 we show that the SQGM property, and therefore the applicability
of Theorem 1, extends beyond minor-closed classes of graphs. We establish two
combinatorial theorems which show that unit disk graphs and map graphs that
exclude a clique of size t as a subgraph also admit the SQGM property. This
immediately transfers all algorithmic results about EPTASs to problems on these
classes as well. With some additional work, for several problems including Vertex
Cover, Feedback Vertex Set, Treewidth-η Modulator, we eliminate the
Kt-free condition and obtain approximation schemes for unit disk graphs and map
graphs. We also prove that Cycle Packing admits a PTAS on unit disk graphs.

As a byproduct of the grid exclusion theorems obtained in Section 8, we also ob-
tain subexponential parameterized algorithms on unit disk graphs and map graphs
for various problems.

An interesting feature of our algorithms is that they do not require geometric
representations of the input graphs. Since recognition of unit disk graphs is NP-
hard [Clark et al. 1990] and the best known exponent of the polynomial bounding
the running time of map graph recognition algorithm is about 120 [Thorup 1998],
the robustness of our algorithms is a serious advantage.

Finally, we explore to which degree our approach can be lifted to other classes
of graphs. Our investigations show that it is unlikely that the full power of our ap-
proach can be generalized to disk graphs or to unit ball graphs in Rd—intersection
graphs of unit-balls in Rd, d ≥ 3. Specifically we prove that Feedback Vertex
Set on unit-ball graphs in R3 neither admits a PTASs unless P=NP, nor a subex-
ponential time algorithm unless the Exponential Time Hypothesis (ETH) fails.
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2. DEFINITIONS AND NOTATIONS

In this section we give various definitions which we make use of in the paper. We
start from graph theory definitions.

Let G be a graph with vertex set V (G) and edge set E(G). A graph G′ is a
subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). For vertex set X ⊆ V (G), the
subgraph G[X] is a subgraph of G induced by X, or just induced subgraph of G
if E(G[X]) = {uv ∈ E(G) | u, v ∈ X}. For vertex set S ⊆ V (G), we denote by G−S
the graph obtained from G by removing the vertices of S, i.e. G−S = G[V (G)\S].
For vertex v ∈ V (G) we also use G−v for G−{v}. Similarly, for edge set E ⊆ E(G),
we use G−E to denote the subgraph of G with edge set E(G) \E. For e ∈ E(G),
we use G − e for G − {e}. For a set S ⊆ V (G), we define NG(S) to be the open
neighborhood of S in G, which is the set of vertices from V (G) \ S adjacent to
vertices of S. The closed neighborhood of S is NG[S] := N(S) ∪ S. Given a set
S ⊆ V (G), we denote by ∂G(S) the set of all vertices in S that are adjacent in
G with vertices not in S. Thus NG(S) = ∂G(V (G) \ S). The distance dG(u, v)
between two vertices u and v of G is the length of the shortest path in G from u
to v. We define BrG(v) to be the set of vertices within distance at most r from v,
including v itself. For a vertex set S define BrG(S) =

⋃
v∈S B

r
G(v).

A graph class G is hereditary if for any graph G ∈ G all induced subgraphs of G
are in G. Throughout this paper Kt denotes a complete graph on t vertices and we
say that a graph G is Kt-free if G does not contain Kt as an induced subgraph.

Planar, H-minor-free, unit disk and map graphs. In this paper we use
the expression plane graph for any planar graph drawn in the Euclidean plane R2

without any edge crossing. We do not distinguish between a vertex of a plane graph
and the point of R2 used in the drawing to represent the vertex or between an edge
and the curve representing it. We also consider plane graph G as the union of the
points corresponding to its vertices and edges. We call a face of G any connected
component of R2\(E(G)∪V (G)). The boundary of a face is the set of edges incident
to it. If the boundary of a face f forms a cycle, then we call it a cyclic face. A
graph is planar if it admits a planar drawing.

Given an edge e = xy of a graph G, the graph G/e is obtained from G by
contracting e. That means that the endpoints x and y are replaced by a new vertex
vx,y which is adjacent to the old neighbors of x and y (except for x and y). A
graph H obtained by a sequence of edge-contractions is said to be a contraction of
G. A graph H is a minor of a graph G if H is the contraction of some subgraph
of G. Let G,H be two graphs. A subgraph G′ of G is said to be a minor-model
of H in G if G′ contains H as a minor. We say that a graph G is H-minor-free
when it does not contain H as a minor. We also say that a graph class G is H-
minor-free (or, excludes H as a minor) when all its members are H-minor-free.
A graph G is an apex graph if there exists a vertex v such that G − v is planar.
A graph class G is apex-minor-free if there exists an apex graph H such that G
is H-minor-free. A graph class G is said to be minor-closed/contraction-closed if
every minor/contraction of a graph in G also belongs to G.

A disk graph is the intersection graph of a family of (closed) disks in R2. A unit
disk graph is the intersection graph of a family of unit disks in R2. It is easy to see
that any (unit) disk graph is the intersection graph of a family of (unit) disks in
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R2 with the additional property that every two disks that share a point also share
an interior point. That is, no two disks touch only on the boundary. Whenever we
consider the geometric model of a (unit) disk graph we will assume that it has this
property.

The notion of a map graph is due to Chen et al. [Chen et al. 1998]. A map M
is a pair (E , ω), where E is a plane graph and each connected component of E is
biconnected, and ω is a function that maps each face f of E to 0 or 1 in a way that
whenever ω(f) = 1, f is a cyclic face. A face f of E is called nation if ω(f) = 1,
lake otherwise. The graph associated with M is a simple graph G, where V (G)
consists of the nations of M and E(G) consists of all f1f2 such that f1 and f2 are
adjacent (that is, share at least one vertex). We call G a map graph. By N(E ) we
denote the set of nations of E .

Treewidth. A tree decomposition of a graph G is a pair (X , T ), where T is a tree
and X = {Xi | i ∈ V (T )} is a collection of subsets of V such that the following
conditions are satisfied.

(1)
⋃
i∈V (T )Xi = V (G).

(2) For each edge xy ∈ (G), {x, y} ⊆ Xi for some i ∈ V (T ).

(3) For each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of the tree decomposition is maxi∈V (T ) |Xi|−1. The treewidth of a graph
G, tw(G), is the minimum width over all tree decompositions of G.

We will use the following easy fact about treewidth.

Proposition 1. The treewidth of a graph is the maximum treewidth of its con-
nected components.

Separators and separations. Let G be a graph, Q ⊆ V (G), and let A1, A2 ⊆
V (G) such that A1 ∪ A2 = V (G). We say that the pair (A1, A2) is a separation of
G if there is no edge with one endpoint in A1 \ A2 and the other in A2 \ A1. The
order of a separation (A1, A2) is |A1 ∩ A2|. For a vertex subset Q ⊆ V (G) we say
that a separation (A1, A2) is a 2/3-balanced separation of (G,Q) if each of the parts
A1 \A2 and A2 \A1 contains at most 2

3 |Q| vertices of Q.
The following separation property of graphs of small treewidth is well known, see

e.g. [Cygan et al. 2015, Lemma 7.20].

Proposition 2. Let G be a graph and let S ⊆ V (G). There is a 2/3-balanced
separation (A1, A2) of (G,S) of order at most tw(G) + 1.

Grids and triangulated grids. Given a positive integer t, we denote by �t the
t× t grid. Formally, for a positive integer t, a t× t grid �t is a graph with vertex
set {(x, y) : x, y ∈ {1, . . . , t}}. Thus �t has exactly t2 vertices. Two different
vertices (x, y) and (x′, y′) are adjacent if and only if |x− x′|+ |y − y′| = 1.

For an integer t > 0, the graph Γt is obtained from the grid �t by adding, for
all 1 ≤ x, y ≤ t − 1, the edge (x + 1, y), (x, y + 1), and additionally making vertex
(t, t) adjacent to all the other vertices (x, y) with x ∈ {1, t} or y ∈ {1, t}, i.e., to
the whole border of �t. Graph Γ9 is shown in Fig. 1.

We also need the following result of Robertson and Seymour [Robertson and
Seymour 1984].
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Fig. 1. Graph Γ9.

Proposition 3. For every t > 1, tw(�t) = t.

3. OPTIMIZATION PROBLEMS AND BIDIMENSIONALITY

Our results concern graph optimization problems where the objective is to find a
vertex or edge set of minimum or maximum size that satisfies a feasibility con-
straint. The problems, where the task is to find a set of minimum size, we call
minimization, and the problems where the task is to find a set of maximum size,
we call maximization. A problem Π on graphs is defined by a predicate φΠ(G,S)
(also often called a property), which for a graph G and a vertex (edge) subset S
of G returns true if S is feasible and false otherwise. The interpretation is that
φ defines the space of feasible solutions S for a graph G by returning whether S is
feasible for G. Depending whether S is a vertex or edge subset of G, we refer to Π
as vertex or edge subset problem correspondingly.

For an example, Vertex Cover is the problem of finding a minimum vertex
cover in a graph. Then φΠ(G,S) is true if and only if S is a vertex cover of G, i.e.
every edge has at least one endpoint in S. For the Dominating Set problem we
put φ(G,S) = true if and only if N [S] = V (G). Both problems are vertex subset
problems.

Let us remark that there are many vertex/edge subset problems which at a first
glance do not look as if they could be captured by this definition. For example,
the Max Leaf Spanning Tree problem, where we are given a connected graph
G and asked to find a spanning tree T of G with the maximum number of leaves,
is a vertex subset problem. The reason is that G has a spanning tree with k leaves
if and only if there is a set S ⊆ V (G) of size at least k and φ(G,S) is true, where
φ(G,S) is defined as follows.

φ(G,S) =∃ spanning subgraph T of G such that

• every vertex of S is of degree 1 in T.

Another example is the Cycle Packing problem. Here input is a graph G
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and the task is to find the maximum number of pairwise vertex-disjoint cycles
C1, C2, . . . , Ck. This is again a vertex subset problem because G has k vertex-
disjoint cycles if and only if there exist a set S ⊆ V (G) of size at least k and
φ(G,S) is true, where φ(G,S) is defined as follows.

φ(G,S) =∃ subgraph G′ of G such that

• each connected component of G′ is a cycle,

• and each connected component of G′ contains exactly

one vertex of S.

Let us remark, that as in the last example, it can be that checking whether φ(G,S)
is true for a given graph G and set S is NP-complete. Nevertheless, defining Cycle
Packing as a vertex subset problem, will allow us to obtain an EPTAS for this
problem on various graph classes.

Definition 1 (OPTΠ and SOLΠ). For a vertex/edge subset minimization prob-
lem Π, we define

OPTΠ(G) = min {|S| : φ(G,S) = true} .

If no S such that φ(G,S) = true exists, OPTΠ(G) is +∞. For a vertex/edge
subset maximization problem Π,

OPTΠ(G) = max {|S| : φ(G,S) = true} .

In this case, if no S such that φ(G,S) = true exists, OPTΠ(G) returns −∞. We
define SOLΠ(G) to be a function that given as an input a graph G returns a set
S of size OPTΠ(G) such that φ(G,S) = true, and returns null if no such set S
exists.

Bidimensional problems. For many problems it holds that contracting an edge
can not increase the size of the optimal solution. We will say that such problems
are contraction-closed. For example, Dominating Set, which is the problem of
finding a minimum vertex set S in a graph which dominates all vertices of V (G)\S,
is contraction-closed because contracting an edge in a graph does not increase the
minimum size of its dominating set. Max Leaf Spanning Tree, which is a
maximization problem, is also contraction-closed: if G/e has a spanning tree with
at least k leaves, so does G. Formally we have the following definition.

Definition 2 (Contraction-closed problem). A vertex/edge subset problem
Π is contraction-closed if for any G and e ∈ E(G), OPTΠ(G/e) ≤ OPTΠ(G).

If contracting edges, deleting edges and deleting vertices can not increase the
size of the optimal solution, we say that the problem is minor-closed. For example,
Vertex Cover and Cycle Packing are minor-closed.

Definition 3 (Minor-closed problem). A vertex/edge subset problem Π is
minor-closed if for any G, edge e ∈ E(G) and vertex w ∈ V (G), OPTΠ(G/e) ≤
OPTΠ(G), OPTΠ(G− e) ≤ OPTΠ(G), and OPTΠ(G− w) ≤ OPTΠ(G).

The notion of a bidimensional problem was introduced by Demaine et al. [De-
maine et al. 2005b]. Our definition of contraction-bidimensional problems follows
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[Fomin et al. 2011], see also [Cygan et al. 2015, Chapter 7] for an introduction to
bidimensionality theory.

Definition 4 (Bidimensional problem). A vertex/edge subset problem Π is

—contraction-bidimensional if it is contraction-closed, and there exists a constant
β > 0 such that OPTΠ(Γk) ≥ βk2.

—minor-bidimensional if it is minor-closed, and there exists a constant β > 0 such
that OPTΠ(�k) ≥ βk2.

It is usually quite easy to determine whether a problem is contraction (or minor)-
bidimensional. Take for an example Independent Set. Contracting an edge
may never increase the size of the maximum independent set, so the problem is
contraction closed. Furthermore, in Γk, the vertex set

{(x, y) : x ≡ k + 1 mod 2 and y ≡ k + 1 mod 2}

forms an independent set of size (k−1)2

4 . Thus Independent Set is contraction-
bidimensional. On the other hand deleting edges may increase the size of a maxi-
mum size independent set inG. Thus Independent Set is not minor-bidimensional.

Separability. The notion of separable problems was introduced by Demaine and
Hajiaghayi [Demaine and Hajiaghayi 2005]. Informally, separable problems Π are
well-behaved in the sense that whenever we have a small separator in the graph
that splits the graph in two parts L and R, the intersection |X ∩ L| of L with any
optimal solution X to the entire graph is a good estimate of OPTΠ(G[L]). We
provide many examples of separable problems in Section 4.

Separability allows us to prove decomposition theorems which are very useful
for deriving EPTAS. Similar decomposition theorems may also be used to obtain
polynomial kernels, see [Fomin et al. 2010].

Definition 5 (Separability) [Demaine and Hajiaghayi 2005]. Let f : Z+ →
Z+ be a function. We say that a vertex/edge subset problem Π is f -separable if for
any graph G, subset L ⊆ V (G) and function SOLΠ it holds that

|SOLΠ(G) ∩ L| − f(t) ≤ OPTΠ(G[L]) ≤ |SOLΠ(G) ∩ L|+ f(t),

where t = |∂G(L)|. Π is called separable if there exists a function f such that Π is
f -separable. Π is called linear-separable if there exists a constant c such that Π is
c · t-separable.

CMSO-definable problems. The syntax of Monadic Second Order Logic (MSO)
of graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices,
edges, sets of vertices, and sets of edges, the quantifiers ∀, ∃ that can be applied to
these variables, and the following five binary relations:

(1) u ∈ U where u is a vertex variable and U is a vertex set variable;

(2) d ∈ D where d is an edge variable and D is an edge set variable;

(3) inc(d, u), where d is an edge variable, u is a vertex variable, and the interpre-
tation is that the edge d is incident with the vertex u;
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(4) adj(u, v), where u and v are vertex variables and the interpretation is that u
and v are adjacent;

(5) equality of variables representing vertices, edges, sets of vertices, and sets of
edges.

In addition to the usual features of monadic second-order logic, if we have atomic
sentences testing whether the cardinality of a set is equal to q modulo r, where q
and r are integers such that 0 ≤ q < r and r ≥ 2, then this extension of MSO is
called counting monadic second-order logic. Thus CMSO is MSO enriched with the
following atomic sentence for a set S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).

We refer to [Arnborg et al. 1991; Courcelle 1990; 1997] for a detailed introduction
on CMSO.

We consider CMSO sentences evaluated either on graphs or on annotated graphs.
By annotated graph we mean a pair (G,S), where S is a subset of the vertices
or edges of a graph G, i.e., S contains the annotated vertices or edges of G. In
optimization problems on annotated graphs, annotated set S is used to specify
additional constraints or relaxations of the solution. For example, a solution can
be a subset or a superset of annotated set S, or, like in annotated Dominating
Set, annotated vertices are not required to be dominated by the solution, etc. We
say that a CMSO-formula ϕ expresses an (annotated) graph property φΠ(G,S) if
φΠ(G,S) is true if and only if (G,S) models ϕ (i.e., the formula ϕ is true exactly
on (annotated) graphs G and vertex/edge subsets S such that φΠ(G,S) is true).

Min-CMSO and Max-CMSO problems are graph optimization problems where
the objective is to find a maximum or minimum sized vertex or edge set satisfying
a CMSO-expressible property. In other words, a vertex/edge subset minimization
(or maximization) problem with feasibility function φ is a Min-CMSO problem (or
Max-CMSO problem) if there exists a CMSO sentence ψ such that φ(G,S) = true
if and only if (G,S) |= ψ. Thus in a Min/Max-CMSO graph problem Π we are
given a graph G as input. The objective is to find a minimum/maximum cardinality
vertex vertex/edge set S such that the CMSO-expressible predicate φΠ(G,S) is
satisfied.

Reducibility and η-modulated problems. Reducibility is the central notion
of this article. The intuition behind the notion of reducibility is the following.
Being reducible allows us to “sacrifice” a set of vertices X (like deleting them or
putting in a solution) by creating a new problem whose solution and treewidth
are “approximated” by the original solution and treewidth, and such that from the
solution of the new problem, one can in polynomial time reconstruct an approximate
solution of the original problem.

Definition 6 (Reducibility). A graph optimization problem Π defined by a
predicate φΠ(G,S) is reducible if there exists a Min/Max-CMSO problem Π′ with
CMSO-expressible property φΠ′ , a function f : N→ N, and a constant ρΠ such that

(1 ) there is a polynomial time algorithm that given graph G and set X ⊆ V (G), out-
puts graph G′ such that tw(G′) ≤ f(tw(G−X)) and |OPTΠ′(G

′)−OPTΠ(G)| ≤
ρΠ · |X|,
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(2 ) there is a polynomial time algorithm that given graph G and X ⊆ V (G), graph
G′ and a vertex (edge) set S′ ⊆ V (G′) (S′ ⊆ E(G′)) such that φΠ′(G

′, S′)
holds, outputs S ⊆ V (G) such that φΠ(G,S) = true and ||S| − |S′|| ≤ ρΠ · |X|.

In most of the cases, problem Π′ will be an “annotated” version of the opti-
mization problem, where for a set of annotated vertices or edges we require special
conditions. For example, to show that Dominating Set is reducible, for vertex
set X of G, we put G′ = G − X. Then problem Π′ defined on G′ is the variant
of domination where we annotate the vertices of G′ adjacent (in G) to X as not
required to be dominated by a solution in G′. In other words, we are looking for
a set of vertices in G′ which dominates all but the annotated vertices. Such an
annotated domination is a Min/Max-CMSO problem and it is easy to check that
both properties of the definition hold. Thus Π is reducible. In Section 4, we give
more examples of reducible problems.

Definition 7 (Treewidth η-modulated). For a nonnegative integer η, a graph
optimization problem Π is called treewidth η-modulated, or simply, η-modulated,
if there is a polynomial time algorithm that given a graph G outputs a set X of size
O(OPTΠ(G)) such that tw(G−X) ≤ η.

For example, Vertex Cover is η-modulated for η = 0: There is a polynomial time
algorithm computing a vertex cover X of size at most 2 · OPTΠ(G) [Nemhauser
and Trotter 1974]. Since graph G−X has no edges, its treewidth is 0.

Subquadratic grid minor property. We will build EPTASs on graphs with
specific properties. In general it is known that there exists a constant c such that
any graph G which excludes �t as a minor has treewidth at most O(tc). The exact
value of c remains unknown, but it is at least 2 and at most 19 [Chuzhoy 2016;
Chekuri and Chuzhoy 2016]. We will restrict our attention to graph classes with
c < 2.

Definition 8 (SQGM property). We say that a graph class G has the sub-
quadratic grid minor property (SQGM property for short) if there exist constants
α > 0 and 1 ≤ c < 2 such that for any t > 0 every graph G ∈ G excluding �t as a
minor, has treewidth at most α · tc. In the cases we need to specify the parameter
c, we say that graph class G has the SQGM property with parameter c.

Problems that are contraction-closed but not minor-closed are considered on more
restricted classes of graphs.

Definition 9 (SQGC property). We say that a graph class G has the sub-
quadratic gamma contraction (SQGC property for short) if there exist constants
α > 0 and 1 ≤ c < 2 such that for any t > 0 every connected graph G ∈ G excluding
Γt as a contraction, has treewidth at most α · tc.

Since Γt contains �t as a minor (in fact as a subgraph), we obtain the following
observation.

Observation 1. Every graph class G with the SQGC property has the SQGM
property.
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The following proposition follows directly from the theorem on the linearity of ex-
cluded grid-minor in H-minor-free graphs proven by Demaine and Hajiaghayi [De-
maine and Hajiaghayi 2008c] and its analogue for Γ-contractions from [Fomin et al.
2011].

Proposition 4. For every graph H, any H-minor-free graph class G has the
SQGM property with parameter c = 1. If H is an apex graph, then G has the
SQGC property with c = 1.

Since every planar graph excludes graphs K5 or K3,3 as a minor, the class of
planar graphs has the SQGM property. More generally, the class of graphs of
bounded genus also has the SQGM property. By the result of Eppstein [Eppstein
2000], every minor-closed class of graphs of bounded local treewidth (like the classes
of planar graphs or graphs of bounded genus), exclude some fixed apex graph as a
minor. Thus these classes of graphs have SQGC property.

The bidimensionality properties of problems and SQGM properties of graph
classes allow us to establish parameter-treewidth bounds—a tight dependence be-
tween the size of the optimal solution and the treewidth of the input graph. This
relationship was first observed by Demaine et al. [Demaine et al. 2005b]. The bound
for contraction-bidimensional problems presented here is essentially identical to the
one presented in Fomin et al. [Fomin et al. 2011]. We re-prove the lemmata here
because of slight differences in definitions.

Lemma 1. For any minor-bidimensional problem Π on a graph class G with the
SQGM property with the parameter c < 2, there exists constant γ > 0 such that for
any graph G ∈ G, tw(G) ≤ γ · (OPTΠ(G))ε, where ε = c/2.

Proof. Let α and c be the constants from the definition of the SQGM property.
Then any graph G ∈ G which excludes a �t as a minor has treewidth at most
αtc. Let β be the constant from the definition of minor-bidimensionality of Π, i.e
OPTΠ(�t) ≥ βt2. Consider now a graph G ∈ G. Let t be the maximum integer
such that G contains �t as a minor. We have that tw(G) < α(t+ 1)c. Rearranging

terms yields that ( tw(G)
α )1/c < t+1 implying that t ≥ ( tw(G)

α )1/c. Since Π is minor-
closed it follows that OPTΠ(G) ≥ OPTΠ(�t), and since Π is minor-bidimensional,
we have that

OPTΠ(G) ≥ OPTΠ(�t) ≥ βt2 ≥ β(
tw(G)

α
)2/c.

Hence

tw(G) ≤ α

β
c
2
·OPTΠ(G)

c
2 .

Since c < 2 in the definition of the SQGM property, the statement of the lemma
follows.

Lemma 2. For any contraction-bidimensional problem Π on a graph class G with
the SQGC property with the parameter c < 2, there exists constant γ > 0 such that
for any connected graph G ∈ G, tw(G) ≤ γ · (OPTΠ(G))ε, where ε = c/2.

The proof of Lemma 2 is almost identical to the proof of Lemma 1 except the
following difference. Lemma 1 is for minor-closed problems, on graph classes G with
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the SQGM property and works for every G ∈ G. Lemma 2 is for contraction-closed
problems, on graph classes G with the SQGC property and works for connected
graphs G ∈ G.

However, when a problem is contraction-bidimensional and separable, then it is
possible to extend Lemma 2 to disconnected graphs, since the issue of different
connected components influencing the value of the optimal solution disappears.

Lemma 3. For any contraction-bidimensional separable problem Π on a graph
class G with the SQGC property, there exist constants 0 < γ, 0 < ε < 1 such that
for any graph G ∈ G, tw(G) ≤ γ · (OPTΠ(G))ε.

Proof. Since Π is separable there exists a constant d such that for any graph
G and connected component C of G, it holds that

OPTΠ(G[C]) ≤ |SOLΠ(G) ∩ C|+ d ≤ OPTΠ(G) + d.

By Lemma 2, there exist constants γ and ε < 1 such that tw(G[C]) ≤ γ·OPTΠ(G[C])ε

for every component C. Since the treewidth of G is at most the maximum of the
treewidth of its connected components, the lemma follows by increasing γ by a
factor d.

Treewidth modulator. We say that a set S ⊆ V (G) is a treewidth-η-modulator
if tw(G− S) ≤ η. For every η ≥ 0, we define the following problem.

Treewidth-η Modulator
Instance: A graph G .

Objective: Find a treewidth-η-modulator of minimum size.

Since the graph is of treewidth 0 if and only if it has no edges, the Vertex Cover
problem is Treewidth-η Modulator for η = 0. The treewidth of a graph G is
at most 1 if and only if G is a forest. Hence the Feedback Vertex Set problem
is Treewidth-η Modulator for η = 1.

It is easy to see that the Treewidth-η Modulator problem is minor-closed.
By Proposition 3, every (η + 1) × (η + 1) subgrid of �t must contain at least one
vertex of any solution, therefore

OPTΠ(�t) ≥ b(
t

η + 1
)c2.

Therefore, Treewidth-η Modulator is minor-bidimensional.
By Lemma 1, the bidimensionality of Treewidth-η Modulator yields the

following lemma.

Lemma 4. For every graph class G with the SQGM property and every η ≥ 0
there exist constants β ≥ 0 and 0 ≤ λ < 1 such that any graph G ∈ G with a
treewidth-η-modulator S has treewidth at most β · |S|λ.

Let us remark that when G has the SQGM property with the parameter c, then
in Lemma 4, λ = c/2.
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4. REDUCIBLE BIDIMENSIONAL LINEAR-SEPARABLE PROBLEMS

In this section we give examples of problems which are reducible, bidimensional
and linear-separable. As we will see later in Lemma 8, the combination of these
conditions with SQGM or SQGC properties yields that these problems are treewidth
η-modulated, which in turn, by Theorem 2, guarantees EPTAS for these problems.

4.1 Domination, independence and connectivity problems

In the r-Dominating Set problem, we are given a graph G, the objective is to
find a minimum size subset S ⊆ V (G) such that every vertex outside S is within
distance at most r from some vertex of S. In other words, BrG(S) = V (G). For
r = 1, this is the classical Dominating Set problem. If in addition, we demand
G[S ∩C] to be connected for every connected component C of graph G, we obtain
the Connected Dominating Set problem. In the Connected Vertex Cover
problem, we are given a graph G and the objective is to find a minimum size subset
S ⊆ V (G) such that S is a vertex cover of G, that is every edge in E(G) has at least
one endpoint in S, and such that for every connected component C of G, G[S∩C] is
connected. It is known that r-Dominating Set, Connected Dominating Set
and Connected Vertex Cover are contraction-bidimensional [Demaine et al.
2005b].

We show that Π = r-Dominating Set is linear-separable. For graph G, let
L ⊆ V (G) with |∂(L)| ≤ t. Observe that the set (SOLΠ(G) ∩ L) ∪ ∂(L) is r-
dominating in G[L]. Indeed, every vertex of v ∈ L is either within distance at most
r from some vertex from SOLΠ(G) ∩ L, or from a vertex SOLΠ(G) \ L. In each
of the cases, each of the paths of length at most r from SOLΠ(G) to v is either
entirely in L or contains a vertex of ∂(L). Thus

OPTΠ(G[L]) ≤ |SOLΠ(G) ∩ L|+ t.

On the other hand, if |SOLΠ(G) ∩ L| − t > OPTΠ(G[L]), then set SOLΠ(G[L]) ∪
∂(L)∪SOLΠ(G−L) is r-dominating in G and is of size less than OPTΠ(G), which
is a contradiction. Hence

|SOLΠ(G) ∩ L| − t ≤ OPTΠ(G[L]),

and r-Dominating Set is linear-separable.
We now show that r-Dominating Set is reducible. For a given graph G and

set X, let G′ = G − X and let R = BrG(X) \ X. Then tw(G′) = tw(G − X).
Problem Π′ is the following annotated version of r-Dominating Set. In graph
G′ we annotate the vertex set R. We want to find a set S′ ⊆ V (G′) of minimum
cardinality such that every vertex in V (G′) \ (S′ ∪ R) is within distance at most
r from a vertex in S′. In other words, the set S′ r-dominates all vertices of G′

except annotated vertices R. It is easy to show that Π′ is a Min-CMSO problem.
Notice that for any r-dominating set S of G, S \X is a feasible solution to Π′ on
G′. Conversely, for any feasible solution S′ of Π′ on G′, we have that S′ ∪X is an
r-dominating set of G. Hence r-Dominating Set is reducible.

Proofs that Connected Dominating Set and Connected Vertex Cover
are linear-separable are similar to the proof for r-Dominating Set. For example,
for Connected Dominating Set. Let L be a vertex subset of G. Let us assume
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first that G[L] is connected. If ∂(L) = ∅, then separability follows trivially. If
∂(L) 6= ∅, we first augment SOLΠ(G) ∩ L by adding ∂(L) to it. The set Q =
(SOLΠ(G) ∩ L) ∪ ∂(L) is a dominating set of G[L]. Since ∂(L) 6= ∅, we have
that every connected component of G[Q] contains at least one vertex of ∂(L).
(Otherwise, SOLΠ(G) is either not connected, or not dominating in G.) Hence set
Q contains at most |∂L| connected components and can be turned into a connected
set by adding at most 2|∂L| − 1 vertices. When G[L] is not connected, we apply
the same construction for each of its connected components C and for each of the
sets C ∩ (SOLΠ(G) ∪ ∂(L)).

We now prove that Connected Dominating Set is reducible. Given a graph
G and set X, let G′ = G − X and let R = N(X). The annotated problem Π′ is
to find a minimum sized set S′ ⊆ V (G′) such that every vertex in V (G′) \ (S′ ∪R)
has a neighbor in S′ and every connected component of G′[S′] contains a vertex
in R. Notice that for every connected dominating set S of G, S \ X is a feasible
solution to Π′ on G′. Conversely, for any feasible solution S′ of Π′ on G′, we
have that S = S′ ∪ X is a dominating set of G and has at most |X| connected
components. Since S is a dominating set, it is sufficient to add 2(|X| − 1) vertices
to S in order to turn it into a connected dominating set of G. Hence Connected
Dominating Set is reducible. The proof that Connected Vertex Cover is
reducible is identical.

In the r-Scattered Set problem, the task is for a given graph G to find a
maximum set of vertices S ⊆ V (G) such that the distance between any two vertices
of S in G is more than r. For r = 1 this is the Independent Set problem.
The proof that r-Scattered Set is contraction-bidimensional linear-separable
and reducible, is similar to the one for r-Dominating Set and is omitted. We
collect all the above observations in the following lemma.

Lemma 5. r-Dominating Set, Connected Dominating Set, Connected
Vertex Cover, and r-Scattered Set are contraction-bidimensional, linear-
separable and reducible.

4.2 Covering and packing problems

Minor covering and packing. We give below a few generic problems. Each of
the problems subsumes many problems in itself and fits in our framework. Let F
be a finite set of connected graphs containing at least one planar graph. We define
the following problem.

F-Deletion
Instance: A graph G.

Objective: Find a set S ⊆ V (G) of minimum size such that G− S
contains no graph from F as a minor.

We consider the situation when set F contains at least one planar graph because,
as we will see later, in this case F-Deletion is bidimensional. However, even in this
special scenario, F-Deletion generalizes many interesting problems. For example,

—Vertex Cover is the case when F = {K2}. Here Ki is a complete graph on i
vertices.
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—When F = {K3}, this is the Feedback Vertex Set problem.

—Diamond Hitting Set is the case when F = {K4}.
—Other choices for F lead to vertex deletion into outerplanar graphs, series-parallel

graphs, graphs of constant treewidth (Treewidth-η Modulator) or path-
width.

F-Deletion can be seen as a variant of the Hitting Set problem, where the
task is to “hit” all forbidden minors. The dual maximization problem is the follow-
ing.

F-Packing
Instance: A graph G.

Objective: Find a maximum size collection of vertex disjoint subgraphs
such that each of them contains a graph from F as a minor.

In particular, F-Packing contains problems like Cycle Packing as a special case.
It it easy to see that both F-Deletion and F-Packing are minor-closed prob-

lems. Since we assume that set F contains at least one planar graph, we can select
a smallest planar graph F in F . By the result of Robertson et al. [Robertson et al.
1994], F is a minor of the t × t grid �t, where t = 14|V (F )| − 24. Grid �r con-
tains r2/t2 disjoint subgrids, each containing F as a minor. Since every solution
of F-Deletion should contain at least one vertex of each of the r2/t2 subgrids,
we have that F-Deletion is minor-bidimensional. Similarly, �r contains at least
r2/t2 vertex-disjoint subgraphs, each containing F as a minor, hence F-Packing
is minor-bidimensional.

We now prove that Π = F-Deletion is linear-separable. For graph G, let
L ⊆ V (G) with |∂(L)| ≤ t. Then (SOLΠ(G) ∩ L) ∪ ∂(L) “hits” every subgraph of
G[L] containing a graph from F as a minor. Thus OPTΠ(G[L]) ≤ |SOLΠ(G)∩L|+t.
To prove |SOLΠ(G) ∩ L| − t ≤ OPTΠ(G[L]), observe that if |SOLΠ(G) ∩ L| − t >
OPTΠ(G[L]), then set SOLΠ(G[L])∪∂(L)∪SOLΠ(G−L) is a set hitting all minors
from F in G of size smaller than OPTΠ(G), which is a contradiction. Hence F-
Deletion is linear-separable.

The proof of separability of F-Packing goes along the same lines as the proof
for F-Deletion, but with a few notable differences. We view F-Packing as a
problem of finding a maximum vertex set S such that there is a subgraph H of
G, such that every connected component of H contains exactly one vertex of S
and contains some graph from F as a minor. Then the main observation implying
linear-separability is that by deleting t vertices from G, we cannot touch more than
t components from H.

Finally, it is easy to see that both F-Deletion and F-Packing are reducible.
Given G and X we let G′ = G − X. For F-Deletion, X can be added to an
optimal solution in G′ at the cost of |X|. For F-Packing at most |X| of the
minors of graphs in H contain a vertex in X and got removed when X was deleted.
Expressing both problems as Min/Max-CMSO problems is routine.

Lemma 6. Let F be a finite set of graphs containing a planar graph. Then
F-Deletion and F-Packing are minor-bidimensional, linear-separable and re-
ducible.
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5. SCALING LEMMA

In this section we prove the following lemma, which is crucial in our analysis.
Informally, the lemma says the following. Let X be a treewidth-η-modulator of a
graph G from graph class G with the SQGM property. Then for any ε > 0, one
can scale down in polynomial time set X to set X ′ of size ε · |X| such that every
connected component C of G − X ′ is separated from the remaining graph by a
constant number of vertices and contains only a constant number of vertices from
X. Since X is also a treewidth-η-modulator in G[C], this implies in particular that
the treewidth of C, and thus of tw(G −X ′), is bounded by a constant depending
on ε, η and class G only. Thus the lemma allows us to obtain a smaller treewidth-
modulator from a given one.

Lemma 7 (Scaling Lemma). Let G be a hereditary graph class with the SQGM
property. For any 1 > ε > 0 and η > 0, there is γ such that for any G ∈ G and
treewidth-η-modulator X of G, there is X ′ ⊆ V (G) such that

—|X ′| ≤ ε|X|, and

—for every connected component C of G−X ′, we have |C∩X| ≤ γ and |N(C)| ≤ γ.

Moreover, such a set X ′ can be computed from G and X in polynomial time, where
the polynomial is independent of ε and η.

Proof. Since G is a hereditary graph class with the SQGM property, by Lemma 4,
there exist constants β and 0 < λ < 1 such that for every G ∈ G such that G has
a treewidth-η-modulator of size at most k, we have tw(G) ≤ β · kλ. We select the
constant γ based on λ, β, η, and ε. Let

ρ = min
1/3≤α≤2/3

αλ + (1− α)λ.

Observe that since 0 < λ < 1, for any a > 0, b > 0, we have that aλ+bλ > (a+b)λ.
Hence ρ > 1. We also define

δ =
(2ε+ 1)(β + η + 1)

ρ− 1
,

and finally

γ =

(
3δ

ε

) 1
1−λ

.

The choice of these constants will become clear during the course of the proof. Let
us also note that ρ < 2, and thus δ ≥ ε, hence γ ≥ 1.

To prove that γ is the required constant, we define the value Tγ(k) as the min-
imum size of a set X ′ satisfying conditions of the lemma. That is, Tγ(k) is the
smallest integer such that if G ∈ G and there is X ⊆ V (G) with tw(G − X) ≤ η
and |X| ≤ k, then there is X ′ ⊆ V (G) of size at most Tγ(k) such that for every
connected component C of G−X ′ we have |C ∩X| ≤ γ and |N(C)| ≤ γ. In other
words, Tγ(k) is the minimum size of a vertex set X ′ such that every connected
component C of G − X ′ has at most γ neighbors in X ′ and contains at most γ
vertices of X.
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Then to prove the combinatorial statement of the lemma, we have to show that
for every k ≥ 1,

Tγ(k) ≤ εk. (1)

Let us observe that (1) trivially hods for k ≤ γ. Indeed, let X be a treewidth-
η-modulator of G of size k (if G has no modulator of size k, there is nothing to
prove). In this case we put X ′ = ∅. Then 0 = |X ′| ≤ εk and for every connected
component C of G−X ′ = G, we have |C ∩X| ≤ k ≤ γ and |N(C)| = 0 ≤ γ. Thus
for k ≤ γ, Tγ(k) = 0 and (1) holds.

In order to prove (1) for k > γ, we prove a slightly stronger statement: For
k ≥ γ/3,

Tγ(k) ≤ εk − δkλ. (2)

We prove (2) by induction on k. For the base case we choose γ/3 ≤ k ≤ γ. Then
the choice of γ implies that

εk − δkλ ≥ εγ
3
− δγλ ≥ 0.

On the other hand, we already have proved that for k ≤ γ, Tγ(k) = 0. Thus for
γ/3 ≤ k ≤ γ,

Tγ(k) ≤ εk − δkλ,

which concludes the base case of the induction.

For the inductive step, let k > γ. Let G ∈ G be a graph with a treewidth-η-
modulator of size at most k. By Lemma 4, the treewidth of G is at most βkλ.
By Proposition 2, there is a 2/3-balanced separation of (G,X) of order at most
tw(G) + 1. Hence there is a partition of V (G) into L, S and R such that |S| ≤
βkλ + 1, N(L) ⊆ S, N(R) ⊆ S, |L ∩X| ≤ 2k/3, and |R ∩X| ≤ 2k/3. Deleting S
from the graph G yields two graphs G[L] and G[R] with no edges between them.
Since G is a hereditary class of graphs, we can proceed recursively. For that we put
S into X ′ and then proceed recursively in G[L∪S] and G[R∪S] starting from the
sets S ∪ (X ∩L) and S ∪ (X ∩R) in G[L∪S] and G[R∪S] respectively. This yields
the following recurrence for Tγ

Tγ(k) ≤ max
1/3≤α≤2/3

T (αk + βkλ + 1) + T ((1− α)k + βkλ + 1) + βkλ + 1.

Observe that since k > γ and 1/3 ≤ α ≤ 2/3, we have that αk ≥ γ/3 and (1−αk) ≥
γ/3. On the other hand, max{αk, (1−α)k} ≤ 2k/3 and 2k/3+βkλ+1 < k for k > γ.
The last inequality can be proved by observing that the function k/3 − βkλ − 1

is monotonically increasing for k > (3λβ)
1

1−λ and that γ > (3β)
1

1−λ > (3λβ)
1

1−λ .
Then the induction hypothesis yields the following.
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Tγ(k) ≤ max
1/3≤α≤2/3

T (αk + βkλ + 1) + T ((1− α)k + βkλ + 1) + βkλ + 1

≤ max
1/3≤α≤2/3

ε(k + 2βkλ + 2)− δ(αk + βkλ + 1)λ − δ(1− α)k + βkλ + 1)λ + βkλ + 1

≤ max
1/3≤α≤2/3

εk − δ(αk)λ − δ((1− α)k)λ + (2ε+ 1)(βkλ + 1)

≤ max
1/3≤α≤2/3

εk − δkλ(αλ + (1− α)λ) + (2ε+ 1)(βkλ + 1)

≤ εk − δkλ − δ(ρ− 1)kλ + (2ε+ 1)(βkλ + 1) ≤ εk − δkλ.

The last inequality holds whenever δ(ρ−1)kλ ≥ (2ε+1)(βkλ+1), which is ensured
by the choice of δ and the fact that kλ ≥ 1. This concludes the proof of (2), and
thus of (1).

By the definition of Tγ(k), (1) implies that there exists a set X ′ of size at most
εk such that for every component C of G − X ′, we have that |C ∩ X| ≤ γ and
|N(C)| ≤ γ.

What remains is to show that X ′ can be computed from G and X in polynomial
time. The inductive proof can be converted into a recursive algorithm. The only
computationally hard step of the proof is the construction of a tree-decompositon
of G in each inductive step. Instead of computing the treewidth exactly we use the
d∗
√

log tw(G)-approximation algorithm by Feige et al. [Feige et al. 2008], where
d∗ is a fixed constant. Thus when we partition V (G) into L, S, and R using
Proposition 2, the upper bound on the size of S will be d∗(βkλ)

√
log(βkλ) instead

of βkλ. However, for any λ < λ′ < 1 there is a β′ such that d∗(βkλ)
√

log(βkλ) <

β′kλ
′
. Now we can apply the above analysis with β′ instead of β and λ′ instead

of λ to bound the size of the set X ′ output by the algorithm. This concludes the
proof of the lemma.

The following corollary is a direct consequence of Lemma 7. Nevertheless, we
find it worthwhile to be mentioned separately.

Corollary 1. Let G be a hereditary graph class with the SQGM property with

parameter 2λ. For any ε > 1 and τ = O(( 1
ε )

λ
1−λ ), we have that for any G ∈ G and

X ⊆ V (G) with tw(G − X) ≤ η, there is X ′ ⊆ V (G) satisfying |X ′| ≤ ε|X| such
that tw(G−X ′) ≤ τ .

Proof. We apply Lemma 7 on G and X to obtain the set X ′ of size ε|X|.
Observe that in the proof of Lemma 7, γ = O(( 1

ε )
1

1−λ ). The treewidth of G −X ′
equals the maximum treewidth of a connected component C of G −X ′. However
|C ∩X| ≤ γ and so tw(G[C]) = O(γλ), concluding the proof.

6. APPROXIMATION SCHEME: PUTTING IT ALL TOGETHER

We are ready to state our first meta-theorem.

Theorem 1. Let Π be an η-modulated and reducible graph optimization problem.
Then Π has an EPTAS on every hereditary graph class G with the SQGM property.

Proof. Let φ(G,S) be a predicate defining an η-modulated and reducible graph
optimization problem Π. Let G be the input to Π and ε > 0 be a constant.
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Since Π is η-modulated, there is a constant ρ1 > 0 and a polynomial time al-
gorithm that outputs a set X such that |X| ≤ ρ1 OPTΠ(G) and tw(G −X) ≤ η.
Furthermore, since G is a hereditary graph class with the SQGM property and
tw(G − X) ≤ η, by Lemma 4, there exist constants β and λ < 1 such that
tw(G) ≤ β|X|λ. Since problem Π defined by a predicate φ(G,S) is reducible, there
exist a Min/Max-CMSO problem Π′ defined by a CMSO-expressible predicate
φ′(G,S), a constant ρΠ and a function f : N→ N such that:

(R1) there is a polynomial time algorithm that given G and X ′ ⊆ V (G) outputs
G′ such that |OPTΠ′(G

′)−OPTΠ(G)| ≤ ρΠ|X ′| and tw(G′) ≤ f(τ),

(R2) there is a polynomial time algorithm that given G and X ′ ⊆ V (G), G′, and a
vertex (edge) set S′ such that φ′(G′, S′) holds, outputs S such that φ(G,S) holds
and ||S| − |S′|| ≤ ρΠ|X ′|.

We put ρ = max{ρ1, ρΠ} and select ε′ = ε
2ρ2 . By Lemma 7 (we are not using its

full power yet), there exists γ such that given G and X, a set X ′ with the following
properties can be found in polynomial time

—|X ′| ≤ ε′|X|, and

—for every connected component C of G−X ′, we have that |C ∩X| ≤ γ.

Since G is a hereditary graph class, for every connected component C of G − X ′,
we have that C ∩X is a treewidth-η-modulator in graph G[C]. By Lemma 4 and
Proposition 1, there exist λ′ < 1 and β′ (depending on ε′, λ, η and β) such that
tw(G − X ′) ≤ β′γλ

′
= τ . We constuct G′ from G and X ′ by making use of

the polynomial time algorithm described in (R1). Since tw(G′) ≤ f(τ) and Π′ is
Min/Max-CMSO, we can use the extended version of Courcelle’s theorem [Cour-
celle 1990; 1997] given by Borie et al. [Borie et al. 1992] to find an optimal solution
S′ to Π′ in g(ε′)|V (G′)| time. By the properties of the polynomial time algorithm
(R1), ||S′| − OPTΠ(G)| ≤ ρ|X ′|. We now call the polynomial time algorithm de-
scribed in (R2) to construct a solution S to Π from G, X ′, G′ and S′. The conditions
on the second algorithm ensure that φ(G,S) holds and that ||S| − |S′|| ≤ ρ|X ′|.
Hence

||S| −OPTΠ(G)| ≤ 2ρ|X ′| ≤ 2ρ2ε′OPTΠ(G) = εOPTΠ(G).

Thus for every ε > 0, we construct an algorithm that in time g(ε)|V (G)|O(1),
where g is some function of ε, computes a (1 + ε)-approximate solution to Π. This
concludes the proof of the theorem.

6.1 Approximation schemes for bidimensional problems

In this subsection we prove that

—every minor-bidimensional linear-separable problem Π on a hereditary graph class
G with the SQGM property, and

—every contraction-bidimensional linear-separable problem Π on a hereditary graph
class G with the SQGC property

is η-modulated. By Theorem 1, this implies the existence of EPTASs for reducible
problems with these properties on the corresponding graph classes.
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We need first the following lemma, whose proof is an adaptation of the proof of
[Fomin et al. 2010, Lemma 3.2] for our purposes. We provide the proof here for
completeness.

Lemma 8. For any ε > 0 and minor-bidimensional linear-separable problem Π
on a hereditary graph class G with the SQGM property, there exists an integer
η ≥ 0 such that every graph G ∈ G has a treewidth-η-modulator S of size at most
ε ·OPTΠ(G).

Proof. Let β be a constant such that Π is (β ·t)-separable. Let α′ and 0 ≤ λ < 1
be the constants from Lemma 1, in particular tw(G) ≤ α′ · (OPTΠ(G))λ. Set
α = max{α′, 1}. Let us note that for any β′ > β, Π is also (β′ · t)-separable, so we
can assume that β ≥ 1.

We now define a few constants. The reason these constants are defined the way
they are will become clear during the course of the proof. Finally we set η based
on α, β, λ and ε.

—Set ρ = 1λ+2λ−3λ

3λ
and note that ρ > 0.

—set γ = 4αβ,

—set δ = γ(2ε+1)
ρ ,

—set k0 = (3 + 3γ)
1

1−λ + 1
3 · (

δ
ε )

1
1−λ . It is easy to verify that k0 satisfies

2

3
k0 + γkλ0 ≤ k0 − 1 (3)

and

0 ≤ ε · k0

3
− δ

(
k0

3

)λ
. (4)

In fact, since k0 ≥ (3 + 3γ)
1

1−λ and λ > 0, we have that k0 ≥ ( 3
kλ0

+ 3γ)
1

1−λ ,

or, equivalently, k1−λ
0 ≥ ( 3

kλ0
+ 3γ), which ensures that (3) holds. Since k0 ≥

1
3 · (

δ
ε )

1
1−λ , we have that kλ−1

0 ≤ δ
ε ·

1
3λ−1 . By multiplying both sides of the

inequality by
kλ0 ε
3 we ensure the correctness of inequality (4).

—Finally, set η = α · kλ0 .

We prove by induction on k, that for any k ≥ 1
3k0, every graph G ∈ G such

that OPTΠ(G) ≤ k has a treewidth-η-modulator of size at most εk − δkλ. In the
base case we consider any k such that 1

3k0 ≤ k ≤ k0. By Lemma 1, any graph
G ∈ G such that OPTΠ(G) ≤ k0 has treewidth at most α · kλ0 = η. Thus G has a
treewidth-η-modulator of size 0, and

0 ≤ ε1

3
k0 − δ

(
1

3
k0

)λ
≤ εk − δkλ

by the choice of k0. In the last inequality we used that for any 0 ≤ λ < 1, ε and
δ the function εk − δkλ is monotonically increasing from the first point where it
becomes positive. This fact may easily be verified by differentiation.

For the inductive step, let k > k0 and suppose that the statement is true for all
values below k. We prove the statement for k. Consider a graph G ∈ G such that
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OPTΠ(G) ≤ k. By Lemma 1, the treewidth of G is at most tw(G) ≤ α · kλ. By
Proposition 2 applied to (G,SOLΠ(G)), there is a 2/3-balanced separation (A1, A2)
of (G,SOLΠ(G)) of order at most tw(G) + 1 ≤ α · kλ + 1. Let L = A1 \ A2,
S = A1 ∩ A2 and R = A2 \ A1. Note that there are no edges from L to R. Since
(A1, A2) is a 2/3-balanced separation it follows that there exists a real 1

3 ≤ a ≤ 2
3

such that |L∩SOLΠ(G)| ≤ a|SOLΠ(G)| and |R∩SOLΠ(G)| ≤ (1− a)|SOLΠ(G)|.
Consider now the graph G[L ∪ S]. Since L has no neighbors in R (in G) and Π

is (β · t)-separable, it follows that

OPTΠ(G[L ∪ S]) ≤ |SOLΠ(G) ∩ (L ∪ S)|+ β|S|
≤ ak + (αkλ + 1) + β(αkλ + 1)

≤ ak + (αkλ + 1)(β + 1) ≤ ak + γkλ.

Here the last inequality follows from the assumption that k ≥ k0 ≥ 1 and the choice
of γ. Since k > k0, the properties of k0 imply that 2

3k + γkλ ≤ k − 1. Further
ak + γkλ ≥ 1

3k0 since a ≥ 1
3 . Because G is a hereditary graph class, we may apply

the induction hypothesis to G[L ∪ S] and obtain a treewidth-η-modulator ZL of
G[L ∪ S], such that

|ZL| ≤ ε(ak + γkλ)− δ
(
ak + γkλ

)λ
≤ ε(ak + γkλ)− δkλaλ.

An identical argument applied to G[R ∪ S] yields a treewidth-η-modulator ZR of
G[R ∪ S], such that

|ZR| ≤ ε
(
(1− a)k + γkλ

)
− δkλ(1− a)λ.

We now make a treewidth-η-modulator Z of G as follows. Let Z = ZL ∪S ∪ZR.
The set Z is a treewidth-η-modulator of G because every connected component of
G−Z is a subset of L or R, and ZL and ZR are treewidth-η-modulators for G[L∪S]
and G[R ∪ S] respectively. Finally we bound the size of Z.

|Z| ≤ |ZL|+ |ZR|+ |S|
≤ ε(ak + γkλ)− δkλaλ + ε

(
(1− a)k + γkλ

)
− δkλ(1− a)λ + γkλ

= εk − δkλ
(
(1− a)λ + aλ

)
+ kλγ(2ε+ 1)

≤ εk − δkλ + kλ (γ(2ε+ 1)− δρ)

≤ εk − δkλ

In the transition from the third to the fourth line we used that (1−a)λ+aλ−1 ≥ ρ
for any a between 1

3 and 2
3 .

To conclude the proof, we observe that the statement of the lemma follows from
what has just been proved. If OPTΠ(G) ≤ k0, then G has a treewidth-η-modulator
of size ε ·OPTΠ(G). If OPTΠ(G) > k0, then G has a treewidth-η-modulator of size
at most ε ·OPTΠ(G)− δ(OPTΠ(G))λ. This completes the proof.

Let F be a finite set of graphs containing at least one planar graph. It was
shown in [Fomin et al. 2012b], that in this case F-Deletion admits a randomized
constant factor approximation algorithm running in time O(mn). Let us note that
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by the result of Robertson and Seymour [Robertson and Seymour 1991], every
class of graphs of treewidth at most η has f(η) minimal forbidden minors, for some
function f . Since any graph of treewidth η excludes a (η + 1) × (η + 1) grid as
a minor, we have that this set of f(η) forbidden minors contains a planar graph.
Hence Treewidth-η Modulator is a special case of F-Deletion, and we have
the following proposition.

Proposition 5 [Fomin et al. 2012b]. Treewidth-η Modulator admits a
randomized O(nm) time constant factor approximation algorithm.

Lemma 8 and Proposition 5 yield the following corollary.

Lemma 9. Let Π be a minor-(contraction-) bidimensional linear-separable prob-
lem on a graph class with the SQGM (SQGC) property. Then there exists a constant
η such that Π is η-modulated.

Proof. Let us prove the lemma for minor-bidimensional problems, for contraction-
bidimensional problems the proof is similar.

Let Π be a minor-bidimensional linear-separable problem on graph class G with
the SQGM property. In order to show that Π is η-modulated, we have to show that
there is a polynomial time algorithm that given a graph G ∈ G, outputs a set X of
size O(OPTΠ(G)) such that tw(G−X) ≤ η. By Lemma 8, there is a treewidth-η-
modulator of size O(OPTΠ(G)). Then by Proposition 5, a treewidth-η-modulator
of size O(OPTΠ(G)) can be found in polynomial time.

Combining Theorem 1 with Lemma 9, we obtain the following result, which is
the second main theorem of the paper.

Theorem 2. Let Π be a reducible

—minor-bidimensional linear-separable problem and G a hereditary graph class with
the SQGM property, or

—contraction-bidimensional linear-separable problem and G a hereditary graph class
with the SQGC property.

Then there is an EPTAS for Π on G.

7. MORE APPLICATIONS OF MAIN THEOREMS

By Theorem 2, all problems discussed in Section 4 admit EPTAS on graph classes
with the SQGM or SQGC properties. However, there is also a range of problems
that are not bidimensional, but which can be handled by Theorem 1 easily. There
are also a set of problems which can be easy adapted so either Theorem 1, or
Theorem 2 can be applied.

We discuss such problems in this section.

Spanning trees and induced subgraphs. In the Max Leaf Spanning Tree
problem we are given a connected graph G and asked to find a spanning tree T of
G maximizing the number of leaves of T . We could have shown that the problem is
minor-bidimensional and separable, however, it is easier to show that the problem
is η-modulated for η = 2 directly. Indeed, Kleitman and West [Kleitman and West
1991] have shown that a connected graph which contains no spanning tree with at
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least k leaves has at most 4k + 2 vertices of degree at least 3. Thus given a graph
we can just delete all vertices of degree at least 3, and the remaining graph will
have treewidth at most 2. Hence, Max Leaf Spanning Tree is η-modulated.

We prove that Π = Max Leaf Spanning Tree is reducible. The predicate
φΠ(G,S) defining Max Leaf Spanning Tree can be: G is connected and there
is a spanning tree T of G such that each vertex of S is a leaf of T . An equivalent,
and more suitable for us way to define φΠ(G,S) is: graph G − S is connected
and every vertex of S has a neighbor outside S. To prove the first property of
reducible problems, for a given graph G and set X, we put G′ = G − X. Then
tw(G′) ≤ f(tw(G−X)) holds trivially. The intuition behind the definition of the
annotated problem Π′ is the following. If T is a tree in G with a set of leaves S,
then F = T − X is a forest. Vertices S′ = S \ X are also leaves in this forest.
Moreover, every non-singular (i.e. containing more than one vertex) connected
component of F has a vertex which is not in S′ and is adjacent to a vertex in X.
On the other hand, every spanning forest in G′ whose set of leaves contains S′ and
whose connected components satisfies the above property, can be transformed into
a spanning tree of G with at least |S′| leaves by adding to F vertices of X and
turning it into a tree by adding some edges not incident with vertices of S′.

Let R = NG(X). We define the annotated problem Π′ with the following CMSO-
expressible property φΠ′ . For graph G′ = G−X with annotated vertex set R and
vertex subset S′ of G′, φΠ′(G

′, S′) is true if

—for every vertex v ∈ S′
either {v} is a (singular) connected component of G′, or
v has a neighbor in V (G′) \ S′, and

—for every non-singular connected component C of G′, graph G′[C] − S′ is con-
nected, and C contains a vertex from R \ S′.

The crucial observation is the following: For any connected graph G and every
vertex subset S′ of G satisfying the above conditions, we have that G − S′ is
connected.

It is not difficult to show that Π′ is a Max-CMSO problem. Now we verify that it
satisfies the first property of reducible problems. Condition tw(G′) ≤ f(tw(G−X))
holds trivially. To prove that for constant ρΠ = 1, |OPTΠ′(G

′) − OPTΠ(G)| ≤
ρΠ · |X|, where Π = Max Leaf Spanning Tree, we do the following. Let S be
an optimal solution to OPTΠ. Then S′ = S \X is a feasible solution to Π′. On the
other hand, given a feasible solution S′ to Π′, we have that G − S′ is connected.
Since every vertex of S′ has a neighbor outside S′, this implies that S′ is also a
feasible solution to Π. Thus OPTΠ′(G

′) ≤ OPTΠ(G) ≤ OPTΠ′(G
′) + |X|. Since a

feasible solution S′ of Π′ is also a feasible solution to Π, we have that the second
property of reducible problems holds too.

In the Max Internal Spanning Tree, we are interested to find a spanning
tree with the maximum number of internal (non-leaf) vertices. It is easy to show
that a maximal set of internal vertices should form a vertex cover of the input
graph. Hence, the problem is η-modulated on graphs with the SQGM property. It
is also easy to prove that the problem is reducible.

Consider now the Maximum Degree Preserving Spanning Tree problem,
where given a graph G the objective is to find a spanning tree such that the number
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of vertices which have the same degree in the tree as in the input graph, is maxi-
mized. Maximum Degree Preserving Spanning Tree is neither closed under
taking minors nor contractions. On the other hand, it is possible to show that
every solution to the problem [Guo et al. 2010, Lemma 4.1] is a 2-dominating set
in G. By lemmata 5 and 9, r-Dominating Set is η-modulated, hence Maximum
Degree Preserving Spanning Tree is also η-modulated on graphs with the
SQCM property. The proof that the problem is reducible is similar to Max Leaf
Spanning Tree.

Similar arguments can be used to show that Maximum Induced Forest, Max-
imum Induced Bipartite Subgraph, and many other problems are η-modulated
on graphs with the SQCM property. Indeed, vertices of a maximal induced forest
or bipartite subgraph should form a dominating set in the input graph.

We summarize the above observations in the following lemma.

Lemma 10. On hereditary graph classes with the SQGM property Max Leaf
Spanning Tree and Max Internal Spanning Tree are η-modulated and re-
ducible. On hereditary graph classes with the SQCM property Maximum Degree
Preserving Spanning Tree, Maximum Induced Forest, and Maximum In-
duced Bipartite Subgraph are η-modulated and reducible.

Subgraph covering and packing. Now we consider problems about hitting and
packing subgraphs. These problems can be handled in almost the same way as
hitting and packing minors. Let S be a finite set of connected graphs. We define
the following problems.

S-Deletion
Instance: A graph G.

Objective: Find a minimum size set S ⊆ V (G) such that G− S
does not contain any of the graphs from S as a subgraph.

S-Packing
Instance: A graph G.

Objective: Find a maximum size collection of vertex disjoint subgraphs
such that each of them contains a graph from S
as a subgraph.

Problems S-Deletion or S-Packing are not bidimensional. However, we give
a reduction rule which in polynomial time produces from a given graph G a new
reduced graph G′ with exactly the same values OPT for S-Deletion and S-
Packing as in G. Moreover, the reduced graph G′ has an r-dominating set of
size O(OPT), where r is the maximum size of a graph in S. Since r-Dominating
Set is η-modulated on classes of graphs with the SGCM property, there is an algo-
rithm that in polynomial time outputs a set X ⊆ V (G) of size O(OPT) such that
tw(G−X) ≤ η. Hence the pre-processed versions of S-Deletion and S-Packing
are η-modulated on graphs with the SGCM property.

We introduce the following rule, the Redundant Vertex Rule. Given as input G
to S-Deletion or S-Packing, we remove all vertices that are not part of any
subgraph isomorphic to any graph in S. We can perform the Redundant Vertex
Rule in O(|V | · |S|) time by looking at a small ball around every vertex v and check
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whether the ball contains a subgraph isomorphic to a graph in S that contains
v. This algorithm to check a subgraph isomorphic to a given graph containing a
particular vertex appears in [Eppstein 1999].

Consider an instance G of S-Deletion reduced according to the Redundant
Vertex Rule, and let X be an optimal solution in G. Since X hits all copies of
graphs in S occurring in G and every vertex in G appears in some copy of a graph
in S, it follows that X is an r-dominating set of G, where r is the maximum size of
a graph in S. Finally, consider an instance G of S-Packing reduced according to
the Redundant Vertex Rule, and consider an optimal solution G1, . . . , GOPT such
that for every i, Gi contains a graph from S as a subgraph. Since every vertex
of the reduced graph is in a subgraph isomorphic to a graph in S, the selection of
G1, . . . , GOPT implies that every vertex v has distance at most r to some vertex
in some Gi. Let X = {v1, v2, . . . , vOPT} where xi ∈ V (Gi). Then every vertex
v has distance at most 2r to X. Thus, Lemma 5 yields that S-Deletion and
S-Packing are η-modulated. The proof that they are both reducible is identical
to the discussion for F-Deletion and F-Packing.

Thus we obtain the following lemma.

Lemma 11. S-Deletion or S-Packing pre-processed with the Redundant Ver-
tex Rule are η-modulated on graph classes with the SGCM property and reducible.

7.1 Partial domination and covering

In the Partial r-Dominating Set problem we are given a graph G together with
an integer t ≤ |V (G)|. The objective is to find a minimum size set S such that
|BrG(S)| ≥ t. In Partial Vertex Cover we are given a graph G together with an
integer t ≤ |E(G)| and the objective is to find a minimum size vertex set S such that
|{uv ∈ E(G) : u ∈ S ∨ v ∈ S}| ≥ t. We refer to edges {uv ∈ E(G) : u ∈ S ∨ v ∈ S}
as edges covered by S. PTAS for Partial Vertex Cover on planar graphs was
given in [Gandhi et al. 2004]. To the best of our knowledge, no PTAS for Partial
r-Dominating Set was known prior to our work.

We will not show that Partial r-Dominating Set and Partial Vertex
Cover are bidimensional, instead we will directly construct EPTASs for these
problems on apex-minor-free graphs using the tools developed so far. We will use
OPT for the size of an optimal solution to our instances. We employ an algorithm
of Fomin et al. [Fomin et al. 2011b], which was developed to obtain subexponen-
tial algorithms for Partial Vertex Cover and Partial r-Dominating Set on
apex-minor-free graphs. However, exactly the same algorithm works for every class
of graphs G with the SQGC property.

Fomin et al. [Fomin et al. 2011b] give an algorithm for solving Partial r-

Dominating Set in time 2O(r
√

OPT)nO(1) and Partial Vertex Cover in time
2O(
√

OPT)nO(1). A key part of their algorithm for Partial r-Dominating Set is
a polynomial time algorithm ([Fomin et al. 2011b], Lemma 5) that given a graph
G together with integers t and k returns an induced subgraph G′ of G such that

—G′ has a 3r-dominating set of size k;

—G has a k-sized vertex set S with |BrG(S)| ≥ t if and only if G′ has a k-sized
vertex set S′ with |BrG′(S′)| ≥ t.
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Our EPTAS loops over all possible values of k and for each such value produces
G′k from G, t and k using Lemma 5 of [Fomin et al. 2011b]. If G′k has less than t
vertices, then G′k cannot have any set which covers at least t vertices, and so, neither
can G. If G′k has at least t vertices, we proceed with the following subroutine.

By construction, G′k has a 3r-dominating set of size k. We have seen already that
r-Dominating Set is contraction-bidimensional linear-separable problem. Then
by Lemma 9, for every graph class G with the SQGC property, there exists a
constant η such that 3r-Dominating Set is η-modulated in G. This means that
there is a polynomial time algorithm that outputs a set X of size at most ρk such
that tw(G′k −X) ≤ η. For every ε > 0, we define ε′ = ε/ρ.

By Lemma 7 and Corollary 1, there exists a polynomial time algorithm that
computes a set X ′ of size at most ε′ρk such that tw(G′k −X ′) ≤ δ for a constant δ
depending only on η and G. We put all vertices of X ′ in our solution. Specifically,
we remove X ′ from G′k and put all other vertices of BrG′k

(X ′) into a set R. Using

standard dynamic programming (or by formulating the problem in an extended
version of MSO [Arnborg et al. 1991]) on graphs of bounded treewidth, we can find
a minimum size set S′ ⊆ V (G′k) \X ′ such that |X ′|+ |R∪BrG′k−X′(S

′)| ≥ t in time

f(δ)nO(1). The subroutine returns the set S′ ∪X ′ as a solution.
Since G

′

k is an induced subgraph of G, any solution S = S′ ∪ X ′ returned by
the subroutine covers at least t vertices in G. We return the smallest S as our
approximate solution. In the iteration of the outer loop where k = OPT we have
that G′k has a set Z of size OPT that covers t vertices in G′. Observe that Z \X ′
covers at least t − |BrG′k(X ′)| of V (G′k) \ BrG′k(X ′) in the graph G′k − X ′. Thus

the solution returned by the dynamic programming algorithm has size at most
|Z \X ′| ≤ |Z| = OPT and the solution returned by the subroutine in this iteration
is at most OPT +|X ′| ≤ OPT(1 + ε′ρ). Since we selected ε′ = ε/ρ, we have that for
every ε > 0 our polynomial time algorithm returns a (1 + ε)-approximate solution.
This concludes the analysis of our EPTAS for Partial r-Dominating Set. An
EPTAS for Partial Vertex Cover can be constructed in the similar manner.

Thus we obtain the following lemma.

Lemma 12. There is an EPTAS for Partial r-Dominating Set and Partial
Vertex Cover on classes of graphs with the SQGC property.

Let us recapitulate here the problems for which the application of theorems 1
and 2 together with lemmata 5, 10, 6, 11 and 12, imply EPTASs.

Corollary 2. F-Packing, F-Deletion, when set F contains a planar graph,
Connected Vertex Cover, Max Internal Spanning Tree, and Max Leaf
Spanning Tree admit an EPTAS on hereditary graph classes with the SQGM
property.

Corollary 3. r-Dominating Set, Connected Dominating Set, r-Scattered
Set, Maximum Full-Degree Spanning Tree, Maximum Induced Forest,
Maximum Induced Bipartite Subgraph, Vertex-S-Covering, Vertex-S-
Packing, Partial r-Dominating Set and Partial Vertex Cover admit an
EPTAS on hereditary graph classes with the SQGC property.
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8. STRUCTURE OF UNIT DISK AND MAP GRAPHS

Let GtU and GtM be the classes of unit disk and map graphs, respectively, not con-
taining clique Kt on t vertices as a subgraph. We refer to such graphs as Kt-free
graphs. In this section we prove that both classes of graphs have SQGM property.
Pipelined with Theorem 1, this implies that every η-modulated and reducible prob-
lem, in particular each of the problems listed in Corollary 2, admits an EPTAS on
GtU and GtM .

8.1 Kt-free unit disk graphs

We start with the following well known observation (see [Marathe et al. 1995,
Lemma 3.2]) about Kt-free unit disk graphs. Let us recall that we use ∆(G) to
denote the maximum vertex degree of graph G.

Observation 2. For every G ∈ GtU , ∆(G) ≤ 6t.

Observation 2 allows us to prove theorems on unit disk graphs of bounded maximum
degree and then use these results for Kt-free graphs.

Let G be a unit disk graph generated by B = {B1, . . . , Bn} and with ∆(G) = ∆.
We associate with G an auxiliary planar graph PG such that the treewidth of these
two graphs is linearly related. Let PI be a planar graph defined as follows. Consider
the embedding (drawing) of the unit disks B = {B1, . . . , Bn} in the plane. Let P
be the set of points in the plane such that each point in P is on the boundary of at
least two disks. Essentially, this is the set of points at unit distance to centers of at
least two disks. We place a vertex at each point in P and regard the curve between
a pair of vertices as an edge, then the embedding of unit disks B = {B1, . . . , Bn}
in the plane gives rise to the drawing PI of a planar multigraph. Furthermore let
DI be the planar dual of PI ; it is well known that DI is also planar.

Next we define a notion of region which is essential for the definition of PG. Every
face of PI either contains no points from disks of B, or is an intersection of interior
parts of a subset of B. We call a face R of the plane graph PI a region, if there
exists a nonempty subset B′ ⊆ B of unit disks such that every point in R is an
interior point of each disk in B′. Hence with every region R we can associate a set
of unit disks. Since the vertices of G correspond to disks of B, we can associate
a subset of vertices of G, say V(R), to a region R. Specifically V(R) contains all
vertices in G whose disk contains R. We remark that there could be two regions
R1 and R2 with V(R1) = V(R2). See Figure 2 for an illustration.

Now we are ready to define the graph PG. Let R1, . . . ,Rp be the regions of PI .
These are faces in PI and hence in the dual graph DI we have vertices corresponding
to them. That is, in DI for every region Ri we have a vertex v(Ri). We define

PG := DI [{v(Ri) | 1 ≤ i ≤ p}].

Thus, PG is an induced subgraph of DI obtained by removing non-region vertices.
Figure 3 illustrates the construction of graphs PI and PG from unit disks drawing.
Next we prove some properties of PG.

Lemma 13. Let G be a unit disk graph of maximum degree ∆. Then PG is a
planar graph and every vertex v ∈ V (G) is a part of at most 3(∆2 + ∆) regions.
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B1 B2 B3

v1 v2

v3

v4

v5

v6

Fig. 2. A planar (multi)graph PI formed from unit disk graph G with three vertices B1, B2, and
B3. The vertex set of Pi is {v1, . . . , v6}. It has 7 regions. For example, for region R1 bounded

by v1, v3, v5, v4, we have V(R1) = {B1, B2}. For region R2 bounded by v1, v2, v3 and region R3

bounded by v4, v5, v6, we have V(R2) = V(R3) = {B2}. The outer face of PI is not a region.

(A) (B) (C)

Fig. 3. (A) Drawing of a planar (multi)graph PI formed by the drawing of four disks; (B) The

dual graph DI of PI ; (C) The graph PG.

Proof. The graph PG is a subgraph of DI , the planar dual of PI , and hence it
is also planar. Let v ∈ V (G) be a vertex. We consider the embedding (drawing)
of unit disks corresponding to the vertices of the closed neighborhood NG[v] in the
plane. Then |NG[v]| ≤ ∆ + 1. Let L be the set of the points in the plane such that
each point in the set is on the boundary of at least two disks with distinct center
points. This is the induced subgraph of PI formed by the intersection points of the
boundaries of disks from NG[v]. Since every two circles with distinct center points

intersect in at most two points, we have that |L| ≤ 2
(|NG[v]|

2

)
≤ 2
(

∆+1
2

)
= ∆2 + ∆.

Consider the planar graph PI [L], which is a subgraph of PI induced by L. Observe
that v can only be a part of regions defined by faces of PI [L]. To obtain an upper
bound on the number of faces of PI [L], we first obtain an upper bound on the
number of edges of PI [L]. First observe that between any pair of vertices in PI [L]
there can at most be two edges and there are at most |L| pairs that have two edges
between them. It is well known that a planar graph on n vertices without any
parallel edges has at most 3n − 6 edges. Thus, the number of edges in PI [L] is at
most 3|L| − 6 + |L| = 4|L| − 6. Now by Euler’s formula, the number of faces in
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PI [L] is at most

2 + |E(PI [L])| − |L| ≤ 2 + 3|L| − 6 ≤ 2 + 3(∆2 + ∆)− 6 ≤ 3(∆2 + ∆).

Thus v is a part of at most 3(∆2 + ∆) regions. This completes the proof.

Lemma 14. Let G be a unit disk graph. Then tw(G) ≤ (∆(G) + 1) · (tw(PG) +
1)− 1.

Proof. Let ∆(G) = ∆ and (X ′, T ) be a tree decomposition of PG of width
tw(PG). We build a tree decomposition (X , T ) of G from the tree-decomposition
(X ′, T ) of PG. Let X ′i be the subset of V (PG) associated with the node i of T .
We define Xi :=

⋃
v(R)∈X′i

V(R). Recall that V(R) is a subset of vertices in V (G)

characterizing R. This concludes the description of a decomposition for G. Observe
that the set V(R) is contained in NG[w] for every w ∈ V(R) and hence the size of
each of them is bounded above by ∆ + 1. Hence the size of each Xi is at most (∆ +
1) · |X ′i|. This implies that the size of every bag Xi is at most (∆ + 1)(tw(PG) + 1).

Now we show that this is indeed a tree-decomposition for G by proving that it
satisfies the three properties of a tree decomposition. By construction, every vertex
of V (G) is contained in some Xi. To show that for every edge uv ∈ E(G) there is
a node i such that u, v ∈ Xi, we argue as follows. If there is an edge between u and
v in G, then unit disks corresponding to these vertices intersect and hence there
is a region R which is completely contained inside this intersection. This implies
that u, v ∈ V(R). For node i such that v(R) is contained inside X ′i, we have that
the corresponding bag Xi contains u and v. To conclude we need to show that for
each v ∈ V (G) the set Z = {i | x ∈ Xi} induces a subtree of T . Observe that
v appears in all the bags corresponding to node i such that X ′i contains a vertex
corresponding to a region which v is a part of. This implies that all these regions
are inside the unit disk corresponding to v. Hence the graph induced by vertices
corresponding to these regions is connected. Thus the set Z induces a subtree of
T .

We now show a linear excluded grid theorem for unit disk graphs of bounded
degree. But first we need the following proposition, which is just the equivalent
characterization of graph minors.

Proposition 6 [Diestel 2005]. A graph H is a minor of G if and only if
there is a map ψ : V (H)→ 2V (G) such that for every vertex v ∈ V (H), G[ψ(v)] is
connected, for every pair of vertices v, u ∈ V (H), ψ(u) ∩ ψ(v) = ∅, and for every
edge uv ∈ E(H), there is an edge u′v′ ∈ E(G) such that u′ ∈ ψ(u) and v′ ∈ ψ(v).

Lemma 15. Any unit disk graph G with maximum vertex degree ∆ contains a

b tw(G)
144∆3 c × b tw(G)

144∆3 c grid as a minor.

Proof. Let G be a unit disk graph of maximum degree ∆, and define PG as
above. Since PG is planar, by the excluded grid theorem for planar graphs [Robert-

son et al. 1994], PG contains a t× t grid as a minor, where t = tw(PG)
6 . By Proposi-

tion 6, we know that there is a minor model of this grid, say {S[i, j] : 1 ≤ i, j ≤ t}.
We know that for every i,j, PG[S[i, j]] is connected, the sets S[i, j] are pairwise
disjoint and finally for every i,j,i′,j′ such that |i − i′| + |j − j′| = 1 there is an
edge in PG with one endpoint in S[i, j] and the other in S[i′, j′]. For every i,j,
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we build S′[i, j] from S[i, j] by replacing every vertex v(R) ∈ S[i, j] by V(R) and
removing duplicates. We set ∆′ = 3(∆2 + ∆), and observe that for any vertex v in
G, Lemma 13 implies that there are at most ∆′ sets S′[i, j] containing v.

We say that an integer pair (i, j) is internal if ∆′ ≤ i ≤ t−∆′ and ∆′ ≤ j ≤ t−∆′.
We prove that for any two internal pairs (i, j) and (i′, j′) such that |i−i′|+ |j−j′| >
∆′ the sets S′[i, j] and S′[i′, j′] are disjoint. To obtain a contradiction assume that
both sets contain a vertex v in G. Let Xv be the set of vertices v(R) such that
v ∈ V(R). We will show that |Xv| > ∆′ which contradicts that v is part of at
most ∆′ regions. On one hand, PG[Xv] is connected. On the other hand, both
S[i, j]∩Xv and S[i′, j′]∩Xv are non-empty. Since there is a unique way to draw a
grid in the plane and any plane drawing of PG must contain a drawing of the grid
minor, any path in PG between a vertex in S[i, j] and a vertex in S[i′, j′] must pass
through at least ∆′ + 1 cycles of the grid minor. Hence the length of a shortest
path between a pair of vertices, x ∈ (S[i, j] ∩Xv) and y ∈ (S[i′, j′] ∩Xv) in PG, is
at least ∆′ + 1. This implies that the length of a shortest path between x and y in
PG[Xv] is at least ∆′ + 1 and hence |Xv| > ∆′, yielding the desired contradiction.
By an identical argument one can show that, for any two internal pairs (i, j) and
(i′, j′) such that |i− i′|+ |j− j′| > 2∆′ there is no edge with one endpoint in S′[i, j]
and the other in S′[i′, j′].

We can assume that t ≥ 2∆. Indeed, otherwise, tw(PG) < 12 · ∆′. Then by
Lemma 14, tw(G) ≤ (∆ + 1) · (12 ·∆′ + 1), and the lemma trivially holds. Thus
the set of all possible pairs a, b of non-negative integers such that 4∆′a + 2∆′ ≤ t
and 4∆′b+ 2∆′ ≤ t, is non-empty. For all such pairs, we define the sets

—V [a, b] =
⋃2∆−1
i=0

⋃2∆−1
j=0 S[∆ + 4∆a+ i,∆ + 4∆b+ j].

—Eh[a, b] =
⋃2∆−1
i=0 S[3∆ + 4∆a+ i, 2∆ + 4∆b].

—Ev[a, b] =
⋃2∆−1
j=0 S[2∆ + 4∆a, 3∆ + 4∆b+ j].

One can think of each set V [a, b] as a vertex of a grid, with each set Eh[a, b] being
a horizontal edge and each set Ev[a, b] being a vertical edge in this grid. Build
V ′[a, b] from V [a, b] by replacing every vertex v(R) ∈ V [a, b] by V(R) and removing
duplicates. Construct E′h[a, b] from Eh[a, b] and E′v[a, b] from Ev[a, b] similarly. We
list the properties of the sets V ′[a, b], E′h[a, b] and E′v[a, b].

(1) For every a, b, G[V ′[a, b]], G[E′h[a, b]] and G[E′v[a, b]] are connected.

(2) Distinct sets V ′[a, b] and V ′[a′, b′] are pairwise disjoint, and there is no edge
with one endpoint in V ′[a, b] and the other in V ′[a′, b′].

(3) For every a, b the set E′h[a, b] is disjoint from every set E′h[a′, b′], E′v[a
′, b′] and

V ′[a′, b′], except possibly for V ′[a, b] and V ′[a+ 1, b].

(4) For every a, b the set E′v[a, b] is disjoint from every set E′h[a′, b′], E′v[a
′, b′] and

V ′[a′, b′], except possibly for V ′[a, b] and V ′[a, b+ 1].

(5) For every a, b there is a vertex in E′h[a, b] which is adjacent to V ′[a, b] and a
vertex which is adjacent to V ′[a+1, b]. Furthermore there is a vertex in E′v[a, b]
which is adjacent to V ′[a, b] and a vertex which is adjacent to V ′[a, b+ 1].

Property 1 follows directly from the fact that PG[V [a, b]], PG[Eh[a, b]] and PG[Ev[a, b]]
are connected. Properties 2, 3 and 4 follow from the fact that for any two internal
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pairs (i, j) and (i′, j′) such that |i− i′|+ |j − j′| > 2∆′ the sets S′[i, j] and S′[i′, j′]
are disjoint and have no edges between each other. Finally, Property 5 follows from
the fact that for every a,b there is a vertex in Eh[a, b] which is adjacent to V [a, b]
and a vertex which is adjacent to V [a+ 1, b], and that there is a vertex in Ev[a, b]
which is adjacent to V [a, b] and a vertex which is adjacent to V [a, b+ 1].

For a pair a, b of integers consider the set E′h[a, b]. The properties 1, 2 and 5
ensure that some connected component E∗h[a, b] of G[E′h[a, b]]−(V ′[a, b]∪V ′[a+1, b])
contains at least one neighbor of V ′[a, b] and one neighbor of V ′[a+ 1, b]. Similarly
at least one connected component E∗v [a, b] of G[E′v[a, b]] − (V ′[a, b] ∪ V ′[a, b + 1])
contains at least one neighbor of V ′[a, b] and one neighbor of V ′[a, b+ 1]. Then the
family

{V ′[a, b], E∗h[a, b], E∗v [a, b] : 4∆′a+ 2∆′ ≤ t and 4∆′b+ 2∆′ ≤ t}

of vertex sets in G forms a model of a b t−2∆′

4∆′ c×b
t−2∆′

4∆′ c grid minor in G with every

edge subdivided once. We can assume that t ≥ 4∆′, then we have that t−2∆′

4∆′ ≥
t

8∆′ .
The sets V ′[a, b] are models of the vertices of the grid, the sets E∗h[a, b] are models

of the subdivision vertices on the horizontal edges, while E∗v [a, b] are models of
the subdivision vertices on the vertical edges. Now by Lemma 14, we know that

tw(PG) ≥ tw(G)+1
(∆+1) −1. Combining this with the fact that t = tw(PG)

6 , we have that

t

8∆′
≥ tw(G)

48∆′ ·∆
≥ tw(G)

144∆3
.

Thus G has a b tw(G)
144∆3 c × b tw(G)

144∆3 c grid as a minor. This concludes the proof.

By Lemma 15 and Observation 2, we have the following theorem for the class GtU
of unit disk graphs excluding Kt as a subgraph.

Theorem 3. Graph class GtU has the SQGM property.

Let us remark that for GtU the parameter c, from Definition 9 of the SQGM property,
is equal to 1 and the constant α = O(t3).

8.2 Kt-free map graphs.

In this section we show that map graphs with bounded clique size have the SQGM
property. As it is observed in [Demaine et al. 2009, p. 149], for every map graph
G one can associate a map M = (E , ω) such that

(i) no vertex in E is incident only to lakes;

(ii) there are no edges in E whose two incident faces are both lakes (possibly the
same lake);

(iii) every vertex in E is incident to at most one lake, and incident to such a lake
at most once.

From now onwards we will assume that we are given map satisfying the above
properties. For our proof we also need the following combinatorial lemma.

Lemma 16. Let G be a map graph associated with M such that the maximum
clique size in G is at most t. Then the maximum vertex degree of E is at most t+2.
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Proof. Targeting towards a contradiction, let us assume that there is a vertex
v ∈ V (E ) of degree at least t + 3. By definition, each connected component of E
is biconnected and hence there are at least t+ 2 cyclic faces adjacent to v. By the
properties of M, we have that all, except maybe one, adjacent faces are not lakes.
However the vertices corresponding to nation faces form a clique of size t+ 1 in G,
a contradiction.

For our proof we also need the notions of radial and dual of map graphs. The
radial graph R = R(M) has a vertex for every vertex of E and for every nation
of E , and R is a bipartite graph with bipartition V (E ) and N(E ). Two vertices
v ∈ V (E ) and f ∈ N(E ) are adjacent in R if v is incident to nation f . The dual
D = D(M) of M has vertices corresponding only to the nations of E . The graph
D has a vertex for every nation of E , and two vertices are adjacent in D if the
corresponding nations of G share an edge. We now show a linear excluded grid
theorem for map graphs with bounded maximum clique.

Lemma 17. There exists a constant ρ such that any map graph G with maximum

clique size t contains a ρ·tw(G)
t × ρ·tw(G)

t grid as a minor.

Proof. LetM be the map such that the graph associated with it is G. We now
apply the result from [Demaine et al. 2009, Lemma 4] that states that the treewidth
of the map graph G is at most the product of the maximum vertex degree in E and
tw(R)+1. By Lemma 16, we know that the maximum vertex degree of E is at most
t+ 2, and hence tw(G) ≤ (t+ 2) · (tw(R) + 1). We now apply [Demaine et al. 2009,
Lemma 3] which bounds the treewidth of a radial graph of a map. In particular,
by [Demaine et al. 2009, Lemma 3] we have that tw(R) = O(tw(D)). This implies
that tw(G) = O(t · tw(D)). Observe that the graph D, the dual of M, is a
planar subgraph of G. By a result of Robertson et al. [Robertson et al. 1994], there
exists a constant d such that every planar graph H contains d · tw(H)× d · tw(H)
grid graph as a minor. This implies that there exists a constant d such that D
has d · tw(D) × d · tw(D) grid graph as a minor. This combined with facts that
tw(G) = O(t ·tw(D)) and D is a subgraph of G implies that there exists a constant

ρ such that G contains a ρ·tw(G)
t × ρ·tw(G)

t grid as a minor.

By Lemma 15 and Observation 2, we have the following theorem about the class
GtM of map graphs excluding Kt as a subgraph. .

Theorem 4. Graph class GtM has the SQGM property.

For class GtM the parameter c = 1 and the constant α is of order t/ρ.
Combining Theorem 1 with Theorems 3 and 4, we arrive at the following theo-

rem.

Theorem 5. Let Π be a reducible minor-bidimensional problem with the sep-
aration property. There is an EPTAS for Π on GtU and GtM with running time
O(f(ε, t) · nO(1)) for some function f .

8.3 K4-free disk graphs

Our result in Subsection 8.1 can easily be generalized to disk graphs of bounded
degree. There is another widely used concept of ply related to geometric graphs
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Fig. 4. Family of disks used to construct graph Gt for t = 3

which has turned out be very useful algorithmically [van Leeuwen 2009]. An inter-
section graph G generated by set of disks B = {B1, . . . , Bn} (not necessarily unit
disks) is said to have ply ` if every point in the plane is contained inside at most
` disks in B. Observe that if a unit disk graph has bounded ply, then it also has
bounded vertex degree but this is not true for disk graphs. Here, we show that
already the classes of disk graphs with ply 3 and K4-free disk graphs do not have
the SQGM property.

Theorem 6. The classes of K4-free disk graphs and disk graphs with ply 3 do
not have the SQGM property.

For the proof of Theorem 6, we need the concept of a bramble. A bramble in a graph
G is a family of connected subgraphs of G such that any two of these subgraphs have
a nonempty intersection or are joined by an edge. The order of a bramble is the
minimum number of vertices required to hit all subgraphs in the bramble. Seymour
and Thomas [Seymour and Thomas 1993] proved that a graph has treewidth k if
and only if the maximum order of a bramble of G is k + 1. Thus a bramble of
order k + 1 is a witness that the graph has treewidth at least k. We will use this
characterization to get a lower bound on the treewidth of the graph we construct.

Proof. We define a family F of disk graphs of ply 3 such that for every G ∈ F
we can find a set X ⊆ V (G) such that tw(G−X) ≤ 1 while tw(G) ≥ |X| − 1. By
Lemma 4, this would imply that F does not have the SQGM property.

Given a natural number t ≥ 2, our graph Gt is defined as follows. We give the
coordinates for centers of these disks.

—We have “small” disks of radius 0.99 centered at (1.25p, 2q) for 0 ≤ p ≤ 3t2 and
0 ≤ q ≤ t− 1.

—We have “large” disks with radius t−0.01 centered at ((2p+1)t, t), 0 ≤ p ≤ t−1.

Intuitively, we have small disks stacked in t rows, where in each row two consecutive
disks intersect. Large disks intersect some unit disks in each row and they are pair-
wise disjoint among themselves. See Figure 4, for an example of our construction.
Let Gt be the disk graph obtained from the intersection of disks placed as above.
Observe that every point in the plane only occurs in at most 3 disks and hence the
ply of the graph is 3. Furthermore, since at most 3 disks mutually intersect we have
that G is also K4-free. Let A be the set of vertices corresponding to small disks in
rows and X be the set of remaining vertices. Observe that the graph induced by A
is a set of vertex disjoint paths and hence tw(Gt[A]) = tw(Gt −X) = 1.
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We show that the treewidth of Gt is at least t − 1 by exhibiting a bramble of
order t. Let us take the following set Si, 0 ≤ i ≤ t − 1. The set Si consists of
vertices corresponding to small disks centered at (1.25p, 2i), where 0 ≤ p ≤ 3t2 and
a vertex corresponding to large disk with radius t− 0.01 centered at ((2i+ 1)t, t).
Let us note that graphs induced by sets Si induce connected subgraphs of G. Since
the disk with radius t − 0.01 intersects at least one small disk in each row, we
have that for every i, j ∈ {1, . . . , t}, i 6= j, graphs induced by sets Si and Sj are
joined by an edge. Furthermore Si ∩ Sj = ∅ for all i 6= j. This implies that the
smallest number of vertices required to cover all Si is at least t. This implies that
tw(G) ≥ t− 1 = |X| − 1.

In this section we give approximation algorithms for several problems on unit
disk graphs and map graphs. We start with the F-Deletion problem.

Theorem 7. Let F be a finite set of graphs containing a planar graph. Then
F-Deletion admits an EPTAS on unit disk graphs and map graphs.

Proof. Let G be the input graph, ε be a fixed constant and F be an obstruction
set containing a planar graph of size h. This implies that any optimal F-deletion
set in G must contain all but at most h + 1 vertices from any clique in G. We
outline a proof below only for unit disk graphs, the proof for map graphs is similar.

The algorithm proceeds as follows. It finds a maximum clique C of G. One can
find a maximum sized clique in unit disk graphs and map graphs in polynomial
time [Chen et al. 1998; 2002; Clark et al. 1990; Raghavan and Spinrad 2003]. The
algorithm adds C to the solution and repeats this step on G−C as long as there is

a clique of size (1+ε)h
ε . Once we have that the maximum size of a clique is bounded

by (1+ε)h
ε , we use the EPTAS obtained in Theorem 5 to get a F-deletion set of G

of size (1 + ε) OPT, where OPT is the size of a minimum F-deletion set. Clearly,
the set returned by the algorithm is a feasible solution. We now argue that the
algorithm runs in polynomial time for every fixed ε.

The initial step, where we find cliques and add all their vertices to our solution
can be done in polynomial time. Finally we run an EPTAS on a graph where
the maximum clique size is bounded by a function of ε. The running time of the
algorithm guaranteed by Theorem 5 is a polynomial. Thus the running time has
the desired form.

To bound the size of the output solution, we do the following.
Let X be an optimal F-deletion set of G. Let C1, C2, . . . , Ct be the cliques found

by the algorithm and Gq be the graph where we apply Theorem 5. Since for each

i ∈ {1, . . . , t}, X must contain at least |Ci| − h vertices of Ci and |Ci| ≥ (1+ε)h
ε , we

have that

|Ci| ≤ (1 + ε)(|Ci| − h) ≤ (1 + ε)(|X ∩ Ci|).
Thus the size of the solution returned by the algorithm satisfies the following in-
equality

t∑
i=1

|Ci|+ (1 + ε)|X ∩ V (Gq)| ≤ (1 + ε)(

t∑
i=1

|X ∩ Ci|+ |X ∩ V (Gq)|)

≤ (1 + ε)|X| = (1 + ε) OPT .
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This completes the proof.

Next we show how we can obtain EPTASs for Connected Vertex Cover on
unit disk graphs and map graphs.

Theorem 8. Connected Vertex Cover admits an EPTAS on unit disk
graphs and map graphs.

Proof. For the algorithm we need an algorithm for the annotated version of
Connected Vertex Cover. Given a graph G and set X, let G′ = G −X and
let R = N(X). The annotated problem Π′ with respect to set X, is to find a
minimum sized set S′ ⊆ V (G′) such that every edge in G′ has an end point in S′

and every connected component of G′[S′] contains a vertex in R. Notice that for
any connected vertex cover S of G, S \X is a feasible solution to Π′ on G′. It is
easy to show that the annotated Connected Vertex Cover is η-modulated for
η = 0 and reducible. Then by Theorem 1, Π′ has EPTAS on GtU and GtM .

The EPTAS for Connected Vertex Cover is very similar to the EPTAS
for F-Deletion. The only change is that we keep finding maximum cliques and

including them in our solution until there is no clique of size (2+ε)
ε . Let C1, C2,

. . . , Cq be the cliques found by the algorithm and Gq be the graph on which we
apply Theorem 1. Let Z be the union of cliques, that is, Z = ∪i≤qCi. Now we
define the annotated problem Π′ with respect to set Z and using Theorem 1 obtain
a set W of size (1 + ε) OPT′, where OPT′ is the size of a minimum cardinality
set in Gq such that every edge in Gq has an end point in W and every connected
component of Gq[W ] contains a vertex in R = N(Z) ∩ V (Gq). Now consider the
set W ∪ Z. This is a vertex cover of G and G[W ∪ Z] has q components. Hence
we can make W ∪Z connected by adding at most q− 1 vertices to it. Let the final
solution returned by our algorithm be S. Let X be an optimal connected vertex
cover of G. Since X must contain at least |Ci|−1 vertices from each Ci and the size

of |Ci| ≥ (2+ε)
ε , we have that |Ci|+ 1 ≤ (1 + ε)(|Ci| − 1) ≤ (1 + ε)(|X ∩ Ci|). Thus

the size of the solution returned by the algorithm satisfies the following inequality
q∑
i=1

(|Ci|+ 1) + (1 + ε)|X ∩ V (Gq)| ≤ (1 + ε)(

q∑
i=1

(|X ∩ Ci|) + |X ∩ V (Gq)|)

≤ (1 + ε)|X| = (1 + ε) OPT .

This completes the proof.

PTAS for Cycle Packing on unit disk graphs. As we already have seen,
Cycle Packing, and more generally, F-Packing, are minor-bidimensional linear-
separable and reducible. Thus by Theorem 5, the problem admits an EPTAS on
GtU . Hence, in order to give a PTAS for Cycle Packing on unit disk graphs it is
sufficient to prove the following lemma. In particular, the following lemma implies
that if we find a sufficiently large clique X, partition X into triangles and add this
partition to our packing, this will give a good approximation of how the optimum
solution intersects with X. Here a triangle is a cycle on three vertices.

Lemma 18. Let G be a unit disk graph and X be a clique in G. There is a
maximum size cycle packing C1, C2, . . . , Cp in G such that at most 1512 cycles Ci
in the packing satisfy Ci ∩X 6= ∅ and Ci \X 6= ∅.
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Proof. Let X be a clique in G. The centers of all disks corresponding to vertices
of X must be inside a 2 × 2 square. Thus the centers of all disks corresponding
to vertices in N(X) must be in a 6 × 6 square. By [Dumitrescu and Pach 2011,
Lemma 2], the vertices in N(X) can be partitioned into 27 cliques S1, S2, . . . , S27.
Note that in the definition of unit disk graphs used in [Dumitrescu and Pach 2011,
Lemma 2] two vertices are adjacent if the centers of the corresponding disks are at
distance at most 1 from each other, while in this paper two vertices are adjacent
if the centers of their disks are at distance at most 2. This difference is taken into
account when applying [Dumitrescu and Pach 2011, Lemma 2]. We say that a cycle
C crosses X if C ∩X 6= ∅ and C \X 6= ∅. Let C1, C2, . . . , Cp be a maximum cycle
packing in G that has the fewest cycles crossing X. Observe that any cycle C that
crosses X intersects with X in at most two vertices — since otherwise G[C ∩ X]
induces a triangle, say T and then we can replace C by T in the cycle packing
and obtain a maximum size cycle packing with fewer cycles that cross X. This
contradicts the choice of the packing C1, C2, . . . , Cp.

We prove that there can be at most 54 cycles in the packing that intersect X in
exactly 2 vertices. Suppose for contradiction that there are at least 55 such cycles.
Each such cycle contains at least one vertex in N(X). Since each vertex in N(X)
is in one of the 27 cliques S1, . . . , S27 the pigeonhole principle implies that there
are three cycles Ca, Cb and Cc in the packing which all intersect X in exactly two
vertices and a clique Si such that Ca ∩ Si 6= ∅, Cb ∩ Si 6= ∅ and Cc ∩ Si 6= ∅. Since
all cycles in the packing are vertex disjoint, this means that Si ∩ (Ca ∪ Cb ∪ Cc)
contains a triangle T1. On the other hand, X ∩ (Ca ∪ Cb ∪ Cc) is a clique on 6
vertices, and can be partitioned into two triangles T2 and T3. Now we can remove
Ca, Cb and Cc from the proposed packing and replace them by T1, T2 and T3. The
resulting packing has the same size, but fewer cycles that cross X. This contradicts
the choice of the packing C1, C2, . . . , Cp.

Now we show that there can be at most 2(27× 27) = 1458 cycles in the packing
that intersect with X in exactly 1 vertex. Every such cycle contains at least two
vertices in N(X). For a pair (i, j) of integers 1 ≤ i ≤ j ≤ 27 we say that a cycle
Ca is an (i, j) cycle if Ca contains two distinct vertices u and v such that u ∈ Si
and v ∈ Sj . If there are more than 1458 cycles in the packing that intersect with
X in exactly 1 vertex then there are i and j such that there are three (i, j)-cycles
Ca, Cb and Cc in the packing that intersect X in one vertex. Let ua, ub and uc
be three vertices in Ca ∩ Si, Cb ∩ Si and Cc ∩ Si respectively. Similarly, let va, vb
and vc be the three vertices in Ca ∩ Sj , Cb ∩ Sj and Cc ∩ Sj respectively. Now
T1 = {ua, ub, uc}, T2 = {va, vb, vc} and T3 = X ∩ (Ca ∪Cb ∩Cc) are vertex disjoint
triangles. We can replace Ca, Cb, and Cc by Ta, Tb and Tc in the cycle packing and
obtain a maximum size cycle packing with fewer cycles that cross X, contradicting
the choice of C1, . . . , Cp. Hence there are at most 54 + 1458 = 1512 cycles in the
packing that cross X.

Theorem 9. Cycle Packing admits a PTAS on unit disk graphs.

Proof. Given a unit disk graph G and ε, we choose t to be (1485×3)=4455
ε . If G

does not contain a clique of size t, then we apply the EPTAS for Cycle Packing
on GtU guaranteed by Theorem 5 to give a (1− ε)-approximation for Cycle Pack-

ing. If G contains a clique X of size t, the algorithm partitions X into |X|3 triangles
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T1, . . . , Tx, recursively finds a (1−ε)-approximate cycle packing C1, . . . , Cp in G−X
and returns T1, . . . , Tx, C1, . . . , Cp as an approximate solution. Clearly, the algo-
rithm terminates in nf(ε) time, so it remains to argue that the returned solution is
indeed a (1− ε)-approximate cycle packing of G. We prove this by induction on the
number n of vertices in G. Let OPT be the size of the largest cycle packing in G.

If there is no clique of size t and we apply the EPTAS for Cycle Packing on
GtU , then clearly the returned solution is a (1− ε)-approximation. If the algorithm
finds such a clique X, Lemma 18 ensures that there is a cycle packing of size OPT
such that at most 1485 cycles in the packing cross X. All cycles in this packing
that intersect with X but do not cross X are triangles in X. Hence G−X contains

a cycle packing of size at least OPT− |X|3 − 1485. By the inductive hypothesis the

algorithm returns a cycle packing in G−X of size at least (OPT− |X|3 −1485)(1−ε).
Now, X contains |X|3 triangles T1, . . . , Tx. Hence, since |X| ≥ t, the total size of
the packing returned by the algorithm is at least(

OPT−|X|
3
−1485

)
(1−ε)+ |X|

3
= OPT(1−ε)−

( |X|
3

+1485
)

(1−ε)+ |X|
3
≥ OPT(1−ε).

This concludes the proof.

9. UNIT BALL GRAPHS IN RD: EPTAS AND SUBEXPONENTIAL ALGORITHMS

EPTAS for (Connected) Vertex Cover on unit ball graphs in Rd. Let
us recall, that by Lemma 4, the treewidth of a graph from a class with the SQGM
property is sublinear in the size of a treewidth-η-modulator. In this section we
show that for some problems, we can use a weaker property, that the treewidth of
every graph in a given graph class is sublinear in the number of vertices of a graph.
Our results in this section are based on an observation that if for some graph class
G the size of an optimum solution for a problem Π and the number of vertices in
the input graph are linearly related then to obtain EPTAS it is sufficient that G
has sublinear treewidth, which is a weaker property than SQGM. The crux of this
result is based on the following adaptation of the scaling lemma (Lemma 7). The
proof of the following lemma is a modification of the proof of Lemma 7, we give it
here for completeness.

Lemma 19. Let G be a hereditary graph class of sublinear treewidth with param-
eter λ < 1, that is, for every G ∈ G, tw(G) = O(|V (G)|λ). For every ε < 1 there
is γ such that for any G ∈ G there is X ⊆ V (G) satisfying

—|X| ≤ ε|V (G)|, and

—for every connected component C of G−X, we have that |C| ≤ γ.

Moreover X can be computed from G in polynomial time.

Proof. Since G is a hereditary graph class of sublinear treewidth with parameter
λ, there exists a constant β such that for every graph G ∈ G, tw(G) ≤ β|V (G)|λ.
We define ρ = min1/3≤α≤2/3 α

λ + (1 − α)λ. As in Lemma 7, we can assume that

ρ > 1. We choose δ = β+1
ρ−1 and γ = ( 3δ

ε )
1

1−λ .
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Let Tγ(n) be the smallest integer such that for every n-vertex graph G ∈ G there
is X ⊆ V (G) of size at most Tγ(n) such that every connected component of G−X
is of size at most γ.

We claim that for every n

Tγ(n) ≤ εn. (5)

The proof of (5) is almost identical to the proof of (1) in Lemma 7. If n ≤ γ then
we set X = ∅, so Tγ(n) = 0 and thus (5) holds. To prove (5) for larger values of n,
we prove by induction on n a stronger statement if n ≥ γ/3 then

Tγ(n) ≤ εn− δnλ. (6)

We now show that if n ≥ γ/3 then Tγ(n) ≤ εn− δnλ by induction on n. For the
base case if γ/3 ≤ n ≤ γ, the choice of γ implies that

εn− δnλ ≥ εγ
3
− δγλ ≥ 0.

As we already have shown, for n ≤ γ, Tγ(n) = 0, hence (6) holds for γ/3 ≤ n ≤ γ.
We now consider Tγ(n) for n > γ. Since the treewidth of G is at most βnλ,

we can partition of V (G) into L, S and R such that |S| ≤ βnλ + 1, N(L) ⊆ S,
N(R) ⊆ S, |L| ≤ 2n/3 and |R| ≤ 2n/3. Deleting S from the graph G yields two
graphs G[L] and G[R] with no edges between them. Since G is a hereditary graph
class, we can add S to X and then proceed recursively in G[L] and G[R]. This
yields the following recurrence for Tγ .

Tγ(n) ≤ max
1/3≤α≤2/3

Tγ(αn) + Tγ((1− α)n) + βnλ + 1.

Observe that since n ≥ γ, we have that αn ≥ γ/3 and (1 − αn) ≥ γ/3. The
induction hypothesis then yields the following inequality.

Tγ(n) ≤ max
1/3≤α≤2/3

Tγ(αn) + Tγ((1− α)n) + βnλ + 1

≤ max
1/3≤α≤2/3

εn− δ(αn)λ − δ((1− α)n)λ + βnλ + 1

≤ max
1/3≤α≤2/3

εn− δnλ(αλ + (1− α)λ) + βnλ + 1

≤ εn− δnλ − δ(ρ− 1)nλ + βnλ + 1

≤ εn− δnλ.

The last inequality holds whenever δ(ρ − 1)nλ ≥ βnλ + 1, which is ensured by
the choice of δ and the fact that nλ ≥ 1. Thus (5) holds for all n. In other words,
there exists a set X of size at most εn such that for every component C of G−X
we have |C| ≤ γ.

To show that X can be computed from G in polynomial time, we observe the
inductive proof can be converted into a recursive algorithm. The only computation-
ally hard step of the proof is the construction of a tree-decompositon of G in each
inductive step. As in Lemma 7, instead of computing the treewidth exactly, we
use the d∗

√
log tw(G)-approximation algorithm by Feige et al. [Feige et al. 2008],

where d∗ is a fixed constant. Thus when we partition V (G) into L, S, and R, the
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upper bound on the size of S will be d∗(βnλ + 1)
√

log(βnλ) instead of βnλ + 1.

However, for any λ < λ′ < 1 there is a β′ such that d∗(βnλ)
√

log(βnλ) < β′nλ
′
.

Now we can apply the above analysis with β′ instead of β and λ′ instead of λ to
bound the size of the set X output by the algorithm. This concludes the proof of
the lemma.

Using Lemma 19, we can obtain the following analogue of Theorem 1.

Theorem 10. Let G be a hereditary class of graphs with sublinear treewidth, and
Π be a reducible graph optimization problem. The promise version of Π, where the
promise is that every instance G satisfies OPTΠ(G) = Ω(|V (G)|), has an EPTAS
on G.

Proof. For ε > 0, we construct a polynomial time algorithm that finds a (1+ε)-
approximation for Π. Since for every G ∈ G, OPTΠ(G) = Ω(|V (G)|), we have that
there is a constant ρ1 such that OPTΠ(G) ≥ ρ1 · |V (G)|. Since Π is reducible, there
exists a Min/Max-CMSO problem Π′, a constant ρΠ and a function f : N → N
such that:

(R1) there is a polynomial time algorithm that given G and X ⊆ V (G) outputs G′

such that |OPTΠ′(G
′)−OPTΠ(G)| ≤ ρΠ|X| and tw(G′) ≤ f(τ),

(R2) there is a polynomial time algorithm that given G and X ⊆ V (G), G′ and a
vertex set S′ such that φΠ′(G

′, S′) is true outputs S such that φΠ(G,S) holds
and ||S| − |S′|| ≤ ρΠ|X|.

We define ρ = max(ρ1, ρΠ) and ε′ = ε
2ρ2 . Furthermore, since G is a hereditary

graph class of sublinear treewidth, there are constants λ < 1 and β such that for
every G ∈ G, tw(G) ≤ β|V (G)|λ. By Lemma 19, there exist γ, λ′ < 1 and β′

depending on ε′, λ and β such that for a given n-vertex graph G, a set X ⊆ V (G)
with the following properties can be found in polynomial time. First |X| ≤ ε′n,
and secondly for every component C of G − X we have that |C| ≤ γ. Thus
tw(G−X) = τ ≤ β′γλ′ .

We construct G′ from G and X by making use of the polynomial time algorithm
guaranteed by (R1). Since tw(G′) ≤ f(τ), we can use the extended version of
Courcelle’s theorem [Courcelle 1990; 1997] given by Borie et al. [Borie et al. 1992] to
find an optimal solution S′ to Π′ in g(ε′)|V (G′)| time. By (R1), ||S′|−OPTΠ(G)| ≤
ρ|X|. We now use the polynomial time algorithm guaranteed by (R2) to construct a
solution S to Π from G, X, G′ and S′. The properties of this algorithm ensure that
φΠ(G,S) holds and that ||S| − |S′|| ≤ ρ|X|, and hence ||S| −OPTΠ(G)| ≤ 2ρ|X| ≤
2ρ2ε′OPTΠ(G). Since ε′ = ε

2ρ2 , we have that ||S| −OPTΠ(G)| ≤ εOPTΠ(G).

Lemma 20. Let G be an intersection graph of unit balls in Rd, for a fixed d. If G
does not contain an isolated vertex, then the minimum size of a (connected) vertex
cover is at least |V (G)|/f(d), where f(d) = 20.401d(1+o(1)) + 2.

Proof. Let G be an intersection graph of unit balls in Rd, for a fixed d. For
our proof we need the concept of kissing number. The kissing number τd is the
maximum number of non-overlapping d-dimensional unit balls of equal size that
can touch a unit ball in Rd. It was shown in [Kabatiansky and Levenshtein 1978]
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that τd ≤ 20.401d(1+o(1)). This implies that for any vertex v ∈ V (G), N(v) does not
contain an independent set of size bigger than τd + 1.

Given a graph G we compute a maximal matching, say M . Clearly the size
of M is a lower bound on the size of a minimum (connected) vertex cover. Let
V (M) be the set of end points of edges in M and I = V (G) \ V (M). Clearly I
is an independent set. Furthermore every vertex in I is adjacent to some vertex
in V (M). Hence we have that |I| ≤ |V (M)|(τd + 1). This implies that |V (G)| =
|V (M)|+ |I| ≤ 2|M |+ 2|M |(τd + 1). The last inequality implies the lemma.

Finally, we note that every graph G, that is an intersection graph of unit balls in
Rd, with maximum clique size ∆ has the property that every point in Rd is in at
most ∆ unit balls. This together with the result from [Miller et al. 1997] implies that

the treewidth of G is cd∆
1/d|V (G)|1− 1

d , where cd is a constant depending only on d.
This implies that an intersection graph of unit balls in Rd with bounded maximum
clique has sublinear treewidth. So an EPTAS for Connected Vertex Cover
and Vertex Cover can be obtained along the similar lines as in Theorems 7 and
8 and finally using Theorem 10 instead of Theorem 1 to arrive to the following
result.

Theorem 11. Connected Vertex Cover and Vertex Cover admit an
EPTAS on unit ball graphs of fixed dimension.

We can also obtain PTASs for Connected Vertex Cover and Vertex Cover
on disk graphs, as a simple adaptation of the recent results by [Jansen 2010] allows
us to preprocess disk graphs with bounded clique size such that the size of an
optimum solution and the number of vertices in the input graph are linearly related.
The reason we get PTASs rather than EPTASs is that there is no known fast
algorithm for finding large cliques in a disk graph. Hence we search for cliques of
size at least f(ε) by brute force, yielding an nf(ε) overhead in the running time.

Parameterized subexponential time algorithms. In this section we show
how to obtain parameterized subexponential time algorithms for several problems.
Formally, a parameterization of a problem assigns an integer k to each input in-
stance and a parameterized problem is fixed-parameter tractable (FPT) if there is
an algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the size
of the input and f is an arbitrary computable function. We say that a parame-
terized problem has a parameterized subexponential algorithm if it is solvable in
time 2o(k) · |I|O(1). We refer to the book [Cygan et al. 2015] for an introduction to
parameterized algorithms.

Our basic idea is to find a “large” clique and guess the intersection of an optimal
solution with this clique. We recursively do this until we do not have a large clique.
Once we do not have large cliques, we show that the treewidth of the resulting
graph must be bounded as well. At that point we use dynamic programming on
graphs of bounded treewidth to solve the problem optimally. We exemplify our
approach on Feedback Vertex Set. Recall that in this problem we are given a
graph G and a positive integer k, which is a parameter. The question is to check
whether there is a subset F ⊆ V (G), |F | ≤ k, such that G− F is acyclic. The set
F is called the feedback vertex set of G.
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Theorem 12. Feedback Vertex Set admits a parameterized subexponential
time 2O(k0.75 log k)nO(1) algorithm on n-vertex unit disk graphs and map graphs.

Proof. We give a subexponential time parameterized algorithm on map graphs.
An algorithm on unit disk graphs is similar. Given k we set the value c = kε for a
value of ε to be fixed later. The algorithm will pass down the value of c to recursive
calls such that c remains fixed even though k changes. The algorithm proceeds as
follows. Given an instance (G, k), it finds a maximum clique C of G. Recall that
we can find a maximum clique in unit disk graphs and map graphs in polynomial
time [Chen et al. 1998; 2002; Clark et al. 1990; Raghavan and Spinrad 2003]. If
|C| > k + 2, then we return that G does not have feedback vertex set of size at
most k. Next we check whether |C| ≤ c.

If |C| ≤ c, then the considered graph is in GcM . By Theorem 4 this class has the
SQGM property with c = 1 and α = 1. Hence we know that tw(G) ≤ O(k0.5+ε).
In this case we apply the known algorithm for Feedback Vertex Set that given
a tree decomposition of width t of a graph G on n vertices, finds a minimum sized
feedback vertex set in time 2O(t)nO(1), see e.g. [Cygan et al. 2015]. Hence, in this

case the running time of our algorithm will be 2O(k0.5+ε log k)nO(1).
In the case that |C| > c we know that any feedback vertex set F of G contains

almost all of the vertices in C, in particular, |C \ F | ≤ 2. The algorithm branches

on all 1 + |C|+
(|C|

2

)
possibilities for X = F ∩C and recursively solves the problem

on (G−X, k−|X|). If for some guess we have a yes answer, then we return yes, else,
we return no. The running time of this step is guided by the following recurrence
T (k) ≤

(|C|
2

)
·T (k− (|C| − 2)) + |C| ·T (k− (|C| − 1)) +T (k− |C|), where the terms(|C|

2

)
· T (k − (|C| − 2)), |C| · T (k − (|C| − 1)), T (k − |C|) correspond to choosing

|C|−2 vertices in F from C, |C|−1 vertices in F from C and |C| vertices in F from
C, respectively. It follows that T (k) ≤ 3|C|2 ·T (k+ 2− |C|) ≤ 3|C|2 ·T (k− |C|/2).
Since |C| ≥ c a simple induction shows that T (k) ≤ (3c)4k/c which again is upper

bounded by 2O( 4k log c
c ) ≤ 2O( k log k

c ). Substituting kε for c this yields that the total
number of branches explored by the algorithm is upper bounded by 2O(k1−ε log k).
Now we choose ε such the number of branches and the time spent in each branch
is the same. Thus we choose an ε such that 2O(k1−ε log k) = 2O(k0.5+ε). This gives
us that ε = 1/4 is asymptotically best possible. Thus our algorithm runs in time

2O(k0.75 log k)nO(1), concluding the proof.

We remark that since the excluded grid theorem for unit disk graphs with clique
size t has worse coefficient β = O(t3) than the coefficient O(t) for map graphs, the
running time of algorithm for Feedback Vertex Set on unit disk graphs is worse
than on map graphs (but still subexponential). The subexponential parameterized
algorithms for Feedback Vertex Set on unit disk graphs and map graphs extend
to other problems, such as Vertex Cover and Cycle Packing. For Vertex
Cover the extension is trivial, while for Cycle Packing it is not entirely obvious
how to branch on a clique. If we come over a clique C, we know that by Lemma 18
there is a maximum cycle packing such that only 1512 cycles intersect C, but are
not contained in C. At most 3·1512 = 4536 vertices intersect such cycles, and hence
we can guess this vertex set, and for the remaining vertices of C we pack them into
triangles. It can be verified that this branching step, together with an algorithm
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for Cycle Packing, yields a subexponential time parameterized algorithm for the
problem.

Very recently, the superset of the authors in [Fomin et al. 2017], by making use
of different techniques, obtained algorithms solving Vertex Cover and Cycle

Packing on unit disk graphs in time 2O(
√
k log k)nO(1).

For Connected Vertex Cover it is even more non-trivial to adapt the branch-
ing step. However, in the next lemma we show that it is possible. In fact, we
show that Vertex Cover and Connected Vertex Cover admit parameter-
ized subexponential time algorithms on Unit Ball Graphs in Rd. The algorithm for
Connected Vertex Cover also carries over to map graphs.

Theorem 13. Vertex Cover and Connected Vertex Cover admit a pa-
rameterized subexponential time 2o(k)nO(1) algorithm on n-vertex unit ball graphs
of fixed dimension.

Proof. Our algorithm for parameterized (Connected) Vertex Cover fol-
lows along the same line as for Feedback Vertex Set. We outline an algorithm
for Connected Vertex Cover here. Let d be the dimension. The algorithm pro-
ceeds as follows. Given an instance (G, k), we first check whether k ≥ |V (G)|/f(d),
where f(d) = 20.401d(1+o(1)) + 2. By Lemma 20, we know that if k < |V (G)|/f(d),
then there is no connected vertex cover of size at most k and hence the answer
is no. Else we have that |V (G)| = O(k). To implement our algorithm we need a
slight generalization of the problem considered. We keep a triple (G′, k,X) for this
problem, where G′ is the current graph and the objective is to find a set F ⊆ V (G′)
such that |F | ≤ k, F is a vertex cover of G′ and G[X ∪ F ] is a connected vertex
cover of G. Essentially the graph G′ will be obtained after branching on cliques
and the set X will store the partially constructed solution so far. This allows us to
check connectedness in the whole graph G.

Just as for Feedback Vertex Set, we set a parameter c = kε for ε = 1/(d+1).
The algorithm finds a maximum clique C of G′. If |C| > k+ 1, then we return that
G′ does not have a desired set F of size at most k. Next we check whether |C| ≤ c.
We first consider the case when |C| > kε. We know that for any vertex cover F of
G′, we have that |F ∩ C| ≥ |C| − 1. So we guess the intersection Z = F ∩ C and
recursively solve the problem on (G′−Z, k−|Z|, X ∪Z). If for some guess we have
a yes answer, then we return yes, otherwise we return no. The running time of this
step is guided by the following recurrence T (k) ≤ |C| ·T (k− (|C|−1))+T (k−|C|),
where the terms |C| · T (k − (|C| − 1)), T (k − |C|) correspond to choosing |C| − 1
vertices in F from C and |C| vertices in F from C, respectively. This yields T (k) ≤
2|C| ·T (k− |C|+ 2) ≤ T (k− |C|/2), which can be bounded by (2c)2k/c by a simple

induction. This, in turn, is bounded by 2O(k1−ε log k).
In the other case we have that |C| ≤ kε. As discussed before Theorem 11,

by using the result from [Miller et al. 1997] we have that the treewidth of G′ is

cdk
ε/d|V (G)|1− 1

d = O(k1−(1−ε) 1
d ), where cd is a constant depending only on d.

In this case we apply a modification of known algorithm for Connected Vertex
Cover, that given a tree decomposition of width t of a graph G∗ on n vertices, finds
a minimum sized connected vertex cover in time 2O(t log t)nO(1) [Moser 2005]. To
solve our problem we do as follows. We first upper bound the number of connected
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components, ηX , in G[X] by k1−ε. Recall that X has been constructed by branching
on cliques of size at least kε + 1 and thus from each such clique we have at least kε

vertices in X and vertices from one clique are in one component. Thus ηX ≤ k/kε =
k1−ε. Now we construct a graph G∗ as follows. Consider the graph G[X ∪ V (G′)]
and contract every connected component in G[X] to a single vertex. Now in the
graph G∗ the objective is to find a connected vertex cover of size at most k + ηX
such that it contains all the vertices corresponding to connected components in
G[X]. Now the tw(G∗) ≤ tw(G′) + ηX ≤ O(k1−(1−ε) 1

d + k1−ε). Hence in this case

the running time of our algorithm is 2O((k1−(1−ε) 1
d+k1−ε) log k)nO(1).

Our choice of ε = 1/(d+ 1) implies that the running time for branching on clique
is the same as the time required to run a dynamic programming algorithm on

graphs of bounded treewidth. Thus 2O(k1−ε log k) = 2O((k1−(1−ε) 1
d+k1−ε) log k). Hence

our algorithm runs in time 2o(k)nO(1) for every fixed d, proving the theorem.

Tractability borders. It is natural to ask how far our approach can be general-
ized, and in particular, whether many of the problems discussed so far have EPTASs
and parameterized subexponential time algorithms on unit ball graphs in dimen-
sion higher than two. In this section we show that one should not expect equally
general results for unit ball graphs of dimension at least three. In particular, we
show that Feedback Vertex Set on unit ball graphs in R3 does not have an
EPTAS unless P=NP, and that the problem does not admit a subexponential time
parameterized algorithm under the Exponential Time Hypothesis of Impagliazzo,
Paturi and Zane [Impagliazzo et al. 2001].

Theorem 14. Feedback Vertex Set on unit ball graphs in R3 does not admit
a PTAS unless P = NP , and has no subexponential time parameterized algorithm
unless the Exponential Time Hypothesis fails.

A unit ball model of H in Rd is a map f : V (H) → Rd such that u and v are
adjacent iff the euclidean distance between f(u) and f(v) is at most 1. In the
construction it is much more convenient to work with this alternate definition of
unit ball graphs rather than saying that f(u) and f(v) is at most 2 and hence we
use this alternate definition in this section. In our constructions no two vertices will
map to the same point, and thus we will often refer to vertices in H by the points in
Rd which they map to. For the proof of Theorem 14 we need the following lemmas.
It appears that the following lemma can easily be derived from the results in [Eades
et al. 2000] about the three dimensional orthogonal graph drawings. However, since
we could not find this result explicitly, we give a proof here for completeness.

Lemma 21. For any graph G on n vertices of maximum degree 6, there is a unit
ball graph H on O(n2) vertices such that H is a subdivision of G. Furthermore, H
and a unit ball model of H in R3 can be constructed from G in polynomial time.

The proof of Lemma 21 is straightforward, but somewhat tedious.

Proof. In this construction we envision the x-axis as being horizontal with
positive direction towards the right, the z-axis being vertical with positive direction
upwards. The intuition behind the proof is that every vertex of G is assigned its
own “fat” x-z plane. The edges of G are routed parallel to the y axis in the y − x
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plane with z = 0, and in each “fat” x-z plane we ensure that the edges connect
to their corresponding vertex. This local routing of edge endpoints to a vertex
happens above the y − x plane with z = 0 and does not interfere with the global
routing of the edges.

For a point with integer coordinates (x, y, z) and integer ` define the set L[x, y, z]`x
to be {(x+x′, y, z) : |x′|+|`−x′| = |`|}. In particular, if ` is positive then L[x, y, z]`x
contains {(x, y, z), (x+1, y, z), (x+2, y, z), . . . , (x+`, y, z)}, while if ` is negative then
L[x, y, z]`x contains {(x, y, z), (x − 1, y, z), (x − 2, y, z), . . . , (x − `, y, z)}. Similarly
we define L[x, y, z]`y to be {(x, y + y′, z) : |y′| + |` − y′| = |`|} and L[x, y, z]`z to be
{(x, y, z + z′) : |z′| + |` − z′| = `}. Given three integers x,y,z, the graph P [x, y, z]
corresponds to the point set

P [x, y, z] = L[x, y, z]−2
z ∪ L[x, y, z − 2]2x

∪ L[x, y, z]2x

∪ L[x, y, z]2z ∪ L[x, y, z + 2]2x

∪ L[x, y, z]−2
x ∪ L[x− 2, y, z]4z ∪ L[x− 2, y, z + 4]4x

∪ L[x, y, z]−2
y ∪ L[x, y − 2, z]6z ∪ L[x, y − 2, z + 6]2y ∪ L[x, y, z + 6]2x

∪ L[x, y, z]2y ∪ L[x, y + 2, z]8z ∪ L[x, y + 2, z + 8]−2
y ∪ L[x, y, z + 8]2x

The set P [x, y, z] corresponds to a vertex of degree 6 in [x, y, z], and there are 6
paths, each starting in (x, y, z) and ending in (x + 2, y, z − 2), (x + 2, y, z), (x +
2, y, z + 2), (x+ 2, y, z + 4), (x+ 2, y, z + 6) and (x+ 2, y, z + 8) respectively. The
y-coordinate of any intermediate point on the paths is always between y − 2 and
y+2. Any points that are generated twice still correspond only to one single vertex.

For an integer y and six integers x1 < x2 < . . . < x6 such that xi+1 − xi ≥ 2, we
define P[y, x1, x2, x3, x4, x5, x6] to be the point set

P[y, x1, x2, x3, x4, x5, x6] = P [−2, y, 12]

∪
6⋃
i=1

L[0, y, 10 + 2(i− 1)]xix ∪ L[xi, y, 10 + 2(i− 1)]−10−2(i−1)
z

The set P[y, x1, x2, x3, x4, x5, x6] corresponds to a vertex of degree 6 in [−2, y, 12]
with 6 paths starting in this vertex end ending in [xi, y, 0] for 1 ≤ i ≤ 6. The
y-coordinate of the intermediate vertices on the path is between y−2 and y+ 2. In
this sense, the paths corresponding to the vertex in [−2, y, 12] are routed in a “fat”
x− z-plane.

We are now ready to construct H given G. We give the construction for 6-regular
graphs G and then explain how to modify the construction to the case when G has
maximum degree 6. We label the vertices in G by v1, . . . , vn and the edges of G
by e1, . . . , em with m ≤ 3n. For every i ≤ m define a(i) and b(i) such that the
endpoints of the edge ei are va(i) and vb(i) respectively. Now, for every vertex vi let
xi1 < xi2 < . . . < xi6 be integers so that vi is incident to the edges exij for 1 ≤ j ≤ 6.

For every vertex vi we add the point set P[10i, 2xi1, 2x
i
2, 2x

i
3, 2x

i
4, 2x

i
5, 2x

i
6]. Finally

for every edge ei we add the set L[2i, 10a(i), 0]
10(b(i)−a(i))
y . This concludes the

construction of H.
It is easy to see that H can be constructed from G in polynomial time. Further-
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more, it is easy to verify that H has O(n2) vertices since m ≤ 3n. To see that H
is a subdivision of G observe that when G has an edge et between vi and vj , in H
there is a path from the point [−2, 10i, 12] through [2t, 10i, 0] and [2t, 10j, 0] to the
point [−2, 10j, 12]. This concludes the proof of the lemma.

Lemma 22. There is a polynomial time algorithm that given a graph G on n
vertices of maximum degree 3 outputs a unit ball graph H together with a unit ball
model of H in R3, such that given any vertex cover C of G, a feedback vertex set S
of H of size at most |C| can be computed in polynomial time, and given any feedback
vertex set S of H, a vertex cover C of G of size at most |S| can be computed in
polynomial time.

Proof. Given G we start by applying the well-known construction for trans-
forming instances of Vertex Cover to instances of Feedback Vertex Set. We
construct G′ from G by adding a vertex xuv for every edge uv of G and making
xuv adjacent to u and to v. Since the maximum degree of G was 3, the maximum
degree of G′ is 6. Now we apply Lemma 21 to G′ and obtain the graph H and a
unit ball model of H. Every vertex cover C of G is a feedback vertex set of G′, and
since H is a subdivision of G′, every vertex cover of G is a feedback vertex set of
H. For the reverse direction, it is well-known that given a feedback vertex set S in
a graph, one can find in polynomial time a feedback vertex set S′ of size at most
|S| such that all vertices in S′ have degree at least 3 [Bar-Yehuda et al. 1998]. Let
S′ be a feedback vertex set of H such that every vertex in S′ has degree at least 3
in H. Then every vertex in S′ is also a vertex in G. We claim that S′ is a vertex
cover of G. Let uv be an edge in G. Therefore u,xuv,v is a cycle in G′ and since
H is a subdivision of G′, H contains a cycle going through u,xuv and v where all
vertices in the cycle except u and v have degree at most 2. Since S′ is a feedback
vertex set of H ′ containing no vertices of degree less than 3, S′ contains either u or
v. Hence S′ is a vertex cover of G.

If a subexponential time parameterized algorithm for Feedback Vertex Set
on unit ball graphs in R3 existed, we could combine it with Lemma 22 to get a
subexponential time algorithm for Vertex Cover on graphs of maximum degree
3. Similarly, a PTAS for Feedback Vertex Set on unit ball graphs in R3 could
be combined with Lemma 22 to yield a PTAS for Vertex Cover on graphs of
maximum degree 3. Since Vertex Cover is known not to admit a (1 + ε)-factor
approximation algorithm, for some fixed ε > 0, on graphs of degree at most 3
unless P = NP [Alimonti and Kann 2000], and not to have subexponential time
parameterized algorithms on graphs of degree at most 3 under the Exponential
Time Hypothesis [Impagliazzo et al. 2001], we obtain Theorem 14.

10. CONCLUDING REMARKS AND OPEN PROBLEMS

Derandomization. The EPTAS developed in this paper are randomized. Es-
sentially, we use randomness in two places. First, the treewidth approximation
in [Feige et al. 2008] uses an adaptation of the Arora, Rao, Vazirani algorithm
[Arora et al. 2009], which is randomized. Second, Proposition 5 provides a ran-
domized constant-factor approximation to Treewidth-η Modulator. We are
not aware of any deterministic polynomial time constant-factor approximation for
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Treewidth-η Modulator and leave the question about the existence of such an
algorithm open. However, for several graph classes we know how to approximate
Treewidth and Treewidth-η Modulator deterministically.

OnH-minor-free graph, Treewidth-η Modulator admits a linear kernel [Fomin
et al. 2010]. On this class of graphs there is also a deterministic constant-factor
approximation algorithm computing the treewidth of a graph. The kernelization al-
gorithm uses the protrusion replacement technique developed in [Bodlaender et al.
2016]. Let us note that in general, protrusion replacement does not always preserve
approximation and thus the existence of a linear kernel does not automatically
yield a constant factor approximation. However, the lossless protrusion reductions
developed in [Fomin et al. 2012b] guarantee that for Treewidth-η Modulator
the linear kernel from [Fomin et al. 2010] also provides us with a constant-factor
approximation for this problem on H-minor-free graphs. By pipelining with the
fast deterministic “protrusion replacer” from [Fomin et al. 2015], the kernelization
arguments bring us to a linear time approximation algorithm. However, this ap-
proach cannot be extended to unit disk or map graphs basically because we are not
able to express belonging of a graph to these classes of graphs in CMSO.

Running times. It should be noted that for a fixed ε > 0, the treewidth τ in
Corollary 1 is O(1/ε). For many problems discussed in this paper, the CMSO-based
algorithms on graphs of bounded treewidth could be replaced by standard dynamic
programming algorithms with running time 2O(tw(G))n or 2O(tw(G) log(tw(G)))n, see
[Cygan et al. 2015]. This leads to EPTASs with running times of the form 2O(1/ε)n+
nO(1) or 2O(1/ε log(1/ε))n+ nO(1).

As for the polynomial time nO(1) component in the running time of our algo-
rithms, it depends on the implementation of the following steps.

—We have to approximate Treewidth-η Modulator in polynomial time, which
takes randomized O(nm) time. As discussed above, for H-minor-free graphs,
protrusion replacement techniques imply deterministic linear time algorithm for
approximating Treewidth-η Modulator.

—In Scaling Lemma (Lemma 7), in polynomial time, we rescale a given treewidth-
η-modulator X. Here we use the treewidth approximation algorithm from [Feige
et al. 2008], which is based on several high polynomial-time subroutines, including
semidefinite programming. However, for specific graph classes faster algorithms
are known. For example, for planar graphs, treewidth can be approximated
within a constant factor in time O(n · poly(log n)) [Gu and Xu 2014]. Plugging
this into Scaling Lemma yields that scaling of X on planar graphs can be done
in time O(n · poly(log n)).

—We construct approximate solutions by making use of reducible problems. The
definition of reducible problems contains two components. First, for given graph
G and setX ⊆ V (G), we should be able to output graphG′ such that OPTΠ′(G

′) =
OPTΠ(G) ± O(|X|) and tw(G′) ≤ f(tw(G −X)). For many natural problems,
graph G′ is just G−X, and thus can be constructed in linear time. Second, for a
given graph G and X ⊆ V (G), graphs G′ and a vertex (edge) set S′ ⊆ V (G′) such
that φΠ′(G

′, S′) holds, we need to output S ⊆ V (G) such that φΠ(G,S) = true
and |S| = |S′| ± O(|X|). Again, for many problems, the new set S can be taken
as S′ ∪X.
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Therefore, for many problems on planar graphs, it is possible to replace the
additive factor nO(1) in the running time by O(n · poly(log n)).

We conclude with the following open question. So far, our framework implies
EPTAS for contraction-bidimensional problems only on classes of apex-minor-free
graphs. On the other hand, for a number of contraction-bidimensional problems
including Dominating Set, EPTAS on H-minor-free graphs are known [Dawar
et al. 2006; Grohe 2003]. An interesting question here would be to obtain a general
characterization of contraction-bidimensional problems admitting EPTAS on H-
minor-free graphs. Second, it is interesting to compare our framework with the
framework of Dawar et al. [Dawar et al. 2006], who have shown that the restriction
of a first-order logic definable optimization problem to the class of H-minor-free
graphs admits EPTAS. While many η-modulated and reducible graph optimization
problems like Feedback Vertex Set are not first-order definable, we do not
know if the opposite is true. In other words, is first-order logic definable graph
optimization problem also η-modulated and reducible?
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