An Exact Algorithm for Minimum Distortion Embedding

Fedor V. Fomin* Daniel Lokshtanov* Saket Saurabh*

Abstract

Let G be an unweighted graph on n vertices. We show that an embedding of the
shortest path metric of G into the line with minimum distortion can be found in time
57+o(") This is the first algorithm breaking the trivial n!-barrier.

1 Introduction

Given an undirected graph G with the vertex set V(G) and the edge set E(G), the graph
metric of G is M(G) = (V(G), Dg), where the distance function D¢ is the shortest path
distance between u and v for every pair of vertices u,v € V(G). Given a graph metric M
and another metric space M’ with distance functions D and D', a mapping f : M — M’ is
called an embedding of M into M’. The mapping f has contraction ¢y and expansion ey if
for every pair of points p,q in M,

D(p,q) < D'(f(p), f(q)) - ¢y,

and
D(p,q)-ef = D'(f(p), f(q))

respectively. We say that f is non-contracting if c; is at most 1. A non-contracting mapping
f has distortion d if ey is at most d.

In this paper we provide an exact algorithm for the following fundamental problem: For a
given graph G, find a minimum distortion embedding of the graph metric of G into the line.
In this case the metric space M’ is R! and D’ is the Euclidean distance. A simple algorithm
is to try all possible permutations of the vertex set. FKach permutation corresponds to an
embedding where the distance between two consecutive vertices on the line is equal to the
shortest path distance between them. The running time this algorithm is O(n!n) and to the
best of our knowledge, no faster exact algorithm for any kind of embedding problem was
known prior to our work.

The problem of finding an embedding with low distortion between metric spaces is a
fundamental mathematical problem [8, 10] that has been studied intensively. Embedding
a graph metric into a simple low-dimensional metric space like the real line has proved
to be a useful algorithmic tool in various fields. A long list of applications given in [7]
includes approximation algorithms for graph and network problems, such as sparsest cut,
minimum bandwidth, low-diameter decomposition and optimal group Steiner trees, and on-
line algorithms for metrical task systems and file migration problems. The algorithmic issues
of metric embeddings has recently begun to develop [1, 2, 3, 9]. For example, Badoiu et al.
[1] describe approximation algorithms and hardness results for embedding general metrics

*Department of Infomatics, University of Bergen, Norway. {fedor.fomin|daniello|saket}@ii.uib.no.

1

into the line. In particular they show that the minimum distortion for a line embedding is
hard to approximate up to a factor polynomial in n, even for weighted trees where the ratio
of maximum /minimum weights is bounded by a polynomial in n. For the case of unweighted
graphs, it was shown by Badoiu et al. [2] that there is a constant a > 1, such that a-
approximation of the minimum distortion of an embedding into the line is N P-hard. Badoiu
et al. also provided an exact algorithm for computing an embedding with distortion at most
d in time n°@. For d = Q(n) the running time of such an algorithm is n°™. Fellows et al.
[6] studied the parameterized complexity of metric embeddings and proved that embedding
into the line and more generally, into trees with bounded vertex degrees, is fixed parameter
tractable when parameterized by the distortion. For embedding a graph metric into the line
the running time of the algorithm described in [6] is O(nd*(2d + 1)2%), which also does not
break the barrier of n! when d = Q(n).

It is worth to mention the resemblance between the problem of embedding into the line
and the BANDWIDTH MINIMIZATION problem. In the BANDWIDTH MINIMIZATION problem
the objective is for a given graph G to find a bijective mapping f : V(G) — {1,...,n}, for
which the bandwidth, that is b = max(, ,)ep(q) |f(u) — f(v)], is minimized. Observe that the
only difference between the two problems is that in the BANDWIDTH MINIMIZATION problem
we demand 1 < [f(p) — f(q)| for every pair of vertices while the non-contraction constraint
in our embedding problem is D(p,q) < |f(p) — f(q)|.

The BANDWIDTH MINIMIZATION problem is one of the test-bed problems in the area
of moderately exponential time algorithms and has been studied intensively. Trying all
possible permutations of the vertex set yields a simple O(n!n) time algorithm while the
known algorithms for the problem with running time O(c") are far from straightforward.
The O(n!)-barrier was broken by Feige and Kilian [5] who gave an algorithm with running

time 10"n°W). This result was subsequently improved by Cygan and Pilipczuk [4] down to
5700,

Despite the similarities between low distortion embedding into the line and bandwidth,
the non-contraction constraint makes the algorithmic complexity of the two problems signif-
icantly different. A striking example is that the parameterized version of the BANDWIDTH
MINIMIZATION problem is one of the hardest problems in Parameterized Complexity, while
low distortion embedding into the line is fixed parameter tractable [6]. Thus, it is not sur-
prising that a direct transmission of the ideas for the BANDWIDTH MINIMIZATION problem
to low distortion embeddings does not work. Nevertheless, our approach is still based on the
approaches from [4, 5], especially the initial and final parts of our algorithm. However, to
handle non-contraction need a non-trivial additional link connecting these parts.

2 Preliminaries

Let G be an undirected graph with vertex set V(G) and edge set E(G). We denote the
number of vertices by n. For v and v € V(G), Dg(u,v) is the shortest path distance between
w and v in G. For a subset V' C V(G), by G[V’'] we mean the subgraph of G induced by
V'. An integer interval is a set {x,x + 1,...,y — 1,y} of integers appearing consecutively.

An embedding of a graph G into the line is a function f : V(G) — R. The distortion
[f(w)—f(v)]

DG(U,’U)
|f(u) — f(v)| > Dg(u,v) for every pair u, v of vertices. If f is non-contracting we say that a
vertex u pushes vertex v if Dg(u,v) = |f(u) — f(v)|. For an embedding f, let vy, va, ..., v,

of an embedding f is max, ,cv(q) An embedding is called non-contracting if

be an ordering of the vertices such that f(vi) < f(v2) < --- < f(v,). We say that f is
pushing if v; pushes v; 41, for each 1 <7 <n —1.
A partial embedding of G into the line is a function f’: V' — R for some subset V' of V.

For a partial embedding f’ with domain V', let v}, v5, ..., v/, be an ordering of V' such that

» Ym/

fl(vy) < fl(vy) < --- < f(v],). We say that f’ is pushing if v; pushes v, for each 1 <7 <
n' — 1. The distortion of a pushing partial embedding f’ is max,,c g |f'(w) — f'(v)].

3 Exact Algorithm for Distortion
In this section we give an exact algorithm for the following problem.

Given an input graph G with the vertex set V(G) and the edge set E(G), find
a mapping f from V(G) — R* such that for all u,v € V(G), |f(u) — f(v)| >
D¢ (u,v) and the function

[f (u) = f(v)]

dist =
v (G) u,veV(G) Dg(u, ’U)

is minimized.

In order to reduce the search space we apply a simple lemma proved in [6] on minimum
distortion embedding of graphs into the line.

Lemma 1 ([6])

o [f G can be embedded into the line with distortion d, then there is a pushing embedding
of G into the line with distortion d. Furthermore, every pushing embedding of G into
the line is non-contracting.

e Let f be a pushing embedding of a connected graph G into the line with distortion at
most d. Then D(vi_1,v;) < d for every 1 <i < n.

Lemma 1 implies that it is sufficient to look for an optimal pushing embedding. Notice
that a pushing embedding with f(v1) = 0 maps every vertex to an integer coordinate. There-
fore we can without loss of generality restrict ourself to functions f : V(G) — {0,...,dn}.
We also assume that our input graph G is connected, because otherwise some pair of vertices
have infinite distance between them and hence there is no non-contracting embedding of G
into the line.

We now present an algorithm that decides whether there is an embedding of distortion
at most d for the input graph G. It is well known that any graph G with n vertices can
be embedded into the line with distortion at most 2n — 1 [2]. Thus, if we want to find the
minimum d such that there is an embedding of G into the line with distortion at most d it
is sufficient to try all values between 1 and 2n — 1 for d. Next we describe the three main
components of our algorithm and show how to combine them in order to obtain an algorithm
running in time 5"t°(and using 272" space. The first and third part of our algorithm
go along the lines of the known algorithms for BANDWIDTH [5, 4]. While these two parts
are sufficient to compute bandwidth, in order to solve our problem we need an intermediate
divide and conquer step to bridge the first and last part.

3.1 Fixing an assignment into buckets

The algorithm loops over all possible distributions of the vertices into “buckets” on the integer
line. The remaining two steps of the algorithm deal with finding an optimal embedding that
agrees with the distribution made in the first step. Formally, we are looking for a pushing
embedding f : V(G) — {0,...,dn}. A bucket assignment is a function h : V(G) — {0,...,n}
and an embedding f : V(G) — {0,...,dn} of G agrees with h if for every vertex v of G
we have h(v) = ng:’l)J For i > 0, the i-th bucket of h (or the i-th bucket for short) is
B; = {(d+1)i,...,(d+1)(i+1) —1} and the content of the i-th bucket is V; = {v : h(v) = i}.

The outer loop of the algorithm goes over a set of bucket assignments such that if there
is a pushing embedding f : V(G) — {0,...,dn} with distortion at most d then some h we
have looped over agrees with f. We guess a vertex v such that h(v) = 0 and fix a spanning
tree T of G with rp as root. Once h(p) has been determined for the parent p of a node u
in T', we loop over all possible values of h(u). If h is to agree with some pushing embedding
f:V(G) —{0,...,dn} with distortion at most d we have that h(u) = h(p) — 1, h(u) = h(p)
or h(u) = h(p)+1 and that h(u) > 0. Since we have at most 3 possibilities for the placement
of each vertex the outer loop needs only to go over at most n-3" different bucket assignments
h.

3.2 Dealing with Many Buckets

In this section and Section 3.3, we provide an algorithm which given an initial bucket as-
signment h, decides whether there is a pushing embedding f of the input graph into the line
with distortion at most d that agrees with h.

Our algorithm EXACT-DIST solves a slight modification of the problem. Input to this
problem is a graph G, an integer d, a bucket assignment h, an interval J = {z,x +1,...,y}
of integers and a function g : V' — {0,...,dn} for some subset V' of V(G). Let By =
Uje gBj and V; = Uje 7 Vj. The algorithm determines whether there is a partial pushing
embedding f : V; — By with distortion at most d such that f agrees with h and f(v) =
g(v) for all vertices in V' N V;. To solve the original problem we make a call to EXACT-
DisT(G,d, h, J, g) where J = {0,...,n} and the domain V' of g is empty. Before commencing
with the algorithm, we perform a “sanity check”. That is, given h check whether it is even
remotely feasible that f can exist. We verify that h satisfies the following properties.

e For every i, |V;| < d+ 1.
e Similarly, for every edge wv, |h(u) — h(v)| < 1.

Indeed, if some of these cases do not hold, there is no embedding f with distortion d that
agrees with A and we can immediately answer “NO”. At all later stages of the algorithm
we assume that h satisfies these properties. An outline of the algorithm without these
preliminary steps is given in Figure 1. In Section 3.3 we will give an algorithm which
implements Step 3 in time 2" -n®®) time, where b = |.J| is the number of buckets considered.

The idea behind the algorithm is as follows. When the number of buckets |J| is large, our
algorithm follows a divide-and-conquer approach and if the number of buckets is “small”,
that is roughly n/ log?n, we do dynamic programming. To deal with the large number of
buckets we look for a “small balanced separator” to branch on. The first step of algorithm
ExXAcCT-DIST is based on the following lemma.

Lemma 2 Let h be a bucket assignment and let J = x,xz+1,...,y be an integer interval
such that logLQn < |J|. Then there exists j € I = {3{%%—1, ey %?’y} such that |V;| < 2log? n.

4

Exact-DisT(G,d, h, J, g)
(Here d is the distortion, h is the fixed bucket assignment, J = {z,...,y} is the set of
indices of buckets and g is a partial embedding of some of the vertices in the graph.)

1. If the size of |J| > —%— then find a bucket Vj of the kind described in Lemma 2 else

logZn

go to Step 3.

2. Enumerate all possible pushing partial embeddings g; : V; — B, of distortion at
most d. For every such g;:

e Assign ¢'(v) = g;j(v) if v € V; and ¢'(v) = g(v) if v is in the domain of
g. Let J1 = {x,...,j — 1,5} and Jo = {j,j + 1,...y}. Recursively solve
the subproblems Exact-Dist(G,d, h, Ji,q¢") and ExacT-DIisT(G,d, h, J2,¢').
Return “YES” if both recursive calls return “YES”.

3. In this case solve the problem using Lemma 5 of Section 3.3.

Figure 1: Description of the Algorithm

Proof: The proof follows from an averaging principle. For the sake of contradiction, let
us assume that for every j € I, |V;| > 2log?n. Then the total number of elements in the
buckets V; with j € I is at least

J
E |Vj|>2log2n~u>2log2n~ n2 =n
. 2 log”n
jel
But the sets V; are disjoint, and thus the sum does not exceed |V(G)| = n, which is a
contradiction. O

If |J| is at least n/log?n, the algorithm picks a bucket B; and branches on all possible
ways to lay out V; in B;. After this the problem breaks up into two independent subproblems
(G,d,h,J1,¢") and (G,d, h,J2,g'), see Figure 1. We argue that the two subproblems are
indeed independent. Let f be a pushing partial embedding of V; into B; with distortion at
most d such that f agrees with h and coincides with g. This means that f restricted to V;
is a pushing partial embedding of V; into B;. We choose g; to coincide with f on V; and
define ¢'(v) = gj(v) if v € Vj and ¢'(v) = g(v) if v is in the domain of g, just as in step 2 of
algorithm Exact-Dist. If J = {z,...,y} then J; ={z,...,j} and Jo = {j,...,y}. Now f
restricted to J; is a pushing partial embedding from Vj, to B, while f restricted to Js is a
pushing partial embedding from Vj, to By,.

In the other direction, let f; and fa be pushing partial embeddings from Vj, to B, and
from V}, to By, respectively, agreeing with h and coinciding with ¢’. Since J = J; U Jy and
Ji1 N Jy = {j} we can choose f to be the partial embedding from V; to B that coincides
with both f; and fo. Since both f; and fy are pushing partial embeddings, so is f. Since
every edge with both endpoints in V; has both endpoints either in Vj, or in Vj, and both f;
and fo have distortion at most d, so does f.

Let T'(n,b) be the time required by algorithm EXACT-DIST on a n-vertex graph G with
|J| = b. Let T*(n) be the time required by algorithm EXACT-DIST on a n-vertex graph G
and with |J| < n/log?n. An analysis of step 1 and 2 of algorithm EXAcCT-DIST yields the
following recurrence.

d . n
T(n,b) = (QIOJgrzln)(Qlog2 n)!- 27 (n, %) ifb> e
’ T*(n) otherwise.

Thus, since b < n we have T'(n,b) < 9OU8 oz) e (n) = 2°0") . T*(n). In Section 3.3
we show how to implement the last step of algorithm EXACT-DIST to run in time 2"nO®)
which is at most 2" - 2°(") since b < n/log?n. This yields a 2"°("™) runtime bound for
algorithm EXACT-DIST and a 6"1°() bound for deciding whether G can be embedded into
the line with distortion at most d. In Section 3.4 we will show that the running time of our
algorithm in fact is bounded by 57+o(").

3.3 Dealing with Few Buckets

In this section we give an algorithm which given an initial bucket assignment h, a partial
assignment g, and an integer interval J = {x, ..., y} with |J| = b < n/log®n decides whether
there is a pushing partial embedding f : V; — B; with distortion at most d, agreeing with
h and coinciding with partial assignment ¢g. Our algorithm runs in time and space 2"n°®).
The number of slots in J, that is positions in the line to where vertices can be mapped, is
at most b- (d+1). Thus there could be many slots with no vertex mapped to them. We start
our algorithm by guessing for every j € J the leftmost non-empty slot in each bucket B; and
a vertex from Vj to be placed there. Naturally, if the layout of a bucket B; with j € J has
already been determined by g our guesses must be consistent with this. For every j € J, let
t; denote the vertex guessed to be placed leftmost in bucket j. Also let [; denote the position
guessed for ¢;. After having made the guess we modify the problem at hand—we now look
for a pushing partial embedding f : V; — By with distortion at most d, agreeing with h,
coinciding with g such that for every bucket B; with j € J, the leftmost vertex mapped to
B, is tj, which is mapped to {;. The number of possible guesses is bounded by (d + 1)’n?.

We choose the ordering 7,72, ...,m,| of the entries of B such that for every i < j we
have that m; mod (d+1) < 7; mod (d+1) and such that if 7; mod (d+1) = 7; mod (d+1)
then dﬂT-il < dﬂ—J’fl. For example, if J = 3,4,5 and d = 4, then

m,...,m5 = 15,20,25,16,21, 26,17, 22,27, 18, 23, 28,19, 24, 29.
We call the ordering 71, ..., ™5, the bucket order of B;. Next we define the notion of a state.

Definition 1 A state ¢ is a quadruple (P,Q, R,p), where P C V;, Q C P is a set of vertices
containing at most one vertex from each V; such that if V; N P # 0 then V; N Q # 0 and
tj € P, RC By, is a set of integers containing at most one integer from each bucket B; and
p < |J| is a non-negative integer.

Let us observe that the number of states is at most 2" x nl/l x (d + 1)Vl x |B;|. If
QNV; #0, then define g; to be the vertex in Q@ NV;. If RN B;j # 0 let r; be the integer in
RN Bj. Next we define what it means for a state to be feasible:

Definition 2 A state is called feasible if there exists a partial embedding f assigning the
vertices of P to the first p positions in the bucket order such that the following condition
hold:

1. For any edge uv withu € P andv € P, |f(u)— f(v)| < d, f agrees with h and coincides
with g.

2. If V;N P #0, then f(t;) =1; and f(q;) =rj. There is no vertex v € V; N P such that
f(v) <l or f(v) > rj.

3. For any bucket V; with j € J, if v,y € V;, f(x) < f(y) and no vertex is mapped by f
to the interval {f(x) + 1, f(y) — 1}, then f(y) — f(x) = Dg(z,y);

4. If j € J and j is not the largest element of J, V; C P and Vi1 NP # 0, then
Si+1) = f(rj) = Da(ljva, 7).

The idea is to go through the slots in J one by one in the bucket order and for each of
them determine which vertex (if any) gets mapped by f to this slot. The number p denotes
the position in the bucket order that we have reached. The set P corresponds to the set of
vertices that have already been placed. For every j € J, t; and ¢; denote the vertices placed
leftmost and rightmost in B; respectively. Also [; and 7; denotes the position of ¢; and ¢; in
Bj. Now we define the notion of a state succeeding another state.

Definition 3 Let (1 = (P1,Q1, R1,p) and (o = (P2,Q2, Ra,p + 1) be two states. We say
that (o succeeds (7 if the following holds.

e FEither P, = P;, or P, = P; U{v}.

® IfPl = PQ, then Ql = QQ and R1 = RQ.

o If P, =P U{v} and v €V}, then j = | 2| and

Ifvet), thenlj = mpq1. If g(v) is defined then g(v) = mpy1.

Q2 = (@1 \{g;}) U{v} and Ry = (R \ {r;}) U{mps1}.

If VNP1 # 0 then mpy1 —rj = D (v, g5).

If j is not the largest element of J then lj11 — mpr1 > D(v,tj41).

If j € J and j is not the largest element of J, V; C Py and Vj41 N Py # 0 then
flj+1) = f(v) = Da(lj41,v).

6. If j is not the smallest element of J then N(v)NVj_1 N Py = 0.

Svs o =

We now proceed to prove an observation that will be helpful for the correctness proof.

Lemma 3 Let (; = (P1,Q1, R1,p) be a feasible state and (o = (P2, Q2, R2,p + 1) be a state
that succeeds (1. Then (o is feasible.

Proof: Since (; = (P1,Q1, R1,p) is feasible there is a partial embedding f satisfying points
1—4 in Definition 2. If P, = P, then f satisfies the points 1 —4 for (, as well. If P, # P; then
P, \ P contains a single vertex v. Let f’ be a partial embedding assigning the vertices of Py
to the first p + 1 positions in the bucket order such that f" and f coincide and f'(v) = mp41.
By point 1 of the definition of succession f’ agrees with h and coincides with g. Since v
has no neighbour in P N V;_; it follows that for any edge uw with v € P, and w € Py,
|f(u) — f(w)| < d. Also, f’ satisfies point 2 of definition 2 because m,4; is the rightmost
position in P» N B;. Furthermore f’ satisfies point 3 of Definition 2 by point 3 of Definition
3. Finally f’ satisfies point 4 of Definition 2 by point 5 of Definition 3. O

Now we are ready to prove the main lemma of the section which allows us to obtain the
desired result.

Lemma 4 There is a pushing partial embedding f : V; — By with distortion at most d
such that f agrees with h, coincides with g and such that for every j € J, f(t;) = l; and
no other vertex in V; is mapped before t; by f if and only if there ewists sequence of states
C1,C15 -+, Q,| such that (a) ¢1 = (0,0,0,0); (b) Giy1 succeeds (; for alli € {1,...,[By] —1};
and (c) Q5,1 = (Vs, X,Y,|Bs]).

Proof: Let f : V; — By be a pushing partial embedding with distortion at most d such
that f agrees with h, coincides with g and such that for every j € J, f(t;) = l; and no other
vertex in Vj is mapped before ¢; by f. With the help of f we define the sequence of feasible
states as follows. For every p < |B;|, P is the set of vertices f maps to m,...,m,, @ is the
set of vertices in P such that for every j such that PNV} #), Q) contains exactly one vertex
qj, f maps all vertices in PNV; to the left of ¢;. Finally R is the set of positions that f maps
the vertices of). The construction of the sequence of states implies that ¢; = (0,0, 0,0),
Git+1 succeeds (; for all i € {1,...,|By| — 1} and that (|5, = (V;, X,Y,|B,]).

For the reverse direction suppose that we have sequence of feasible states (1,1, .., (s,
such that ¢1 = (,0,0,0); (b) (41 succeeds ¢; for all i € {1,...,|B;s| —1}; and (c) (5, =
(Vy, X,Y,|By|). Since ¢1 = (0,0, 0,0) is feasible Lemma 3 implies that (|5,| = (V7, X, Y, [B,])
is feasible as well. The definition of feasibility guarantees the existence of the desired f,
concluding the proof.

O

Finally, we ready to proceed with the lemma used for the analysis of Step 3.

Lemma 5 There is an algorithm that for given G, d, h, J, g and T decides whether there
is a pushing partial embedding f : V; — By with distortion at most d such that f agrees with
h, coincides with g and such that for every j € J, f(t;) = l; and no other vertex in Vj is
mapped before t; by f in time and space 2" - nOUJD

Proof: As we observed already, the number of states is at most 2" x nl’l x (d+ 1)1 x |B;| <
2n . nOUJD . The algorithm decides the existence of f by applying Lemma 4. The algorithm
starts in the state (0,0, 0,0) and does breadth first search on the graph where vertices are the
states and there is a directed edge from a state ¢; to a state ¢; if (; succeeds ¢;. We do not
keep this graph explicitly and rather generate the vertices of this graph as and when required
in our breadth first search. Whenever we are at state (we can find all possible successor
states in polynomial time. By Lemma 4 there is a required embedding f if and only if there
is a path from (0,0, 0,0) to (Vy,X,Y,|By|). Our algorithm needs 2" - n®(/D) space to keep
track of the set of states visited by the breadth first search algorithm. Since the number of
states is bounded by 2" - n?(7D) and the number of successors of a state is at most d + 2 the
number of vertices and edges in the state graph is upper bounded by 2" - n®(/D. Hence the
algorithm takes 2" - n®(7D time and space. O

Observe that applying Lemma 5 together with the analysis presented for Algorithm
EXACT-DIST over the previous section yields a running time bound of 6"t°(™ . In fact,
our algorithm runs in time 5"T°(™ . The next section is devoted to proving this.

3.4 A Refined Analysis

In this section we prove that the total number of states ever produced by our algorithm is
57to(m) - Since the running time of the algorithm is proportional to the number of states
we generate up to a subexponential factor, this implies that algorithm EXACT-DIST runs in
time 57t

Lemma 6 The algorithm described in the previous sections runs in time 570,

Proof: Let a super-state be a two-tuple (h, () where h is a bucket assignment and (is a state
generated by algorithm ExAcT-DisT. We say that a super-state is visited by the algorithm
to decide whether there is an embedding f of G into the line with distortion at most d if ¢
is generated at a call to EXAcT-DI1ST with h as the required bucket assignment. The total
running time of the algorithm is directly proportional to the total number of times each
super state is visited. First we argue that each super state is visited at most 20(") times. For
a fixed h, J ={z,...,y}, T, l...l, and g the state (h,() is visited at most one. However
the number of possible J’s is O(n?), |T| < —%—, y — 2 < |T'| so the number of possible sets

logZn’

T and |J|-tuples I, ..., 1, is 20(") | Finally, in any recursive call the domain of g is at most
log?n - log n/Tnan = 2log? nloglogn. Hence the number of possible ¢’s is 2°("). Thus each

super-state is visited at most 2°(™ times.

For every fixed h and P C V(G) there are at most 2°) triplets (Q, R, p) such that the
super-state (h, (P, Q, R, p)) is visited. This is true because |Q| < n/logn, |R| < n/log’n
and p is an integer in {1,...,dn}.

Finally we need to argue that there are at most n? - 5" pairs (h, P) such that there is a
triplet (@, R,p) such that the super-state (h, (P, @, R,p)) is visited. Let T be the spanning
tree of G rooted at rr that we used to list bucket assignments of G. We prove that for a fixed
integer interval J C {1,...,n} with |J| < n/log®n the number pairs (h, P) such that there
is a triplet (Q, R,p) such that the super-state (h,(P,Q, R,p)) is visited by the algorithm
during a call to algorithm ExXACT-DIST with J as parameter is at most 5". Every such pair
corresponds to a labelling of the tree T. The vertices of T' are labelled from the set {0, 1}
with a vertex v labelled 1 if v € P. The edges of T are labelled from the set {—1,0,1} such
that for every uv € E(T) where u is a parent of v, the edge uv is labelled h(v) — h(u). For a
subtree T" of T rooted at rr we say that a labelling L of T” is good if there is a super-state
visited by the algorithm whose labelling restricted to 7" is exactly L. We prove that if T”
has n vertices then the number of good labellings of 7" is at most 5 by induction on n’. If
n/ = 1 this follows trivially. Suppose now that the assertion holds for some n’ and consider
a subtree 7" on n/ + 1 vertices. Let [be a leaf of T”. Notice that any good labelling of T”
restricted to T\ [is a good labelling of 7"\ I. By the induction hypothesis there are at
most 5" good labellings of 7"\ I. We prove that there are at most 5 ways to extend a good
labelling L of 77\ I to a good labelling of T".

Let I’ be the parent of [in T and let Py be the path from 77 to I’ in T7. Let z =
ZweE(Pﬂ) L(uv). If z—1¢ J,z¢ Jor z+ 1 ¢ J we prove that there are only 5 ways to
extend L to a good labelling of 7”. In order to extend L we need to specify L(Il") and L(1).
Notice that if z + L(Il") ¢ J then L(I) must be 0 in any good labelling. Thus in this case
there are at most 5 ways to extend L. Now, consider the case that {z — 1,2,z + 1} C J and
L(I") = 0. Then if L(Il') = —1 then L(l) can not be 1 in a good labelling. Finally, consider
the case that {z—1,2,2+ 1} C J and L(I') = 1. Then if L(Il") = 1 then L(I) can not be 0 in
a good labelling. In both these cases there are at most 5 ways to extend L, concluding the
proof. O

We conclude with the following theorem.
Theorem 1 There is an algorithm that given a graph G on n vertices constructs a non-

contracting embedding of the shortest path metric generated by G into the line with minimum
distortion in time 5" T°") and space 2o,

4 Concluding remarks and open problems

In this paper we have provided the first single vertex exponential time algorithm for com-
puting a minimum distortion embedding of a graph metric into the line. This result gives
rise to many challenging questions.

How fast is it possible to compute a minimum distortion embedding of a graph G into
the metric of another graph H? Is there a 20UV time algorithm for this problem, or can
one show that this is impossible up to some complexity theoretic assumption? How does
the problem behave if the host graph H is a tree? Even when H is a binary tree, this does
not seem to be an easy problem. At a first glance it would seem that our algorithm should
be directly extendable to find a minimum distortion embedding of a graph G into a given
cycle C. However this does not look to be easy and we leave it as an open problem whether
finding a minimum distortion embedding of a graph G into a given cycle C' can be done in
20V time.

We believe that the world of embeddings provides a lot of challenges to the area of
moderately exponential time algorithms and is worth to be explored. We hope that our
result will lead to further investigation of the combinatorially challenging field of embeddings
within the framework of moderately exponential time algorithms.

References

[1] M. BApoiu, J. CHUZHOY, P. INDYK, AND A. SIDIROPOULOS, Low-distortion embeddings of general

metrics into the line, in Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC), ACM, 2005, pp. 225-233.

[2] M. BAporu, K. DHAMDHERE, A. GUPTA, Y. RaBINOvICH, H. RACKE, R. RAvI, AND A. SIDIROPOULOS,
Approzimation algorithms for low-distortion embeddings into low-dimensional spaces, in Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), STAM, 2005, pp. 119-128.

[3] M. Bapoiu, P. INDYK, AND A. SIDIROPOULOS, Approzimation algorithms for embedding general metrics
into trees, in Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
ACM and SIAM, 2007, pp. 512-521.

[4] M. CyGAN AND M. PILIPCZUK, Faster exact bandwidth, in Proceedings of the 34th International Work-
shop on Graph-Theoretic Concepts in Computer Science (WG 2008), vol. 5344 of Lecture Notes in
Computer Science, 2008, pp. 101-109.

[5] U. FEIGE, Coping with the NP-hardness of the graph bandwidth problem, in Proceedings of the Tth
Scandinavian Workshop on Algorithm Theory (SWAT), vol. 1851 of LNCS, Springer, Berlin, 2000, pp. 10—
19.

[6] M. R. FELLOWS, F. V. FOMIN, D. LOKSHTANOV, E. LOSIEVSKAJA, F. A. ROSAMOND, AND S. SAURABH,
Parameterized low-distortion embeddings - graph metrics into lines and trees, CoRR, abs/0804.3028

(2008).

[7] A. GupTa, I. NEWMAN, Y. RABINOVICH, AND A. SINCLAIR, Cuts, trees and lj-embeddings of graphs,
Combinatorica, 24 (2004), pp. 233-269.

[8] P. INDYK, Algorithmic applications of low-distortion geometric embeddings, in Proceedings of the 42nd
IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, 2001, pp. 10-33.

[9] C. KENYON, Y. RABANI, AND A. SINCLAIR, Low distortion maps between point sets, in Proceedings of
the 36th Annual ACM Symposium on Theory of Computing (STOC), ACM, 2004, pp. 272-280.

[10] N. LiNIAL, Finite metric-spaces—combinatorics, geometry and algorithms, in Proceedings of the Inter-
national Congress of Mathematicians, Vol. III, Beijing, 2002, Higher Ed. Press, pp. 573-586.

10

