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Abstract

Graph modification problems such as vertex deletion, edge deletion or edge contractions
are a fundamental class of optimization problems. Recently, the parameterized complexity
of the contractibility problem has been pursued for various specific classes of graphs.
Usually, several graph modification questions of the deletion variety can be seen to be
FPT if the graph class we want to delete into can be characterized by a finite number of
forbidden subgraphs. For example, to check if there exists k vertices/edges whose removal
makes the graph C4-free, we could simply branch over all cycles of length four in the given
graph, leading to a search tree with O(4k) leaves. Somewhat surprisingly, we show that the
corresponding question in the context of contractibility is in fact W[2]-hard. An immediate
consequence of our reductions is that it is W[2]-hard to determine if at most k edges can
be contracted to modify the given graph into a chordal graph. More precisely, we obtain
following results:

• Cℓ-free Contraction is W[2]-hard if ℓ ⩾ 4 and FPT if ℓ ⩽ 3.
• Pℓ-free Contraction is W[2]-hard if ℓ ⩾ 5 and FPT if ℓ ⩽ 4, where Pℓ denotes a

path on ℓ vertices.
We believe that this opens up an interesting line of work in understanding the complexity
of contractibility from the perspective of the graph classes that we are modifying into.

1 Introduction

Graph modification problems constitute a broad and fundamental class of graph optimization
problems. Typically, we are interested in knowing if a given input graph G is “close enough”
to a graph H or a graph in a class of graphs H. In the latter case, the goal is usually to see
if G can be easily morphed into a graph with a certain property, and the class H is used to
describe the said property [3]. Some of the most prevalent notions of closeness are defined in
terms of vertex or edge deletion, or edge contraction. For example, when defined in terms of
vertex deletion, one might ask if at most k vertices can be deleted to make the graph edgeless
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(here we are modifying into the class of empty graphs), and this is the classic vertex cover
problem.

In this work, we will restrict ourselves to the context of contractibility questions, and in par-
ticular, we would be contracting into graph classes that are described in terms of their induced
forbidden subgraphs. In a H-contractibility problem, given a graph G and a positive integer
k, the objective is to check if there exists a subset of at most k edges which, if contracted, lead
to a graph in H. Such questions are usually NP-complete on general graphs, and have recently
received a lot of attention in the context of parameterized complexity. For example, it is known
that the bipartite contraction problem is FPT, and this is the contraction analog of edge
bipartization, which is the fundamental and well-studied question of whether k edges can be
removed to make a given graph bipartite [9, 6]. This result involved an interesting combination
of techniques, including iterative compression, important separators, and irrelevant vertices.
Also, the problems of determining if k edges can be contracted to obtain a tree, or a path, are
known to be FPT using a non-trivial application of color coding [7]. The planar contrac-
tion problem was also shown to be FPT recently [5], again using irrelevant vertex techniques
combined with an application of Courcelle’s theorem.

Questions of contractibility have been investigated quite extensively when the input graph is re-
stricted to being chordal, usually yielding polynomial time algorithms (see, for instance, [8, 2]).
However, the natural question of chordal contraction, while known to be NP-complete [1],
remains un-investigated in the parameterized context. Before considering algorithms for chordal
contraction, we first explored the apparently easier question of contracting edges to obtain
a C4-free graph, that is, a graph with no induced cycles of length four. Notice that the vertex-
deletion analog of this question is almost trivial from a parameterized point of view: we could
simply branch over all cycles of length four in the given graph, leading to a search tree with
O(4k) leaves. This is true of most problems which require us to “hit” a constant number of
constant-sized forbidden subgraphs using a constrained budget. However, when we ask the
same question in the context of contraction, the scenario is dramatically different: it is no
longer true that a copy of a forbidden object can only be destroyed by edges that form the
object — rather, edges contracted from “outside” the copy could also contribute towards its
elimination. Therefore, the number of choices for branching is no longer obviously bounded. In
fact, we find that the C4-free contraction question turns out to be W[2]-hard, which we
find rather surprising, considering the finite nature of the forbidden subgraph characterization
of the graph class that we are interested in contracting to.

It turns out that our reduction also implies the hardness of chordal contraction. On a
closely related note, we show that the Pi-free contraction problem is also W[2]-hard. On
the positive side, we show that it is FPT to determine if k edges can be contracted so that the
resulting graph is a complete graph. In this case, the forbidden subgraph is just a single non-
edge or an induced path on two edges. Further, we remark that it is easily checked that Ki-free
contraction is FPT by the search tree technique. In this case, since the forbidden object,
being a complete graph, cannot be “destroyed from outside”, the branching is exhaustive.

The reason for describing the graph class H in terms of its forbidden subgraphs is to open up
questions regarding a general characterization of the parameterized complexity of the problem
in terms of the forbidden subgraphs, possibly analogous to the theorem of Asano and Hirata [1].
In this work, our goal is to motivate and initiate a study in this direction, by providing somewhat
unexpected answers to a few specific cases.
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Our Contributions. Let H be a graph class that has a forbidden induced subgraph charac-
terization, and let F be the forbidden induced subgraphs for H. Then, the H Contraction
question, or equivalently the F-free Contraction problem, is the following.

F-free contraction Parameter: k

Input: A graph G = (V, E) and a positive integer k

Question: Is there a subset of at most k edges such that G/F has no induced copies of
graphs H ∈ F?

The Cℓ-free contraction problem is known to be NP-complete. [1] for all fixed integer ℓ ⩾ 3.
We show, by a simple reduction from the hitting set problem, that the Cℓ-free contraction
problem is W[2]-hard for ℓ ⩾ 4. Consequently, we establish that chordal contraction is
W[2]-hard. Further, we show that Pγ-free contraction is W[2]-hard for all γ ⩾ 5, while
contracting to Ki-free graphs (for i ⩾ 3) and cliques turn out to be FPT.

The paper is organized as follows. After introducing some notation and preliminary notions in
Section 2, we turn to the reductions. We first show that the C4-free Contraction problem
is W[2]-hard, and subsequently describe a generalization. This is followed by the reduction
for Pγ-free Contraction. We conclude with the tractable cases and suggestions for future
directions.

2 Preliminaries

In this section we state some basic definitions related to parameterized complexity and graph
theory, and give an overview of the notation used in this paper. Our notation for graph theoretic
notions is standard and follows Diestel [4]. We summarize some of the frequently used concepts
here. For a finite set V, a pair G = (V, E) such that E ⊆ V2 is a graph on V. The elements of
V are called vertices, while pairs of vertices (u, v) such that (u, v) ∈ E are called edges. We also
use V(G) and E(G) to denote the vertex set and the edge set of G, respectively. In the following,
let G = (V, E) and G ′ = (V ′, E ′) be graphs, and U ⊆ V some subset of vertices of G. Let G ′ be
a subgraph of G. If E ′ contains all the edges {u, v} ∈ E with u, v ∈ V ′, then G ′ is an induced
subgraph of G, induced by V ′, denoted by G[V ′]. For any U ⊆ V, G \ U = G[V \ U]. For v ∈ V,
NG(v) = {u | (u, v) ∈ E}.

The contraction of edge xy in G removes vertices x and y from G, and replaces them by a new
vertex, which is made adjacent to precisely those vertices that were adjacent to at least one of
the vertices x and y. A graph G is contractible to a graph H, or H-contractible, if H can be
obtained from G by a sequence of edge contractions. Equivalently, G is H-contractible if there
is a surjection φ : V(G) → V(H), with W(h) = {v ∈ V(G) | φ(v) = h} for everyh ∈ V(H), that
satisfies the following three conditions: (1) for every h ∈ V(H), W(h) is a connected set in G;
(2) for every pair hi, hj ∈ V(H), there is an edge in G between a vertex of W(hi) and a vertex
of W(hj) if and only if hihj ∈ E(H); (3) W = {W(h) | h ∈ V(H)} is a partition of V(G). We say
that W is an H-witness structure of G, and the sets W(h), for h ∈ V(H), are called witness sets
of W. It is easy to see that if we contract every edge uv ∈ E(G), such that u and v belong to
the same witness set, then we obtain a graph isomorphic to H. Hence G is H-contractible if and
only if it has an H-witness structure.

A path is a sequence of vertices v1, v2, . . . , vr such that (vi, vi + 1) ∈ E for all 1 ⩽ i ⩽ r − 1. A
cycle is a sequence of vertices v1, v2, . . . , vr such that (vi, vi + 1) ∈ E for all 1 ⩽ i ⩽ r − 1, and
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(vr, v1) ∈ E. A graph is said to be chordal, or triangulated if it has no induced cycles of length
four or more.
Parameterized Complexity. A parameterized problem is denoted by a pair (Q,k) ⊆ Σ∗ ×N.
The first component Q is a classical language, and the number k is called the parameter. Such
a problem is fixed–parameter tractable (FPT) if there exists an algorithm that decides it in time
O(f(k)nO(1)) on instances of size n. Next we define the notion of parameterized reduction.

Definition 1. Let A,B be parameterized problems. We say that A is (uniformly many:1) fpt-
reducible to B if there exist functions f, g : N → N, a constant α ∈ N and an algorithm Φ

which transforms an instance (x, k) of A into an instance (x ′, g(k)) of B in time f(k)|x|α so that
(x, k) ∈ A if and only if (x ′, g(k)) ∈ B.

A parameterized problem is considered unlikely to be fixed-parameter tractable if it is W[i]-
hard for some i ⩾ 1. To show that a problem is W[2]-hard, it is enough to give a parameterized
reduction from a known W[2]-hard problem. Throughout this paper we follow this recipe to
show a problem W[2]-hard.

3 Hardness of Contraction Problems

In this section we address the parameterized complexity of Cj-free contraction, chordal
contraction and Pj-free contraction. All the reductions are from the Hitting Set
problem, and have a similar underlying flavor. We would begin by creating a separate induced
instance of a forbidden object for every set in the universe. Then we will typically have edges
corresponding to the elements in the universe, and the edges are placed to ensure that con-
tracting them will “kill” exactly those forbidden objects that correspond to the sets that the
element belongs to. Often, this is achieved with the following wireframe: we anchor all the
edges corresponding to vertices of the universe to a common vertex, and let the forbidden ob-
ject “dangle” from the same vertex. Now, to encode the instance, we add edges between the free
end of the edges that correspond to the vertices of the universe and a suitably chosen vertex of
the relevant forbidden objects. We would expect that this generic idea is realized in different
ways depending on what the forbidden objects are. In the rest of this section, we will describe
two instances of specific reductions in detail, formalizing the ideas described above.

3.1 Contracting to Cℓ-free Graphs

Our first exploration is to do with the problem of contracting to graphs that contain no induced
cycles of length ℓ. In the interest of exposition, we begin by explaining the reduction for the
case of reducing to C4-free graphs. Since it turns out that the reduced instance has no longer
induced cycles, this reduction already implies the hardness of contracting k edges to obtain a
chordal graph. We will subsequently describe an easy generalization of the construction.

C4-free contraction Parameter: k

Input: A graph G = (V, E) and a positive integer k

Question: Is there a subset of at most k edges such that G/F has no induced cycles of
length four?

We reduce from the hitting set problem. Let (U,F) be an instance of hitting set, where
U = {x1, x2, . . . , xn} and F = {S1, S2, . . . , Sm}, where each Si ⊆ U. We denote the reduced instance
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Figure 1: The construction for reducing to C4-free graphs. In this example, the adjacencies
corresponding to the hitting set are illustrated for the element xi, which is assumed to belong
to the sets S2, S3 and S4.

to be constructed by G = (V, E). The vertex set consists of a special central vertex, denoted by
g, one vertex for each element xi ∈ U, denoted by ui, and three vertices for every set Si in the
family F, denoted by ai, bi, ci. We now describe the edges. The central vertex is adjacent to
every vertex other than {ci | 1 ⩽ i ⩽ m}. We impose a clique on the vertices that correspond to
elements of the universe. Next, we add the edges (aici) and (bici) for every 1 ⩽ i ⩽ m. Finally,
for every xi ∈ Sj, we add the edge (ui, cj). This completes the construction. Formally, the
instance is given as follows (also see Figure 1). V := {g}∪ {ui | 1 ⩽ i ⩽ n}∪

(∪
1⩽i⩽m{ai, bi, ci}

)
and

E :=

 ∪
1⩽i⩽n,1⩽j⩽m

{(g, ui), (g, aj), (g, bj)}

 ∪

 ∪
1⩽j⩽m

{(cj, aj), (cj, bj)}


∪ {(ui, uj) | 1 ⩽ i ̸= j ⩽ n} ∪ {(ui, cj) | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m, and xi ∈ Sj}

We begin by identifying the induced cycles of length four in the graph G. This will help us in
showing the correctness of the reduction.

Proposition 1. The only induced cycles of length four in the graph G are formed by the vertex
sets given below:

• {g, ai, ci, bi}, for all 1 ⩽ i ⩽ m,

• {ui, g, aj, cj}, for all xi ∈ Sj, and

• {ui, g, bj, cj}, for all xi ∈ Sj.

Proof. Clearly, for all 1 ⩽ i ⩽ m, the vertices {g, ai, bi, ci} induce a four-cycle, and for all xi ∈ Sj,
the vertices {ui, g, t, cj} (where t is either aj or bj) induce a four-cycle as well. Assume, for the
sake of contradiction, that there exists an induced four-cycle other than the ones accounted for,
with the vertex set C := {w, x, y, z}. Let T denote the vertex subset {g} ∪ {ui | 1 ⩽ i ⩽ n}. Note
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that |C ∩ T | ⩽ 2, since G[T ] is a clique, and G[C] is an induced cycle of length four. Notice that
G \ T is acyclic, so C intersects T in either one or two vertices.

First, consider the case when |T ∩ C| = 1, and without loss of generality, let T ∩ C = {w}.
Suppose w ̸= g. Then w = ui for some 1 ⩽ i ⩽ n. Notice that ui is adjacent to vertices
Ni := {cj | xi ∈ Sj}. However, it is easily checked that no two vertices in Ni share a common
neighbor in G \ T . Indeed, for 1 ⩽ p ̸= q ⩽ m, NG\T (cp) = {bp, ap} and NG\T (cq) = {bq, aq}.
Therefore, N(x) ∩N(y) ∩ G \ T = ∅ for all x, y ∈ Ni, and w cannot be extended to an induced
four-cycle from vertices in G \ T . On the other hand, let w = g. Then, let the neighbors of w

in the four-cycle C are x and z. Clearly, x := aj or x := bj, for some 1 ⩽ j ⩽ m. Without loss of
generality, let x := aj. Now, z ̸= bj, since in this case, the unique cycle that w, x and z can be
completed to is already accounted for. Thus, z := v

(a)
ℓ or z := v

(b)
ℓ for some ℓ ̸= j. Again, in this

case, z and x share no common neighbors in G \ T , and we are done.

The second case is when |T ∩ C| = 2. Again, without loss of generality, let T ∩ C = {w, x}. First,
consider the situation when w ̸= g and x ̸= g. Let w = up and x = uq. For w and x to be part
of an induced four-cycle, w and x need to have private neighbors in G \ T that are adjacent.
However, it is easy to verify that N(up)∪N(uq) in G\T is an independent set. Therefore, there
is no way of extending this choice of w and x to a four-cycle. Finally, suppose w = g, and let
x = up. Every neighbor of up is ci for some i and every neighbor of g lies in {aj, bj | 1 ⩽ j ⩽ m}.
The only possibilities for forming induced four-cycles arise from choosing ci ∈ N(up) and either
aj or bj with j = i. However, note that all of these cycles have been accounted for in the
statement of the proposition. This completes the proof.

We now turn to the correctness of the reduction.

Lemma 1. The graph G described as above is a Yes-instance of C4-free contraction if,
and only if, (U,F) is a Yes-instance of hitting set.

Proof. First, suppose (U,F) is a Yes-instance of hitting set, and let S ⊆ U be a solution.
Consider the edges corresponding to S in G, that is, let F be defined as {(g, ui) | for all ui ∈ S.
We claim that G/F has no induced cycles of length four. Clearly, the proposed solution has the
appropriate size, since we are picking one edge corresponding to every element of the hitting
set, which is assumed to have size at most k. We now argue that the suggested set indeed forms
a solution. First, notice that when the edge (g, ui) is contracted, g becomes adjacent to every
cj for which xi ∈ Sj (see Figure 2). Since we are contracting vertices that form a hitting set,
notice that for every 1 ⩽ j ⩽ m, the edge (g, cj) is present in G/F. By Proposition 1, the only
induced four-cycles that need to be killed are as follows:

• {g, ai, ci, bi}, for all 1 ⩽ i ⩽ m,

• {ui, g, aj, cj}, for all xi ∈ Sj, and

• {ui, g, bj, cj}, for all xi ∈ Sj.

Notice that the edge (g, cj) is a chord with respect to all these cycles, and this completes the
argument in the forward direction.

In the reverse direction, suppose we have a subset of k edges, say F, such that G/F has no
induced cycles of length four. We first argue that there exists a solution F that does not use any
edge from the C4 corresponding to the sets. Suppose F contains an edge e that is of the form
(g, aj) or (g, bj). Clearly, contracting such an edge only affects the cycle {g, aj, cj, bj}. Let xi be
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Figure 2: This figure illustrates what happens when the edge (g, ui) is contracted. As shown in
the figure, all the induced cycles of length four that were created by vertices cj for ui ∈ Sj are
now destroyed.

any element of Sj. Consider the set F⋆ given by F \ {e}∪ {(g, ui)}. It is easy to see that F⋆ is also
a solution, since G/F⋆ has a chord in the cycle {g, aj, cj, bj}. A similar argument shows that if F
contains an edge of the form (aj, cj) or (bj, cj), then it can be replaced with an appropriately
chosen edge of the form (g, ui).
Finally, if F contains an edge e of the form (ui, cj), then notice that the only four-cycles of G

that become triangulated in G/{e} are: {g, aj, cj, bj}, {ui, g, aj, cj}, and {ui, g, bj, cj}. All of these
cycles also become triangulated when the edge (ui, g) is contracted instead. Therefore, in this
case also, we note that the set F⋆ given by F \ {e} ∪ {(g, ui)} is also a solution.
Let T⋆ denote the set {u1, . . . , un}. By above arguments we have shown that there exists a
solution F that is contained in the clique formed on T⋆ ∪ {g}. We are now ready to describe a
hitting set S of size at most k. Let W be a G/F-witness structure of G and let W(g) be the
witness set that contains the global vertex g. Observe that since G[W(g)] is connected we have
that the |W(g)| ⩽ k + 1. We take S as W(g) \ S. Clearly, the size of S is at most k. It is also
straightforward to see that S forms a hitting set. Indeed, consider any set Sj ∈ F. Now consider
the four-cycle given by {g, aj, cj, bj}. Since it is triangulated, it must be the case that there is
a xi ∈ Si for which ui ∈ W(g), and hence xi ∈ S. This concludes the reverse direction of the
reduction.

From Lemma 1, and the hardness of the hitting set problem, we have the following:

Theorem 1. The C4-free contraction problem is W[2]-hard when parameterized by the
size of the solution.

Notice that in the analysis of Proposition 1, it is evident that the graph has no induced cycles
of length five or more. Therefore, exactly the same arguments can be used to derive the fact
that the problem of Chordal Contraction, where we ask if k edges can be contracted to
make the input graph chordal, is W[2]-hard when parameterized by k.

Corollary 1. The chordal contraction problem is W[2]-hard when parameterized by the
size of the solution.
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Now we consider the Cℓ-free contraction problem for i ⩾ 5. Notice that if we replace the
cycles of length four with cycles of length ℓ in the reduction above, and make the vertices in ui

adjacent to the ⌊(ℓ/2)⌋th vertex in the cycle, then our claims follow by very similar arguments.
We describe the construction and because of the similarity of the arguments defer the details
of the correctness to the full version of this paper.

As before, let (U,F) be an instance of hitting set, where U = {x1, x2, . . . , xn} and F =

{S1, S2, . . . , Sm}, where each Si ⊆ U. We denote the reduced instance to be constructed by
G = (V, E). The vertex set consists of a special central vertex, denoted by g, one vertex for each
element xi ∈ U, denoted by ui, and (ℓ− 1) vertices for every set Si in the family F, denoted by
a1
i , a

2
i , . . . , a

ℓ−1
i .

We now describe the edges. The central vertex is adjacent to the vertices ui and a1
j , aℓ−1

j , for
1 ⩽ i ⩽ n and 1 ⩽ j ⩽ m. We impose a clique on the vertices that correspond to elements
of the universe. Next, we add the edges (g, a1

i ), (g, aℓ−1
i ) and (aj

i, a
j+1
i ) for every 1 ⩽ i ⩽ m

and 1 ⩽ j ⩽ ℓ − 2. Finally, for every xi ∈ Sj, we add the edge (ui, a
⌊ℓ/2⌋
j ). This completes the

construction.

The proof of correctness is along the same lines as for the case of C4-free contraction. In fact,
for values of ℓ ⩾ 6, there will be exactly m induced cycles of length ℓ in the graph G, as the
cycles that use g, ui and half of a cycle formed by a-vertices will not be of the requisite length,
so the case analysis for the analog of Proposition 1 only simplifies. The detailed arguments are
deferred to avoid repetition. This discussion brings us to the following theorem.

Theorem 2. The Cℓ-free contraction problem, for all fixed integer ℓ ⩾ 4, is W[2]-hard
when parameterized by the size of the solution.

3.2 Contracting to Pγ-free Graphs

For the purposes of our discussion in this section, a path of length γ is a path on γ vertices and
(γ − 1) edges. For the problem of contracting to graphs that have no induced paths of length
γ or longer (for γ ⩾ 5) we give describe two different reductions depending on the parity of γ.
For the cases when γ ⩽ 4, in the next section, we describe approaches to FPT algorithms.

Pγ-free contraction Parameter: k

Input: A graph G = (V, E) and a positive integer k

Question: Is there a subset of at most k edges such that G/F has no induced paths of
length γ?

The Case of Odd-Length Paths. We first describe the reduction for the case when γ is
odd. Again, we reduce from hitting set. Let (U,F) be an instance of hitting set, where
U = {x1, x2, . . . , xn} and F = {S1, S2, . . . , Sm}, where each Si ⊆ U. We denote the reduced instance
to be constructed by G = (V, E). The vertex set consists of a special central vertex, denoted by
g, one vertex for each element xi ∈ U, denoted by ui, and (γ− 1) vertices for every set Si in the
family F, denoted by a1

i , a
2
i , . . . , a

⌊(γ/2)⌋
i , b1

i , b
2
i , . . . , b

⌊(γ/2)⌋
i . For readability, we use ℓ to denote

⌊γ/2⌋. Also, let T = {u1, . . . , un} denote the subset of vertices corresponding to the elements of
the universe, and for every 1 ⩽ i ⩽ m, denote the sets {a1

i , a
2
i , . . . , a

ℓ
i} {b

1
i , b

2
i , . . . , b

ℓ
i} by Ai and

Bi, respectively.
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Figure 3: The construction for reducing to Pγ-free graphs when γ is an odd integer ⩾ 5. In
this example, γ = 7, and the adjacencies corresponding to the Hitting Set are illustrated for the
element xi, which is shown as belonging to the sets S1 and S3.

We now describe the edges. To begin with, we impose a clique on T ∪ {g}. Next, add edges to
ensure that the sets Ai and Bi induce paths of lengths ℓ, starting at a1

i and b1
i , respectively.

Further, we make the central vertex g adjacent to a1
i and b1

i for all 1 ⩽ i ⩽ m. Notice that there
is now an induced path of length γ starting at aℓ

i, going via g and ending at bℓ
i for all 1 ⩽ i ⩽ m.

To encode the hitting set structure, for every xi ∈ Sj, make ui adjacent to all vertices in Aj∪Bj.

A formal summary of the construction is below, also see Figure 3. Here,

V := {g} ∪ {ui | 1 ⩽ i ⩽ n} ∪

 ∪
1⩽i⩽ℓ

{ai
j | 1 ⩽ j ⩽ m}

 ∪

 ∪
1⩽i⩽ℓ

{bi
j | 1 ⩽ j ⩽ m}

 ,

and the edge set
E := {(ui, x) | 1 ⩽ i ⩽ n, x ∈ T ∪ {g}}

∪
( ∪

1⩽i⩽m

{(g, a1
i ), (a

j
i, a

j+1
i ) | 1 ⩽ j ⩽ ℓ− 1}

)
∪
( ∪

1⩽i⩽m

{(g, b1
i ), (b

j
i, b

j+1
i ) | 1 ⩽ j ⩽ ℓ− 1}

)
∪{(ui, a

r
j ), (ui, b

r
j ) | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m, 1 ⩽ r ⩽ ℓ, and xi ∈ Sj}.

We now turn to the correctness of the reduction.

Lemma 2. Let γ be a fixed odd integer ⩾ 5. The graph G described as above is a Yes-instance
of Pγ-free contraction if, and only if, (U,F) is a Yes-instance of hitting set.

Proof. First, suppose (U,F) is a Yes-instance of hitting set, and let S ⊆ U be a solution.
Consider the edges corresponding to S in G, that is, let F be defined as {(g, ui) | for all xi ∈ S}.
We claim that G/F has no induced paths of length γ. Clearly, the proposed solution has the
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Figure 4: This figure illustrates what happens when the edge (g, ui) is contracted. Notice that
all the relevant induced paths are destroyed.

appropriate size, since we are picking one edge corresponding to every element of the hitting
set, which is assumed to have size at most k.

We now argue that the suggested set indeed forms a solution. For the sake of contradiction, let
P be a path of length γ in G/F. First, note that g is a global vertex in G/F and therefore P does
not contain g. Notice that G \ (T ∪ {g}) is a disjoint union of paths of length ℓ, induced by the
sets Ai, Bi, 1 ⩽ i ⩽ m. This implies that P must contain at least one vertex from T , since ℓ < γ.
However, since T induces a clique, P can use at most two vertices from T . Finally, since γ ⩾ 5,
we conclude that P must contain at least two vertices from one of the paths induced by Ai or
Bi.

Let the path P be given by the sequence p1, p2, . . . , p5. Without loss of generality, let p1, p2 /∈
T ∪ {g} (if either or both of them belong to T ∪ {g}, then the last two vertices do not belong to
T ∪ {g} and the path can be considered backwards). Note that both p1 and p2 belong to the
same component of G \ (T ∪ {g}), in other words, they belong to Aj or Bj for some 1 ⩽ j ⩽ m.
Let pt be the nearest vertex along P such that pt ∈ T . Now, the vertex pt is evidently adjacent
to both p1 and p2, creating a triangle in an induced path, which is a contradiction.

In the reverse direction, suppose we have a subset of k edges, say F, such that G/F has no
induced paths of length γ. We now propose a hitting set S based on the edges in F. Let W be
a G/F-witness structure of G and let W(v) denote the witness set that contains the vertex v.
We first consider the witness set of the global vertex g. For every 1 ⩽ i ⩽ n such that W(g)

contains the vertex ui, include xi in S. For every 1 ⩽ j ⩽ m such that W(g) contains a vertex
from (Aj ∪ Bj), choose an arbitrary element of the set Sj in S. Further, for every v /∈ T ∪ {g}, if
W(v) contains a vertex ui ∈ T , include xi in S.

We first reason that the size of the set thus described is at most k. Let λ be the number of
vertices v /∈ T ∪ {g} for which W(v) included a vertex from T . Then, it is easy to see that:

 ∑
v∈G\(T∪{g})

|W(v)|

+ |W(g)| ⩽ k+ 1+ λ.
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Since we incorporate, from the witness sets W(g) and W(v), no elements corresponding to g or
v (respectively), the number elements that feature in S is at most k.
We now argue that S is indeed a hitting set for (U,F). In particular, we claim that if Si is a set
that is not hit by S, then G[Ai ∪Bi ∪ {g}] is an induced path of length γ in G/F, which would be
the desired contradiction. Indeed, consider G[Ai ∪ Bi ∪ {g}]. For any vertex v in (Ai ∪ Bi), the
edge (g, v) was not contracted (otherwise we would have included an element from Si in S by
construction). On the other hand, none of the vertices of T corresponding to elements contained
in Si were contracted to v, by the assumption that S does not hit Si. All remaining vertices in
W(g) come from Aj ∪ Bj for j ̸= i and none of these vertices are adjacent to any of the vertices
in Ai ∪ Bi. Finally, we also know that if the witness sets W(v) corresponding to v ∈ Ai ∪ Bi

included vertices from T , then they must necessarily contain vertices corresponding to elements
in Si. But this would again contradict our assumption that Si is not hit by S. The implication
of this is that for all v ∈ Ai ∪ Bi, the witness sets W(v) do not contain any elements other than
v. Therefore, the path G[Ai ∪ Bi ∪ {g}] remains an induced path in G/F. This concludes the
reverse direction of the reduction.

The Case of Even-Length Paths. We now describe the reduction for the case when γ is
even. As in the case when γ was odd, we reduce from hitting set. Let (U,F) be an instance
of hitting set, where U = {x1, x2, . . . , xn} and F = {S1, S2, . . . , Sm}, where each Si ⊆ U. We
denote the reduced instance to be constructed by G = (V, E). The vertex set consists of a special
central vertex, denoted by g, one vertex for each element xi ∈ U, denoted by ui, and (γ − 3)

vertices for every set Si in the family F, denoted by a1
i , a

2
i , . . . , a

γ−3
i . For readability, we use ℓ

to denote (γ − 3). Also, let T = {u1, . . . , un} denote the subset of vertices corresponding to the
elements of the universe, and for every 1 ⩽ i ⩽ m, denote the sets {a1

i , a
2
i , . . . , a

ℓ
i} by Ai. Finally,

introduce 2(k + 1) additional vertices denoted by {g1, . . . , gk+1, g
′
1, . . . , g

′
k+1}. This vertices in

this set are sometimes referred to as guard vertices.
We now describe the edges. To begin with, we impose a clique on T ∪ {g}. Next, add edges to
ensure that the sets Ai induce paths of lengths ℓ, starting at a1

i . Also add the edges (gi, g
′
i) for

all 1 ⩽ i ⩽ k + 1. Further, we make the central vertex g adjacent to a1
i for all 1 ⩽ i ⩽ m and

gi for all 1 ⩽ i ⩽ k + 1. Notice that there is now an induced path of length γ starting at aℓ
i,

going via g and ending at g ′
j, for all 1 ⩽ i ⩽ m and all 1 ⩽ j ⩽ k + 1. To encode the hitting set

structure, for every xi ∈ Sj, make ui adjacent to all vertices in Aj.
A formal summary of the construction is below, also see Figure 5. Here,

V := {g} ∪ {ui | 1 ⩽ i ⩽ n} ∪

 ∪
1⩽i⩽ℓ

{ai
j | 1 ⩽ j ⩽ m}

 ∪

 ∪
1⩽i⩽k+1

{gi, g
′
i}

 ,

and the edge set
E := {(ui, x) | 1 ⩽ i ⩽ n, x ∈ T ∪ {g}}

∪
( ∪

1⩽i⩽m

{{(g, a1
i )} ∪ {(aj

i, a
j+1
i ) | 1 ⩽ j ⩽ ℓ− 1}

)
∪
( ∪

1⩽i⩽m

{(g, gi, ), (gi, g
′
i) | 1 ⩽ i ⩽ k+ 1}

)
∪{(ui, a

r
j ) | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m, 1 ⩽ r ⩽ ℓ, and xi ∈ Sj}.

We now turn to the correctness of the reduction.
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Figure 5: The construction for reducing to Pγ-free graphs when γ is an even integer ⩾ 6. In
this example, γ = 6, and the adjacencies corresponding to the Hitting Set are illustrated for the
element xi, which is shown as belonging to the sets S1 and S3.

Lemma 3. Let γ be a fixed even integer ⩾ 6. The graph G described as above is a Yes-instance
of Pγ-free contraction if, and only if, (U,F) is a Yes-instance of hitting set.

Proof. First, suppose (U,F) is a Yes-instance of hitting set, and let S ⊆ U be a solution.
Consider the edges corresponding to S in G, that is, let F be defined as {(g, ui) | for all xi ∈ S}.
We claim that G/F has no induced paths of length γ. Clearly, the proposed solution has the
appropriate size, since we are picking one edge corresponding to every element of the hitting
set, which is assumed to have size at most k.

We now argue that the suggested set indeed forms a solution. For the sake of contradiction, let
P be a path of length γ in G/F.

First, suppose that P does not intersect the set of guard vertices, namely, X := {g, g ′
i | 1 ⩽ i ⩽

k + 1}. Note that in G/F, g is adjacent to every vertex that is not a guard vertex. Therefore,
in this case, P does not contain g. This case is similar to the proof of the forward direction in
Lemma 2, we restate it here for completeness. Notice that G \ (T ∪ {g} ∪ X) is a disjoint union
of paths of length ℓ, induced by the sets Ao, 1 ⩽ i ⩽ m. This implies that P must contain at
least one vertex from T , since ℓ < γ. However, since T induces a clique, P can use at most two
vertices from T . Finally, since γ ⩾ 5, we conclude that P must contain at least two vertices from
one of the paths induced by Ai.

Let the path P be given by the sequence p1, p2, . . . , p5. Without loss of generality, let p1, p2 /∈
T ∪ {g} ∪ X (none of the vertices belong to X by assumption, and if either or both p1, p2 belong
to T ∪ {g}, then the last two vertices do not belong to T ∪ {g} and the path can be considered
backwards). Note that both p1 and p2 belong to the same component of G \ (T ∪ {g} ∪ X), in
other words, they belong to Aj for some 1 ⩽ j ⩽ m. Let pt be the nearest vertex along P such
that pt ∈ T . Now, the vertex pt is evidently adjacent to both p1 and p2, creating a triangle in
an induced path, which is a contradiction.

On the other hand, suppose P contains at least one guard vertex. Then, if P also contains g, it
can use at most one vertex from Ai ∪ T . Suppose, first, that P does not intersect Ai ∪ T at all.
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Figure 6: This figure illustrates what happens when the edge (g, ui) is contracted. Notice that
all the relevant induced paths are destroyed.

Then, among the guard vertices and the vertex g, the longest induced path possible is clearly of
length five. On the other hand, suppose P contains an edge of the form (g, x) where x ∈ Ai ∪ T .
Since x is not adjacent to any of the guard vertices, and all other vertices that x is adjacent
to are also adjacent to g, this path can only extend along g by using the guard vertices. This
means that the path can extend by at most two vertices more (since the graph induced on the
guard vertices is a disjoint union of paths of length two). In this case, therefore, P has length at
most four. Finally, if P does not contain g, then it can contain only the guard vertices (since g

separates the guard vertices from the rest of the graph by construction). In this case the length
of P is at most two.

This completes the argument in the forward direction.

In the reverse direction, suppose we have a subset of k edges, say F, such that G/F has no
induced paths of length γ. Since |F| ⩽ k, we conclude that there exists i, 1 ⩽ i ⩽ k+ 1 such that
the edges (g, gi) and (gi, g

′
i) were not contracted. Without loss of generality, let (g, g1) /∈ F and

(g1, g
′
1) /∈ F. We now propose a hitting set S based on the edges in F. Let W be a G/F-witness

structure of G and let W(v) denote the witness set that contains the vertex v. We first consider
the witness set of the global vertex g. For every 1 ⩽ i ⩽ n such that W(g) contains the vertex
ui, include xi in S. For every 1 ⩽ j ⩽ m such that W(g) contains a vertex from Aj, choose an
arbitrary element of the set Sj in S. Further, for every v ∈ Ai, if W(v) contains a vertex ui ∈ T ,
include xi in S.

We first reason that the size of the set thus described is at most k. Let A denote ∪m
i=1Ai and

let λ be the number of vertices v ∈ A for which W(v) included a vertex from T . Then, it is easy
to see that:

∑
v∈A

|W(v)|

+ |W(g)| ⩽ k+ 1+ λ

Since we incorporate, from the witness sets W(g) and W(v), no elements corresponding to g or
v (respectively), the number elements that feature in S is at most k.
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We now argue that S is indeed a hitting set for (U,F). In particular, we claim that if Si is a set
that is not hit by S, then G[Ai ∪ {g} ∪ {(g, g1), (g1, g

′
1)}] is an induced path of length γ in G/F,

which would be the desired contradiction. Indeed, consider G[Ai∪{g}∪{(g, g1), (g1, g ′
1)}]. For any

vertex v in Ai, the edge (g, v) was not contracted (otherwise we would have included an element
from Si in S by construction). On the other hand, none of the vertices of T corresponding to
elements contained in Si were contracted to v, by the assumption that S does not hit Si. All
remaining vertices in W(g) come from Aj for j ̸= i, or are guard vertices. None of these vertices
are adjacent to any of the vertices in Ai. Finally, we also know that if the witness sets W(v)

corresponding to v ∈ Ai included vertices from T , then they must necessarily contain vertices
corresponding to elements in Si. But this would again contradict our assumption that Si is
not hit by S. The implication of this is that for all v ∈ Ai ∪ {g}, the witness sets W(v) do not
contain any elements other than v. It remains to consider the witness sets of g1 and g ′

1. Note
that g1 is a vertex of degree two and we know that neither of the edges incident on g1 were in
F. Similarly, g ′

1 is a pendant vertex and the edge incident on it is not in F. Thus, the witness
sets of g1 and g ′

1 in G/F contain only the vertices g1 and g ′
1, respectively.

Therefore, the path G[Ai∪{g}∪{(g, g1), (g1, g ′
1)}] remains an induced path in G/F. This concludes

the reverse direction of the reduction.

Notice that the results above holds for γ ⩾ 5, and the cases when γ ⩽ 4 are shown to be tractable
in the next section. To conclude, from Lemmas 2 and 3, and the hardness of the hitting set
problem, we have the following:

Theorem 3. The Pγ-free contraction problem is W[2]-hard for all fixed integers γ ⩾ 5

when parameterized by the size of the solution.

4 A Few Tractable Cases

In this section we give FPT algorithm for a few cases of F-free contraction – namely
Kℓ-free contraction for every fixed integer ℓ ⩾ 3, P3-free contraction and P4-free
contraction. The last two problems can be shown to be FPT by arguments based on the
MSO-expressibility of the problem and the fact that P4- and P3-free graphs have bounded
rankwidth. In summary, we show the following.

Theorem 4. For every fixed integer ℓ ⩾ 3, Kℓ-free contraction is FPT. Also, the problems
P3-free contraction and P4-free contraction are FPT.

Proof. To solve Kℓ-free contraction we do as follows. Given an undirected graph G on n

vertices and a positive integer k, we first find a clique Kℓ and then iteratively contract every edge
of this clique and recursively search for solution of size k− 1 in the contracted graph. Since the
forbidden object, being a complete graph, cannot be “destroyed from outside”, the branching is
exhaustive. This leads to a FPT algorithm with running time O(ℓ2knO(1)). Observe that this
implies C3-free contraction is FPT.

Now we show that P2-free contraction is FPT. Let (G, k) be an instance to P2-free con-
traction. For simplicity we assume that G is connected, else we could apply our algorithm to
each connected component separately. It is well know that a graph does not have induced P2
if and only if it is a clique. To solve the problem given (G, k), in polynomial time, we output
an equivalent instance (G ′, k) with at most O(4kk) vertices. Given the small sized equivalent
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instance we can try all possible choice of at most k edges as possible solution and check whether
their contraction leads to a clique.

Two vertices u and v are called twins if N(u) = N(v). If there exists a set S of size at least
2k + 1 such that for all u and v in S we have that N(u) = N(v) (that is, S is a set of twins
of size at least 2k + 1) then delete an arbitrary vertex w from S. Observe that since we are
only allowed to contract at most k edges, the number of vertices that can be adjacent to one of
the contracted edges is upper bounded by 2k. One can easily show using this observation that
(G, k) is a yes instance of P2-free contraction if and only of (G \ {w}, k) is a yes instance
of P2-free contraction. We apply this twin reduction rule as long as possible. If (G, k) is
a yes instance then there exists a set F of at most k edges whose contraction lead to a clique.
Let W be the end points of edges in F. Clearly, |W| ⩽ 2k. Now we group the vertices of G ′ \W

with their neighborhood in W. This implies that there are at most 4k groups. Observe that
vertices in the same group are twins. Thus, the size of each twin class is upper bounded by 2k.
This implies that if (G, k) is a yes instance and thus (G ′, k) is a yes instance then the number of
vertices in G ′ is upper bounded by 4k · 2k. Hence, if (G ′, k) has more than 4k · 2k vertices then
we return that (G, k) is a no instance else (G ′, k) is the required small sized equivalent instance.
This completes the proof.

5 Future Directions

In this paper we initiated the study of F-free contraction problem and answered questions
when F consisted of a fixed cycle or a path of a particular length. An interesting, and potentially
challenging, question would be to characterization the parameterized complexity of F-free
contraction in terms of properties of the forbidden subgraphs F. On the other hand, it will
also be interesting examine if there are subclasses of graphs on which the problems of Cj-free
contraction (for j ⩾ 4) and Pj-free contraction (for j ⩾ 5) admit FPT algorithms while
being NP-complete.

Acknowledgments. The authors would like to thank Chengwei Guo and Leizhen Cai for a
careful reading of the paper and communicating a gap in the proof of Theorem 3, which has
since been fixed.
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