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23:2 Tight Lower Bounds on the Computation of Hadwiger Number

1 Introduction31

The Hadwiger number h(G) of a graph G is the largest number h for which the complete32

graph Kh is a minor of G. Equivalently, h(G) is the maximum size of the largest complete33

graph that can be obtained from G by contracting edges. It is named after Hugo Hadwiger,34

who conjectured in 1943 that the Hadwiger number of G is always at least as large as its35

chromatic number. According to Bollobás, Catlin, and Erdős, this conjecture remains “one36

of the deepest unsolved problems in graph theory” [4].37

The Hadwiger number of an n-vertex graph G can be easily computed in time nO(n)
38

by brute-forcing through all possible partitions of the vertex set of G into connected sets,39

contracting each set into one vertex and checking whether the resulting graph is a complete40

graph. The question whether the Hadwiger number of a graph can be computed in single-41

exponential 2O(n) time was previously asked in [1, 6, 14]. Our main result provides a negative42

answer to this open question.43

I Theorem 1. Unless the Exponential Time Hypothesis (ETH) is false, there does not exist44

an algorithm computing the Hadwiger number of an n-vertex graph in time no(n).45

The interest in the complexity of the Hadwiger number is naturally explained by the46

recent developments in the area of exact exponential algorithms, that is, algorithms solving47

intractable problems significantly faster than the trivial exhaustive search, though still48

in exponential time [8]. Within the last decade, significant progress on upper and lower49

bounds of exponential algorithms has been achieved. Drastic improvements over brute-force50

algorithms were obtained for a number of fundamental problems like Graph Coloring [3]51

and Hamiltonicity [2]. On the other hand, by making use of the ETH, lower bounds could52

be obtained for 2-CSP [16] or for Subgraph Isomorphism and Graph Homomorphism [6].53

Graph Minor (deciding whether a graph G contains a graph H as a minor) is a54

fundamental problem in graph theory and graph algorithms. Graph Minor could be seen55

as special case of a general graph embedding problem where one wants to embed a graph56

H into graph G. In what follows we will use n to denote the number of vertices in G and57

h to denote the number of vertices in H. By the theorem of Robertson and Seymour [15],58

there exists a computable function f and an algorithm that, for given graphs G and H,59

checks in time f(h) · n3 whether H is a minor of G. Thus the problem is fixed-parameter60

tractable (FPT) being parameterized by H. On the other hand, Cygan et al. [6] proved61

that unless the ETH fails, this problem cannot be solved in time no(n) even in the case when62

|V (G)| = |V (H)|. Other interesting embedding problems that are strongly related to Graph63

Minor include the following problems.64

Subgraph Isomorphism: Given two graphs G and H, decide whether G contains a65

subgraph isomorphic to H. This problem cannot be solved in time no(n) when |V (G)| =66

|V (H)|, unless the ETH fails [6]. In the special case called Clique, when H is a clique, a67

brute-force algorithm checking for every vertex subset of G whether it is a clique of size68

h solves the problem in time nO(h). The same algorithm also runs in single-exponential69

time O(2nn2). It is also known that Clique is W[1]-hard parameterized by h and cannot70

be solved in time f(h) · no(h) for any function f unless the ETH fails [7, 5].71

Graph Homomorphism: Given two graphs G and H, decide whether there exists a72

homomorphism from G to H. (A homomorphism G→ H from an undirected graph G73

to an undirected graph H is a mapping from the vertex set of G to that of H such that74

the image of every edge of G is an edge of H.) This problem is trivially solvable in time75

hO(n), and an algorithm of running time ho(n) for this problem would yield the failure of76
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the ETH [6]. However, for the special case of H being a clique, Graph Homomorphism77

is equivalent to h-Coloring (deciding whether the chromatic number of G is at most h),78

and thus is solvable in single-exponential time 2n · nO(1) [3, 13]. When the graph G is a79

complete graph, the problem is equivalent to finding a clique of size n in H, and then is80

solvable in time 2h · hO(1)
81

Topological Graph Minor: Given two graphs G and H, decide whether G contains82

H as a topological minor. (We say that a graph H is a subdivision of a graph G if G83

can be obtained from H by contracting only edges incident with vertices of degree two.84

A graph H is called a topological minor of a graph G if a subdivision of H is isomorphic85

to a subgraph of G.) This problem is, perhaps, the closest “relative” of Graph Minor.86

Grohe et al. [10] gave an algorithm of running time f(h) · n3 for this problem for some87

computable function f . Similar to Graph Minor and Subgraph Isomorphism, this88

problem cannot be solved in time no(n) when |V (G)| = |V (H)|, unless the ETH fails [6].89

However for the special case of the problem with H being a complete graph, Lingas and90

Wahlen [14] gave a single-exponential algorithm solving the problem in time 2O(n).91

Thus all the above graph embedding “relatives” of Graph Minor are solvable in92

single-exponential time when graph H is a clique. However, from the perspective of exact93

exponential algorithms, Theorem 1 implies that finding the largest clique minor is the most94

difficult problem out of them all. This is why we find the lower bound provided by Theorem 195

surprising. Moreover, from the perspective of parameterized complexity, finding a clique96

minor of size h, which is FPT, is actually easier than finding a clique (as a subgraph) of size h,97

which is W[1]-hard, as well as from finding an h-coloring of a graph, which is para-NP-hard.98

Theorem 1 also answers another question of Cygan et al. [6], who asked whether deciding99

if a graph H can be obtained from a graph G only by edge contractions, could be resolved100

in single-exponential time. By Theorem 1, the existence of such an algorithm is highly101

unlikely even when the graph H is a complete graph. Moreover, the technique developed102

to prove Theorem 1, appears to be extremely useful to rule out the existence of no(n)-time103

algorithms for various contraction problems. We formalize our results with the following104

F-Contraction problem. Let F be a graph class. Given a graph G and t ∈ N, the task is105

to decide whether there exists a subset F ⊆ E(G) of size at most t such that G/F ∈ F (where106

G/F is the graph obtained from G by contracting the edges in F ). We prove that in each107

of the cases of F-Contraction where F is the family of chordal graphs, interval graphs,108

proper interval graphs, threshold graphs, trivially perfect graphs, split graphs, complete split109

graphs and perfect graphs, unless the ETH fails, F-Contraction is not solvable in time110

no(n). For lake of space, these results are relegated to Appendix C.111

Technical Details. To prove our lower bounds, we first revisit the proof of Cygan et al. [6]112

for the ETH-hardness of a problem called List Subgraph Isomorphism. Informally, in113

this problem we are given two graphs G and H on the same number of vertices, as well as114

a list of vertices in H for each vertex in G, and we need to find a copy of G in H so that115

each vertex u in G is mapped to a vertex v in H that belongs to its list (i.e. v belongs to the116

list of u). We prove that the instances produced by the reduction (after some modification)117

of [6] have a very useful property that we crucially exploit later. Specifically, we construct a118

proper coloring of G as well as a proper coloring of H, and show that every vertex v in H119

that belongs to the list of some vertex u is, in fact, of the same color as u.120

Having proved the above, we turn to prove the ETH-hardness of a special case of Clique121

Contraction where the input graph is highly structured. To this end, we introduce an122

intermediate problem called Cross Matching. Informally, in this problem we are given123

CVIT 2016



23:4 Tight Lower Bounds on the Computation of Hadwiger Number

a graph L with a partition (A,B) of its vertex set, and need to find a perfect matching124

between A and B whose contraction gives a clique. To see the connection between this125

problem and List Subgraph Isomorphism, think of the subgraph of L induced by one side126

of the partition—say, A—as a representation of the complement of G, and the subgraph of L127

induced by the other side of the partition as a representation of H. Then, the edges that go128

across A and B in a perfect matching can be thought of as a mapping of the vertices of G to129

the vertices of H. The crossing edges of L are easily defined such that necessarily a vertex of130

G can only be matched to a vertex in its list. In particular, we would like to enforce that131

every “non-edge” of the complement of G (which corresponds to an edge of G) would have132

to be mapped to an edge of H in order to obtain a clique. However, the troublesome part is133

that non-edges of the complement of G may also be “filled” (to eventually get a clique) using134

crossing edges rather than only edges of H. To argue that this critical issue does not arise,135

we crucially rely on the proper colorings of G and H.136

Now, for the connection between Cross Matching and Clique Contraction, note137

that a solution to an instance of Cross Matching is clearly a solution to the instance138

of Clique Contraction defined by the same graph, but the other direction is not true.139

By adding certain vertices and edges to the graph of an instance of Cross Matching, we140

enforce all solutions to be perfect matchings between A and B. In particular, we construct the141

instances of Clique Contraction in a highly structured manner that allows us to derive142

not only the ETH-hardness of Clique Contraction itself, but to build upon them and143

further derive ETH-hardness for a wide variety of other contraction problems. In particular,144

we show that the addition of “noise” (that is, extra vertices and edges) to any structured145

instance of Clique Contraction has very limited effect. Roughly speaking, we show that146

the edges in the “noise” and the edges going across the “noise” and core of the graph (that147

is, the original vertices corresponding to the structured instance of Clique Contraction)148

are not “helpful” when trying to create a clique on the core (i.e. it is not helpful to try to149

use these edges in order to fill non-edges between vertices in the core). Depending on the150

contraction problem at hand, the noise is slightly different, but the proof technique stays the151

same—first showing that the core must yield a clique, and then using the argument above152

(in fact, in all cases but that of perfect graphs, we are able to invoke the argument as a black153

box) to show that the noise is, in a sense, irrelevant.154

Preliminaries. As we only use standard notations, we relegate them to Appendix A.155

2 Lower Bound: Prop-Colored List Subgraph Isomorphism156

In this section we build upon the work of Cygan et al. [6] and show a lower bound for a157

problem called Properly Colored List Subgraph Isomorphism (Prop-Col LSI).158

Intuitively, Prop-Col LSI is a variant of Spanning Subgraph Isomorphism where given159

two graphs G and H, we ask whether G is isomorphic to some spanning subgraph of H. The160

input to the variant consists also of proper colorings of G and H and an additional labeling161

of vertices in G by subsets of vertices in H of the same color, so that each vertex in G can162

be mapped only to vertices in H contained in its list. Formally, it is defined as follows.163

Properly Colored List Subgraph Isomorphism (Prop-Col LSI)
Input: Graphs G and H with proper colorings cG : V (G)→ {1, . . . , k} and cH : V (H)→
{1, . . . , k} for some k ∈ N, respectively, and a function ` : V (G)→ 2V (H) such that for
every u ∈ V (G) and v ∈ `(u), cG(u) = cH(v).
Question: Does there exist a bijective function ϕ : V (G) → V (H) such that (i) for
every {u, v} ∈ E(G), {ϕ(u), ϕ(v)} ∈ E(H), and (ii) for every u ∈ V (G), ϕ(u) ∈ `(u)?

164
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Notice that as the function ϕ above is bijective rather than only injective, we seek a165

spanning subgraph. Our objective is to prove the following statement.166

I Lemma 2. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col167

LSI in time no(n) where n = |V (G)|.168

In [6], the authors considered the two problems defined below. Intuitively, the second169

is defined Prop-Col LSI when no proper colorings of H and G are given (and hence the170

labeling of vertices in G is not restricted accordingly); the first is defined as the second when171

we seek a homomrphism rather than an isomorphism (i.e., the sought function ϕ may not be172

injective) and also |V (G)| may not be equal to |V (H)| (thus ϕ may neither be onto).173

List Subgraph Homomorphism (LSH)
Input: Graphs G and H, and a function ` : V (G)→ 2V (H) .
Question: Does there exist a function ϕ : V (G) → V (H) such that (i) for every
{u, v} ∈ E(G), {ϕ(u), ϕ(v)} ∈ E(H), and (ii) for every u ∈ V (G), ϕ(u) ∈ `(u)?

174

List Subgraph Isomorphism (LSI)
Input: Graphs G and H where |V (G)| = |V (H)|, and a function ` : V (G)→ 2V (H).
Question: Does there exist a bijective function ϕ : V (G) → V (H) such that (i) for
every {u, v} ∈ E(G), {ϕ(u), ϕ(v)} ∈ E(H), and (ii) for every u ∈ V (G), ϕ(u) ∈ `(u)?

175

The proof of hardness of LSI consists of two parts:176

Showing ETH-hardness of LSH.177

Giving a fine-grained reduction from LSH to LSI.178

We cannot use the hardness of LSI as a black box because Prop-Col LSI is a special179

case of LSI. Nevertheless, we will prove that the instances generated by the reduction (with180

a minor crucial modification) of Cygan et al. [6] have the additional properties required to181

make them instances of our special case.182

Lower Bound: Properly Colored Subgraph Homomorphism. Adapting the scheme183

of Cygan et al. [6] to our purpose, we will first show that finding a homomorphism remains184

hard if it has to preserve a given proper coloring:185

Properly Colored List Subgraph Homomorphism (Prop-Col LSH)
Input: Graphs G and H with proper colorings cG : V (G)→ {1, . . . , k} and cH : V (H)→
{1, . . . , k} for some k ∈ N, respectively, and a function ` : V (G)→ 2V (H) such that for
every u ∈ V (G) and v ∈ `(u), cG(u) = cH(v).
Question: Does there exist a function ϕ : V (G) → V (H) such that (i) for every
{u, v} ∈ E(G), {ϕ(u), ϕ(v)} ∈ E(H), and (ii) for every u ∈ V (G), ϕ(u) ∈ `(u)?

186

In [6], the authors gave a reduction from the 3-Coloring problem on n-vertex graphs of187

degree 4 (which is known not to be solvable in time 2o(n) unless the ETH fails), which generates188

equivalent instances (G′, H ′, `) of LSH where both |V (G′)| and |V (H ′)| are bounded by189

O( n
logn ). This proves that LSH is not solvable in time no(n) where n = max{|V (G)|, |V (H)|}190

unless the ETH fails. For their reduction, Cygan et al. [6] considered the notion of a191

grouping (also known as quotient graph) G̃ of a graph G is a graph with vertex set V (G̃) =192

CVIT 2016



23:6 Tight Lower Bounds on the Computation of Hadwiger Number

{B1, B2, . . . , Bt} where (B1, B2, . . . , Bt) is a partition of V (G) for some t ∈ N and for any193

distinct i, j ∈ {1, . . . , t}, the vertices Bi and Bj are adjacent in G̃ if and only if there exist194

u ∈ Bi and v ∈ Bj that are adjacent in G. Specifically, they computed a grouping with195

a coloring having specific properties as stated in the following lemma (see also Fig. 4 in196

Appendix B.).197

I Lemma 3 (Lemma 3.2 in [6]). For any constant d ≥ 1, there exist positive integers λ = λ(d),198

n0 = n0(d) and a polynomial time algorithm that for a given graph G on n ≥ n0 vertices of199

maximum degree d and a positive integer r ≤
√

n
2λ , finds a grouping G̃ of G and a coloring200

c̃ : V (G̃)→ [λr] with the following properties:201

1. |V (G̃)| ≤ |V (G)|/r;202

2. The coloring c̃ is a proper coloring of G̃2;1203

3. Each vertex of G̃ is an independent set in G;204

4. For any edge {Bi, Bj} ∈ E(G̃), there exists exactly one pair (u, v) ∈ Bi ×Bj such that205

{u, v} ∈ E(G).206

Now, we describe the reduction of [6]. Here, without loss of generality, it is assumed that207

G has no isolated vertices, else they can be removed. An explanation of the intuition behind208

this somewhat technical definition is given below it.209

I Definition 4. For any instance G of 3-Coloring where G has degree d and a positive210

integer r = o(
√
|V (G)|), the instance reduce(G) = (G̃, H̃, `) of LSH is defined as follows.211

The graph G̃. Let G̃ and c̃ : V (G̃)→ {1, 2, . . . , L} be the grouping and coloring given by212

Lemma 3 where L = λ(d)r. Additionally, for each B ∈ V (G̃), define φB : {1, 2, . . . , L} →213

B ∪ {0} as follows: for any i ∈ {1, 2, . . . , L}, if there exists (u, v,B′) such that u ∈ B214

and v ∈ B′, {u, v} ∈ E(G) and c̃(B′) = i, then φB(i) = u, and otherwise φB(i) = 0.2215

The graph H̃. Let V (H̃) = {(R, l) : R ∈ {0, 1, 2, 3}L, l ∈ L},3 and E(H̃) = {{(R, l), (R′, l′)} :216

R[l′] 6= R′[l]}.217

The labeling `. For any B ∈ V (G̃), let `(B) contain all vertices (R, l) ∈ V (H̃) such218

that c̃(B) = l, and there exists f : B → {1, 2, 3} such that for all i ∈ {1, 2, . . . , L}, either219

φB(i) = R[i] = 0 or both φB(i) 6= 0 and f(φB(i)) = R[i].220

Intuitively, for every vertex B ∈ V (G̃), the function φB can be interpreted as follows.221

It is the assignment, for every possible color i ∈ {1, . . . , L}, of the unique vertex u within222

the vertex set identified with B itself that is adjacent to some vertex in the vertex subset223

identified with some vertex B′ ∈ V (G̃) colored i, if such a vertex u exists (else the assignment224

is of 0). In a sense, B thus stores the information on the identity of each vertex within225

it that is adjacent (in G) to some vertex outside of it, where each such internal vertex is226

uniquely accessed by specifying the color of the vertex in G̃ whose identified vertex set227

contains the neighbor. With respect to the graph H̃ and labeling `, we interpret each vertex228

(R, l) ∈ V (H̃) as a “placeholder” (i.e. potential assignment of the sought function ϕ) for any229

vertex B ∈ V (G̃) that “complies with the pattern encoded by the pair (R, l)” as follows.230

First and straightforwardly, B must be colored l. Here, we remind that the colors of vertices231

in G̃ belong to {1, . . . , L}, while vertices in G are colored 1, 2 or 3 only. Then, the second232

requirement is that we can recolor (by f) the vertices in B so that the color of each vertex233

1 The square G2 of a graph G is the graph on vertex set V (G) and edge set {{u, v} : {u, v} ∈ E(G) or
there exists w ∈ V (G) with {u,w}, {v, w} ∈ E(G)}.

2 The uniqueness of u (if it exists), and thus the validity of φB , follows from Properties 2 and 4 in Lemma 3.
3 That is, R is a vector with L entries where each entry is 0, 1, 2 or 3.
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in B that is adjacent (in G) to some vertex outside B is as encoded by the vector R—that234

is, for each color i ∈ {1, . . . , L}, if the vertex φB(i) is defined (i.e., φB(i) 6= 0), then its color235

(which is 1, 2 or 3) must be equal to the i-th entry of R. (Further intuition is given in Fig. 4236

in Appendix B.)237

Now, we state the correctness of the reduction.238

I Lemma 5 (Lemma 3.3 in [6]). For any instance G of 3-Coloring where G is an n-vertex239

graph of degree d, and a positive integer r = o(
√
|V (G)|), the instance reduce(G) = (G̃, H̃, `)240

is computable in time polynomial in the sizes of G, G̃ and H̃, and has the following properties.241

G is a Yes-instance of 3-Coloring if and only if (G̃, H̃, `) is a Yes-instance of LSH.242

|V (G̃)| ≤ n/r, and |V (H̃)| ≤ γ(d)r where γ is some computable function of d.243

We next prove that we can add colorings to the instance reduce(G) = (G̃, H̃, `) of LSH244

in order to cast it as an instance of Prop-Col LSH while making a minor mandatory245

modification to the graph H̃.246

I Lemma 6. Given an instance reduce(G) = (G̃, H̃, `) of LSH, an equivalent instance247

(G̃, H̃ ′, c
G̃
, c
H̃′ , `) of Prop-Col LSH, where H̃ ′ is a subgraph of H̃, is computable in248

polynomial time.249

Proof. Define c
G̃

= c̃ where c̃ is the coloring of G̃ in Definition 4. Additionally, let H̃ ′ be the250

subgraph of H̃ induced by the vertex set {(R, l) ∈ V (H̃) : there exists B ∈ V (G̃) such that251

(R, l) ∈ `(B)}. Then, define c
H̃′ : V (H̃ ′)→ {1, 2, . . . , L} as follows: for any (R, l) ∈ V (H̃ ′),252

define c
H̃′((R, l)) = l. Notice that, by the definition of V (H̃ ′), every set assigned by ` is253

subset of V (H̃ ′).254

First, we assert that (G̃, H̃ ′, c
G̃
, c
H̃′ , `) is an instance of Prop-Col LSH. To this end,255

we need to verify that the three following properties hold.256

1. c
G̃

is a proper coloring of G̃.257

2. c
H̃′ is a proper coloring of H̃ ′.258

3. For every B ∈ V (G̃) and (R, l) ∈ `(B), it holds that c
G̃

(B) = c
H̃′((R, l)).259

By the definition of c
G̃
, it is a proper coloring of G̃2, which is a supergraph of G̃. Thus,260

c
G̃

is a proper coloring of G̃.261

Now, we argue that c
H̃′ is a proper coloring of H̃ ′. To this end, consider some edge262

{(R, l), (R′, l′)} ∈ E(H̃ ′). We need to show that c
H̃′((R, l)) 6= c

H̃′((R′, l′)). By the definition263

of c
H̃′ , we have that cH̃′((R, l)) = l and c

H̃′((R′, l′)) = l′, and therefore it suffices to show that264

l 6= l′. By the definition of E(H̃) (which is a superset of E(H̃ ′)), we have that R[l′] 6= R′[l].265

Thus, necessarily at least one among R[l′] and R′[l] is not 0, and so we suppose w.l.o.g. that266

R[l′] is not 0. Furthermore, since (R, l) ∈ V (H̃ ′), we have that there exists B ∈ E(G̃) such267

that (R, l) ∈ `(B). Thus,268

c̃(B) = l.269

There exists f : B → {1, 2, 3} such that for all i ∈ {1, 2, . . . , L}, either φB(i) = R[i] = 0270

or both φB(i) 6= 0 and f(φB(i)) = R[i].271

From the second property, and because R[l′] 6= 0, we necessarily have that both φB(l′) 6= 0272

and f(φB(l′)) = R[l′]. In particular, by the definition of φB, having φB(l′) 6= 0 means273

that there exists (u, v,B′) such that u ∈ B, v ∈ B′, {u, v} ∈ E(G) and c̃(B′) = l′. By the274

definition of G̃ as a grouping of G, having u ∈ B, v ∈ B′ and {u, v} ∈ E(G) implies that275

{B,B′} ∈ E(G̃). Because c̃ is a proper coloring of G̃, this means that c̃(B) 6= c̃(B′). Since276

c̃(B) = l and c̃(B′) = l′, we derive that l 6= l′. Hence, c
H̃′ is indeed a proper coloring of H̃ ′.277
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To conclude that (G̃, H̃ ′, c
G̃
, c
H̃′ , `) is indeed an instance of Prop-Col LSH, it remains278

to assert that for every B ∈ V (G̃) and (R, l) ∈ `(B), it holds that c
G̃

(B) = c
H̃′((R, l)). To279

this end, consider some B ∈ V (G̃) and (R, l) ∈ `(B). By the definition of ` (recall Definition280

4), (R, l) ∈ `(B) implies that c̃(B) = l. As c
G̃

= c̃, we have that c
G̃

(B) = l. Moreover, the281

definition of c
H̃′ directly implies that c

H̃′((R, l)) = l. Thus, c
G̃

(B) = c
H̃′((R, l)).282

Finally, we argue that (G̃, H̃, `) is a Yes-instance of LSH if and only if (G̃, H̃ ′, c
G̃
, c
H̃′ , `)283

is a Yes-instance of Prop-Col LSH. In one direction, because H̃ ′ is a subgraph of H̃, it is284

immediate that if (G̃, H̃ ′, c
G̃
, c
H̃′ , `) is a Yes-instance of Prop-Col LSH, then so is (G̃, H̃, `).285

For the other direction, suppose that (G̃, H̃, `) is a Yes-instance of LSH. Thus, there exists a286

function ϕ : V (G̃)→ V (H̃) such that (i) for every {B,B′} ∈ E(G̃), {ϕ(B), ϕ(B′)} ∈ E(H̃),287

and (ii) for every B ∈ V (G̃), ϕ(B) ∈ `(B). In particular, directly by the definition of288

V (H̃ ′), the second condition implies that for every B ∈ V (G̃), it holds that ϕ(B) ∈ V (H̃ ′).289

Thus, because H̃ ′ is an induced subgraph of H̃, it holds that for every {B,B′} ∈ E(G̃),290

{ϕ(B), ϕ(B′)} ∈ E(H̃ ′). Therefore, ϕ witnesses that (G̃, H̃ ′, c
G̃
, c
H̃′ , `) is a Yes-instance of291

Prop-Col LSH. J292

We are now ready to assert the hardness of Prop-Col LSH. The proof, based on293

Lemmas 3, 5 and 6, can be found in Appendix B.294

I Lemma 7. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col295

LSH in time no(n) where n = max(|V (G)|, |V (H)|).296

From Graph Homomorphism to Subgraph Isomorphism. In this part, we observe that297

the reduction of [6] from LSH to LSI can be essentially used as is to serve as a reduction298

from Prop-Col LSH to Prop-Col LSI. For the sake of completeness, we give the full299

details (and the conclusion of the proof of Lemma 2) in Appendix B.300

3 Lower Bound for the Cross Matching Problem301

In this section, towards the proof of a lower bound for Clique Contraction, we prove a302

lower bound for an intermediate problem called Cross Matching that somewhat resembles303

Clique Contraction, and which is defined as follows.304

Cross Matching
Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has
one endpoint in A and the other in B, and G/M is a clique?

305

Our objective is to prove the following statement.306

I Lemma 8. Unless the ETH is false, there does not exist an algorithm that solves Cross307

Matching in time no(n) where n = |A|.308

Proof. Towards a contradiction, suppose that there exists an algorithm, denoted by Matchin-309

gAlg, that solves Cross Matching in time no(n) where n is the number of vertices in the310

set A in the input. We will show that this implies the existence of an algorithm, denoted by311

LSIAlg, that solves Prop-Col LSI in time no(n) where n is the number of vertices in the312

input graph G, thereby contradicting Lemma 2 and hence completing the proof.313

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of314

Prop-Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see315

Fig. 1):316
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Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
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where n = |V (G)|.
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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where n = |V (G)|.
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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Lemma 3.1. Unless the ETH is false, there does not exist an algorithm that solves Prop-Col-

LSI in time n
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where n = |V (G)|.
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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where n = |V (G)|.
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
su�ces to show that u and v are adjacent in L or u0 and v

0 are adjacent in L (or both). To this
end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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4 Lower Bound for the Cross Matching Problem

In this section, towards the proof of a lower bound for Clique Contraction, we prove a lower
bound for an intermediate problem called Cross Matching that somewhat resembles Clique

Contraction, and which is defined as follows.

Cross Matching

Input: A graph G with a partition (A,B) of V (G) where |A| = |B|.
Question: Does there exist a perfect matching M in G such that every edge in M has one
endpoint in A and the other in B, and G/M is a clique?

Our objective is to prove the following statement.

Lemma 4.1. Unless the ETH is false, there does not exist an algorithm that solves Cross

Matching in time n
o(n)

where n = |A|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Matchin-

gAlg, that solves Cross Matching in time no(n). We will show that this implies the existence of
an algorithm, denoted by LSIAlg, that solves Prop-Col LSI in time no(n), thereby contradicting
Lemma 3.1 and hence completing the proof.

We define the execution of LSIAlg as follows. Given an instance (G,H, cG, cH , `) of Prop-
Col LSI, LSIAlg constructs an instance (L,A,B) of Cross Matching as follows (see Fig. ?):

• V (L) = V (G) [ V (H).

• E(L) = E(G) [ E(H) [ {{u, v} : u 2 V (G), v 2 L(u)}.

• A = V (G) and B = V (H).

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.
Denote n = |V (G)|. First, note that by construction, |A| = |B| = n. Thus, because

MatchingAlg runs in time n
o(n), so does LSIAlg.

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance of
Prop-Col LSI. This means that there exists a bijective function ' : V (G) ! V (H) such that
(i) for every {u, v} 2 E(G), {'(u),'(v)} 2 E(H), and (ii) for every u 2 V (G), '(u) 2 L(u).
Having ' at hand, we will show that (L,A,B) is a Yes-instance, which will imply that the call
to MatchingAlg with (L,A,B) as input returns Yes, and hence LSIAlg returns Yes.

Based on ', we define a subset M ✓ E(L) as follows: M = {{u,'(u)} : u 2 B}. Notice that
the containment of M in E(L) follows from the definition of E(L) and Condition (ii) above.
Moreover, by the definition of A, B and because ' is bijective, it further follows that M is a
perfect matching in L such that every edge in M has one endpoint in A and the other in B.
Thus, to conclude that (L,A,B) is a Yes-instance, it remains to argue that L/M is a clique. To
this end, we consider two arbitrary vertices x and y of L/M , and prove that they are adjacent
in L/M . Necessarily x is a vertex that replaced two vertices u 2 A and v 2 B such that
{u, v} 2 M , and y is a vertex that replaced two vertices u0 2 A \ {u} and v

0 2 B \ {v} such that
{u0, v0} 2 M . By the definition of contraction, to show that x and y are adjacent in L/M , it
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end, suppose that u and v are not adjacent in L, else we are done. By the definition of E(L),
this means that {u, v} /2 E(G) and hence {u, v} 2 E(G). By Condition (i) above, we derive
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Figure 1 The construction of an instance of Cross Matching in the proof of Lemma 8.

V (L) = V (G) ∪ V (H).317

E(L) = E(G) ∪ E(H) ∪ {{u, v} : u ∈ V (G), v ∈ L(u)}.318

A = V (G) and B = V (H).319

Then, LSIAlg calls MatchingAlg with (L,A,B) as input, and returns the answer of this call.320

Denote n = |V (G)|, and notice that |A| = |B| = n. Thus, because MatchingAlg runs in321

time |A|o(|A|) = no(n), so does LSIAlg.322

For the correctness of the algorithm, first suppose that (G,H, cG, cH , `) is a Yes-instance323
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denote u′ = ϕ(u) and v′ = ϕ(v). Because L/M is a clique and M is a matching that, by the355
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therefore {u, v} /∈ E(L). Thus, we are left with Conditions (ii), (iii) and (iv). Now, we will359
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We now return to the proof of the lemma. By Claim 9, we are only left with Condition (ii),370
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As argued earlier, this completes the proof of the reverse direction. J372

4 Lower Bounds: Clique Contraction and Hadwiger Number373

In this section, we prove a lower bound for Clique Contraction and consequently for374

Hadwiger Number, defined as follows.375

Clique Contraction
Input: A graph G and t ∈ N.
Question: Is there a subset F ⊆ E(G) of size at most t such that G/F is a clique?

376

Hadwiger Number
Input: A graph G and h ∈ N.
Question: Is the Hadwiger number of G at least as large as h?

377

Our objective is to prove the following statement, where the analogous statement for378

Hadwiger Number (called Theorem 1 in the introduction) will follow as a corollary.379

I Theorem 10. Unless the ETH is false, there does not exist an algorithm that solves Clique380

Contraction in time no(n) where n = |V (G)|.381

To make our approach adaptable to extract analogous statements for other contraction382

problems, we will first define a new problem called Noisy Structured Clique Contrac-383

tion (which will arise in Appendix C) along with a special case of it that is also a special384

case of Clique Contraction. Then, we will prove a crucial property of instances of Noisy385

Structured Clique Contraction, and afterwards we will use this property to prove386

Theorem 10 and its corollary. The definition of the new problem is as follows (see Fig. 2).387
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].
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Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?
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one endpoint in A and the other in B.
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is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].
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Figure 2 An instance of Noisy Structured Clique Contraction where dashed lines represent
non-edges.

Noisy Structured Clique Contraction
Input: A graph G on at least 6n vertices for some n ∈ N, and a partition (A,B,C,D,N)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to any
vertex in D, and no vertex in B is adjacent to any vertex in C.
Question: Does there exist a subset F ⊆ E(G) of size at most n such that G[A ∪B ∪
C ∪D ∪X]/F is a clique,a where X = {u ∈ N : there exists a vertex v ∈ A ∪B ∪C ∪D
such that u and v belong to the same connected component of G[F ]}?
a Note that F might contain edges outside G[A ∪B ∪ C ∪D ∪X]. Then, we slightly abuse notation

so that G[A ∪B ∪C ∪D ∪X]/F refers to G[A ∪B ∪C ∪D ∪X]/(F ∩E(G[A ∪B ∪C ∪D ∪X])).
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Intuitively, the vertex set X consists of the noise (represented by N) that “interacts” with389

non-noise (represented by V (G) \N) through contracted edges (in F ), i.e. the vertices in N390

that lie together with at least one vertex in V (G) \N in a component that will be contracted391

and thereby replaced by a single vertex. We refer to the special case of Noisy Structured392

Clique Contraction where N = ∅ as Structured Clique Contraction. Note that393

Structured Clique Contraction is also a special case of Clique Contraction.394

Solutions to instances of Noisy Structured Clique Contraction exhibit the following395

property, which will be crucial in the proof of Theorem 10 as well as results in Section C.396

I Lemma 11. Let F be a solution to an instance (G,A,B,C,D,N, n) of Noisy Structured397

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has398

one endpoint in A and the other in B.399

Proof. We first argue that every vertex in A ∪ B is incident to at least one edge in F .400

Targeting a contradiction, suppose that there exists a vertex u ∈ A ∪B that is not incident401

to any edge in F . Because |A∪B ∪C ∪D| = 6n, |F | ≤ n and G[A∪B ∪C ∪D ∪X]/F is a402

clique (where the last two properties follow from the supposition that F is a solution), it403

holds that G[A∪B∪C∪D∪X]/F is a clique on at least 5n+ |X| vertices. Hence, the degree404

of every vertex in G[A∪B ∪C ∪D ∪X]/F , and in particular of u, should be 5n− 1 + |X| in405

G[A ∪B ∪ C ∪D ∪X]/F . However, because no vertex in A is adjacent to any vertex in D406

and no vertex in B is adjacent to any vertex in C, the degree of any vertex in A ∪B, and in407

particular of u, is at most |A∪B|−1+ |C∪D|/2+ |X| = 4n−1+ |X| in G[A∪B∪C∪D∪X].408

Because u is not incident to any edge in F , its degree in G[A ∪ B ∪ C ∪ D ∪ X]/F is at409

most its degree in G[A ∪B ∪ C ∪D ∪X]. This is a contradiction, thus we get that indeed410

every vertex in A ∪B is incident to at least one edge in F . From this, because |F | ≤ n and411

|A ∪B| = 2n, we derive that F is a perfect matching in G[A ∪B].412
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instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
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It remains to argue that every edge in F has one endpoint in A and the other in B. Targeting
a contradiction, suppose that this is false. Because F is a perfect matching in G[A [ B], this
means that there exist two vertices a, a0 2 A such that {a, a0} 2 F . By the definition of Noisy

Structured Clique Contraction, neither a nor a0 is adjacent to any vertex inD. Moreover,
note that D ✓ V (G[A[B[C [D[X]/F ). In particular, the vertex of G[A[B[C [D[X]/F
yielded by the contraction of {a, a0} is not adjacent to any vertex of D in G[A[B[C[D[X]/F .
However, this is a contradiction because G[A [B [ C [D [X]/F is a clique.

We are now ready to prove a lower bound for Structured Clique Contraction. Because
this problem is a special case of Clique Contruction, this will directly yield the correctness
of Theorem 5.1.

Lemma 5.2. Unless the ETH is false, there does not exist an algorithm that solves Structured

Clique Contraction in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliConAlg,
that solves Structured Clique Contraction in time n

o(n). We will show that this implies
the existence of an algorithm, denoted by MatchingAlg, that solves Cross Matching in time
n
o(n), thereby contradicting Lemma 4.1 and hence completing the proof.
We define the execution of MatchingAlg as follows. Given an instance (G,A,B) of Cross

Matching, MatchingAlg constructs an instance (H,A,B,C,D, n) of Structured Clique

Contraction as follows (see Fig. ?):

• Let n = |A|, and K be a clique on 4n new vertices. Let (C,D) be a partition of V (K)
such that |C| = |D|.

• V (H) = V (G) [ V (K).

• E(H) = E(G) [ E(K) [ {{a, c} : a 2 A, c 2 C} [ {{b, d} : b 2 B, d 2 D}.

Then, MatchingAlg calls CliConAlg with (H,A,B,C,D, n) as input, and returns the answer of
this call.

First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time
|V (H)|o(|V (H)|)  n

o(n), it follows that MatchingAlg runs in time n
o(n).

For the correctness of the algorithm, first suppose that (G,A,B) is a Yes-instance of Cross

Matching. This means that there exists a perfect matching M in G such that every edge
in M has one endpoint in A and the other in B, and G/M is a clique. By the definition
of E(H), M ✓ E(H). We will show that H/M is a clique. As |M | = n, this will mean
that (H,A,B,C,D, n) is a Yes-instance of Structured Clique Contraction, which will
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Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

It remains to argue that every edge in F has one endpoint in A and the other in B. Targeting
a contradiction, suppose that this is false. Because F is a perfect matching in G[A [ B], this
means that there exist two vertices a, a0 2 A such that {a, a0} 2 F . By the definition of Noisy

Structured Clique Contraction, neither a nor a0 is adjacent to any vertex inD. Moreover,
note that D ✓ V (G[A[B[C [D[X]/F ). In particular, the vertex of G[A[B[C [D[X]/F
yielded by the contraction of {a, a0} is not adjacent to any vertex of D in G[A[B[C[D[X]/F .
However, this is a contradiction because G[A [B [ C [D [X]/F is a clique.

We are now ready to prove a lower bound for Structured Clique Contraction. Because
this problem is a special case of Clique Contruction, this will directly yield the correctness
of Theorem 5.1.

Lemma 5.2. Unless the ETH is false, there does not exist an algorithm that solves Structured

Clique Contraction in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliConAlg,
that solves Structured Clique Contraction in time n

o(n). We will show that this implies
the existence of an algorithm, denoted by MatchingAlg, that solves Cross Matching in time
n
o(n), thereby contradicting Lemma 4.1 and hence completing the proof.
We define the execution of MatchingAlg as follows. Given an instance (G,A,B) of Cross

Matching, MatchingAlg constructs an instance (H,A,B,C,D, n) of Structured Clique

Contraction as follows (see Fig. ?):

• Let n = |A|, and K be a clique on 4n new vertices. Let (C,D) be a partition of V (K)
such that |C| = |D|.

• V (H) = V (G) [ V (K).

• E(H) = E(G) [ E(K) [ {{a, c} : a 2 A, c 2 C} [ {{b, d} : b 2 B, d 2 D}.

Then, MatchingAlg calls CliConAlg with (H,A,B,C,D, n) as input, and returns the answer of
this call.

First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time
|V (H)|o(|V (H)|)  n

o(n), it follows that MatchingAlg runs in time n
o(n).

For the correctness of the algorithm, first suppose that (G,A,B) is a Yes-instance of Cross

Matching. This means that there exists a perfect matching M in G such that every edge
in M has one endpoint in A and the other in B, and G/M is a clique. By the definition
of E(H), M ✓ E(H). We will show that H/M is a clique. As |M | = n, this will mean
that (H,A,B,C,D, n) is a Yes-instance of Structured Clique Contraction, which will

5

Figure 3 The construction of an instance of Structured Clique Contraction in the proof
of Lemma 12 where dashed lines represent non-edges.

It remains to argue that every edge in F has one endpoint in A and the other in B.413

Targeting a contradiction, suppose that this is false. Because F is a perfect matching in414

G[A ∪B], this means that there exist two vertices a, a′ ∈ A such that {a, a′} ∈ F . By the415

definition of Noisy Structured Clique Contraction, neither a nor a′ is adjacent to416

any vertex in D. Moreover, note that D ⊆ V (G[A ∪ B ∪ C ∪ D ∪ X]/F ). In particular,417

the vertex of G[A ∪B ∪ C ∪D ∪X]/F yielded by the contraction of {a, a′} is not adjacent418

to any vertex of D in G[A ∪ B ∪ C ∪D ∪X]/F . However, this is a contradiction because419

G[A ∪B ∪ C ∪D ∪X]/F is a clique. J420

We now prove a lower bound for Structured Clique Contraction. Because it is a421

special case of Clique Contraction, this will directly yield the correctness of Theorem 10.422

I Lemma 12. Unless the ETH is false, there does not exist an algorithm that solves423

Structured Clique Contraction in time no(n) where n = |V (G)|.424

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliCon-425

Alg, that solves Structured Clique Contraction in time no(n) where n is the number426

of vertices in the input graph. We will show that this implies the existence of an algorithm,427

denoted by MatchingAlg, that solves Cross Matching in time no(n) where n is the size of428

the set A in the input, thereby contradicting Lemma 8 and hence completing the proof.429

We define the execution of MatchingAlg as follows. Given an instance (G,A,B) of Cross430

Matching, MatchingAlg constructs an instance (H,A,B,C,D, n) of Structured Clique431

Contraction as follows (see Fig. 3):432

Let n = |A|, and K be a clique on 4n new vertices. Let (C,D) be a partition of V (K)433

such that |C| = |D|.434

V (H) = V (G) ∪ V (K).435

E(H) = E(G) ∪ E(K) ∪ {{a, c} : a ∈ A, c ∈ C} ∪ {{b, d} : b ∈ B, d ∈ D}.436

Then, MatchingAlg calls CliConAlg with (H,A,B,C,D, n) as input, and returns the answer.437

First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time438

|V (H)|o(|V (H)|) ≤ no(n), it follows that MatchingAlg runs in time no(n).439

For the correctness of the algorithm, first suppose that (G,A,B) is a Yes-instance of440

Cross Matching. This means that there exists a perfect matching M in G such that every441

edge in M has one endpoint in A and the other in B, and G/M is a clique. By the definition442

of E(H), M ⊆ E(H). We will show that H/M is a clique. As |M | = n, this will mean443

that (H,A,B,C,D, n) is a Yes-instance of Structured Clique Contraction, which will444

mean, in turn, that the call to CliConAlg with (H,A,B,C,D, n) as input returns Yes, and445

hence MatchingAlg returns Yes.446
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Note that V (H/M) = V (K) ∪ V (G/M). To show that H/M is a clique, we consider two447

arbitrary vertices u, v ∈ V (H/M), and show that they are adjacent in H/M . If u, v ∈ V (K),448

then because K is a clique, it is clear that {u, v} ∈ E(H/M). Moreover, if u, v ∈ G/M , then449

because G/M is a clique, it is clear that {u, v} ∈ E(H/M). Thus, one of the vertices u and450

v belongs to V (G/M) and the other belongs to V (K). We suppose w.l.o.g. that u /∈ V (K).451

Because M is a perfect matching in G such that every edge in M has one endpoint in A452

and the other in B, it follows that u resulted from the contraction of the edge between453

some a ∈ A and some b ∈ B. If v ∈ C, then {a, v} ∈ E(H), and otherwise v ∈ D and so454

{b, v} ∈ E(H). Thus, by the definition of contraction, we conclude that {u, v} ∈ E(H/M).455

This completes the proof of the forward direction.456

Now, suppose that MatchingAlg returns Yes, which means that the call to CliConAlg with457

(H,A,B,C,D, n) returns Yes. Thus, (H,A,B,C,D, n) is a Yes-instance, which means that458

there exists a subset F ⊆ E(H) of size at most n such that H/F is a clique. We will show459

that F is a perfect matching in G such that every edge in F has one endpoint in A and the460

other in B. Because H/F is a clique, this will imply that G/F is a clique and thus that461

(G,A,B) is a Yes-instance of Cross Matching. To achieve this, notice that by Lemma 11,462

F is a matching of size n in H such that each edge in F has one endpoint in A and the other463

in B. Because G = H[A∪B], we have that F is a perfect matching in G. Thus, the proof of464

the reverse direction is complete. J465

I Corollary 13. Unless the ETH is false, there does not exist an algorithm that solves466

Hadwiger Number in time no(n) where n = |V (G)|.467

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Hadwi-468

gerAlg, that solves Hadwiger Number in time no(n) where n is the number of vertices in469

the input graph. We will show that this implies the existence of an algorithm, denoted by470

CliConAlg, that solves Clique Contraction in time no(n) where n is the number of vertices471

in the input graph, thereby contradicting Theorem 10 and hence completing the proof.472

We define the execution of CliConAlg as follows. Given an instance (G, t) of Clique473

Contraction, if G is not connected, then CliConAlg returns No, and otherwise it returns474

Yes if and only if HadwigerAlg returns Yes when called with (G, |V (G)| − t) as input. Because475

the call to HadwigerAlg with input (G, |V (G)| − t) runs in time no(n) where n = |V (G)|, we476

have that CliConAlg runs in time no(n) as well.477

For the correctness of the algorithm, first observe that if G is not connected, then no478

sequence of edge contractions can yield a clique, and hence it is correct to return No. Thus,479

now assume that G is connected. First, suppose that (G, t) is a Yes-instance of Clique480

Contraction. This means that there exists a sequence of at most t edge contractions that481

transforms G into a clique. In particular, this clique must have at least |V (G)| − t vertices,482

and therefore the Hadwiger number of G is at least as large as |V (G)| − t. By the correctness483

of HadwigerAlg, its call with (G, |V (G)| − t) returns Yes, and therefore CliConAlg returns Yes.484

Now, suppose that CliConAlg returns Yes, which means that the call to HadwigerAlg485

with (G, |V (G)| − t) returns Yes. By the correctness of HadwigerAlg, the clique Kh for486

h = |V (G)| − t is a minor of G. This means that there is a sequence of vertex deletions, edge487

deletions and edge contractions that transforms G into Kh. In particular, this sequence can488

contain at most t vertex deletions and edge contractions in total. Furthermore, by replacing489

each vertex deletion for a vertex v by an edge contraction for some edge e incident to v (which490

exists because G is connected) and dropping all edge deletions, we obtain another sequence491

that transforms G into Kh. Because this sequence contains only edge contractions, and at492

most t of them, we conclude that (G, t) is a Yes-instance of Clique Contraction. J493
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A Preliminaries536

For a vector R with L entries and i ∈ {1, . . . , L}, let R[i] be the value of the i-th entry of R.537

Unless specified otherwise, bases of logarithms are assumed to be 2.538
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V (G[U ]) = U and E(G[U ]) = {{u, v} ∈ E(G) : u, v ∈ U}. Given a subset F ⊆ E(G), let541
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G[F ] = G[V (F )]. We say that G contains a graph H as an induced subgraph if there exists543

U ⊆ V (G) such that G[U ] and H are identical up to relabelling vertices (more precisely,544

isomorphic). The set of neighbors of a vertex u ∈ V (G) is denoted by NG(u), that is,545

NG(u) = {v ∈ V (G) : {u, v} ∈ E(G)}. When G is clear from context, we drop it from546

subscripts of notations. A matching M in G is subset of E(G) such that no two edges in M547

share an endpoint. In case every vertex in V (G) is an endpoint of an edge in M , that is,548

|M | = |V (G)|/2, it is said that M is perfect. A function c : V (G)→ N is a proper coloring of549

G if for every edge {u, v} ∈ E(G), c(u) 6= c(v). The complement of G, denoted by G, is the550

graph with vertex set V (G) and edge set {{u, v} /∈ E(G) : u, v ∈ V (G), u 6= v}.551

Given an edge e = {u, v} ∈ E(G), the contraction of e in G is the operation that replaces552

u and v by a new vertex that is adjacent to all vertices previously adjacent to u or v (or both),553

where the resulting graph is denoted by G/e. In other words, V (G/e) = (V (G)\{u, v})∪{x}554

for some new vertex x, and E(G/e) = {{s, t} ∈ E(G) : s, t /∈ {u, v}} ∪ {{s, x} : s ∈555

N(u) ∪N(v)}. More generally, given a subset F ⊆ E(G), the contraction of F in G is the556

operation that replaces each connected component C of G[F ] by a new vertex xC that is557

adjacent to all vertices previously adjacent to at least one vertex in C, where the resulting558

graph is denoted by G/F . A graph H is said to be a minor of a graph G if H can be obtained559

from G by a series of vertex deletions, edge deletions and edge contractions. For any h ∈ N,560

the clique on h vertices is denoted by Kh, and the cycle on h vertices is denoted by Ch. The561

Hadwiger number of a graph G is the largest h ∈ N such that Kh is a minor of G.562

To obtain (essentially) tight conditional lower bounds for the running times of algorithms,563

we rely on the Exponential-Time Hypothesis (ETH) [11, 12]. To formalize its statement,564

we remind that given a formula ϕ in conjuctive normal form (CNF) with n variables and565

m clauses, the task of CNF-SAT is to decide whether there is a truth assignment to the566

variables that satisfies ϕ. In the p-CNF-SAT problem, each clause is restricted to have at567

most p literals. Then, ETH asserts that 3-CNF-SAT cannot be solved in time 2o(n).568

B Details Omitted from Section 2569

We first present the proof of Lemma 7.570

Proof of Lemma 7. Targeting a contradiction, suppose that there exists an algorithm,571

denoted by LSHAlg, that solves Prop-Col LSH in time no(n) where n = max(|V (G)|, |V (H)|)572

for input graphs G and H. We will show that this implies the existence of an algorithm,573

denoted by ColAlg, that solves 3-Coloring on graphs of maximum degree 4 in time 2o(n)
574

where n is the number of vertices of the input graph, which contradicts the ETH and hence575

completes the proof.576

The execution of ColAlg is as follows. Given an instance G of 3-Coloring on graphs of577

maximum degree 4, ColAlg constructs the instance reduce(G) = (G̃, H̃, `) of LSH in Defini-578

tion 4 with r = dlogγ(4)(n/ logn)e where n = |V (G)|. By Lemma 5, reduce(G) = (G̃, H̃, `) is579

computable in time polynomial in the sizes of G, G̃ and H̃, and has the following properties:580

G is a Yes-instance of 3-Coloring if and only if (G̃, H̃, `) is a Yes-instance of LSH.581

|V (G̃)| ≤ n/r = O(n/ logn), and |V (H̃)| ≤ γ(4)r = O(n/ logn).582

Then, ColAlg calls the polynomial-time algorithm in Lemma 6 with (G̃, H̃, `) to construct583

an equivalent instance (G̃, H̃ ′, c
G̃
, c
H̃′ , `) of Prop-Col LSH, where H̃ ′ is a subgraph of H̃.584

Lastly, ColAlg calls LSHAlg with (G̃, H̃ ′, c
G̃
, c
H̃′ , `) as input, and returns its answer.585

Since the instance G of 3-Coloring was argued above to be equivalent to the instance586

(G̃, H̃ ′, c
G̃
, c
H̃′ , `) of Prop-Col LSH, the correctness of ColAlg directly follows. For the587
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Figure 4 The reduction in Definition 4. The vertices of G are depicted by black shapes, where
each distinct shape represents a different color (say, square is 1, rectangle is 2 and oval is 3), and
the vertices of G̃ are depicted by circles enclosing the vertex sets identifies with them, where the
color of a vertex is the color of its circle (say, black is 1, green is 2, yellow is 3, red is 4, blue is 5
and grey is 6). Edges (of both graphs) are depicted by black lines. (The graph H̃ is not shown).
Then, the function φB is defined as follows: φB(1) = z, φB(2) = φB(5) = w, φB(3) = x, φB(4) = 0,
and φB(6) = y. Moreover, the function φB′ is defined as follows: φB′ (1) = φB′ (2) = φB′ (4) =
u, φB′ (3) = v, and φB′ (5) = φB′ (6) = 0. With respect to B and B′, the labeling ` is defined
as follows: `(B) = {(R, 4) : R[1] 6= 0, R[2] = R[5] 6= 0, R[3] 6= 0, R[4] = 0, R[6] 6= 0}, and
`(B′) = {(R, 5) : R[1] = R[2] = R[4] 6= 0, R[3] 6= 0, R[5] = R[6] = 0}.

running time, denote M = max(|V (G̃)|, |V (H̃)|), and notice that M ≤ O(n/ logn). Thus,588

because LSHAlg runs in time Mo(M) ≤ (n/ logn)o(n/ logn) ≤ 2o(n), it follows that ColAlg runs589

in time 2o(n). This completes the proof. J590

In the rest of this appendix, we provide the details omitted from Section 2 regarding the591

transition Prop-Col LSH to Prop-Col LSI. We begin by adapting the Turing reduction592

of [6] from LSH to LSI.593

I Lemma 14. There is an 2O(n)-time algorithm that, given an instance (G,H, cG, cH , `)594

of Prop-Col LSH, returns 2O(n) instances of Prop-Col LSI having input graphs on at595

most n vertices for n := max(|V (G)|, |V (H)|), such that (G,H, cG, cH , `) is a Yes-instance596

of Prop-Col LSH if and only if at least one of the returned instances is a Yes-instance of597

Prop-Col LSI.598

Proof. Given an instance (G,H, cG, cH , `) of Prop-Col LSH, the algorithm works as follows.599

Without loss of generality, suppose that V (H) = {1, 2, . . . , |V (H)|}. Let P = {P ∈ N|V (H)|
0 :600 ∑|V (H)|

i=1 P [i] = |V (G)|}. That is, P contains every vector with |V (H)| entries that are601

non-negative integers whose sum is |V (G)|. Then, for each P ∈ P , the algorithm returns one602

instance (G,HP , cG, cHP
, `P ) of Prop-Col LSI that is constructed as follows.603
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The graph HP is constructed from H by replacing each vertex v ∈ V (H) with P [v] copies604

of it, denoted v1, v2 . . . vP [v]. (Note that P [v] can be equal to 0). Then, we connect two605

vertices vi to uj in HP if and only if v is connected to u in H. That is, V (HP ) = {vi : v ∈606

V (H), i ∈ {1, 2, . . . , P [v]}} and E(HP ) = {{ui, vj} : {u, v} ∈ E(H), ui, uj ∈ V (HP )}.607

For every vertex ui ∈ V (HP ), let cHP
(ui) = cH(u).608

For every vertex u ∈ V (G), let `P (u) = {vi ∈ V (HP ) : v ∈ `(u)}.609

This completes the description of the algorithm.610

First, we consider some P ∈ P and assert that (G,HP , cG, cHP
, `P ) is indeed an instance611

of Prop-Col LSI. By the construction of V (HP ) and since
∑|V (H)|
i=1 P [i] = |V (G)|, we have612

that |V (G)| = |V (HP )|. Clearly, as (G,H, cG, cH , `) is an instance of Prop-Col LSH, we613

have that cG is a proper coloring of G. Now, consider an edge {ui, vj} ∈ E(HP ). Then,614

{u, v} ∈ E(H), and since cH is a proper coloring of H (as (G,H, cG, cH , `) is an instance615

of Prop-Col LSH), this means that cH(u) 6= cH(v). By definition, cHP
(ui) = cH(u) and616

cHP
(vi) = cH(v), and therefore cHP

(ui) 6= cHP
(vj). Thus, cHP

is a proper coloring of HP .617

Lastly, consider some vertices u ∈ V (G) and vi ∈ `P (u). By the definition of `P , we have that618

v ∈ `(P ). Therefore, as (G,H, cG, cH , `) is an instance of Prop-Col LSH, cG(u) = cH(v).619

Thus, because cHP
(vi) = cH(v), we have that cG(u) = cHP

(vi).620

Now, we consider the number of instances returned by the algorithm along with its621

running time. Towards this, first note that |P| =
(|V (G)|+|V (H)|−1

|V (H)|−1
)
≤ 4n. As the number622

of returned instances equals |P|, it is upper bounded by 2O(n) as required. Because each623

instance is computed in polynomial time, we also get that the running time of the algorithm624

is bounded by 2O(n).625

Finally, we consider the correctness of the algorithm. In one direction, suppose that626

at least one of the returned instances is a Yes-instance of Prop-Col LSI. Then, there627

exists P ∈ P such that (G,HP , cG, cHP
, `P ) is a Yes-instance of Prop-Col LSI. Thus,628

there exists a bijective function ϕP : V (G)→ V (HP ) such that (i) for every {u, v} ∈ E(G),629

{ϕP (u), ϕP (v)} ∈ E(HP ), and (ii) for every u ∈ V (G), ϕP (u) ∈ `P (u). We define a function630

ϕ : V (G)→ V (H) as follows: for every u ∈ V (G), let ϕ(u) = v where v ∈ V (H) is the vertex631

for which there exists i ∈ {1, 2, . . . , P [v]} such that ϕP (u) = vi. We now verify that ϕ is a632

solution to the instance (G,H, cG, cH , `) of Prop-Col LSH. Firstly, by item (i) above, for633

every {u, v} ∈ E(G), we have that {xi, yi} ∈ E(HP ) where xi = ϕP (u) and yi = ϕP (v); by634

the definition of HP , this means that {x, y} ∈ E(H), and as x = ϕ(u) and y = ϕ(v) (by the635

definition of ϕ), we get that {ϕ(u), ϕ(v)} ∈ E(H). Secondly, by item (ii) above, for every636

u ∈ V (G), vi ∈ `P (u) where vi = ϕP (u); by the definition of `P , we have that v ∈ `P (u),637

and by the definition of ϕ, we have that v = ϕ(u), therefore ϕ(u) ∈ `(u). Thus, we conclude638

that (G,H, cG, cH , `) is a Yes-instance of Prop-Col LSH.639

In the other direction, suppose that (G,H, cG, cH , `) is a Yes-instance of Prop-Col LSH.640

Then, there exists a function ϕ : V (G) → V (H) such that (i) for every {u, v} ∈ E(G),641

{ϕ(u), ϕ(v)} ∈ E(H), and (ii) for every u ∈ V (G), ϕ(u) ∈ `(u). Let P be the vector with642

|V (H)| entries where for each i ∈ {1, 2, . . . , |V (H)|}, P [i] = |ϕ−1(i)|. Then,
∑|V (H)|
i=1 P [i] =643 ∑|V (H)|

i=1 |ϕ−1(i)| = |V (G)|, and therefore P ∈ P. Choose some arbitrary order < on V (G).644

Now, we define a function ϕP : V (G)→ V (HP ) as follows: for every u ∈ V (G), let ϕP (u) = vi645

where v = ϕ(u) and i = |{w ∈ V (G) : w ≤ u, v = ϕ(w)}|. It should be clear that ϕP is646

a bijection. Moreover, analogously to the previous direction, we assert that (i) for every647

{u, v} ∈ E(G), {ϕP (u), ϕP (v)} ∈ E(HP ), and (ii) for every u ∈ V (G), ϕP (u) ∈ `P (u). Thus,648

(G,HP , cG, cHP
, `P ) is a Yes-instance of Prop-Col LSI, which means that at least one of649

the returned instances is a Yes-instance of Prop-Col LSI. J650

We are ready to complete the proof of Lemma 2.651
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].
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Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

It remains to argue that every edge in F has one endpoint in A and the other in B. Targeting
a contradiction, suppose that this is false. Because F is a perfect matching in G[A [ B], this
means that there exist two vertices a, a0 2 A such that {a, a0} 2 F . By the definition of Noisy

Structured Clique Contraction, neither a nor a0 is adjacent to any vertex inD. Moreover,
note that D ✓ V (G[A[B[C [D[X]/F ). In particular, the vertex of G[A[B[C [D[X]/F
yielded by the contraction of {a, a0} is not adjacent to any vertex of D in G[A[B[C[D[X]/F .
However, this is a contradiction because G[A [B [ C [D [X]/F is a clique.

We are now ready to prove a lower bound for Structured Clique Contraction. Because
this problem is a special case of Clique Contruction, this will directly yield the correctness
of Theorem 5.1.

Lemma 5.2. Unless the ETH is false, there does not exist an algorithm that solves Structured

Clique Contraction in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliConAlg,
that solves Structured Clique Contraction in time n

o(n). We will show that this implies
the existence of an algorithm, denoted by MatchingAlg, that solves Cross Matching in time
n
o(n), thereby contradicting Lemma 4.1 and hence completing the proof.
We define the execution of MatchingAlg as follows. Given an instance (G,A,B) of Cross

Matching, MatchingAlg constructs an instance (H,A,B,C,D, n) of Structured Clique

Contraction as follows (see Fig. ?):

• Let n = |A|, and K be a clique on 4n new vertices. Let (C,D) be a partition of V (K)
such that |C| = |D|.

• V (H) = V (G) [ V (K).

• E(H) = E(G) [ E(K) [ {{a, c} : a 2 A, c 2 C} [ {{b, d} : b 2 B, d 2 D}.

Then, MatchingAlg calls CliConAlg with (H,A,B,C,D, n) as input, and returns the answer of
this call.

First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time
|V (H)|o(|V (H)|)  n

o(n), it follows that MatchingAlg runs in time n
o(n).

For the correctness of the algorithm, first suppose that (G,A,B) is a Yes-instance of Cross

Matching. This means that there exists a perfect matching M in G such that every edge
in M has one endpoint in A and the other in B, and G/M is a clique. By the definition
of E(H), M ✓ E(H). We will show that H/M is a clique. As |M | = n, this will mean
that (H,A,B,C,D, n) is a Yes-instance of Structured Clique Contraction, which will
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where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliConAlg,
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o(n). We will show that this implies
the existence of an algorithm, denoted by MatchingAlg, that solves Cross Matching in time
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Figure 5 A two-cliques graph (see Definition 16).

Proof of Lemma 2. Targeting a contradiction, suppose that there exists an algorithm, de-652

noted by LSIAlg, that solves Prop-Col LSI in time no(n) where where n = max(|V (G)|, |V (H)|)653

for input graphs G and H. We will show that this implies the existence of an algorithm, de-654

noted by LSHAlg, that solves Prop-Col LSH in time no(n) where n = max(|V (G)|, |V (H)|)655

for input graphs G and H, which contradicts Lemma 7 and hence completes the proof.656

The execution of LSHAlg is as follows. Given an instance (G,H, cH , cG, `) of Prop-Col657

LSH, LSHAlg calls the algorithm in Lemma 14 so that in time 2O(n) it obtains 2O(n) instances658

of Prop-Col LSI having input graphs on at most n vertices for n := max(|V (G)|, |V (H)|),659

such that (G,H, cG, cH , `) is a Yes-instance of Prop-Col LSH if and only if at least one of660

the returned instances is a Yes-instance of Prop-Col LSI. Then, it calls LSIAlg on each of661

the returned instances, and returns Yes if and only if at least one of these calls returns Yes.662

It should be clear that LSHAlg runs in time no(n) and that it is correct. J663

C Lower Bounds for Contraction to Graph Classes Problems664

In this section, we prove lower bounds for several cases of the F-Contraction problem,665

defined as follows. Here, F is a (possibly infinite) family of graphs.666

F-Contraction
Input: A graph G and t ∈ N.
Question: Does there exist a subset F ⊆ E(G) of size at most t such that G/F ∈ F?

667

Notice that Clique Contraction is the case of F-Contraction where F is the668

family of cliques. In this section, we consider the cases of F-Contraction where F is the669

family of chordal graphs, interval graphs, proper interval graphs, threshold graphs, trivially670

perfect graphs, split graphs, complete split graphs and perfect graphs, also called Chordal671

Contraction, Interval Contraction, Proper Interval Contraction, Threshold672

Contraction, Trivially Perfect Contraction, Split Contraction, Complete673

Split Contraction and Perfect Contraction, respectively. Before we define these674

classes formally, it will be more enlightening to first define only the class of chordal graphs675

as well as somewhat artificial classes of graphs that will help us prove lower bounds for many676

of the classes above in a unified manner.677

I Definition 15 (Chordal Graphs). A graph is chordal if it does not contain C` for all678

` ≥ 4 as an induced subgraph.679

Our first class of graphs is defined as follows (see Fig. 5).680

I Definition 16 (Two-Cliques Graphs). A two-cliques graph is a graph G such that there681

exist A,B ⊆ V (G) such that A ∪ B = V (G), G[A] and G[B] are cliques, and there do not682

exist vertices a ∈ A \B and b ∈ B \A such that {a, b} ∈ E(G). The two-cliques class is the683

class of all two-cliques graphs.684

It should be clear that the two-cliques class is a subclass of the class of chordal graphs.685

Now, we further define a family of classes of graphs as follows.686
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
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a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
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in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
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We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Targeting a contradiction, suppose that there exists an algorithm, de-
noted by NonTrivChordAlg, that solves F-Contraction in time n

o(n). We will show that this
implies the existence of an algorithm, denoted by CliConAlg, that solves Structured Clique

Contraction in time no(n), thereby contradicting Lemma 5.2 and hence completing the proof.
We define the execution of CliConAlgAlg as follows. Given an instance (G,A,B,C,D, n)

of Structured Clique Contraction, CliConAlgAlg constructs an instance (H,n) of F-

Contraction as follows (see Fig. ?):

• Let n = |A|. Moreover, let K and K
0 be two cliques, each on 2n new vertices.

• V (H) = V (G) [ V (K) [ V (K 0).

• E(H) = E(G) [ E(K) [ E(K 0) [ {{u, v} : u 2 V (G), v 2 V (K) [ V (K 0)}.

Then, CliConAlg calls NonTrivChordAlg with (H,n) as input, and returns the answer of this call.
First, note that by construction, |V (H)| = 10n. Thus, because NonTrivChordAlg runs in

time |V (H)|o(|V (H)|)  n
o(n), it follows that CliConAlg runs in time n

o(n).
For the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance

of Structured Clique Contraction. This means that there exists a subset F ✓ E(G)
of size at most n such that G/F is a clique. By the definition of H, we directly derive that
H/F is a two-cliques graphs, and therefore it belongs to F . Thus, (H,n) is a Yes-instance of
F-Contraction, which means that the call to NonTrivChordAlg with (H,n) as input returns
Yes, and hence CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to NonTrivChordAlg

with (H,n) returns Yes. Thus, (H,n) is a Yes-instance, which means that there exists a subset
F ✓ E(H) of size at most n such that H/F 2 F . In particular, H/F is a chordal graph.
Based on Proposition 6.1, we will first show that H[A [ B [ C [D [X]/F is a clique, where
X = {u 2 V (K)[ V (K 0) : there exists a vertex v 2 A[B [C [D such that u and v belong to
the same connected component of H[F ]}.

Targeting a contradiction, suppose that H[A [ B [ C [ D [ X]/F is not a clique, and
therefore there exist two non-adjacent vertices u and v in this graph. By the definition of X,
H[A [ B [ C [ D [ X]/F is equal to the subgraph of H/F induced by the set of vertices
derived from connected components that contain at least one vertex from A [ B [ C [ D. In
particular, u and v are also non-adjacent vertices in H/F . By Proposition 6.1, this implies that
(H/F )[NH/F (u) \ NH/F (v)] is a clique. Let C1 (resp. C2) be the set of connected components
of H[F ] that contain at least one vertex from V (K1) (resp. V (K2)) . Because |F |  n and
|V (K1)| = |V (K2)| = 2n, there exists at least one component C1 2 C1 (resp. C2 2 C2) that does
not contain any vertex from A [ B [ C [D. Let c1 and c2 be the vertices of H/F yielded by
the replacement of C1 and C2, respectively. As all vertices in V (K1) [ V (K2) are adjacent to
all vertices in A [ B [ C [ D, we have that c1, c2 2 NH/F (u) \ NH/F (v). However, there do
not exist a vertex in V (K1) and a vertex in V (K2) that are adjacent in H, and for every vertex
in V (K1) [ V (K2), its neighborhood outside this set is contained in A [ B [ C [D. Thus, c1
and c2 must be non-adjacent in H/F . However, this is a contradiction to the argument that
(H/F )[NH/F (u) \NH/F (v)] is a clique. From this, we derive that H[A [B [ C [D [X]/F is
indeed a clique.

Now, notice that (H,A,B,C,D,E, n) where E = V (K1) [ V (K2) is an instance of Noisy

Structured Clique Contraction. Furthermore, since |F |  n and we have already shown
that H[A[B[C[D[X]/F is a clique, we have that F is a solution to this instance. Therefore,
by Lemma 5.1, F is a matching of size n in H such that each edge in F has one endpoint in A

and the other in B. In particular, F ✓ E(G) and hence X = ;. Because G = H[A[B[C [D],
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured
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is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].
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Figure 6 The construction of an instance of F-Contraction in the proof of Theorem 18 where
dashed lines represent non-edges.

I Definition 17 (Non-Trivial Chordal Class). We say that a class of graphs F is non-687

trivial chordal if it is a subclass of the class of chordal graphs, and a superclass of the688

two-cliques class.689

Clearly, the class of cliques is not a non-trivial chordal class, and the class of chordal690

graphs is a non-trivial chordal class. The rest of this section is divided as follows. First, in691

Section C.1, we prove a lower bound for any non-trivial chordal class. Then, in Section C.2,692

we prove a lower bound for some graph classes that are not non-trivial chordal.693

C.1 Non-Trivial Chordal Graph Classes694

The main objective of this subsection is to prove the following theorem. Afterwards, we will695

derive lower bounds for several known graph classes as corollaries.696

I Theorem 18. Let F be any non-trivial chordal graph class. Unless the ETH is false, there697

does not exist an algorithm that solves F-Contraction in time no(n) where n = |V (G)|.698

For the proof of this theorem, the following well-known property of chordal graphs will699

come in handy. This property is a direct consequence of the alternative characterization700

of the class of chordal graphs as the class of graphs that admit clique-tree decompositions,701

see [9].702

I Proposition 19. Let G be a chordal graph, and let u and v be two non-adjacent vertices703

in G. Then, G[N(u) ∩N(v)] is a clique.704

We are now ready to prove Theorem 18.705

Proof of Theorem 18. Targeting a contradiction, suppose that there exists an algorithm,706

denoted by NonTrivChordAlg, that solves F-Contraction in time no(n) where n is the707

number of vertices in the input graph. We will show that this implies the existence of an708

algorithm, denoted by CliConAlg, that solves Structured Clique Contraction in time709

no(n) where n is the number of vertices in the input graph, thereby contradicting Lemma 12710

and hence completing the proof.711

We define the execution of CliConAlg as follows. Given an instance (G,A,B,C,D, n)712

of Structured Clique Contraction, CliConAlg constructs an instance (H,n) of F-713

Contraction as follows (see Fig. 6):714

Let n = |A|. Moreover, let K and K ′ be two cliques, each on 2n new vertices.715
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V (H) = V (G) ∪ V (K) ∪ V (K ′).716

E(H) = E(G) ∪ E(K) ∪ E(K ′) ∪ {{u, v} : u ∈ V (G), v ∈ V (K) ∪ V (K ′)}.717

Then, CliConAlg calls NonTrivChordAlg with (H,n) as input, and returns the answer of this718

call.719

First, note that by construction, |V (H)| = 10n. Thus, because NonTrivChordAlg runs in720

time |V (H)|o(|V (H)|) ≤ no(n), it follows that CliConAlg runs in time no(n).721

For the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance722

of Structured Clique Contraction. This means that there exists a subset F ⊆ E(G)723

of size at most n such that G/F is a clique. By the definition of H, we directly derive that724

H/F is a two-cliques graphs, and therefore it belongs to F . Thus, (H,n) is a Yes-instance725

of F-Contraction, which means that the call to NonTrivChordAlg with (H,n) as input726

returns Yes, and hence CliConAlg returns Yes.727

Now, suppose that CliConAlg returns Yes, which means that the call to NonTrivChordAlg728

with (H,n) returns Yes. Thus, (H,n) is a Yes-instance of F-Contraction, which means that729

there exists a subset F ⊆ E(H) of size at most n such that H/F ∈ F . In particular, H/F is730

a chordal graph. Based on Proposition 19, we will first show that H[A ∪B ∪ C ∪D ∪X]/F731

is a clique, where X = {u ∈ V (K) ∪ V (K ′) : there exists a vertex v ∈ A ∪B ∪ C ∪D such732

that u and v belong to the same connected component of H[F ]}.733

Targeting a contradiction, suppose that H[A ∪ B ∪ C ∪D ∪X]/F is not a clique, and734

therefore there exist two non-adjacent vertices u and v in this graph. By the definition of X,735

H[A ∪ B ∪ C ∪D ∪X]/F is equal to the subgraph of H/F induced by the set of vertices736

derived from connected components that contain at least one vertex from A ∪B ∪C ∪D. In737

particular, u and v are also non-adjacent vertices in H/F . By Proposition 19, this implies that738

(H/F )[NH/F (u)∩NH/F (v)] is a clique. Let C1 (resp. C2) be the set of connected components739

of H[F ] that contain at least one vertex from V (K1) (resp. V (K2)). Because |F | ≤ n and740

|V (K1)| = |V (K2)| = 2n, there exists at least one component C1 ∈ C1 (resp. C2 ∈ C2) that741

does not contain any vertex from A ∪ B ∪ C ∪ D. Let c1 and c2 be the vertices of H/F742

yielded by the replacement of C1 and C2, respectively. As all vertices in V (K1) ∪ V (K2)743

are adjacent to all vertices in A ∪ B ∪ C ∪ D, we have that c1, c2 ∈ NH/F (u) ∩ NH/F (v).744

However, there do not exist a vertex in V (K1) and a vertex in V (K2) that are adjacent in745

H, and for every vertex in V (K1) ∪ V (K2), its neighborhood outside this set is contained746

in A ∪ B ∪ C ∪ D. Thus, c1 and c2 must be non-adjacent in H/F . However, this is a747

contradiction to the argument that (H/F )[NH/F (u) ∩NH/F (v)] is a clique. From this, we748

derive that H[A ∪B ∪ C ∪D ∪X]/F is indeed a clique.749

Now, notice that (H,A,B,C,D,N, n) where N = V (K1)∪V (K2) is an instance of Noisy750

Structured Clique Contraction. Furthermore, since |F | ≤ n and we have already751

shown that H[A∪B ∪C ∪D∪X]/F is a clique, we have that F is a solution to this instance.752

Therefore, by Lemma 11, F is a matching of size n in H such that each edge in F has one753

endpoint in A and the other in B. In particular, F ⊆ E(G) and hence X = ∅. Because754

G = H[A ∪ B ∪ C ∪ D], we thus derive that G/F is a clique. Thus, we conclude that755

(G,A,B,C,D, n) is a Yes-instance of Structured Clique Contraction. This completes756

the proof of the reverse direction. J757

Now, we give definitions for several classes of graphs for which lower bounds will follow758

from Theorem 19. First, a graph is an interval graph if there exists a set of intervals on759

the real line such that the vertices of the graph are in bijection with these intervals, and760

there exists edge between two vertices if and only if their intervals intersect. A graph is a761

proper interval graph if, in the former definition, we also add the constraint that all intervals762

must have the same length. A graph is a threshold graph if it can be constructed from a763
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one-vertex graph by repeated applications of the following two operations: addition of a764

single isolated vertex to the graph; addition of a single vertex that is connected to all other765

vertices. A graph is trivially perfect if in each of its induced subgraphs, the maximum size of766

an independent set equals the number of maximal cliques.767

It is well-known that every graph that is a (proper) interval graph, or a threshold graph,768

or a trivially perfect graph, is also a chordal graph (see [9]). Moreover, it is immediate769

to verify that the two-cliques class is a subclass of the classes of (proper) interval graphs,770

threshold graphs and trivially perfect graphs. Thus, these classes are non-trivial chordal771

graphs classes, and therefore Theorem 18 directly implies lower bounds for them as state772

below.773

I Corollary 20. Unless the ETH is false, none of the following problems admits an algorithm774

that solves it in time no(n) where n = |V (G)|: Chordal Contraction, Interval Con-775

traction, Proper Interval Contraction, Threshold Contraction and Trivially776

Perfect Contraction.777

C.2 Other Graph Classes778

In Section 4, we have already proved a lower bound for a class of graphs that is not non-trivial779

chordal, namely, the class of cliques. In this section, we show that our approach can yield780

lower bounds for other classes of graphs that are not non-trivially chordal. For illustrative781

purposes, we consider the classes of Split Graphs, Complete Split Graphs and Perfect782

Graphs.783

A graph G is a split graph if there exists a partition (I,K) of V (G) such that G[I] is784

edgeless and G[K] is a clique. In case {{i, k} : i ∈ I, k ∈ K}, we further say that G is a785

complete split graph. Notice that the two-cliques class is not a subclass of the class of split786

graphs, and hence the class of (complete) split graphs is not non-trivially chordal.787

For the class of (complete) split graphs, we prove the following statement.788

I Theorem 21. Unless the ETH is false, there does not exist an algorithm that solves Split789

Contraction (or Complete Split Contraction) in time no(n) where n = |V (G)|.790

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by SplitAlg,791

that solves Split Contraction (or Complete Split Contraction) in time no(n) where792

n is the number of vertices in the input graph. We will show that this implies the existence793

of an algorithm, denoted by CliConAlg, that solves Structured Clique Contraction794

in time no(n) where n is the number of vertices in the input graph, thereby contradicting795

Lemma 12 and hence completing the proof.796

We define the execution of CliConAlg as follows. Given an instance (G,A,B,C,D, n) of797

Structured Clique Contraction, CliConAlg constructs an instance (H,n) of Split798

Contraction (or Complete Split Contraction) as follows (see Fig. 7):799

V (H) = V (G) ∪ S where S is a set of n+ 2 new vertices.800

E(H) = E(G) ∪ {{u, v} : u ∈ V (G), v ∈ S}.801

Then, CliConAlg calls SplitAlg with (H,n) as input, and returns the answer of this call.802

First, note that by construction, |V (H)| = 7n+ 2. Thus, because SplitAlg runs in time803

|V (H)|o(|V (H)|) ≤ no(n), it follows that CliConAlg runs in time no(n).804

For the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance805

of Structured Clique Contraction. This means that there exists a subset F ⊆ E(G)806

of size at most n such that G/F is a clique. By the definition of H, we derive that H/F is a807

complete split graph: (S, V (G/F )) is a partition of V (H/F ) where S induces an independent808
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

4
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G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

It remains to argue that every edge in F has one endpoint in A and the other in B. Targeting
a contradiction, suppose that this is false. Because F is a perfect matching in G[A [ B], this
means that there exist two vertices a, a0 2 A such that {a, a0} 2 F . By the definition of Noisy

Structured Clique Contraction, neither a nor a0 is adjacent to any vertex inD. Moreover,
note that D ✓ V (G[A[B[C [D[X]/F ). In particular, the vertex of G[A[B[C [D[X]/F
yielded by the contraction of {a, a0} is not adjacent to any vertex of D in G[A[B[C[D[X]/F .
However, this is a contradiction because G[A [B [ C [D [X]/F is a clique.

We are now ready to prove a lower bound for Structured Clique Contraction. Because
this problem is a special case of Clique Contruction, this will directly yield the correctness
of Theorem 5.1.

Lemma 5.2. Unless the ETH is false, there does not exist an algorithm that solves Structured

Clique Contraction in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliConAlg,
that solves Structured Clique Contraction in time n

o(n). We will show that this implies
the existence of an algorithm, denoted by MatchingAlg, that solves Cross Matching in time
n
o(n), thereby contradicting Lemma 4.1 and hence completing the proof.
We define the execution of MatchingAlg as follows. Given an instance (G,A,B) of Cross

Matching, MatchingAlg constructs an instance (H,A,B,C,D, n) of Structured Clique

Contraction as follows (see Fig. ?):

• Let n = |A|, and K be a clique on 4n new vertices. Let (C,D) be a partition of V (K)
such that |C| = |D|.

• V (H) = V (G) [ V (K).

• E(H) = E(G) [ E(K) [ {{a, c} : a 2 A, c 2 C} [ {{b, d} : b 2 B, d 2 D}.

Then, MatchingAlg calls CliConAlg with (H,A,B,C,D, n) as input, and returns the answer of
this call.

First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time
|V (H)|o(|V (H)|)  n

o(n), it follows that MatchingAlg runs in time n
o(n).

For the correctness of the algorithm, first suppose that (G,A,B) is a Yes-instance of Cross

Matching. This means that there exists a perfect matching M in G such that every edge
in M has one endpoint in A and the other in B, and G/M is a clique. By the definition
of E(H), M ✓ E(H). We will show that H/M is a clique. As |M | = n, this will mean
that (H,A,B,C,D, n) is a Yes-instance of Structured Clique Contraction, which will
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We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Targeting a contradiction, suppose that there exists an algorithm, de-
noted by NonTrivChordAlg, that solves F-Contraction in time n

o(n). We will show that this
implies the existence of an algorithm, denoted by CliConAlg, that solves Structured Clique

Contraction in time no(n), thereby contradicting Lemma 5.2 and hence completing the proof.
We define the execution of CliConAlgAlg as follows. Given an instance (G,A,B,C,D, n)

of Structured Clique Contraction, CliConAlgAlg constructs an instance (H,n) of F-

Contraction as follows (see Fig. ?):

• Let n = |A|. Moreover, let K and K
0 be two cliques, each on 2n new vertices.

• V (H) = V (G) [ V (K) [ V (K 0).

• E(H) = E(G) [ E(K) [ E(K 0) [ {{u, v} : u 2 V (G), v 2 V (K) [ V (K 0)}.

Then, CliConAlg calls NonTrivChordAlg with (H,n) as input, and returns the answer of this call.
First, note that by construction, |V (H)| = 10n. Thus, because NonTrivChordAlg runs in

time |V (H)|o(|V (H)|)  n
o(n), it follows that CliConAlg runs in time n

o(n).
For the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance

of Structured Clique Contraction. This means that there exists a subset F ✓ E(G)
of size at most n such that G/F is a clique. By the definition of H, we directly derive that
H/F is a two-cliques graphs, and therefore it belongs to F . Thus, (H,n) is a Yes-instance of
F-Contraction, which means that the call to NonTrivChordAlg with (H,n) as input returns
Yes, and hence CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to NonTrivChordAlg

with (H,n) returns Yes. Thus, (H,n) is a Yes-instance, which means that there exists a subset
F ✓ E(H) of size at most n such that H/F 2 F . In particular, H/F is a chordal graph.
Based on Proposition 6.1, we will first show that H[A [ B [ C [D [X]/F is a clique, where
X = {u 2 V (K)[ V (K 0) : there exists a vertex v 2 A[B [C [D such that u and v belong to
the same connected component of H[F ]}.

Targeting a contradiction, suppose that H[A [ B [ C [ D [ X]/F is not a clique, and
therefore there exist two non-adjacent vertices u and v in this graph. By the definition of X,
H[A [ B [ C [ D [ X]/F is equal to the subgraph of H/F induced by the set of vertices
derived from connected components that contain at least one vertex from A [ B [ C [ D. In
particular, u and v are also non-adjacent vertices in H/F . By Proposition 6.1, this implies that
(H/F )[NH/F (u) \ NH/F (v)] is a clique. Let C1 (resp. C2) be the set of connected components
of H[F ] that contain at least one vertex from V (K1) (resp. V (K2)) . Because |F |  n and
|V (K1)| = |V (K2)| = 2n, there exists at least one component C1 2 C1 (resp. C2 2 C2) that does
not contain any vertex from A [ B [ C [D. Let c1 and c2 be the vertices of H/F yielded by
the replacement of C1 and C2, respectively. As all vertices in V (K1) [ V (K2) are adjacent to
all vertices in A [ B [ C [ D, we have that c1, c2 2 NH/F (u) \ NH/F (v). However, there do
not exist a vertex in V (K1) and a vertex in V (K2) that are adjacent in H, and for every vertex
in V (K1) [ V (K2), its neighborhood outside this set is contained in A [ B [ C [D. Thus, c1
and c2 must be non-adjacent in H/F . However, this is a contradiction to the argument that
(H/F )[NH/F (u) \NH/F (v)] is a clique. From this, we derive that H[A [B [ C [D [X]/F is
indeed a clique.

Now, notice that (H,A,B,C,D,E, n) where E = V (K1) [ V (K2) is an instance of Noisy

Structured Clique Contraction. Furthermore, since |F |  n and we have already shown
that H[A[B[C[D[X]/F is a clique, we have that F is a solution to this instance. Therefore,
by Lemma 5.1, F is a matching of size n in H such that each edge in F has one endpoint in A

and the other in B. In particular, F ✓ E(G) and hence X = ;. Because G = H[A[B[C [D],
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we thus derive that G/F is a clique. Thus, we conclude that (G,A,B,C,D, n) is a Yes-instance
of Structured Clique Contraction. This completes the proof of the reverse direction.

Now, we give the common definitions for several classes of graphs for which lower bounds
will follow from Theorem 6.1. First, a graph is interval if there exists a set of intervals on the
real line such that the vertices of the graph are in bijection with these intervals, and there exists
edge between two vertices if and only if their intervals intersect. A graph if properly interval

if, in the former definition, we also add the constraint that all intervals must have the same
length. A graph is a threshold graph if it can be constructed from a one-vertex graph by repeated
applications of the following two operations: addition of a single isolated vertex to the graph;
addition of a single vertex that is connected to all other vertices. A graph is trivially perfect if
in each of its induced subgraphs, the maximum size of an independent set equals the number of
maximal cliques.

It is well-known that every graph that is a (proper) interval graph, or a threshold graph, or a
trivially perfect graph, is also a chordal graph (see [2]). Moreover, it is immediate to verify that
the two-cliques class is a subclass of the classes of (proper) interval graphs, threshold graphs and
trivially perfect graphs. Thus, these classes are non-trivial chordal graphs classes, and therefore
Theorem 6.1 directly implies lower bounds for them as state below.

Corollary 6.1. Unless the ETH is false, none of the following problems admits an algorithm

that solves it in time n
o(n)

where n = |V (G)|: Chordal Contraction, Interval Con-

traction, Proper Interval Contraction, Threshold Contraction and Trivially

Perfect Contraction.

6.2 Other Graph Classes

In Section 5, we have already proved a lower bound for a class of graphs that is not non-trivial
chordal, namely, the class of cliques. In this section, we show that our approach can yield lower
bounds for other classes of graphs that are not non-trivially chordal. For illustrative purposes,
we consider the classes of Split Graphs, Complete Split Graphs and Perfect Graphs.

A graph G is a split graph if there exists a partition (I,K) of V (G) such that G[I] is edgeless
and G[K] is a clique. In case {{i, k} : i 2 I, k 2 K}, we further say that G is a complete split

graph. Notice that the two-cliques class is not a subclass of the class of split graphs, and hence
the class of (complete) split graphs is not non-trivially chordal.

For the class of (complete) split graphs, we prove the following statement.

Theorem 6.2. Unless the ETH is false, there does not exist an algorithm that solves Split

Contraction (or Complete Split Contraction) in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by SplitAlg,
that solves Split Contraction (or Complete Split Contraction) in time n

o(n). We
will show that this implies the existence of an algorithm, denoted by CliConAlg, that solves
Structured Clique Contraction in time no(n), thereby contradicting Lemma 5.2 and hence
completing the proof.

We define the execution of CliConAlgAlg as follows. Given an instance (G,A,B,C,D, n)
of Structured Clique Contraction, CliConAlgAlg constructs an instance (H,n) of Split
Contraction (or Complete Split Contraction) as follows (see Fig. ?):

• V (H) = V (G) [ S where S is a set of n+ 2 new vertices.

• E(H) = E(G) [ {{u, v} : u 2 V (G), v 2 S}.
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we thus derive that G/F is a clique. Thus, we conclude that (G,A,B,C,D, n) is a Yes-instance
of Structured Clique Contraction. This completes the proof of the reverse direction.

Now, we give the common definitions for several classes of graphs for which lower bounds
will follow from Theorem 6.1. First, a graph is interval if there exists a set of intervals on the
real line such that the vertices of the graph are in bijection with these intervals, and there exists
edge between two vertices if and only if their intervals intersect. A graph if properly interval

if, in the former definition, we also add the constraint that all intervals must have the same
length. A graph is a threshold graph if it can be constructed from a one-vertex graph by repeated
applications of the following two operations: addition of a single isolated vertex to the graph;
addition of a single vertex that is connected to all other vertices. A graph is trivially perfect if
in each of its induced subgraphs, the maximum size of an independent set equals the number of
maximal cliques.

It is well-known that every graph that is a (proper) interval graph, or a threshold graph, or a
trivially perfect graph, is also a chordal graph (see [2]). Moreover, it is immediate to verify that
the two-cliques class is a subclass of the classes of (proper) interval graphs, threshold graphs and
trivially perfect graphs. Thus, these classes are non-trivial chordal graphs classes, and therefore
Theorem 6.1 directly implies lower bounds for them as state below.

Corollary 6.1. Unless the ETH is false, none of the following problems admits an algorithm

that solves it in time n
o(n)

where n = |V (G)|: Chordal Contraction, Interval Con-

traction, Proper Interval Contraction, Threshold Contraction and Trivially

Perfect Contraction.

6.2 Other Graph Classes

In Section 5, we have already proved a lower bound for a class of graphs that is not non-trivial
chordal, namely, the class of cliques. In this section, we show that our approach can yield lower
bounds for other classes of graphs that are not non-trivially chordal. For illustrative purposes,
we consider the classes of Split Graphs, Complete Split Graphs and Perfect Graphs.

A graph G is a split graph if there exists a partition (I,K) of V (G) such that G[I] is edgeless
and G[K] is a clique. In case {{i, k} : i 2 I, k 2 K}, we further say that G is a complete split

graph. Notice that the two-cliques class is not a subclass of the class of split graphs, and hence
the class of (complete) split graphs is not non-trivially chordal.

For the class of (complete) split graphs, we prove the following statement.

Theorem 6.2. Unless the ETH is false, there does not exist an algorithm that solves Split

Contraction (or Complete Split Contraction) in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by SplitAlg,
that solves Split Contraction (or Complete Split Contraction) in time n

o(n). We
will show that this implies the existence of an algorithm, denoted by CliConAlg, that solves
Structured Clique Contraction in time no(n), thereby contradicting Lemma 5.2 and hence
completing the proof.

We define the execution of CliConAlgAlg as follows. Given an instance (G,A,B,C,D, n)
of Structured Clique Contraction, CliConAlgAlg constructs an instance (H,n) of Split
Contraction (or Complete Split Contraction) as follows (see Fig. ?):

• V (H) = V (G) [ S where S is a set of n+ 2 new vertices.

• E(H) = E(G) [ {{u, v} : u 2 V (G), v 2 S}.
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Then, CliConAlg calls SplitAlg with (H,n) as input, and returns the answer of this call.
First, note that by construction, |V (H)| = 7n + 2. Thus, because SplitAlg runs in time

|V (H)|o(|V (H)|)  n
o(n), it follows that CliConAlg runs in time n

o(n).
For the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance of

Structured Clique Contraction. This means that there exists a subset F ✓ E(G) of size
at most n such that G/F is a clique. By the definition of H, we derive that H/F is a complete
split graph: (S, V (G/F )) is a partition of V (H/F ) where S induces an independent set, V (G/F )
induces a clique, and every vertex in S is adjacent to every vertex in V (G/F ). Thus, (H,n) is
a Yes-instance of Complete Split Contraction (as well as of Split Contraction), which
means that the call to SplitAlg with (H,n) returns Yes, and hence CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to SplitAlg with (H,n)
returns Yes. Thus, (H,n) is a Yes-instance of Split Contraction (even if SplitAlg solves
Complete Split Contraction), which means that there exists a subset F ✓ E(H) of size at
most n such that H/F is a split graph. Let (I,K) be a partition of V (H/F ) into an independent
set and a set of vertices that induce a clique. Because |S| = n+ 2 and H[S] is an independent
set, there exist at least two vertices s1, s2 2 S that are not incident to any edge in F . As these
vertices are not adjacent to one another in H, and because they are adjacent to all vertices in
V (G) (and hence to all vertices in V (H/F ) \S), it follows that s1, s2 2 I and V (H/F ) \S ✓ K.
In particular, (H/F )[V (H/F ) \ S] is a clique. Let X = {u 2 S : there exists a vertex v 2 V (G)
such that u and v belong to the same connected component of G[F ]}. Then, we have that
H[V (G) [X]/F is a clique.

Now, notice that (H,A,B,C,D, S, n) is an instance of Noisy Structured Clique Con-

traction. Furthermore, since |F |  n and we have already shown thatH[A[B[C[D[X]/F is
a clique, we have that F is a solution to this instance. Therefore, by Lemma 5.1, F is a matching
of size n in H such that each edge in F has one endpoint in A and the other in B. In particular,
F ✓ E(G) and hence X = ;. Because G = H[A [ B [ C [ D], we thus derive that G/F is
a clique. Thus, we conclude that (G,A,B,C,D, n) is a Yes-instance of Structured Clique

Contraction. This completes the proof of the reverse direction.

A graph G is a perfect graph if the chromatic number of every induced subgraph of G equals
the size of the largest clique of that subgraph. Here, the chromatic number of a graph is the
minimum number of colors required to color its vertices so that every pair of adjacent vertices
are assigned di↵erent colors. For the class of perfect graphs, we prove the following statement.

Theorem 6.3. Unless the ETH is false, there does not exist an algorithm that solves Perfect

Contraction in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by PerfectAlg,
that solves PerfectContraction in time n

o(n). We will show that this implies the existence
of an algorithm, denoted by CliConAlg, that solves Structured Clique Contraction in
time n

o(n), thereby contradicting Lemma 5.2 and hence completing the proof.
We define the execution of CliConAlgAlg as follows. Given an instance (G,A,B,C,D, n) of

Structured Clique Contraction, CliConAlgAlg constructs an instance (H,n) of Perfect
Contraction as follows (see Fig. ?):

• Let K = {u0 : u 2 V (G)} where each element u0 is a new vertex referred to as the tagged

copy of u. Additionally, let I be a set of n+ 1 new vertices.

• V (H) = V (G) [K [ I.

• E(H) = E(G) [ {{u, u0} : u 2 V (G)} [ {{u0, v0} : u0, v0 2 K} [ {{u, i} : u0 2 V (G), i 2 I}.
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Figure 7 The construction of an instance of Split Contraction in the proof of Theorem 21
where dashed lines represent non-edges.

set, V (G/F ) induces a clique, and every vertex in S is adjacent to every vertex in V (G/F ).809

Thus, (H,n) is a Yes-instance of Complete Split Contraction (as well as of Split810

Contraction), which means that the call to SplitAlg with (H,n) returns Yes, and hence811

CliConAlg returns Yes.812

Now, suppose that CliConAlg returns Yes, which means that the call to SplitAlg with813

(H,n) returns Yes. Thus, (H,n) is a Yes-instance of Split Contraction (even if SplitAlg814

solves Complete Split Contraction), which means that there exists a subset F ⊆ E(H)815

of size at most n such that H/F is a split graph. Let (I,K) be a partition of V (H/F ) into816

an independent set and a set of vertices that induce a clique. Because |S| = n+ 2 and H[S]817

is an independent set, there exist at least two vertices s1, s2 ∈ S that are not incident to818

any edge in F . As these vertices are not adjacent to one another in H, and because they819

are adjacent to all vertices in V (G) (and hence to all vertices in V (H/F ) \ S), it follows820

that s1, s2 ∈ I and V (H/F ) \ S ⊆ K. In particular, (H/F )[V (H/F ) \ S] is a clique. Let821

X = {u ∈ S : there exists a vertex v ∈ V (G) such that u and v belong to the same connected822

component of G[F ]}. Then, we have that H[V (G) ∪X]/F is a clique.823

Now, notice that (H,A,B,C,D, S, n) is an instance of Noisy Structured Clique824

Contraction. Furthermore, since |F | ≤ n and we have already shown that H[A ∪B ∪C ∪825

D ∪X]/F is a clique, we have that F is a solution to this instance. Therefore, by Lemma 11,826

F is a matching of size n in H such that each edge in F has one endpoint in A and the other827

in B. In particular, F ⊆ E(G) and hence X = ∅. Because G = H[A ∪B ∪ C ∪D], we thus828

derive that G/F is a clique. Thus, we conclude that (G,A,B,C,D, n) is a Yes-instance of829

Structured Clique Contraction. This completes the proof of the reverse direction. J830

A graph G is a perfect graph if the chromatic number of every induced subgraph of G831

equals the size of the largest clique of that subgraph. Here, the chromatic number of a graph832

is the minimum number of colors required to color its vertices so that every pair of adjacent833

vertices are assigned different colors. For the class of perfect graphs, we prove the following834

statement.835

I Theorem 22. Unless the ETH is false, there does not exist an algorithm that solves836

Perfect Contraction in time no(n) where n = |V (G)|.837

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by Per-838

fectAlg, that solves PerfectContraction in time no(n) where n is the number of vertices839

in the input graph. We will show that this implies the existence of an algorithm, denoted by840

CliConAlg, that solves Structured Clique Contraction in time no(n) where n is the841
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].
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G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].

It remains to argue that every edge in F has one endpoint in A and the other in B. Targeting
a contradiction, suppose that this is false. Because F is a perfect matching in G[A [ B], this
means that there exist two vertices a, a0 2 A such that {a, a0} 2 F . By the definition of Noisy

Structured Clique Contraction, neither a nor a0 is adjacent to any vertex inD. Moreover,
note that D ✓ V (G[A[B[C [D[X]/F ). In particular, the vertex of G[A[B[C [D[X]/F
yielded by the contraction of {a, a0} is not adjacent to any vertex of D in G[A[B[C[D[X]/F .
However, this is a contradiction because G[A [B [ C [D [X]/F is a clique.

We are now ready to prove a lower bound for Structured Clique Contraction. Because
this problem is a special case of Clique Contruction, this will directly yield the correctness
of Theorem 5.1.

Lemma 5.2. Unless the ETH is false, there does not exist an algorithm that solves Structured

Clique Contraction in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by CliConAlg,
that solves Structured Clique Contraction in time n

o(n). We will show that this implies
the existence of an algorithm, denoted by MatchingAlg, that solves Cross Matching in time
n
o(n), thereby contradicting Lemma 4.1 and hence completing the proof.
We define the execution of MatchingAlg as follows. Given an instance (G,A,B) of Cross

Matching, MatchingAlg constructs an instance (H,A,B,C,D, n) of Structured Clique

Contraction as follows (see Fig. ?):

• Let n = |A|, and K be a clique on 4n new vertices. Let (C,D) be a partition of V (K)
such that |C| = |D|.

• V (H) = V (G) [ V (K).

• E(H) = E(G) [ E(K) [ {{a, c} : a 2 A, c 2 C} [ {{b, d} : b 2 B, d 2 D}.

Then, MatchingAlg calls CliConAlg with (H,A,B,C,D, n) as input, and returns the answer of
this call.

First, note that by construction, |V (H)| = 6n. Thus, because CliConAlg runs in time
|V (H)|o(|V (H)|)  n

o(n), it follows that MatchingAlg runs in time n
o(n).

For the correctness of the algorithm, first suppose that (G,A,B) is a Yes-instance of Cross

Matching. This means that there exists a perfect matching M in G such that every edge
in M has one endpoint in A and the other in B, and G/M is a clique. By the definition
of E(H), M ✓ E(H). We will show that H/M is a clique. As |M | = n, this will mean
that (H,A,B,C,D, n) is a Yes-instance of Structured Clique Contraction, which will
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We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Targeting a contradiction, suppose that there exists an algorithm, de-
noted by NonTrivChordAlg, that solves F-Contraction in time n

o(n). We will show that this
implies the existence of an algorithm, denoted by CliConAlg, that solves Structured Clique

Contraction in time no(n), thereby contradicting Lemma 5.2 and hence completing the proof.
We define the execution of CliConAlgAlg as follows. Given an instance (G,A,B,C,D, n)

of Structured Clique Contraction, CliConAlgAlg constructs an instance (H,n) of F-

Contraction as follows (see Fig. ?):

• Let n = |A|. Moreover, let K and K
0 be two cliques, each on 2n new vertices.

• V (H) = V (G) [ V (K) [ V (K 0).

• E(H) = E(G) [ E(K) [ E(K 0) [ {{u, v} : u 2 V (G), v 2 V (K) [ V (K 0)}.

Then, CliConAlg calls NonTrivChordAlg with (H,n) as input, and returns the answer of this call.
First, note that by construction, |V (H)| = 10n. Thus, because NonTrivChordAlg runs in

time |V (H)|o(|V (H)|)  n
o(n), it follows that CliConAlg runs in time n

o(n).
For the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance

of Structured Clique Contraction. This means that there exists a subset F ✓ E(G)
of size at most n such that G/F is a clique. By the definition of H, we directly derive that
H/F is a two-cliques graphs, and therefore it belongs to F . Thus, (H,n) is a Yes-instance of
F-Contraction, which means that the call to NonTrivChordAlg with (H,n) as input returns
Yes, and hence CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to NonTrivChordAlg

with (H,n) returns Yes. Thus, (H,n) is a Yes-instance, which means that there exists a subset
F ✓ E(H) of size at most n such that H/F 2 F . In particular, H/F is a chordal graph.
Based on Proposition 6.1, we will first show that H[A [ B [ C [D [X]/F is a clique, where
X = {u 2 V (K)[ V (K 0) : there exists a vertex v 2 A[B [C [D such that u and v belong to
the same connected component of H[F ]}.

Targeting a contradiction, suppose that H[A [ B [ C [ D [ X]/F is not a clique, and
therefore there exist two non-adjacent vertices u and v in this graph. By the definition of X,
H[A [ B [ C [ D [ X]/F is equal to the subgraph of H/F induced by the set of vertices
derived from connected components that contain at least one vertex from A [ B [ C [ D. In
particular, u and v are also non-adjacent vertices in H/F . By Proposition 6.1, this implies that
(H/F )[NH/F (u) \ NH/F (v)] is a clique. Let C1 (resp. C2) be the set of connected components
of H[F ] that contain at least one vertex from V (K1) (resp. V (K2)) . Because |F |  n and
|V (K1)| = |V (K2)| = 2n, there exists at least one component C1 2 C1 (resp. C2 2 C2) that does
not contain any vertex from A [ B [ C [D. Let c1 and c2 be the vertices of H/F yielded by
the replacement of C1 and C2, respectively. As all vertices in V (K1) [ V (K2) are adjacent to
all vertices in A [ B [ C [ D, we have that c1, c2 2 NH/F (u) \ NH/F (v). However, there do
not exist a vertex in V (K1) and a vertex in V (K2) that are adjacent in H, and for every vertex
in V (K1) [ V (K2), its neighborhood outside this set is contained in A [ B [ C [D. Thus, c1
and c2 must be non-adjacent in H/F . However, this is a contradiction to the argument that
(H/F )[NH/F (u) \NH/F (v)] is a clique. From this, we derive that H[A [B [ C [D [X]/F is
indeed a clique.

Now, notice that (H,A,B,C,D,E, n) where E = V (K1) [ V (K2) is an instance of Noisy

Structured Clique Contraction. Furthermore, since |F |  n and we have already shown
that H[A[B[C[D[X]/F is a clique, we have that F is a solution to this instance. Therefore,
by Lemma 5.1, F is a matching of size n in H such that each edge in F has one endpoint in A

and the other in B. In particular, F ✓ E(G) and hence X = ;. Because G = H[A[B[C [D],
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Then, CliConAlg calls SplitAlg with (H,n) as input, and returns the answer of this call.
First, note that by construction, |V (H)| = 7n + 2. Thus, because SplitAlg runs in time

|V (H)|o(|V (H)|)  n
o(n), it follows that CliConAlg runs in time n

o(n).
For the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance of

Structured Clique Contraction. This means that there exists a subset F ✓ E(G) of size
at most n such that G/F is a clique. By the definition of H, we derive that H/F is a complete
split graph: (S, V (G/F )) is a partition of V (H/F ) where S induces an independent set, V (G/F )
induces a clique, and every vertex in S is adjacent to every vertex in V (G/F ). Thus, (H,n) is
a Yes-instance of Complete Split Contraction (as well as of Split Contraction), which
means that the call to SplitAlg with (H,n) returns Yes, and hence CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to SplitAlg with (H,n)
returns Yes. Thus, (H,n) is a Yes-instance of Split Contraction (even if SplitAlg solves
Complete Split Contraction), which means that there exists a subset F ✓ E(H) of size at
most n such that H/F is a split graph. Let (I,K) be a partition of V (H/F ) into an independent
set and a set of vertices that induce a clique. Because |S| = n+ 2 and H[S] is an independent
set, there exist at least two vertices s1, s2 2 S that are not incident to any edge in F . As these
vertices are not adjacent to one another in H, and because they are adjacent to all vertices in
V (G) (and hence to all vertices in V (H/F ) \S), it follows that s1, s2 2 I and V (H/F ) \S ✓ K.
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Clique Contraction

Input: A graph G and t 2 N.
Question: Does there exist a subset F ✓ E(G) of size at most t such that G/F is a clique?

Hadwiger Number

Input: A graph G and h 2 N.
Question: Is the Hadwiger number of G at least as large as h?

Our objective is to prove the following statement, where the analogous statement for Had-

wiger Number will follow as a corollary.

Theorem 5.1. Unless the ETH is false, there does not exist an algorithm that solves Clique

Contraction in time n
o(n)

where n = |V (G)|.

To make our approach adaptable to extract analogous statements for other contraction
problems, we will first define a new problem (which will arise in Section 6) along with a special
case of it that is also a special case of Clique Contraction, prove a crucial property of
instances of this problem, and then using this property prove Theorem 5.1 and its corollary.
The definition of the new problem is as follows (see Fig. ?).

Noisy Structured Clique Contraction

Input: A graph G on at least 6n vertices for some n 2 N, and a partition (A,B,C,D,E)
of V (G) such that |A| = |B| = n, |C| = |D| = 2n, no vertex in A is adjacent to a vertex in
D, and no vertex in B is adjacent to a vertex in D.
Question: Does there exist a subset F ✓ E(G) of size at most n such that G[A [B [C [
D [X]/F is a clique,a where X = {u 2 E : there exists a vertex v 2 A [ B [ C [D such
that u and v belong to the same connected component of G[F ]}?

a
Note that F might contain edges outside G[A [ B [ C [ D [ X]. Then, we slightly abuse notation so

that G[A [B [ C [D [X]/F refers to G[A [B [ C [D [X]/(F \ E(G[A [B [ C [D [X])).

We refer to the special case of Noisy Structured Clique Contraction where E = ;
as Structured Clique Contraction. Note that Structured Clique Contraction is
also a special case of Clique Contraction.

Solutions to instances of Noisy Structured Clique Contraction exhibit the following
property, which will be crucial in the proof of Theorem 5.1 as well as results in Section 6.

Lemma 5.1. Let F be a solution to an instance (G,A,B,C,D,E, n) of Noisy Structured

Clique Contraction. Then, F is a matching of size n in G such that each edge in F has

one endpoint in A and the other in B.

Proof. We first argue that every vertex in A[B is incident to at least one edge in F . Targeting
a contradiction, suppose that there exists a vertex u 2 A [ B that is not incident to any edge
in F . Because |A [ B [ C [ D| = 6n, |F |  n and G[A [ B [ C [ D [ X]/F is a clique
(where the last two properties follow from the supposition that F is a solution), it holds that
G[A [ B [ C [ D [ X]/F is a clique on at least 5n + |X| vertices. Hence, the degree of
every vertex in G[A [ B [ C [ D [ X]/F , and in particular of u, should be 5n � 1 + |X| in
G[A[B [C [D [X]/F . However, because no vertex in A is adjacent to a vertex in D and no
vertex in B is adjacent to a vertex in D, the degree of any vertex in A[B, and in particular of
u, is at most |A[B|� 1+ |C [D|/2+ |X| = 4n� 1+ |X| in G[A[B [C [D [X]. Because u

is not incident to any edge in F , its degree in G[A [B [C [D [X]/F is at most its degree in
G[A [B [ C [D [X]. This is a contradiction, thus we get that indeed every vertex in A [B

is incident to at least one edge in F . From this, because |F |  n and |A [ B| = 2n, we derive
that F is a perfect matching in G[A [B].
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Clique Contraction. Then, F is a matching of size n in G such that each edge in F has
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Then, CliConAlg calls SplitAlg with (H,n) as input, and returns the answer of this call.
First, note that by construction, |V (H)| = 7n + 2. Thus, because SplitAlg runs in time

|V (H)|o(|V (H)|)  n
o(n), it follows that CliConAlg runs in time n

o(n).
For the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance of

Structured Clique Contraction. This means that there exists a subset F ✓ E(G) of size
at most n such that G/F is a clique. By the definition of H, we derive that H/F is a complete
split graph: (S, V (G/F )) is a partition of V (H/F ) where S induces an independent set, V (G/F )
induces a clique, and every vertex in S is adjacent to every vertex in V (G/F ). Thus, (H,n) is
a Yes-instance of Complete Split Contraction (as well as of Split Contraction), which
means that the call to SplitAlg with (H,n) returns Yes, and hence CliConAlg returns Yes.

Now, suppose that CliConAlg returns Yes, which means that the call to SplitAlg with (H,n)
returns Yes. Thus, (H,n) is a Yes-instance of Split Contraction (even if SplitAlg solves
Complete Split Contraction), which means that there exists a subset F ✓ E(H) of size at
most n such that H/F is a split graph. Let (I,K) be a partition of V (H/F ) into an independent
set and a set of vertices that induce a clique. Because |S| = n+ 2 and H[S] is an independent
set, there exist at least two vertices s1, s2 2 S that are not incident to any edge in F . As these
vertices are not adjacent to one another in H, and because they are adjacent to all vertices in
V (G) (and hence to all vertices in V (H/F ) \S), it follows that s1, s2 2 I and V (H/F ) \S ✓ K.
In particular, (H/F )[V (H/F ) \ S] is a clique. Let X = {u 2 S : there exists a vertex v 2 V (G)
such that u and v belong to the same connected component of G[F ]}. Then, we have that
H[V (G) [X]/F is a clique.

Now, notice that (H,A,B,C,D, S, n) is an instance of Noisy Structured Clique Con-

traction. Furthermore, since |F |  n and we have already shown thatH[A[B[C[D[X]/F is
a clique, we have that F is a solution to this instance. Therefore, by Lemma 5.1, F is a matching
of size n in H such that each edge in F has one endpoint in A and the other in B. In particular,
F ✓ E(G) and hence X = ;. Because G = H[A [ B [ C [ D], we thus derive that G/F is
a clique. Thus, we conclude that (G,A,B,C,D, n) is a Yes-instance of Structured Clique

Contraction. This completes the proof of the reverse direction.

A graph G is a perfect graph if the chromatic number of every induced subgraph of G equals
the size of the largest clique of that subgraph. Here, the chromatic number of a graph is the
minimum number of colors required to color its vertices so that every pair of adjacent vertices
are assigned di↵erent colors. For the class of perfect graphs, we prove the following statement.

Theorem 6.3. Unless the ETH is false, there does not exist an algorithm that solves Perfect

Contraction in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by PerfectAlg,
that solves PerfectContraction in time n

o(n). We will show that this implies the existence
of an algorithm, denoted by CliConAlg, that solves Structured Clique Contraction in
time n

o(n), thereby contradicting Lemma 5.2 and hence completing the proof.
We define the execution of CliConAlgAlg as follows. Given an instance (G,A,B,C,D, n) of

Structured Clique Contraction, CliConAlgAlg constructs an instance (H,n) of Perfect
Contraction as follows (see Fig. ?):

• Let K = {u0 : u 2 V (G)} where each element u0 is a new vertex referred to as the tagged

copy of u. Additionally, let I be a set of n+ 1 new vertices.

• V (H) = V (G) [K [ I.

• E(H) = E(G) [ {{u, u0} : u 2 V (G)} [ {{u0, v0} : u0, v0 2 K} [ {{u, i} : u0 2 V (G), i 2 I}.
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set, there exist at least two vertices s1, s2 2 S that are not incident to any edge in F . As these
vertices are not adjacent to one another in H, and because they are adjacent to all vertices in
V (G) (and hence to all vertices in V (H/F ) \S), it follows that s1, s2 2 I and V (H/F ) \S ✓ K.
In particular, (H/F )[V (H/F ) \ S] is a clique. Let X = {u 2 S : there exists a vertex v 2 V (G)
such that u and v belong to the same connected component of G[F ]}. Then, we have that
H[V (G) [X]/F is a clique.

Now, notice that (H,A,B,C,D, S, n) is an instance of Noisy Structured Clique Con-

traction. Furthermore, since |F |  n and we have already shown thatH[A[B[C[D[X]/F is
a clique, we have that F is a solution to this instance. Therefore, by Lemma 5.1, F is a matching
of size n in H such that each edge in F has one endpoint in A and the other in B. In particular,
F ✓ E(G) and hence X = ;. Because G = H[A [ B [ C [ D], we thus derive that G/F is
a clique. Thus, we conclude that (G,A,B,C,D, n) is a Yes-instance of Structured Clique

Contraction. This completes the proof of the reverse direction.

A graph G is a perfect graph if the chromatic number of every induced subgraph of G equals
the size of the largest clique of that subgraph. Here, the chromatic number of a graph is the
minimum number of colors required to color its vertices so that every pair of adjacent vertices
are assigned di↵erent colors. For the class of perfect graphs, we prove the following statement.

Theorem 6.3. Unless the ETH is false, there does not exist an algorithm that solves Perfect

Contraction in time n
o(n)

where n = |V (G)|.

Proof. Targeting a contradiction, suppose that there exists an algorithm, denoted by PerfectAlg,
that solves PerfectContraction in time n

o(n). We will show that this implies the existence
of an algorithm, denoted by CliConAlg, that solves Structured Clique Contraction in
time n

o(n), thereby contradicting Lemma 5.2 and hence completing the proof.
We define the execution of CliConAlgAlg as follows. Given an instance (G,A,B,C,D, n) of

Structured Clique Contraction, CliConAlgAlg constructs an instance (H,n) of Perfect
Contraction as follows (see Fig. ?):

• Let K = {u0 : u 2 V (G)} where each element u0 is a new vertex referred to as the tagged

copy of u. Additionally, let I be a set of n+ 1 new vertices.

• V (H) = V (G) [K [ I.

• E(H) = E(G) [ {{u, u0} : u 2 V (G)} [ {{u0, v0} : u0, v0 2 K} [ {{u, i} : u0 2 V (G), i 2 I}.
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Figure 8 The construction of an instance of Perfect Contraction in the proof of Theorem 22
where dashed lines represent non-edges.

number of vertices in the input graph, thereby contradicting Lemma 12 and hence completing842

the proof.843

We define the execution of CliConAlg as follows. Given an instance (G,A,B,C,D, n) of844

Structured Clique Contraction, CliConAlg constructs an instance (H,n) of Perfect845

Contraction as follows (see Fig. 8):846

Let K = {u′ : u ∈ V (G)} where each element u′ is a new vertex referred to as the tagged847

copy of u. Additionally, let I be a set of n+ 1 new vertices.848

V (H) = V (G) ∪K ∪ I.849

E(H) = E(G) ∪ {{u, u′} : u ∈ V (G)} ∪ {{u′, v′} : u′, v′ ∈ K} ∪ {{u, i} : u ∈ V (G), i ∈ I}.850

Then, CliConAlg calls PerfectAlg with (H,n) as input, and returns the answer of this call.851

First, note that by construction, |V (H)| ≤ 13n + 1. Thus, because PerfectAlg runs in852

time |V (H)|o(|V (H)|) ≤ no(n), it follows that CliConAlg runs in time no(n).853

In what follows, given a subset U ⊆ V (G), we denote U ′ = {u′ ∈ K : u ∈ U}. For854

the correctness of the algorithm, first suppose that (G,A,B,C,D, n) is a Yes-instance of855

Structured Clique Contraction. This means that there exists a subset F ⊆ E(G) of856

size at most n such that G/F is a clique. Now, we will show that H/F is a perfect graph.857

To this end, consider some induced subgraph S of H/F . In case the maximum size of a858

clique in S is 2, then S can contain at most four non-leaf vertices: at most two vertices from859

K and at most two vertices from outside K ∪ I (because H[V (G)]/F is a clique); then, it860

is trivial to color S with number of colors equal to its maximum clique size—in fact, it is861

straightforward to verify that any graph on at most four vertices is perfect. Thus, in what862

follows, suppose that the maximum size of a clique in S is at least 3. Now, consider a clique863

Ĉ of maximum size in S, and observe that it must either consist only of vertices in K or of864

no vertex in K (in which case it can contain at most one vertex from I). In the first case,865

color each vertex in u′ ∈ V (Ĉ) by a distinct color, and note that all vertices in V (S) \ V (Ĉ)866

can be colored using the same set of colors so that a vertex and its tagged copy are assigned867

distinct colors. The second case is analogous. In either case, we obtain that the chromatic868

number of S equals its maximum clique size. Thus, (H,n) is a Yes-instance of Perfect869

Contraction, which means that the call to PerfectAlg with (H,n) returns Yes, and hence870

CliConAlg returns Yes.871

Now, suppose that CliConAlg returns Yes, which means that the call to PerfectAlg with872

(H,n) returns Yes. Thus, (H,n) is a Yes-instance of Perfect Contraction, which means873

that there exists a subset F ⊆ E(H) of size at most n such that H/F is a perfect graph. We874
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first argue that there does not exist a vertex a ∈ A ∪B such that neither a nor a′ is incident875

to at least one edge in F . Targeting a contradiction, suppose that there exists a ∈ A ∪ B876

such that neither a not a′ is incident to at least one edge in F . Assume that a ∈ A as the877

other case is symmetric. Because |F | ≤ n and |D| = 2n, there either exists a vertex d ∈ D878

such that neither d nor d′ is incident to at least one edge in F , or F is a perfect matching in879

either G[D] or G[D′], where in the latter case we let d denote some arbitrarily chosen vertex880

from D. Additionally, since I is an independent set of size n+ 1, there exists a vertex i ∈ I881

that is not incident to any edge in F . Now, consider the cycle i− a− a′ − d′ − d− i (on five882

vertices) in H. This cycle is an induced cycle in H, because no vertex in A is adjacent to any883

vertex in D, and by the construction of H, i is not adjacent to a′ and d′, a is not adjacent to884

d′ and a′ is not adjacent to d. Furthermore, as i, a and a′ are not incident to any edge in F ,885

and if any of d and d′ is incident to an edge in F , then F is a perfect matching in either G[D]886

or G[D′], we obtain that i− a− a′ − d̂− d̂′ − i is an induced cycle (on five vertices) in H/F ,887

where d̂ and d̂′ are the vertices yielded by the replacement of the connected components of888

H[F ] that contain d and d′, respectively, if such components exist (otherwise, d̂ = d and889

d̂′ = d′). However, an induced cycle on five vertices has chromatic number 3 and maximum890

clique size 2, thus we derive a contradiction to the supposition that H/F is perfect.891

So far, we derived that there does not exist a vertex a ∈ A∪B such that neither a nor a′892

is incident to at least one edge in F . As |F | ≤ n and |A| = |A′| = |B| = |B′| = n, this means893

that every edge in F has both endpoints in A ∪ A′ ∪ B ∪ B′ and that for each u ∈ A ∪ B,894

exactly one vertex among u and u′ is incident to an edge in F . Now, we will show that each895

vertex a ∈ A ∪B is incident to at least one edge in F . Targeting a contradiction, suppose896

that there exists a vertex a ∈ A ∪ B that is not incident to any edge in F . Assume that897

a ∈ A, as the other case is symmetric. Denote i, d, d′, d̂ and d̂′ as before, and again consider898

the induced cycle i−a−a′−d′−d− i in H. Unlike before, now a′ belongs to some connected899

component of H[F ], yet we know that this connected component consists only of a′ and some900

vertex in B′. Let â′ be the vertex yielded by the replacement of this component. As no vertex901

in B′ is adjacent to any vertex in I ∪D, we again have that i−a− â′− d̂′− d̂− i is an induced902

cycle in H/F , which gives rise to a contradiction. Thus, as |F | ≤ n and |A| = |B| = n, we903

know that F is a perfect matching in G[A ∪B].904

Next, we will show that G/F is a clique. This will imply that (G,A,B,C,D, n) is905

a Yes-instance of Structured Clique Contraction and thereby complete the proof.906

Targeting a contradiction, suppose that G/F is not a clique, and therefore there exist two907

non-adjacent vertices u and v in G/F . As F is a matching in G[A ∪B], we can let x and y908

be two vertices in A ∪B that belonged to the connected components of H[F ] that yielded909

u and v, respectively. Notice that the only vertex in A ∪ B adjacent to x′ is x, and the910

analogous claim holds for y′ and y. As F is a matching in G[A ∪ B] that does not match911

x and y (since otherwise u and v would not be distinct vertices), we have that neither u is912

adjacent to y′ in H/F nor v is adjacent to x′ in H/F . From this, by the construction of H913

and since F is a matching in G[A ∪B], we immediately derive that i− u− x′ − y′ − v − i914

is an induced cycle in H/F where i is some arbitrarily chosen vertex from I. However, as915

before, the existence of such a cycle contradicts the supposition that H/F is a perfect graph.916

Thus, the proof of the reverse direction is complete. J917
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