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Abstract13

A feedback vertex set in a hypergraph H is a set of vertices S such that deleting S from H results14

in an acyclic hypergraph. Here, deleting a vertex means removing the vertex and all incident15

hyperedges, and a hypergraph is acyclic if its vertex-edge incidence graph is acyclic. We study the16

(parameterized complexity of) the Hypergraph Feedback Vertex Set (HFVS) problem: given17

as input a hypergraph H and an integer k, determine whether H has a feedback vertex set of size at18

most k. It is easy to see that this problem generalizes the classic Feedback Vertex Set (FVS)19

problem on graphs. Remarkably, despite the central role of FVS in parameterized algorithms and20

complexity, the parameterized complexity of a generalization of FVS to hypergraphs has not been21

studied previously. In this paper, we fill this void. Our main results are as follows22

HFVS is W[2]-hard (as opposed to FVS, which is fixed parameter tractable).23

If the input hypergraph is restricted to a linear hypergraph (no two hyperedges intersect in more24

than one vertex), HFVS admits a randomized algorithm with running time 2O(k3 log k)nO(1).25

If the input hypergraph is restricted to a d-hypergraph (hyperedges have cardinality at most d),26

then HFVS admits a deterministic algorithm with running time dO(k)nO(1).27

The algorithm for linear hypergraphs combines ideas from the randomized algorithm for FVS by28

Becker et al. [J. Artif. Intell. Res., 2000] with the branching algorithm for Point Line Cover by29

Langerman and Morin [Discrete & Computational Geometry, 2005].30

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact31

algorithms32

Keywords and phrases feedback vertex sets, hypergraphs, FPT, randomized algorithms33

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2334

1 Introduction35

It would be an understatement to say that Vertex Cover (VC) and Feedback Vertex36

Set (FVS) have played a pivotal roles in the development of the field of Parameterized37

Complexity. Vertex Cover asks if given an undirected graph G and a positive integer38

k, there exists a set S of k vertices which intersects every edge in G. Feedback Vertex39

Set asks if given an undirected graph G and a positive integer k, there exists a set S (called40

feedback vertex set or in short fvs) of k vertices which intersects every cycle in G. While there41

has been no improvement in the parameterized algorithm for VC in the last 14 years [9] (the42

conference version appeared in MFCS 2006), faster algorithms for FVS have been developed43

over the last decade. The best known algorithm for VC runs in time O(1.2738k + kn) [9].44

On the other hand, for FVS, the first deterministic O(cknO(1)) algorithm was designed only45
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23:2 FVS in Hypergraphs

in 2005; independently by Dehne et al. [14] and Guo et al. [21]. It is important to note here46

that a randomized algorithm for FVS with running time O(4knO(1)) [5] was known in as47

early as 1999. The deterministic algorithms led to the race of improving the base of the48

exponent for FVS algorithms and several algorithms [6, 7, 8, 12, 22, 26, 28], both deterministic49

and randomized, have been designed. Until few months ago the best known deterministic50

algorithm for FVS ran in time 3.619knO(1) [26], while the Cut and Count technique by Cygan51

et al. [12] gave the best known randomized algorithm running in time 3knO(1). However,52

just in last few months both these algorithms have been improved; Iwata and Kobayashi [22,53

IPEC 2019] designed the fastest known deterministic algorithm with running time O(3.460kn)54

and Li and Nederlof [28, SODA 2020] designed the fastest known randomized algorithm55

with running time 2.7knO(1). We would like to remark that many variants of FVS have56

been studied in literature such as Connected FVS [12, 32], Independent FVS [2, 29, 31],57

Simultaneous FVS [4, 35] and Subset FVS [13, 23, 24, 25, 30].58

The main objective of this paper is a study of FVS on hypergraphs. A hypergraphs is a59

set family H with a universe V (H) and a family of hyperedges E(H), where each hyperedge60

(or edge) is a subset of V (H). If every hyperedge in E(H) is of size at most d, it is known as61

a d-hypergraph. Observe that if each hyperedge is of size exactly two, we get an undirected62

graph. The natural question is, how does VC generalize to hypergraphs. If (G, k) is an63

instance of VC, we can view VC as the following problem: Given a hypergraph with vertex64

set V (G) and the set of hyperedges E(G), does there exist a set of k vertices that intersects65

every hyperedge. Thus, VC is a special case of Hitting Set (HS): Given a hypergraph H66

and a positive integer k, does there exist a set of k vertices that intersects every hyperedge. If67

the size of each hyperedge is upper bounded by d, we refer to the problem as the d-Hitting68

Set (d-HS) problem. Observe that VC is equivalent to the 2-HS problem. It is well known69

that HS does not admit an algorithm with running time f(k)nO(1), where the function f70

depends only on k due to Exponential Time Hypothesis (ETH). That is, the problem is71

known to be W[2]-hard. On the other hand, d-HS is solvable in time dknO(1) and admits72

a kernel of size O(kd) [1, 18]. It is worth to note d-HS does not admit a kernel of size73

O(kd−ε) under plausible complexity theory assumptions [15]. Thus, generalization of VC on74

hypergraphs is well studied. However, there is very little study of FVS on hypergraphs. The75

only known algorithmic result is a factor d approximation for FVS on d-hypergraphs [20].76

Upper bounds on minimum fvs in 3-uniform linear hypergraphs are studied in [16].77

The objective of this paper is to study the hypergraph variant of the Feedback
Vertex Set problem from the view point of Parameterized Complexity.

78

One of the main reasons for the lack of study of FVS on hypergraphs is that it is79

not as natural to define the generalization of FVS in hypergraphs, as it is for the case80

of VC (generalizing to HS and d-HS) in hypergraphs. To generalize the notion of fvs to81

hypergraphs, we need to have notions of cycles and forests in hypergraphs. For cycles,82

we use the same notion as that in graph theory [16]: a cycle in a hypergraph H is a83

sequence (v0, e0, v1, . . . , v`, e`, v0) such that v0, . . . , v` are distinct vertices, e0, . . . , e` are84

distinct hyperedges, ` ≥ 1 and vi, v(i+1) mod (`+1) ∈ ei for any i ∈ {0, . . . , `}. Given the85

above definition of cycle, a subset S of vertices in a hypergraph H is called a feedback vertex86

set, if there does not exist a cycle in the hypergraph obtained after deleting vertices in S.87

The next natural question is what do we mean by deletion of a vertex in a hypergraph. There88

are two ways to define the vertex deletion operation in hypergraphs:89

1. Strong deletion or simply deletion of a vertex v implies deleting v along with all the90

hyperedges containing the vertex v.91
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2. Weak deletion of a vertex v implies deleting v without deleting the hyperedges that92

contain v. That is, the hypergraph H ′ obtained after weak deletion of a vertex v from H93

has vertex set V (H) and edge set {e ∈ E(H) : v /∈ e}∪{e \ {v} : e ∈ E(H), v ∈ e, |e| > 2}.94

For a hypergraph H we use the notation H − S to denote the graph obtained after95

(weak/strong) deletion of the vertices in S. Consequently, there are two ways one may define96

the Feedback Vertex Set problem – Weak FVS and Strong FVS.97

Our Results and Methods. Given a hypergraph H, the incidence graph G corresponding98

to H is the bipartite graph with bipartition V (G) = A]B where A = V (H) and B = E(H),99

and for any v ∈ V (H) and e ∈ E(H), ve is an edge in G if and only if v ∈ e in H. Observe100

that Weak FVS corresponds to finding a fvs S in G of size at most k, such that S ⊆ A101

and G − S is a forest. Using the best known algorithm for Weighted FVS [3] running102

in 3.618knO(1) time, we can solve Weak FVS in 3.618knO(1) time, by transforming the103

problem to Weighted FVS. To transform Weak FVS to Weighted FVS we assign every104

vertex in B a weight of k+ 1, every vertex in A a weight of 1. Now the problem of finding an105

fvs of weight at most k will be equivalent to solving Weak FVS for the original hypergraph.106

Thus Weak FVS is not challenging as a parameterized problem.107

Hence, we only consider FVS on hypergraphs with respect to strong deletion. In partic-108

ular, we study Hypergraph Feedback Vertex Set (HFVS). Here, given an n-vertex109

hypergraph H and a positive integer k, the objective is to check whether there exists a set110

S ⊆ V (H) of size at most k, such that H − S is acyclic. As in the case of HS, it is expected111

that HFVS is W[2]-hard and this can be proven using a parameter preserving reduction from112

Set Cover (which is “equivalent” to HS). We prove the following theorem in Section D.113

I Theorem 1 (♣1). HFVS is W[2]-hard when parameterized by k.114

Theorem 1 is not surprising as a generalization of even VC to hypergraphs i.e. HS, is115

W[2]-hard.116

FVS is a deeply studied problem in Parameterized Complexity, and thus, we tried
to generalize the existing algorithms as much as possible. However, considering the
problem on general hypergraphs is pushing it too far (Theorem 1). This motivated us
to look for families of hypergraphs, which are a strict generalizations of graphs and
where FVS turns out to be tractable. Specifically, we study the problem for the cases
when the input is restricted to linear hypergraphs and d-hypergraphs.

117

A hypergraph H is linear if |e ∩ e′| ≤ 1 for any two distinct hyperedges e, e′ ∈ E(H). We118

show that for both these families, HFVS admits fixed parameter tractable (FPT) algorithms.119

Our main result is a randomized algorithm for the case when the input hypergraph is linear,120

and the size of the hyperedges is not bounded. Thus our positive results are the following.121

I Theorem 2 (♣). There exists a deterministic algorithm for HFVS on d-hypergraphs,122

running in time dO(k)nO(1).123

I Theorem 3. There exists an O?(2O(k3 log k)) time2 randomized algorithm for HFVS on124

linear hypergraphs, which produces a false negative output with probability at most 1
nO(1) , and125

no false positive output.126

1 Proofs of results marked with ♣ can be found in the appendix.
2 Polynomial dependency on n is hidden in O? notation.

CVIT 2016
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The restriction to linear hypergraphs corresponds to exclusion of C4 or K2,2 in the127

corresponding incidence graph. Ki,j refers to the complete bipartite graph with partitions of128

sizes i and j. There has been extensive work on Red-Blue Dominating Set for Ki,j free129

graphs [11, 19, 33, 34]. Theorem 3 can be viewed as an analog of Red-Blue Dominating130

Set results for K2,2 free graphs.131

The starting point of both the above mentioned algorithms (Theorems 2 and 3) is recasting132

HFVS as an appropriate problem on the incidence graph G of the given hypergraph H. Proof133

of Theorem 3 starts with the observation that for any subset S ⊆ V (H), H − S is acyclic if134

and only if G−NG[S] (notations defined in Section 2) is acyclic. Consequently, HFVS is135

same as the following problem (see Lemma 17 in appendix for proof).136

Dominating FVS on Bipartite Graphs (DFVSB) Parameter: k

Input: A bipartite graph G with bipartition V (G) = A ]B and k ∈ N.
Question: Is there a subset S ⊆ A of size at most k such that G−NG[S] is acyclic?

137

For a bipartite graph G = (A ]B,E), we say that a subset S ⊆ A is a dominating feedback138

vertex set (dfvs) for G if G−N [S] is acyclic. Let G be the incidence graph of a hypergraph139

H. Then, notice that H is a d-hypergraph if and only if maxe∈E(H) dG(e) ≤ d. Also, H is140

linear if and only if G is C4-free. As a result HFVS on d-hypergraphs and linear hypergraphs141

are equivalent to DFVSB on bipartite graphs G = (A ]B,E) with maxw∈B d(w) ≤ d and142

on C4-free bipartite graphs, respectively.143

Theorem 2 shows that for d-hypergraphs, HFVS is similar to d-HS. Proof of Theorem 2144

utilizes iterative compression. The compression step involves a branching strategy that uses a145

measure more generalized than the one used in known FVS algorithms for undirected graphs.146

Our proof for Theorem 3 is inspired by the randomized algorithm of Becker et al. [5] that147

runs in O(4knO(1)) time and the branching algorithm for Point Line Cover by Langerman148

and Morin [27]. The algorithm of Becker et al. [5] first preprocesses the input graph and149

transforms it into a graph with minimum degree at least 3 and then shows that for any fvs,150

at least half the edges in a preprocessed graph are incident to the vertex set of the fvs. This151

immediately gives the following algorithm: “pick an edge uniformly at random, then pick a152

vertex that is an endpoint of this edge uniformly at random and add it to a solution, and153

recurse”. Let G be the incidence graph of a hypergraph H. First we preprocess G and show154

that in the preprocessed graph (say G) for any dfvs S of size at most k, at least 1/poly(k)155

fraction of all the edges are incident to N [S]. Here, poly denotes a polynomial function. We156

call this property α-covering, with α being poly(k). Let S be a fixed fvs of size at most k. We157

now compute the probability of finding S. Note that if we randomly pick an edge f (that is,158

pick an edge from graph G uniformly at random and then select f as the hyperedge incident159

to the selected edge), then with probability 1/poly(k) there exists a vertex incident to f that160

is contained in S. However, unlike the case of FVS in graphs, here we cannot randomly161

select a vertex from f , as the size of f could be independent of k. However, for now let us162

assume that we can preprocess G− f such that the α-covering property holds even after we163

delete f from G. We assume that α-covering property holds recursively after each iteration164

of preprocessing. Suppose we do this process k2 + 1 times. Then we have a collection of165

hyperedges F = {f1, . . . , fk2+1} such that each of them has a non-trivial intersection with S.166

Observe that the pairwise intersection of these hyperedges cannot be more than one, since G167

excludes C4 as a subgraph (H being a linear hypergraph). However, S is a solution of size at168

most k, and hence there exist k + 1 hyperedges f ′1, . . . , f ′k+1 in F such that |f ′i ∩ f ′j | = {v},169

i 6= j for some v ∈ A = V (H). This implies that v must belong to S, as each of f ′1, . . . , f ′k+1170

has a non-trivial intersection with S and if we don’t pick v, then every solution is of size at171
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least k + 1. Hence, we delete v along with all those edges in H that v participates in, and172

recursively find a solution of size k − 1 in the reduced hypergraph.173

However, unlike the case with FVS for graphs, in HFVS we cannot delete degree 1 vertices174

or contract degree 2 vertices directly. When we delete a hyperedge, we need to remember175

that we are seeking a solution that is a dfvs as well as a hitting set for the selected set. To176

implement this idea in our algorithm, we maintain a family F such that our solution is a177

dfvs for G as well as a hitting set for F . We exploit the fact that |F| ≤ k2 + 1 and design178

reduction rules to get rid of certain degree 1 vertices and shorten degree 2 paths, as well as179

caterpillars (defined later) like degree 2 paths. We can show that after these reduction rules180

are performed, the α-covering property holds for the preprocessed graph, α being poly(k).181

2 Preliminaries182

For a positive integer ` ∈ N, we use [`] to denote the set {1, 2, . . . , `}. We use the term graph183

to denote a simple graph without multiple edges, loops and labels. For the notations related184

to graphs that are not explicitly stated here, we refer to the book [17]. For a graph G and a185

subset of vertices U ⊆ V (G), NG(U) and NG[U ] denote the open neighborhood and closed186

neighborhood of U , respectively. That is, NG(U) = {v ∈ V (G) : u ∈ U and uv ∈ E(G)} \ U187

and NG[U ] = NG(U) ∪ U . If U = {u}, then we write NG(u) = NG(U) and NG[u] = NG[U ].188

Also, we omit the subscript G, if the graph in consideration is clear from the context. For a189

graph G, a vertex subset X ⊆ V (G), and an edge subset F ⊆ E(G), we use G[X], G−X,190

and G − F to denote the graph induced by X, the graph induced by V (G) \ X, and the191

graph with vertex set V (G) and edge set E(G) \ F , respectively. Moreover, if X = {v}, then192

we write G− v = G−X. For a graph G, X,Y ⊆ V (G), and X ∩ Y = ∅, E(X,Y ) ⊆ E(G)193

denotes the set of edges in G whose one endpoint is in X and the other one is in Y . For a194

graph G and a non-edge uv in G, we use G+ uv to denote the graph with vertex set V (G)195

and edge set E(G) ∪ {uv}. A path P in a graph G is a sequence of distinct vertices u1 . . . u`196

such that for all i ∈ [`− 1], uiui+1 ∈ E(G). We say that a path P = u1 . . . u` in a graph G197

is a degree two path in G, if for each i ∈ [`], the degree of ui in G, denoted by dG(ui), is198

equal to 2. For a path/cycle P , we use V (P ) to denote the set of vertices present in P . A199

triangle is a cycle consisting of exactly 3 edges. A bipartite graph G = (A ]B,E) is called200

a d-bipartite graph if dG(b) ≤ d for all b ∈ B. For two hypergraphs H1 and H2, H1 ∪H2201

denotes the hypergraph with the vertex set V (H1)∪ V (H2) and the edge set E(H1)∪E(H2).202

3 Feedback Vertex Sets on Linear Hypergraphs203

In this section we design an FPT algorithm for HFVS on linear hypergraphs. Towards this,204

we prove the following result about DFVSB, from which Theorem 3 follows as a corollary.205

I Theorem 4. There exists an O?(2O(k3 log k)) time randomized algorithm for DFVSB on206

C4-free bipartite graphs, which produces a false negative output with probability at most 1
nO(1) ,207

and no false positive output.208

To prove Theorem 4, we first define few generalizations of these problems that appear209

naturally in the recursive steps. Let F be a family of sets over a universe A, then we210

define a bipartite graph GF as follows. Let the bipartition of V (GF ) be AF ] BF , where211

AF = A and BF = F . Edge set E(GF ) = {{u, Y } : u ∈ A, u ∈ Y ∈ F}. Let G be a C4 free212

bipartite graph with bipartition V (G) = A ]B, and F be a family of sets over the universe213

A. We define the graph G ∪GF = (A∗ ]B∗, E∗) as follows. Let A∗ = A,B∗ = B ]BF and214

E∗ = E(G) ∪ E(GF ). The following problem generalizes HFVS on linear hypergraphs.215

CVIT 2016
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Hitting Hypergraph Feedback Vertex Set (HHFVS) Parameter: k + |E(H2)|
Input: Two linear hypergraphsH1,H2 such that V (H1) = V (H2), E(H1)∩E(H2) = ∅,
and H1 ∪H2 is a linear hypergraph, k ∈ N.
Question: Does there exist a set S ⊆ V (H1) of size at most k, such that H1 − S is
acyclic and S is a hitting set for E(H2)?

216

Observe that, if H2 = ∅, HHFVS is the same as HFVS (for linear hypergraphs). Next,217

we define the “graph” version of HHFVS, which generalizes DFVSB on C4-free graphs.218

Hitting Dominating Bipartite FVS (HDBFVS) Parameter: k + |F|
Input: A C4 free bipartite graph G with bipartition V (G) = A ]B, a family F of
subsets of A such that the graph G ∪GF is a C4 free bipartite graph, k ∈ N.
Question: Does there exist a set S ⊆ A of size at most k, such that G−N [S] is a
forest and S is a hitting set for F?

219

We say that an instance (G = (A]B,E),F , k) is a valid instance of HDBFVS, if F is a220

family of subsets of A such that the graph G ∪GF is a C4-free bipartite graph.221

In the rest of the section, whenever we say I = (G = (A ]B,E),F , k) is an instance
of HDBFVS, it implies that I is a valid instance of HDBFVS. Further, after each
application of a reduction rule, we ensure that the instance remains valid.

222

The proof of the following simple observation follows from the fact that G∪GF is C4-free.223

B Observation 3.1. If (G = (A ]B,E),F , k) is an instance of HDBFVS, then (i) pairwise224

intersection of sets in F is of size at most 1, and (ii) for every vertex b ∈ B and F ∈ F ,225

|N(b) ∩ F | is at most one.226

Given an instance (H1, H2, k) of HHFVS, we can obtain an instance, (G,F , k), of227

HDBFVS in a canonical way. Next lemma shows their equivalence.228

I Lemma 5 (♣). (H1, H2, k) is a YES-instance of HHFVS if and only if (G,F = E(H2), k)229

is a YES-instance of HDBFVS, where G is the incidence graph of the hypergraph H1.230

The rest of the section is devoted to designing an FPT algorithm for HDBFVS. Given231

an instance (G = (A]B,E),F , k) of HDBFVS, we first define some notations. For a vertex232

v ∈ A, Xv denotes the set {Y | Y ∈ F , v ∈ Y }. We distinguish the vertices in A as follows.233

If |Xv| ≥ 2, i.e., v is in at least two sets in F , then we say that v is a special vertex.234

If |Xv| = 1, i.e., v is in exactly one set in F , then we say that v is an easy vertex.235

Otherwise, we say that v is a trivial vertex.236

Let V (F) = {v ∈ A | v ∈ Y where Y ∈ F}. For a graph G?, the notations V0(G?), V=1(G?),237

V=2(G?), and V≥3(G?) denote the set of isolated vertices, the set of vertices of degree 1, the238

set of vertices of degree 2, and the set of vertices of degree at least 3 in G?, respectively.239

I Lemma 6. Let (G = (A ]B,E),F , k) be an instance of HDBFVS. Then, the number of240

special vertices in A is upper bounded by
(|F|

2
)
.241

Proof. For contradiction, assume that the number of special vertices in A is more than
(|F|

2
)
.242

By pigeonhole principle there exist two special vertices u, v ∈ A, such that |Xu ∩Xv| ≥ 2.243

Let Y1, Y2 ∈ Xu ∩Xv. This implies that u, v ∈ Y1 ∩ Y2, contradicting Observation 3.1(i). J244

Now we state some reduction rules that are applied exhaustively by the algorithm in the245

order in which they appear. Let (G,F , k) be an instance of HDBFVS and (G′,F ′, k) be the246
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resultant instance after application of a reduction rule. To show that a reduction rule is safe,247

we will prove that (G,F , k) is a YES-instance if and only if (G′,F ′, k) is a YES-instance.248

B Reduction Rule 3.1. If one of the following holds, then return a trivial NO-instance: (i)249

k < 0; (ii) k = 0 and G is not acyclic; and (ii) k = 0 and F is not empty.250

B Reduction Rule 3.2. If k ≥ 0, G is acyclic and F is empty, then return a trivial YES-instance.251

B Reduction Rule 3.3. Let (G = (A ]B,E),F , k) be an instance of HDBFVS and b ∈ B252

be a vertex that does not participate in any cycle in G. Then, output (G− b,F , k).253

B Reduction Rule 3.4. Let (G = (A ]B,E),F , k) be an instance of HDBFVS and v ∈ A254

be an isolated vertex in G. If v is a trivial vertex, then output (G− v,F , k).255

It is easy to see that the above reduction rules are safe and can be applied in polynomial256

time. Observe that, when Reduction Rules 3.3 and 3.4 are no longer applicable, then257

V0(G) ⊆ A and each isolated vertex in G is either easy or special. Next, we state a reduction258

rule that will help to bound the number of easy isolated vertices in G.259

B Reduction Rule 3.5 (?3). Let (G = (A ] B,E),F , k) be an instance of HDBFVS and260

v ∈ A be an isolated vertex in G. Suppose v is an easy vertex, Xv = {Y }, and |Y | > 1. Then261

output (G′,F ′, k), where G′ = G− v and F ′ = (F \ {Y }) ∪ {(Y \ {v})}.262

B Reduction Rule 3.6 (?). Let (G = (A]B,E),F , k) be an instance of HDBFVS and v ∈ A263

be a vertex of degree 1 in G. If v is a trivial vertex, then output (G′ = G− v,F , k).264

Observe that when Reduction Rules 3.1 to 3.6 are no longer applicable, the following holds.265

I Lemma 7. Let (G,F , k) be an instance reduced with respect to Reduction Rules 3.1 to 3.6.266

Then, the following holds.267

1. V0(G) ∪ V=1(G) ⊆ A, all vertices in V0(G) ∪ V=1(G) are either easy or special.268

2. |V0(G)| ≤ |F|+
(|F|

2
)
.269

I Lemma 8. For any vertex b ∈ B, |NG(b) ∩ V=1(G)| ≤ |F|.270

Proof. If there exists a vertex v ∈ NG(b) ∩ V=1(G) which is a trivial vertex, then Reduction271

Rule 3.6 is applicable. Thus, (i) for all v ∈ NG(b) ∩ V=1(G), v belongs to some set in F .272

For contradiction, let b ∈ B be a vertex such that NG(b) contains at least |F|+ 1 vertices273

of degree 1 in G. Then, by pigeonhole principle and statement (i), at least two degree 1274

vertices say u, v ∈ NG(b) are contained in a set Y ∈ F , which is a contradiction to item (ii)275

of Observation 3.1. This completes the proof of the lemma. J276

Recall that, P is a degree two path in G if each vertex in P has degree exactly two in G.277

Next we state the reduction rules that help us bound the length of long degree two paths278

in G − V=1(G), i.e., to bound the length of degree two paths in the graph obtained after279

deleting vertices of degree 1 from G. Towards this, we first define the notion of a nice path.280

I Definition 9. We say that P is a nice path in G, if P does not have any special
vertex and the degree of each vertex in P in the graph G−V=1(G) is exactly 2. A nice
path P in G is a degree two nice path if each vertex in P has degree exactly 2 in G.

281

3 The safeness proofs of reduction rules marked with ? are moved to Section B in the appendix.
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b

u ∈ Y

b′

u′ ∈ Y

...

b

b′

u′ ∈ Y

...

(a)

v0 b1 v1

vi−2

bi−1

vi−1

bi

vi ∈ Y

bi+1 vj ∈ Y v`−1b`... ... ...

v0 b1 v1 vi−2 bi+1 vj ∈ Y v`−1b`... ... ...

(c)

v0 b1 v1

vi−1 bi

vi ∈ Y

bi+1

vj ∈ Y v`−1b`... ... ...

v0 b1 v1 vi−1 bi+1 vj ∈ Y v`−1b`... ... ...

(b)

b1 v1 b2 v2 b3 v3 b4

b1 v1 b3 v3 b4

(d)

Figure 1 (a) is an illustration of Reduction Rule 3.7, (b) and (c) are illustrations of two cases of
Reduction Rule 3.8, (d) is an illustration of Reduction Rule 3.9. In (a), (b) and (c) blue vertices
denote easy vertices, and in (d) green vertices denote trivial vertices.

B Reduction Rule 3.7 (?). Let (G = (A ]B,E),F , k) be an instance of HDBFVS, P be a282

nice path in G and b, b′ ∈ B be two vertices in P . If there exist two easy vertices u, u′ whose283

degree is 1 in G, adjacent to b, b′, respectively, such that Xu = Xu′ = {Y }, then return284

(G′,F ′, k), where G′ = G− u, F ′ = (F \ {Y }) ∪ {Y \ {u}}.285

I Lemma 10. Let (G = (A ]B,E),F , k) be an instance of HDBFVS reduced with respect286

to Reduction Rules 3.1 to 3.7. Then, in any nice path P in G, the number of vertices that287

are adjacent to a vertex of degree 1 in G is bounded by
(|F|

2
)

+ |F|.288

Proof. From statement 1 in Lemma 7, we have that V=1(G) ⊆ A. This implies, NG(V=1(G)) ⊆289

B. Also, each vertex in V=1(G) is either easy or special. By Lemma 6, the number of vertices290

that are special is bounded by
(|F|

2
)
. Therefore, the number of vertices in P that are adjacent291

to special degree 1 vertices is at most
(|F|

2
)
. Since Reduction Rule 3.7 is no longer applicable,292

we have that corresponding to each set Y ∈ F , there exists at most 1 vertex in P that has a293

degree 1 neighbor u such that Xu = {Y }. This implies that at most |F| vertices in P can be294

adjacent to degree 1 easy vertices, resulting in the mentioned upper bound. J295

The next reduction rule helps us in upper bounding the length of degree two paths in G.296

B Reduction Rule 3.8 (?). Let (G = (A ]B,E),F , k) be an instance of HDBFVS and P =297

v0b1v1 . . . v`−1b` be a degree two nice path in G, where {b1, . . . , b`} ⊆ B, {v0, . . . , v`−1} ⊆ A,298

and ` ≥ 5. Let vi, vj ∈ A ∩ (V (P ) \ {v0, v1}) be two distinct easy vertices such that299

Xvi
= Xvj

= {Y } for some Y ∈ F and i < j. Then, return (G′,F ′, k), where G′ and F ′ are300

defined as follows.301

If Xvi−1 6= Xvi+1 or Xvi−1 = Xvi+1 = ∅, then let G′ = (G− {bi, vi}) + vi−1bi+1 (i.e., G′302

be the graph obtained by deleting the vertices bi, vi from G and by adding a new edge303

vi−1bi+1) and F ′ = (F \ {Y }) ∪ {Y \ {vi}}.304

Otherwise, Xvi−1 = Xvi+1 = {Y ?}, then let G′ = (G−{bi−1, vi−1, bi, vi}) + vi−2bi+1 (i.e.,305

G′ be the graph obtained by deleting the vertices bi−1, vi−1, bi, vi from G and by adding306

a new edge vi−1bi+1) and F ′ = (F \ {Y, Y ?}) ∪ {Y ? \ {vi−1}, Y \ {vi}}.307

Let (G = (A]B,E),F , k) be an instance of HDBFVS reduced with respect to Reduction308

Rules 3.1 to 3.8. Observe that, for each set Y ∈ F and a degree two nice path P in G, the309
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number of easy vertices among the last |V (P )| − 3 vertices in V (P ) that belong to Y , is310

upper bounded by one. Reduction Rule 3.8 leads us to the following observation.311

B Observation 3.2. Let (G = (A ] B,E),F , k) be a reduced instance of HDBFVS with312

respect to Reduction Rules 3.1 to 3.8. Then, in any degree two nice path P of length at least313

10 in G, the number of easy vertices is bounded by |F|+ 2.314

B Reduction Rule 3.9 (?). Let (G = (A ]B,E),F , k) be an instance of HDBFVS and P =315

b1v1b2v2b3v3b4 be a degree two nice path in G, such that {b1, . . . , b4} ⊆ B, {v1, v2, v3} ⊆ A316

and v1, v2, v3 are trivial vertices. Then, return (G′,F , k), where G′ is the graph obtained by317

deleting the vertices b2, v2 from G and adding a new edge v1b3 (i.e., G′ = (G−{v2, b2})+v1b3).318

B Observation 3.3. Let (G = (A ]B,E),F , k) be an instance of HDBFVS and let (G′ =319

(A′]B′, E′),F ′, k′) be the reduced instance of HDBFVS obtained from (G = (A]B,E),F , k),320

by exhaustive applications of Reduction Rules 3.1 to 3.9. Then, |F ′| = |F| and k′ ≤ k.321

We now bound the size of degree 2 path, when there is no degree 1 vertex in the graph.322

I Lemma 11 (♣). Let (G = (A ] B,E),F , k) be an instance of HDBFVS reduced with323

respect to Reduction Rules 3.1 to 3.9. Then, the number of vertices in a degree two path P324

in G− V=1(G) is bounded by 63|F|5 + 21.325

From now on, we say that (G = (A ]B,E),F , k) is a reduced instance of HDBFVS if it326

is reduced with respect to Reduction Rules 3.1 to 3.9. In the following lemma, we observe327

that, if (G = (A ]B,E),F , k) is a YES-instance of HDBFVS, then a large number of edges328

in G is incident to the neighborhood of the solution.329

I Lemma 12. Let (G = (A]B,E),F , k) be a reduced instance of HDBFVS where G is not330

a forest. Then, for any solution S, at least 1/(445|F|6 + 68) fraction of the total edges in E331

are incident to N [S].332

Proof. Let ES be the set of edges incident to all the vertices of N [S] in G. Observe that,333

E(G) = ES ] E(G − N [S]). Since G − N [S] is a forest, we have that |E(G − N [S])| <334

|V (G−(N [S]∪V0(G)))|. We aim to show that |V (G−(N [S]∪V0(G)))| ≤ (445|F|6 +67) · |ES |.335

Let V ? be the set of vertices of degree 1 in G−N [S]. Let V ?1 ⊆ V ? be the set of vertices that336

have some neighbor in N [S] and V ?2 = V ? \ V ?1 . That is, V ?2 ⊆ V=1(G). Since the vertices in337

V ?1 have neighbors in N [S], they contribute at least one edge to the set ES and these edges338

are distinct. Hence, |V ?1 | ≤ |ES |.339

Since V ?2 ⊆ V=1(G), by Lemma 7, we have that V ?2 ⊆ A. Thus, V ?2 have neighbors only340

in the set B ∩ V (G − N [S]). Also, by Lemma 8, any vertex in B can be adjacent to at341

most |F| vertices of degree 1 in G. Hence, each vertex in B ∩ V (G−N [S]) can be adjacent342

to at most |F| vertices of V ?2 . Thus, we have that |V ?2 | ≤ |F| · |B ∩ V (G − N [S])|. Let343

G′ be the graph G − (V0(G) ∪ V ?2 ). Since V0(G) ∪ V ?2 ⊆ A, we have that, B ⊆ V (G′) and344

B ∩ V (G−N [S]) = B ∩ V (G′ −N [S]). Hence, we obtain the following.345

|V ?2 | ≤ |F| · |B ∩ V (G′ −N [S])| ≤ |F| · |V (G′ −N [S])| (1)346

|V ?| = |V ?1 |+ |V ?2 | ≤ |F| · |V (G′ −N [S])|+ |ES | (By (1) and |V ?1 | ≤ |ES |) (2)347

Since the graph G′ is obtained from G by deleting a subset of vertices that are contained in348

V0(G) ∪ V=1(G) ⊆ A, the vertices that are degree 1 in G′ −N [S] are either degree 1 vertices349

in G − N [S] and are contained in A, in particular in V ?1 , or they are contained in B and350

are neighbors of vertices in V ?2 in G. Let L be the set of leaves (vertices of degree 1) in351

G′ −N [S]. We claim that L = V ?1 . For contradiction, assume that a vertex b ∈ B ∩L. Since352

Reduction Rule 3.3 is no longer applicable, we have that each vertex in B participates in a353
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cycle in G and hence, participates in a cycle in G′. Therefore, degree of b is at least 2 in G′.354

Observe that b cannot have a neighbor in S, otherwise b ∈ N [S]. This implies that b has 2355

neighbors in G′ −N [S], which contradicts that b ∈ L. Observe that each vertex in V ?1 is a356

leaf vertex in G′ −N [S]. Hence L = V ?1 . Therefore, we obtain the following.357

|L| ≤ |ES |. (3)358

V≥3(G′ −N [S]) ≤ |ES | (Since, G′ −N [S] is a forest, V≥3(G′ −N [S]) ≤ |L|) (4)359

Next we bound |V0(G′−N [S])|. Since, for any vertex v in G′−N [S], dG(v) ≥ 1, we have360

that any vertex w ∈ V0(G′ −N [S]) is adjacent to some vertex in N [S]. Then, each vertex in361

V0(G′ −N [S]) contributes at least 1 edge to the set ES and these edges are distinct.362

Therefore, |V0(G′ −N [S])| ≤ |ES |. (5)363

Let V 1
=2(G′) be the set of vertices of degree 2 in G′ −N [S] that have a neighbor in N [S].364

Then, each vertex in V 1
=2(G′) contributes at least 1 edge to the set ES . Therefore, we have365

|V 1
=2(G′)| ≤ |ES |. (6)366

Let V 2
=2(G′) be the set of vertices of degree 2 in G′ − N [S], that do not have a neighbor367

in N [S]. Then, each vertex in V 2
=2(G′) is contained in some maximal degree two path not368

containing any vertex of V 1
=2(G′) in G′ −N [S]. Observe that, since G′ −N [S] is a forest, (i)369

the number of maximal degree two paths not containing any vertex of V 1
=2(G′) in G′ −N [S]370

is bounded by |L ∪ V≥3(G′) ∪ V 1
=2(G′)| and hence bounded by 3|ES | (because of (3),(4), and371

(6)). Observe that a degree two path not containing any vertex of V 1
=2(G′) in G′ −N [S] is372

also a degree two path in G− V=1(G). By Lemma 11, (ii) the number of vertices in a degree373

two path in G− V=1(G) is bounded by 63|F|5 + 21. So, statements (i) and (ii) imply that374

|V 2
=2(G′)| ≤ (189|F|5 + 63)|ES | (7)375

Observe that V=2(G′ −N [S]) = V 1
=2(G′) ∪ V 2

=2(G′). By (6) and (7), we get the following.376

|V=2(G′ −N [S])| = |V 1
=2(G′)|+ |V 2

=2(G′)| ≤ (189|F|5 + 64)|ES | (8)377

Note that, V (G′−N [S]) = V0(G′−N [S])∪L∪V≥3(G′−N [S])∪V=2(G′−N [S]). Hence,378

we obtain the following using (3), (5), (4), and (8).379

|V (G′ −N [S])| = |V0(G′ −N [S])|+ |L|+ |V≥3(G′ −N [S])|+ |V=2(G′ −N [S])|380

≤ |ES |+ |ES |+ |ES |+ (189|F|5 + 64)|ES |381

≤ (189|F|5 + 67)|ES | (9)382

Using (1) and (9), we obtain the following.383

|V (G− (N [S] ∪ V0(G)))| ≤ |V (G′ −N [S])|+ |V ?2 |384

≤ (|F|+ 1)|V (G′ −N [S])| (By (1))385

≤ (|F|+ 1)((189|F|5 + 67)|ES |)386

≤ (445|F|6 + 67)|ES |387

Thus, |E(G)| = |ES |+ |E(G−N [S])|388

≤ |ES |+ |V (G− (N [S] ∪ V0(G))| ≤ (445|F|6 + 68)|ES |.389
390

This concludes the proof. J391
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I Lemma 13. Let (G = (A ]B,E),F , k) be an instance of HDBFVS, where G is a forest392

and |F| ≤ k2. Then, there exists an algorithm which solves the instance in O?((2k4)k) time.393

Proof. The Algorithm first applies Reduction Rules 3.1 to 3.9 exhaustively in the order in394

which they are stated. If any reduction rule solves the instance, then output YES and NO395

accordingly. All the reduction rules are safe, and can be applied in polynomial time, and396

they can be applied only polynomial many times since each reduction rule decreases the397

size of the graph. Let (G′ = (A′ ]B′, E′),F ′, k′) be the reduced instance. Since Reduction398

Rule 3.3 is no longer applicable, B′ = ∅, and hence G′ is an edge-less graph with vertex399

set A′. By Lemma 7, |V (G′)| = |A′| ≤ |F ′| +
(|F ′|

2
)
. By Observation 3.3, we have that400

|F ′| = |F| ≤ k2 and hence, |V (G′)| ≤ 2k4. We enumerate all the subsets of V (G′) of size at401

most k and check if they forms a solution; else return a NO-instance. The algorithm runs in402

time
(2k4

k

)
nO(1) = O?((2k4)k). This completes the proof. J403

I Lemma 14. There is a randomized algorithm that takes an instance (G = (A]B,E),F , k)404

of HDBFVS as input, runs in O∗((2k4)k) time, and outputs either YES, or NO, or an instance405

(G? = (A? ]B?, E?),F?, k?) of HDBFVS where k? < k, with the following guarantee.406

If (G,F , k) is a YES-instance, then the output is YES or an equivalent YES-instance407

(G?,F?, k?) where k? < k, with probability at least (445k12 + 68)−(k2+1).408

If (G,F , k) is a NO-instance, then the output is NO or an equivalent NO-instance409

(G?,F?, k?) where k? < k, with probability 1.410

Proof. Let (G = (A ]B,E),F , k) be an input instance of HDBFVS. Recall that, for any411

v ∈ A, Xv = {F ∈ F : v ∈ F}. The algorithm applies the following iterative procedure.412

Step 1. If G is acyclic and |F| ≤ k2, then apply Lemma 13 and solve the instance.413

Step 2. If |F| ≥ k2 + 1;414

(i) If there exists a vertex v such that |Xv| ≥ k+1, return (G−N [v],F \Xv, k−1).415

(ii) Otherwise, return that (G = (A ]B,E),F , k) is a NO-instance of HDBFVS.416

Step 3. Apply Reduction Rules 3.1 to 3.9 exhaustively in the order in which they are stated.417

If any reduction rule solves the instance, then output YES and NO accordingly. Let418

(G′ = (A′ ]B′, E′),F ′, k′) be the reduced instance.419

Step 4. Pick an edge e = ub in E(G′) uniformly at random, where u ∈ A′, b ∈ B′. Set420

G := G′ − b,F := F ′ ∪ {NG′(b)}, and k := k′. Go to Step 1.421

Now we prove the correctness of the algorithm. Correctness of Step 1 follows from422

Lemma 13. Next assume that |F| ≥ k2 + 1. Let v be a vertex that is contained in at423

least k + 1 sets in F . By Observation 3.1, pairwise intersection of two sets in F is at most424

1. Thus, if we do not pick v in our solution, then we have to pick at least k + 1 vertices425

to hit the sets in Xv. Thus v belongs to every solution of (G,F , k) of HDBFVS. Hence,426

(G,F , k) is a YES-instance of HDBFVS if and only if (G−v,F \Xv, k−1) is a YES-instance427

of HDBFVS, and correctness of Step 2i follows. Suppose each vertex in A is contained428

in at most k sets of F . Thus no set of size at most k can hit k2 + 1 sets of F . Hence,429

(G,F , k) is a NO-instance of HDBFVS, and correctness of Step 2ii follows. Correctness of430

the Step 3 is implied by the safeness of reduction rules. Suppose the algorithm does not431

stop in Step 3. Let (G′,F ′, k′) be the reduced instance, where k′ ≤ k. Now, let S be a432

hypothetical solution to (G′,F ′, k′). By Lemma 12, the picked edge e = ub is incident to a433

vertex in NG′ [S] with probability at least 1/(445|F|6 +68). This implies that with probability434

at least 1/(445|F|6 + 68) a vertex in NG′(b) is contained in S. Hence, if (G′,F ′, k′) is a435

YES-instance, then (G′ − b,F ′ ∪ {NG(b)}, k′) is a YES-instance, with probability at least436

1/(445|F|6 + 68). Also, notice that any solution to (G′− b,F ′∪{NG(b)}, k′) is also a solution437
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to (G′,F ′, k′). Hence, if (G′,F ′, k′) is a NO-instance, then (G′ − b,F ′ ∪ {NG(b)}, k′) is a438

NO-instance, with probability 1. Consequently, if (G,F , k) is a NO-instance, then the output439

is NO or a NO-instance (G?,F?, k?) with probability 1.440

Let (G,F , k) be a YES-instance. By Observation 3.3, after the application of Reduction441

Rules 3.1 to 3.9, in the reduced instance, |F ′| = |F|. Thus, Step 4 is applied at most k2 + 1442

times. Each execution of Step 4 is a success with probability at least 1/(445|F̂ |6 + 68),443

where F̂ is the family in the instance considered in that step. In Step 4, the size of the444

family of any instance is bounded by k2, due to Step 2. Hence each execution of Step 4 is445

a success with probability at least 1/(445k12 + 68). This implies that either our algorithm446

outputs YES or a YES-instance (G?,F?, k?) with probability at least (445k12 + 68)−(k2+1).447

By Observation 3.3, we know that after the application of Reduction Rules 3.1 to 3.9, the448

parameter k′ in the reduced instance is at most the parameter k in the original instance.449

Moreover, if the algorithm outputs an instance, then that will happen in Step 2i and there k450

decreases by 1. Thus k? < k. This proves the correctness of the algorithm.451

By Lemma 13, Step 1 runs in O?((2k4)k) time. Observe that, Step 2 runs in polynomial452

time. All the reduction rules run in polynomial time, and are applied only polynomially many453

times. Step 4 runs in polynomial time, and we have at most k2 + 1 iterations. Therefore, the454

total running time is O?((2k4)k). This completes the proof. J455

By applying Lemma 14 at most k times, we can show the the following.456

I Lemma 15. There exists a randomized algorithm B that takes an instance (G = (A ]457

B,E),F , k) of HDBFVS as input, runs in O?((2k4)k) time, and outputs either YES or NO458

with the following guarantee. If (G,F , k) is a YES-instance, then the output is YES with459

probability at least (445k12 + 68)−k(k2+1). If (G,F , k) is a NO-instance, then the output is460

NO with probability 1.461

Let τ(k) = (445k12 +68)k(k2+1). To boost the success probability of algorithm B, we repeat it462

O(τ(k) logn) times. After applying algorithm B O(τ(k) logn) times, the success probability463

is at least 1−
(

1− 1
τ(k)

)O(τ(k) logn)
≥ 1− 1

2O(log n) ≥ 1− 1
nO(1) .464

Thus, we have the following result.465

I Theorem 16. There exists a randomized algorithm A that takes an instance (G = (A ]466

B,E),F , k) of HDBFVS as input, runs in O?(2O(k3 log k)) time, and outputs either YES or467

NO with the following guarantee.468

If (G,F , k) is a YES-instance, then the output is YES with probability at least 1− 1
nO(1) .469

If (G,F , k) is a NO-instance, then the output is NO with probability 1.470

4 Conclusion and Open Problems471

In this paper, we initiated the study of Feedback Vertex Set problem on hypergraphs.472

We showed that the problem is W[2]-hard on general hypergraphs. However, when the input473

is restricted to d-hypergraphs and linear hypergraphs, which are a strict generalization of474

graphs, FVS turns out to be tractable (FPT). Derandomization of the randomized FVS475

algorithm given in this paper is yet to be explored. We believe that this opens up a new476

direction in the study of parameterized algorithms. That is, extending the study of other477

graph problems, in the realm of Parameterized Complexity, to hypergraphs. Designing478

substantially faster algorithms for HFVS on linear hypergraphs and designing polynomial479

kernels remain interesting questions for the future.480
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A Equivalence between HFVS and DFVSB573

I Lemma 17. (H, k) is a YES instance of HFVS if and only if (G = (A ] B,E′), k) is a574

YES instance of DFVSB, where G is the incidence graph of the hypergraph H.575

Proof. In forward direction, let S be a solution to (H, k) of HFVS. We claim that S is576

also a solution to (G = (A ]B,E′), k) of DFVSB. Suppose not. Then, there exists a cycle577

C = v1e1 . . . v`e`v1 in the graph G−NG[S]. This implies that e1, . . . , e` are hyperedges in578

H −S, and {v1, . . . , v`} ⊆ V (H) \S. Then (v1, e1, . . . , v`, e`, v1) is a cycle in the hypergraph579

H − S. This is a contradiction to the assumption that S is a solution to (H, k).580

In reverse direction, let S′ be a solution to (G, k) of DFVSB. We claim that S′ is also a581

solution to (H, k) of HFVS. Suppose not. Then, there exists a cycle C = (v1, e1, . . . , v`, e`, v1)582

in the hypergraph H − S′. This implies that {v1, . . . , v`} ⊆ A \ S′ and {e1, . . . , e`} ⊆583

B \NG(S′). Therefore, v1e1 . . . v`e`v1 is a cycle in G−NG[S′], which is a contradiction to584

the assumption that S′ is a solution to (G, k). J585

B Safeness Proofs of Reduction Rules in Section 3586

I Lemma 18. Reduction Rule 3.5 is safe.587

Proof. Observe that, the instance (G′,F ′, k) is a valid instance of HDBFVS.588

In the forward direction, let S be a solution to (G,F , k) of HDBFVS. Observe that, if S589

does not contain v, then S is also a solution to (G′,F ′, k), as G′−NG′ [S] = (G−NG[S])− v,590

(G−NG[S]) is acyclic and S is also a hitting set of F ′. Next, consider the case when v ∈ S.591

Let S′ = S \ {v}. Since v is an isolated vertex in G, we have that G−N [S′] is acyclic. Let592

u ∈ Y , u 6= v, then observe that, S′ ∪ {u} is also a solution to (G,F , k) of HDBFVS, which593

does not contain v and hence a solution to (G,F ′, k).594

In the backward direction, let S′ be a solution to (G′,F ′, k). Suppose that, G−N [S′]595

contains a cycle C. Then, since G′ = G− v, and dG(v) = 0, C is also a cycle in G′ −N [S′].596

Observe that, F \ {Y } = F ′ \ (Y \ {v}). Therefore, S′ is also a hitting set of F . This implies597

that S′ is also a solution to (G,F , k) of HDBFVS. J598

I Lemma 19. Reduction Rule 3.6 is safe.599

Proof. Observe that, the instance (G′,F , k) is a valid instance of HDBFVS.600

In the forward direction, let S be a solution to (G,F , k) of HDBFVS. If S does not601

contain v, then clearly S is also a solution to (G′,F , k) because G′−NG′ [S] = (G−NG[S])−v602

and (G−NG[S]) is acyclic. Suppose that, v ∈ S. Let {b} = NG(v). Since Reduction Rule603

3.3 is no longer applicable, we have that dG(b) > 1. Let u 6= v be an arbitrary vertex in604

NG(b). Then, S? = (S \ {v}) ∪ {u} is also a solution to (G,F , k) of HDBFVS because605

NG(v) ⊆ NG(u) and dG(v) = 1. Then, S? is also a solution to (G′ = G−v,F , k) of HDBFVS606

because G′ −NG′ [S?] = (G−NG[S?])− v and (G−NG[S?]) is acyclic.607

In the backward direction, let S′ be a solution to (G′,F , k). Suppose that, G −N [S′]608

contains a cycle C. Then, since G′ = G− v, and dG(v) = 1, C is also a cycle in G′ −N [S′].609

This implies that S′ is also a solution to (G,F , k) of HDBFVS. J610

I Lemma 20. Reduction Rule 3.7 is safe.611

Proof. Observe that, the instance (G′,F ′, k) is a valid instance of HDBFVS.612

In the forward direction, let S be a solution to (G,F , k) of HDBFVS. Suppose that,613

u /∈ S. Since dG(u) = 1, we have that u does not participate in any cycle in G. Therefore,614

any cycle C in G′ −N [S] is also a cycle in G−N [S]. This implies that G′ −N [S] is acyclic.615

CVIT 2016



23:16 FVS in Hypergraphs

Observe that, F \ {Y } = F ′ \ {Y \ {u}}. This implies that S is a hitting set of F ′. Hence, S616

is also a solution to (G′,F ′, k) of HDBFVS. Next, consider that u ∈ S. Since u does not617

participate in any cycle in G, u is only used to hit cycles containing b (recall that when618

we delete u, we also delete all its neighbors) and to hit the set Y . Since P is a nice path,619

any cycle that contains b also contains all the vertices in P and hence contains NG(u′) = b′,620

therefore u′ can hit all the cycles containing b. Further, since u′ ∈ Y , it holds that u′ hits the621

set Y . This implies that S∗ = (S \ {u}) ∪ {u′} is also a solution to (G,F , k) of HDBFVS.622

As argued before, S∗ is a solution to (G′,F ′, k) of HDBFVS.623

In the backward direction, let S′ be a solution to (G′,F ′, k) of HDBFVS. Since u does624

not participate in any cycle, any cycle in G − N [S′] is also a cycle in G′ − N [S′]. Hence,625

G−N [S′] is acyclic. Also, since F \ {Y } = F ′ \ {Y \ {u}}, we have that S′ is a hitting set626

of F . Hence, S′ is also a solution to (G,F , k) of HDBFVS. J627

I Lemma 21. Reduction Rule 3.8 is safe.628

Proof. We first give a proof for Case 1, followed by a proof of Case 2.629

Case 1: Xvi−1 6= Xvi+1 or Xvi−1 = Xvi+1 = ∅. The vertices vi−1 and bi+1 do not have630

two common neighbors in G′, and hence there is no C4 in G′. Observe that G′F ′ is a631

subgraph of GF . Further, since GF does not have C4, G′F ′ does not have C4. Now we632

claim that there is no C4 in G′ ∪ G′F ′ . There is no C4 in G′, G′F ′ , and G ∪ GF . Thus,633

if there is a C4 in G′ ∪ G′F ′ , then there is a set F ∈ F ′ such that |(NG′(bi+1) ∩ F | ≥ 2.634

Notice that NG′(bi+1) = {vi−1, vi+1}. Since (Xvi−1 6= Xvi+1 or Xvi−1 = Xvi+1 = ∅) and635

|Xvi−1 |, |Xvi+1 | ≤ 1 (because P does not have any special vertex), there is no set F ∈ F ′636

such that {vi−1, vi+1} ⊆ F . Thus, we have proved that there is no C4 in G′ ∪ G′F ′ . This637

implies that the instance (G′,F ′, k) is a valid instance of HDBFVS.638

In the forward direction, let S be a solution to (G,F , k) of HDBFVS. Suppose that,639

vi /∈ S. Then, we claim that S is also a solution to (G′,F ′, k) of HDBFVS. Suppose not,640

then either there exists a cycle C in G′ − NG′ [S] or there exists a set Z ∈ F ′ such that641

S ∩ Z = ∅. First consider the former case. If C does not contain the edge vi−1bi+1, then642

C is also a cycle in G − NG[S], which is a contradiction. Therefore, C contains the edge643

vi−1bi+1. But, then we get a cycle in G − NG[S] by replacing the edge vi−1bi+1 in C by644

the path vi−1bivibi+1. This is a contradiction to the assumption that (G−N [S]) is acyclic.645

Now, consider the later case. Note that S hits F \ {Y } and Y \ {vi} (since vi /∈ S). Thus, it646

implies that S is a hitting set of F ′. Hence, S is also a solution to (G′,F ′, k) of HDBFVS.647

Next, consider that vi ∈ S. Since P is a degree two nice path in G, any cycle that contains a648

vertex from N [vi] also contains all the vertices in P . In particular, it contains vj , and vj hits649

all the cycles that any vertex in N [vi] hits. Also, observe that, vj ∈ Y and hence vj hits the650

set Y . This implies that S? = S \ {vi} ∪ {vj} is also a solution to (G,F , k) of HDBFVS. As651

argued before S? is a solution to (G′,F ′, k) of HDBFVS.652

In the backward direction, let S′ be a solution to (G′,F ′, k) of HDBFVS. We claim that653

S′ is also a solution to (G,F , k) of HDBFVS. Suppose not. Then, either there exists a cycle654

C in G−NG[S′] or there exists a set Z ∈ F such that S′ ∩ Z = ∅. First consider the former655

case. If C does not contain any edge from the path P , then C is also a cycle in G′ −NG′ [S′],656

which is a contradiction. Therefore, at least one edge from the path P is part of C. Then,657

since P is a degree two nice path in G, P is a subpath of C. Then, we get a cycle C ′ in658

G′ −NG′ [S′] by replacing the subpath vi−1bivibi+1 in C by vi−1bi+1. This is a contradiction659

to the assumption that S′ is a solution to (G′,F ′, k). Now, consider the later case. Since660

F \ {Y } = F ′ \ {Y \ {vi}} and |Y | ≥ 2, we have that S′ is a hitting set of F . Hence, S′ is661

also a solution to (G,F , k) of HDBFVS.662
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Case 2: Xvi−1 = Xvi+1 = {Y ∗}. The vertices vi−2 and bi+1 do not have two common663

neighbors in G′, and hence there is no C4 in G′. Observe that G′F ′ is a subgraph of GF .664

Further, since GF does not have C4, G′F ′ does not have C4. Next we claim that there is665

no C4 in G′ ∪ G′F ′ . By item (ii) of Observation 3.1, Xvi−2 6= Xvi−1 . This implies that666

Xvi−2 6= Xvi+1 . Note that, there is no C4 in G′, G′F ′ , and G ∪ GF . Thus, if there is a C4667

in G′ ∪ G′F ′ , then there exists a set F ∈ F ′ such that |(NG′(bi+1) ∩ F | ≥ 2. Notice that668

NG′(bi+1) = {vi−2, vi+1}. Since Xvi−2 6= Xvi+1 and |Xvi−2 |, |Xvi+1 | ≤ 1 (because P does not669

have any special vertex), there is no set F ∈ F ′ such that {vi−2, vi+1} ⊆ F . Thus, we have670

proved that there is no C4 in G′ ∪G′F ′ . This implies that the instance (G′,F ′, k) is a valid671

instance of HDBFVS.672

In the forward direction, let S be a minimal solution to (G,F , k) of HDBFVS. Suppose673

vi−1 ∈ S or vi ∈ S. Consider the case vi−1 ∈ S. Then, we claim that S? = (S\{vi−1})∪{vi+1}674

is also a solution to (G,F , k). Since P is a nice path, any cycle that contains a vertex of P must675

contain all the vertices of P . Thus, all the cycles containing a vertex fromN [vi−1], also contain676

vi+1. Therefore vi+1 hits all those cycles that N [vi−1] hits. Since Xvi−1 = Xvi+1 = {Y ?},677

vi+1 and vi−1 hits the same set (only one) from F . Now suppose that vi ∈ S. Then, we678

claim that S′ = (S \ {vi}) ∪ {vj} is a solution to (G,F , k). Since all the cycles containing679

a vertex from N [vi], also contain vj , therefore vj hits all the cycles that N [vi] hits. Since680

Xvi = Xvj = {Y ?}, vi and vj hits the same set (only one) from F .681

Thus, if (G,F , k) is a YES-instance, then there is a solution S such that vi−1, vi /∈ S.682

Then, we claim that S is also a solution to (G′,F ′, k) of HDBFVS. Suppose not, then either683

there exists a cycle C in G′ −NG′ [S] or there exists a set Z ∈ F ′ such that S ∩ Z = ∅. First684

consider the former case. If C does not contain the edge vi−2bi+1, then C is also a cycle in685

G−NG[S], which is a contradiction. Therefore, C contains the edge vi−2bi+1. But, then we686

get a cycle in G−NG[S] by replacing the edge vi−2bi+1 in C by the path vi−2bi−1vi−1bivibi+1.687

This is a contradiction to the assumption that (G−N [S]) is acyclic. Now, consider the later688

case. Note that S hits F \ {Y, Y ?} and {Y ? \ {vi−1}, Y \ {vi}} (since vi−1, vi /∈ S). Thus, it689

implies that S is a hitting set of F ′. Hence, S is also a solution to (G′,F ′, k) of HDBFVS.690

In the backward direction, let S′ be a solution to (G′,F ′, k) of HDBFVS. We claim691

that S′ is also a solution to (G,F , k) of HDBFVS. Suppose not. Then, either there exists692

a cycle C in G −NG[S′] or there exists a set Z ∈ F such that S′ ∩ Z = ∅. First consider693

the former case. If C does not contain any edge from the path P , then C is also a cycle in694

G′ −NG′ [S′], which is a contradiction. Therefore, at least one edge from the path P is part695

of C. Since P is a degree two nice path in G, P is a subpath of C. Thus, we get a cycle C ′696

in G′ −NG′ [S′] by replacing the subpath vi−2bi−1vi−1bivibi+1 in C by vi−2bi+1. This is a697

contradiction to the assumption that S′ is a solution to (G′,F ′, k). Now, consider the later698

case. Since F \ {Y, Y ?} = F ′ \ {Y ? \ {vi−1}, Y \ {vi}} and |Y |, |Y ?| ≥ 2, we have that S′ is699

a hitting set of F . Hence, S′ is also a solution to (G,F , k) of HDBFVS. J700

I Lemma 22. Reduction Rule 3.9 is safe.701

Proof. Observe that, the instance (G′,F , k) is a valid instance of HDBFVS.702

In the forward direction, let S be a solution to (G,F , k) of HDBFVS. Suppose that703

v2 /∈ S. Then, we claim that S is also a solution to (G′,F , k) of HDBFVS. Suppose not,704

then there exists a cycle C in G′ −NG′ [S]. If C does not contain the edge v1b3, then C is705

also a cycle in G − NG[S], which is a contradiction. Therefore, C contains the edge v1b3.706

But, then we get a cycle in G−NG[S] by replacing the edge v1b3 in C by the path v1b2v2b3.707

This is a contradiction to the assumption that (G − N [S]) is acyclic. Hence, S is also a708

solution to (G′,F , k) of HDBFVS. Next, consider that v2 ∈ S. Since P is a degree two nice709

path, any cycle that contains v2 also contains all the vertices in P and hence contains v1.710
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Therefore S? = S \ {v2} ∪ {v1} is also a solution to (G,F , k) of HDBFVS. As argued before711

S∗ is a solution to (G′,F , k) of HDBFVS.712

In the backward direction, let S′ be a solution to (G′,F , k) of HDBFVS. We claim that713

S′ is also a solution to (G,F , k) of HDBFVS. Suppose not. Then, there exists a cycle C714

in G−NG[S′]. If C does not contain any edges from the path P , then C is also a cycle in715

G′ −NG′ [S′], which is a contradiction. Therefore, at least one edge from the path P is part716

of C. Since P is a degree two nice path in G, P is a subpath in C. Thus, we get a cycle C ′717

in G′ −NG′ [S′] by replacing the subpath v1b2v2b3 in C by v1b3. This is a contradiction to718

the assumption that S′ is a solution to (G′,F , k). Hence, S′ is also a solution to (G,F , k) of719

HDBFVS. J720

C Missing proofs from Section 3721

C.1 Proof of Lemma 5722

Proof. Observe that, (G = (A ]B,E′),F , k) is a valid instance of HDBFVS.723

In the forward direction, let S be a solution to (H1, H2, k) of HHFVS. We claim that724

S is also a solution to (G = (A ] B,E′),F , k) of HDBFVS. Suppose not. Then, either725

there exists a cycle C = v1e1 . . . v`e`v1 in the graph G − NG[S] such that for each i ∈ [`],726

vi ∈ A, ei ∈ B and viei ∈ E′, and e`v1 ∈ E′, or S does not hit a set Y ∈ F . The former727

case implies that, e1, . . . , e` are hyperedges in H1 − S, and {v1, . . . , v`} ⊆ V (H1) \ S. Then,728

(v1, e1, . . . , v`, e`, v1) is a cycle in the hypergraph H1 − S. This is a contradiction to the729

assumption that H1 − S is acyclic. The later case implies that, there is an edge Y in H2 − S,730

which is a contradiction to the assumption that H2 − S is edgeless (that is, S is a hitting set731

for H2).732

In the backward direction, let S′ be a solution to (G = (A ]B,E′),F , k). We claim that733

S′ is also a solution to (H1, H2, k) of HDBFVS. Suppose not. Then, either there exists a734

cycle C = (v1, e1, . . . , v`, e`, v1) in the hypergraph H1−S′, or there exists an edge Y ∈ H2−S.735

The former case implies that, {v1, . . . , v`} ⊆ A\S′ and {e1, . . . , e`} ⊆ B \NG(S′). Therefore,736

v1e1 . . . v`e`v1 is a cycle in G − NG[S′], which is a contradiction to the assumption that737

G−N [S′] is acyclic. The later case implies that, S′ does not hit the set Y ∈ F , a contradiction738

to the assumption that S′ is a hitting set for F . J739

C.2 Proof of Lemma 11740

Proof. By Lemma 6, the number of special vertices in P is bounded by
(|F|

2
)
. Let P ′ be a741

maximum length subpath of P such that P ′ is a nice path. That is, P ′ does not contain any742

special vertices. Then, by Lemma 10, the number of vertices in P ′ that are adjacent to a743

vertex in V=1(G) in G is bounded by
(|F|

2
)

+ |F|. Let P ′′ be a maximum length subpath of P ′744

such that P ′′ does not contain any vertex that is adjacent to a vertex in V=1(G) in G. Then,745

by Observation 3.2, either the length of P ′′ is bounded by 10, or the number of easy vertices in746

P ′′ is bounded by |F|+2. Let P ? be a maximum length subpath of P ′′ such that P ? does not747

contain any easy vertices. Then, since Reduction Rule 3.9 is no longer applicable, the length748

of P ? is bounded by 7. Therefore, we have that the length of P ′′ is bounded by 7(|F|+ 3).749

This implies that the length of P ′ is bounded by 7(|F|+ 3)(
(|F|

2
)

+ |F|+ 1) ≤ (35|F|3 + 21).750

Hence, the length of P is bounded by (35|F|3 + 21)(
(F

2
)

+ 1) ≤ 63|F|5 + 21. J751
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D Feedback Vertex Sets on General Hypergraphs: Proof of752

Theorem 1753

In order to prove Theorem 1 we give a polynomial time parameter preserving reduction from754

Set Cover to HFVS. In Set Cover (SC), we are given a universe U , a family F of sets755

over U , and a positive integer k, and the question is whether there is a subfamily F ′ ⊆ F of756

size at most k, such that
⋃
F∈F ′ F = U . It is well known that Set Cover is W[2]-hard [10,757

Theorem 13.28].758

Given an instance (U,F , k) of SC, we construct an instance (H, k) of HFVS as follows.759

For each element u ∈ U , let Xu be the family of sets in F that contain u. For each760

F ∈ F , we add a vertex wF in H. Furthermore, for each u ∈ U , we add 2(k + 1) vertices761

{u1, u
′
1, . . . , uk+1, u

′
k+1} in H. Hence, V (H) = {wF | F ∈ F} ∪ {u1, u

′
1, . . . , uk+1, u

′
k+1 | u ∈762

U}. Now, we explain the construction of hyperedges of H. For each u ∈ U , we introduce a763

hyperedge eu = {wF | F ∈ Xu} containing vertices corresponding to the sets in Xu. Also,764

for each u ∈ U , we add hyperedges eu ∪ {ui}, {ui, u′i}, eu ∪ {u′i}, for all i ∈ [k + 1]. This765

completes the construction. Towards the proof of Theorem 1, we give the following lemma.766

I Lemma 23. (U,F , k) is a YES-instance of SC if and only if (H, k) is a YES-instance of767

HFVS.768

Proof. In the forward direction, let S be a solution to (U,F , k) of SC. We claim that769

Z = {wF | F ∈ S} is a feedback vertex set of size at most k in H. Since |S| ≤ k, we have770

that |Z| ≤ k. Next, we prove that Z is a feedback vertex set in H. Since S is a set cover,771

the only hyperedges of H present in H − Z are {{ui, u′i} | u ∈ U, i ∈ [k + 1]}. Notice that772

{{ui, u′i} | u ∈ U, i ∈ [k + 1]} are pairwise disjoint. This implies that H − Z is acyclic.773

In the reverse direction, let Z be a solution to (H, k) of HFVS. Let Z ′ = Z \774

{u1, u
′
1, . . . , uk+1, u

′
k+1 | u ∈ U}. That is, Z ′ contains only those vertices of Z that775

correspond to some set in F . Let S = {F | wF ∈ Z ′}. Since |Z ′| ≤ |Z| ≤ k, we776

have that |S| ≤ k. Next we claim that S is a set cover of (U,F , k). Towards that, we777

choose an arbitrary element u ∈ U and prove that there is a set F ∈ S which contains778

u. Let J be an arbitrary set in F such that u ∈ J . Notice that there are k + 1 triangles779

(wJ , eu ∪ {ui}, ui, {ui, u′i}, u′i, eu ∪ {u′i}, wJ), 1 ≤ i ≤ k + 1, in H. This implies that at least780

one vertex wF in eu must belong to the feedback vertex set Z (and Z ′). However, u belongs781

to F and F is in S. Hence u is covered by S. This completes the proof. J782

E Feedback Vertex Sets on d-Hypergraphs: Proof of Theorem 2783

In this section we design an FPT algorithm for HFVS on d-hypergraphs. Towards this,784

we will prove the following result about DFVSB, from which Theorem 2 will follow as a785

corollary.786

I Theorem 24. There is a deterministic algorithm for DFVSB running in time787

O(27kd2k+1n(n + m) + n2(n + m)), where the input is a bipartite graph G with biparti-788

tion V (G) = A ]B, and d = maxb∈B dG(b).789

Towards designing an FPT algorithm for DFVSB, we use the well-known iterative790

compression technique [10, Chapter 4]. Usually, the primary step in the technique of iterative791

compression involves solving a “disjoint compression version” of the problem. In our case,792

the disjoint compression version of the problem is defined as follows.793
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d-Disjoint Dominating Bounded Bipartite FVS (d-DDBB-FVS)
Input: A d-bipartite graph G = (A]B,E), a positive integer k, and a vertex subset
W ⊆ A such that G−N [W ] is acyclic.
Question: Is there a set S ⊆ A \W of at most k vertices such that G − N [S] is
acyclic?

794

We denote an instance of d-DDBB-FVS as (G, k,W ), where G is the input graph with795

bipartition A ] B, k is the parameter (the solution size), and W is a set such that for a796

solution S, it holds that S ⊆ A \W . The main result of the section is the following lemma.797

I Lemma 25. Given an instance ((A ] B,E), k,W ) of d-DDBB-FVS, there exists an798

algorithm that gives a solution in time O((8d)k+γ(GW )(n + m) + n(n + m)), where d =799

maxw∈B d(w), n = |V (G)|, m = |E(G)|, and γ(GW ) is the number of connected components800

in the subgraph GW = G[W ∪ {b ∈ B : N(b) ⊆W}].801

Assuming Lemma 25 one can prove Theorem 24, somewhat similar to the way it is done802

for FVS on graphs (see Section 4.1 in [10]). We use the following observation in the proof of803

Theorem 24.804

B Observation E.1. Let (G = (A ] B,E), k) be an instance of DFVSB, and B′ ⊆ B. If805

(G′ = (A ] B′, E(A,B′)), k) is a NO-instance of DFVSB, then (G = (A ] B,E), k) is a806

NO-instance of DFVSB.807

Proof. Any solution to (G = (A ]B,E), k) is also a solution to ((A ]B′, E(A,B′)), k). J808

Now we give a proof sketch of Theorem 24 assuming Lemma 25.809

Proof sketch of Theorem 24. We employ the method of iterative compression to prove810

Theorem 24. Towards that, we iteratively apply Lemma 25. Let (G = (A ] B,E), k) be811

the input of DFVSB. Let B = {b1, . . . , br}. If r ≤ k + 1, then any subset A′ ⊆ A of size at812

most r − 1 that contains a neighbor of bi for all i ∈ [r − 1] is a solution to (G, k). That is, if813

r ≤ k + 1, then (G, k) is a YES-instance. Otherwise, we proceed as follows.814

Initially we consider the instance J1 = (G1 = (A ] B1), k) of DFVSB, where B1 =815

{b1, . . . , bk+2}. LetW1 = {v1, . . . , vk+1} be an arbitrary subset of A such that N(bj)∩W1 6= ∅816

for all j ∈ [k + 1]. Clearly, W1 is a dominating feedback vertex set of size k + 1 for817

G1. To compute a dominating feedback vertex set of size at most k, for each subset818

S ⊆ W1 of size at most k (a potential guess of the intersection of a hypothetical solution819

with W1), we use Lemma 25 to check whether there exists a solution to the instance820

(G′1 = G1 −N [S], k− |S|,W1 \ S) of d-DDBB-FVS. If no such solution exists for any choice821

of the subset of W1, then clearly J1 is a NO-instance of DFVSB due to observation E.1.822

Otherwise, if there is a subset S1 ⊆ W1 of size at most k, such that Q1 is a solution823

for (((A \ S1) ] (B1 \N(S1)), E(A \ S1, B1 \N(S1))), k − |S1|,W1 \ S1) of d-DDBB-FVS,824

then S1 ∪ Q1 is a solution of size at most k for the instance J1. Next, we construct an825

instance J2 = (G2 = (A ] B2, E(A,B2)), k) of DFVSB, where B2 = {b1, . . . , bk+3}. Let826

W2 = S1 ∪ Q1 ∪ {v}, where v is an arbitrary vertex in N(bk+3). Notice that G2 −N [W2]827

is a subgraph of G1 −N [S1 ∪Q1] which is a forest. That is, W2 is a dominating feedback828

vertex set of G2 of size at most k + 1. Now we repeat the same process as described above829

to “compress” the solution size of J2 to at most k. At each iteration, if there exists a830

solution Wi of size at most k for the instance Ji, then in step i+ 1, Wi ∪ {v} is a dominating831

feedback vertex set for Gi+1 = (A ] Bi+1, E(A,Bi+1)), where Bi+1 = Bi ∪ {bk+2+i} and832

v ∈ N(bk+2+i), and we continue the same process.833
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Finally, notice that Jr−(k+1) is actually the input instance (G, k), and we get a solution834

to Jr−(k+1) at the end of the algorithm (if (G, k) is a YES-instance). More formally, at835

step i ∈ [r − (k + 1)], we have an instance Ji = (Gi = (A ] Bi, E(A,Bi)), k), where836

Bi = {b1, . . . , bk+1+i}, and a dominating feedback vertex set W ′i of Gi of size at most k + 1.837

Then, by applying Lemma 25 at most 2k+1 times we obtain a solution Wi of size at most838

k for the instance Ji (if it exists). If there does not exist a solution for Ji, then (G, k) is a839

NO-instance.840

Since we apply Lemma 25 at most 2k+1|B| − (k + 1) times and the number of connected841

components of GW in each application of Lemma 25 is at most k+1, the total running time is842

upper bounded by O(2k(8d)2k+1n(n+m) +n2(n+m)) = O(27kd2k+1n(n+m) +n2(n+m)),843

where n = |V (G)| and m = |E(G)|. J844

The rest of the section is devoted to the proof of Lemma 25. Towards proving Lemma 25,845

we design a branching algorithm consisting of three branching rules and some simple reduction846

rules. To bound the running time, we define a measure associated with an instance of d-DDBB-847

FVS, and this measure decreases by at least one during each application of the branching848

rules. It does not increase during the application of any of the reduction rules. Moreover, the849

number of children for each node in the branching tree is bounded by O(d). For an instance850

(G = (A ]B,E), k,W ) of d-DDBB-FVS, recall that GW = G[W ∪ {b ∈ B : NG(b) ⊆W}],851

and γ(GW ) is the number of connected components in GW . We define the measure associated852

with the instance (G, k,W ) of d-DDBB-FVS as,853

µ(G, k,W ) = k + γ(GW )854

For a reduction rule that takes an instance (G, k,W ) of d-DDBB-FVS and outputs855

another instance (G′, k′,W ′) of d-DDBB-FVS, we say that the reduction rule is safe if856

the following holds: (i) (G, k,W ) is a YES-instance if and only if (G′, k′,W ′) is a YES-857

instance, and (ii) µ(G′, k′,W ′) ≤ µ(G, k,W ). A branching rule for d-DDBB-FVS, takes an858

instance (G, k,W ) and outputs a collection of instances (G1, k1,W1), . . . , (G`, k`,W`). We859

say that the branching rule is safe if the following holds: (i) (G, k,W ) is a YES-instance860

if and only if (Gi, ki,Wi) is a YES-instance for some i ∈ [`], and (ii) for each i ∈ [`],861

µ(Gi, ki,Wi) < µ(G, k,W ).862

B Reduction Rule E.1. Let (G, k,W ) be an instance of d-DDBB-FVS. If k = 0 and G is863

not acyclic, then return that (G, k,W ) is a NO-instance of d-DDBB-FVS.864

B Reduction Rule E.2. Let (G, k,W ) be an instance of d-DDBB-FVS. If G is acyclic and865

k ≥ 0, then return ∅ and STOP.866

The correctness of the above reduction rules follows from the fact that (G, k,W ) is a867

YES-instance of d-DDBB-FVS and ∅ is a solution to (G, k,W ).868

B Reduction Rule E.3. Let (G, k,W ) be an instance of d-DDBB-FVS. Let v ∈ V (G) be a869

vertex of degree 0 in G. Then, output (G− v, k,W \ {v}).870

It is easy to see that the above reduction rules are safe and can be applied in polynomial871

time.872

B Reduction Rule E.4. Let (G = (A ] B,E), k,W ) be an instance of d-DDBB-FVS and873

b ∈ B be a vertex of degree 1 in G. Then, output (G− b, k,W ).874

I Lemma 26. Reduction Rule E.4 is safe.875
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Proof. Since dG(b) = 1, there is no cycle in G containing b. Therefore, any solution to876

(G− b, k,W ) is also a solution to (G, k,W ) and vice versa. Let G′ = G− b. Since dG(b) ≤ 1,877

γ(G′W ) ≤ γ(GW ). Therefore, µ(G′, k,W ) ≤ µ(G, k,W ) and Reduction Rule E.4 is safe. J878

B Reduction Rule E.5. Let (G = (A]B,E), k,W ) be an instance of d-DDBB-FVS and v ∈879

A\W be a vertex of degree 1 in G. Let NG(v) = {b}. Moreover, either NG(b)\(W ∪{v}) 6= ∅880

or dG(b) = 2. Then, output (G− v, k,W ).881

I Lemma 27. Reduction Rule E.5 is safe.882

Proof. First consider the case NG(b) \ (W ∪ {v}) 6= ∅. Since dG(v) = 1, any solution to883

(G− v, k,W ) is also a solution to (G, k,W ). Now suppose that, (G, k,W ) is a YES-instance.884

Let u be an arbitrary vertex in NG(b) \ (W ∪ {v}) and G′ = G − v. First we claim that885

there is a solution S to (G, k,W ) that does not contain v. If there exists a solution S′ to886

(G, k,W ) that contains v, then S? = (S′ \ {v}) ∪ {u} is a solution to (G, k,W ), because887

NG(v) ⊆ NG(u) and dG(v) = 1. Let S be a solution to (G, k,W ) such that v /∈ S. Then,888

S is also a solution to (G′ = G − v, k,W ) because G′ − NG′ [S] = (G − NG[S]) − v, and889

(G−NG[S]) is acyclic. Notice that G′W = GW . Therefore, µ(G′, k,W ) ≤ µ(G, k,W ).890

Next, we consider the case dG(b) = 2. Here, there is no cycle in G that contains either b or891

v. This implies that, if S is a solution to (G, k,W ), then S \{v} is a solution to (G−v, k,W ).892

Since dG(v) = 1, any solution to (G′ = G − v, k,W ) is also a solution to (G, k,W ). Also,893

since G′W = GW , we have that µ(G′, k,W ) ≤ µ(G, k,W ). J894

B Reduction Rule E.6. Let (G, k,W ) be an instance of d-DDBB-FVS. Let b1v1b2v2b3v3b4895

be a path in G such that v1b2v2b3v3 is a degree two path in G, {b1, . . . , b4} ⊆ B and896

{v1, v2, v3} ⊆ A \W . Now, let G′ be the graph obtained by deleting the vertices b2, v2 from897

G and adding a new edge v1b3, i.e. G′ = (G− {v2, b2}) + v1b3. Then, output (G′, k,W ).898

I Lemma 28. Reduction Rule E.6 is safe.899

Proof. First, we prove that (G, k,W ) is a YES-instance of d-DDBB-FVS if and only if900

(G′, k,W ) is a YES-instance of d-DDBB-FVS. In the forward direction, let S be a solution to901

(G, k,W ) of d-DDBB-FVS. Suppose that, v2 /∈ S. Then, we claim that S is also a solution902

of (G′, k,W ). Suppose not, then there exists a cycle C in G′−NG′ [S]. If C does not contain903

the edge v1b3, then C is also a cycle in G−NG[S], which is a contradiction. Therefore, C904

contains the edge v1b3. But, then we get a cycle in G−NG[S] by replacing the edge v1b3905

in C by the path v1b2v2b3. This is a contradiction to the assumption that S is a solution906

to (G,W, k). Now, consider the case v2 ∈ S. Then, S′ = (S \ {v2}) ∪ {v1} is a solution to907

(G′, k,W ) because S′ ∩W = ∅ and any cycle in G which contains any of the vertices in908

{b2, v2, b3} also contains v1.909

For the backward direction, let S? be a solution to (G′, k,W ) of d-DDBB-FVS. Clearly,910

S? ⊆ A \W . We claim that S? is also a solution to (G, k,W ). Suppose not. Then, there911

exists a cycle C in G − NG[S?]. If C does not contain any edges from {v1b2, b2v2, v2b3},912

then C is also a cycle in G′ − NG′ [S?], which is a contradiction. Therefore, at least one913

edge from {v1b2, b2v2, v2b3} is part of C. Then, since v1b2v2b3v3 is a degree two path in G,914

b1v1b2v2b3v3b4 is a subpath in C. Then, we get a cycle C ′ in G′ − NG′ [S?] by replacing915

the subpath v1b2v2b3 in C by v1b3. This is a contradiction to the assumption that S? is a916

solution to (G′, k,W ). Hence, S? is also a solution to (G, k,W ).917

Next, we prove that µ(G′, k,W ′) ≤ µ(G, k,W ). Since v1, v2, v3 /∈ W , we have that918

b1, b2, b3, b4 /∈ V (GW ). Therefore, we have that GW = G′W ′ and hence, µ(G′, k,W ′) =919

µ(G, k,W ). This completes the proof of the lemma. J920
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B Branching Rule 1. Let (G, k,W ) be an instance of d-DDBB-FVS and let b ∈ B be a vertex921

such that NG(b)\W 6= ∅ and |NG(b)∩W | ≥ 2. Let z, z′ ∈ NG(b)∩W be two distinct vertices922

and NG(b)\W = {u1, . . . , u`}. If z and z′ are in the same connected component of GW , then923

we branch into the following instances: (G−N [u1], k − 1,W ), . . . , (G−N [u`], k − 1,W ). If924

z and z′ are in two distinct connected components of GW , then we branch into the following925

instances: (G−N [u1], k − 1,W ), . . . , (G−N [u`], k − 1,W ), and (G, k,W ∪ {u1, . . . , u`}).926

I Lemma 29. Branching Rule 1 is safe.927

Proof. First consider the case that z and z′ are in the same connected component of GW .928

If (G, k,W ) is a NO-instance, then clearly all the instances (G−N [u1], k − 1,W ), . . . , (G−929

N [u`], k − 1,W ) are NO-instances. Since z and z′ are in the same connected component930

of GW , there is a cycle C in G[V (GW ) ∪ {b}]. Also, notice that NG(V (C) ∩ B) \W ⊆931

{u1, . . . , u`}. That is, if (G, k,W ) is a YES-instance, then any solution will contain a vertex932

from {u1, . . . , u`}. Therefore, if (G, k,W ) is a YES-instance, then at least one of the instances933

(G − N [u1], k − 1,W ), . . . , (G − N [u`], k − 1,W ) is a YES-instance. Now we prove that934

µ(G−N [ui], k − 1,W ) ≤ µ(G, k,W )− 1, for all i ∈ [`]. Towards that, we fix an arbitrary935

i ∈ [`]. LetG′ = G−N [ui]. Since ui ∈ A\W , GW = G′W . This implies that, γ(G′W ) = γ(GW ).936

Therefore, µ(G′, k − 1,W ) = k − 1 + γ(G′W ) = k + γ(GW )− 1 = µ(G, k,W )− 1.937

Next, consider the case that z and z′ are in two different connected components of GW .938

If (G, k,W ) is a NO-instance, then clearly all the instances (G−N [u1], k − 1,W ), . . . , (G−939

N [u`], k − 1,W ), and (G, k,W ∪ {u1, . . . , u`}) are NO-instances. Suppose that, (G, k,W ) is940

YES-instance. Let S be a solution to (G, k,W ). If S ∩ {u1, . . . , u`} 6= ∅, then at least one941

of (G − N [u1], k − 1,W ), . . . , (G − N [u`], k − 1,W ) is a YES-instance. Otherwise, S is a942

solution to (G, k,W ∪ {u1, . . . , u`}). The proof of µ(G−N [ui], k − 1,W ) ≤ µ(G, k,W )− 1943

for all i ∈ [`], given in the above paragraph holds in this case as well. Finally, we prove944

that µ(G, k,W ∪ {u1, . . . , u`}) ≤ µ(G, k,W ) − 1. Note that, it is enough to prove that945

γ(GW ′) ≤ γ(GW ) − 1, where W ′ = W ∪ {u1, . . . , u`}. Observe that, each connected946

component in GW ′ contains a vertex from W ′, as Reduction Rule E.3 is no longer applicable.947

Moreover, GW is a subgraph of GW ′ and there is a connected component in GW ′ containing948

z and z′, because z, z′ ∈ NG(b) and b ∈ V (GW ′). Also, notice that in this case z and z′949

belong to different connected components in GW . This implies that, γ(GW ′) ≤ γ(GW )− 1.950

This completes the proof of the lemma. J951

B Branching Rule 2. Let (G, k,W ) be an instance of d-DDBB-FVS. If there exists a952

path/cycle P = b0v0 . . . brvrbr+1 in G, such that {v0, . . . , vr} ⊆ A \W , 0 ≤ r ≤ 6, and953

there is a cycle in the graph G[V (GW ) ∪ V (P )], then we branch into the following instances:954

(G−N [u1], k−1,W ), . . . , (G−N [u`], k−1,W ), where {u1, . . . , u`} = NG({b0, . . . , br+1})\W .955

I Lemma 30. Branching Rule 2 is safe.956

Proof. If (G, k,W ) is a NO-instance, then clearly all the instances (G − N [u1], k −957

1,W ), . . . , (G−N [u`], k− 1,W ) are NO-instances. Now, we prove that if (G, k,W ) is a YES-958

instance, then at least one of the instances (G−N [u1], k − 1,W ), . . . , (G−N [u`], k − 1,W )959

is a YES-instance. Notice that there exists a cycle C in G[V (GW ) ∪ V (P )]. Therefore,960

any solution to (G, k,W ) contains a vertex from NG(V (C) ∩ B) \W . Since NG(b) ⊆ W961

for all b ∈ B ∩ V (GW ), we have that NG(V (C) ∩ B) \ W ⊆ N({b0, . . . , br+1}) \ W =962

{u1, . . . , u`}. Therefore, if (G, k,W ) is a YES-instance, then at least one of the instances963

(G−N [u1], k − 1,W ), . . . , (G−N [u`], k − 1,W ) is a YES-instance as well.964

Next, we prove that µ(G − N [ui], k − 1,W ) = µ(G, k,W ) − 1 for all i ∈ [`]. Towards965

that, we fix an arbitrary i ∈ [`]. Let G′ = G − N [ui]. Since ui ∈ A \W , we have that966
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GW = G′W . Therefore, µ(G′, k− 1,W ) = k− 1 + γ(G′W ) = k+ γ(GW )− 1 = µ(G, k,W )− 1.967

This completes the proof of the lemma. J968

B Branching Rule 3. Let (G, k,W ) be an instance of d-DDBB-FVS. Let P = b0v0, . . . , brvrbr+1969

be a path in G, such that 0 ≤ r ≤ 6 and {v0, . . . , vr} ⊆ A \W . Let z and z′ be two vertices970

in two distinct connected components of GW . If there is path from z to z′ in the graph971

G[V (GW )∪V (P )], then we branch into the following instances: (G−N [u1], k−1,W ), . . . , (G−972

N [u`], k− 1,W ), and (G, k,W ∪{u1, . . . , u`}), where {u1, . . . , u`} = NG({b0, . . . , br+1}) \W .973

I Lemma 31. Branching Rule 3 is safe.974

Proof. If (G, k,W ) is a NO-instance, then clearly all the instances (G − N [u1], k −975

1,W ), . . . , (G − N [u`], k − 1,W ) and (G, k,W ∪ {u1, . . . , u`}) are NO-instances. Now976

we prove that if (G, k,W ) is a YES-instance, then at least one of the instances (G −977

N [u1], k − 1,W ), . . . , (G−N [u`], k − 1,W ) and (G, k,W ∪ {u1, . . . , u`}) is a YES-instance.978

Let S be a solution to (G, k,W ). If S ∩ {u1, . . . , u`} 6= ∅, then at least one of979

(G−N [u1], k− 1,W ), . . . , (G−N [u`], k− 1,W ) is a YES-instance. Otherwise S is a solution980

to (G, k,W ∪ {u1, . . . , u`}).981

Next, we prove that µ(G−N [ui], k − 1,W ) ≤ µ(G, k,W )− 1, for all i ∈ [`]. Here, the982

proof follows the arguments similar to those in the proof of Lemma 30. Now we prove983

that µ(G, k,W ∪ {u1, . . . , u`}) ≤ µ(G, k,W )− 1. Towards that, it is enough to prove that984

γ(GW ′) ≤ γ(GW )− 1, where W ′ = W ∪{u1, . . . , u`}. Notice that each connected component985

in GW ′ contains a vertex from W ′. Moreover, GW is a subgraph of GW ′ and there is a986

connected component in GW ′ containing z and z′, because V (P ) ⊆ V (GW ′). Also, notice987

that by our assumption z and z′ belong to different connected components in GW . This988

implies that, γ(GW ′) ≤ γ(GW )− 1. This completes the proof of the lemma. J989

Now we are ready to complete the proof of Lemma 25.990

Proof of Lemma 25. We design a branching algorithm for the problem. Let (G, k,W ) be991

an instance of d-DDBB-FVS. We prove that we can always apply either one of the reduction992

rules or one of the branching rules until we reach a solution or a NO-instance. First we test993

if any of the Reduction Rules E.1, E.2, E.3, E.4, and E.5 is applicable. This can easily be994

tested in linear time. If any of these reduction rules are applicable, we apply them. Next, we995

test whether Reduction Rule E.6 is applicable. Towards that, let H be a graph obtained996

from G by deleting all the vertices in W and the vertices of degree at least 3 in G. Then,997

for any maximal path P such that the internal vertices of P have degree exactly two in G998

and V (P ) ∩W = ∅, there exists a component in H which is an induced path containing all999

the vertices of P . Thus, we can identify such a path P = b1v1b2v2b3v3b4 in G such that the1000

internal vertices of P are degree exactly two in G and V (P ) ∩W = ∅ (if it exists) in linear1001

time. If such a path exists, then we apply Reduction Rule E.6. Next, if Branching Rule 1 is1002

applicable, then we apply it. This can be done in linear time as well.1003

For rest of the proof, we assume that Reduction Rules E.1–E.6, and Branching Rule 11004

are not applicable on (G, k,W ). We know that F = G−NG[W ] is acyclic. Since dG(b) ≥ 21005

for all b ∈ B (because Reduction Rules E.3 and E.4 are not applicable) and F = G−NG[W ],1006

(i) any vertex u ∈ V (F ) with degree at most 1 in F (i.e., dF (u) ≤ 1) belongs to A \W . Now1007

we claim that (ii) there is no vertex of degree zero in F . Suppose not. Let v ∈ V (F ) be such1008

that dF (v) = 0. Because of statement (i), we have that v ∈ A \W . Since Reduction Rule E.31009

is not applicable, we have that dG(v) ≥ 1. If dG(v) = 1, then NG(b) \ (W ∪ {v}) = ∅ and1010

dG(b) > 2, where {b} = NG(v), as Reduction Rules E.4 and E.5 are not applicable. This1011
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implies that, NG(b)\W 6= ∅ and |NG(b)∩W | ≥ 2. As a result Branching Rule 1 is applicable,1012

which is a contradiction. Thus, we have proven statement (ii).1013

Next we prove that (iii) for each v ∈ V (F ) such that degree of v is 1 in F , there is1014

a vertex b ∈ NG(W ) such that vb ∈ E(G). Towards that, it is enough to prove that for1015

each v ∈ V (F ) of degree 1 in F , dG(v) ≥ 2. If dG(v) = 1, then NG(b) \ (W ∪ {v}) = ∅ and1016

dG(b) > 2, where {b} = NG(v), as Reduction Rules E.4 and E.5 are not applicable. This1017

implies that, NG(b)\W 6= ∅ and |NG(b)∩W | ≥ 2. As a result Branching Rule 1 is applicable,1018

which is a contradiction. Thus, we have proven statement (iii).1019

Let Q be a path in F (of length more than 0) such that the end-vertices of Q have1020

degree 1 in F , and all but at most one internal vertex of Q has degree exactly 2 in F . Any1021

forest F containing at least one edge contains such a path and it can be computed in linear1022

time. Since the end-vertices of Q have degree 1 in F , by statement (i), the end-vertices of1023

Q belong to A \W . Let Q = v0b1 . . . b`v` for some ` ∈ N, where {v1, . . . , v`} ⊆ A \W and1024

{b1, . . . , b`} ⊆ B \NG(W ). Due to statement (iii), there exist vertices b, b′ ∈ NG(W ) (not1025

necessarily distinct), such that bv0, b
′v` ∈ E(G).1026

Case 1: ` ≤ 6. Let P be the path/cycle bv0b1 . . . b`v`b
′. Note that, P is a cycle if b = b′1027

and P is a path if b 6= b′. If P is a cycle, then Branching Rule 2 is applicable and we apply1028

it. Suppose that, b′ 6= b. Notice that b, b′ ∈ NG(W ). This implies that, there exist vertices z1029

and z′ in W , such that bz, b′z′ ∈ E(G). If z and z′ belong to the same connected component1030

in GW , then either Branching Rule 2 is applicable, or Branching Rule 3 will be applicable1031

due to existence of path P . We apply the branching rule accordingly.1032

Case 2: ` ≥ 7. Recall that, all but at most one vertex in Q = v0b1 . . . b`v` has degree at1033

most 2 in F . If all the vertices in Q have degree at most two in F , then either no vertex1034

vi, i ∈ {1, . . . , 3} has a neighbor in N(W ) and Reduction Rule E.6 is applicable, or there1035

exists a vertex vi, i ∈ {1, . . . , 3}, such that vi has a neighbor in N(W ) and either Branching1036

Rule 2, or Branching Rule 3 is applicable. Next, consider that there exists a vertex in Q1037

with degree more than 2 in F . (a) A vertex in {v1, v2, v3, b1, b2, b3} has degree more than1038

2 in F . (b) A vertex in {v4, v5, v6, b4, b5, b6, b7} has degree more than 2 in F . Without1039

loss of generality let us assume (b) (Other case can be argued similarly). That is, each1040

vertex in {v1, v2, v3, b1, b2, b3, } has degree at most 2 in F . First, we prove that there exists1041

i ∈ {1, . . . , 3} such that NG(vi) ∩NG(W ) 6= ∅. Otherwise v1b2v2b3v3 is a degree two path in1042

G, and hence, Reduction Rule E.6 is applicable, a contradiction to the assumption that none1043

of the reduction rules are applicable.1044

Now, we fix i ∈ {1, . . . , 3} such that NG(vi) ∩ NG(W ) 6= ∅. Let b? ∈ NG(W ) be such1045

that vib? ∈ E(G). Let Q? be the subpath of Q between v0 and vi and P ? be the path1046

bQ?b?. Clearly, due to existence of path P ?, either Branching Rule 2 or Branching Rule 3 is1047

applicable. We apply the branching rule accordingly.1048

Now we do the running time analysis. Let n = |V (G)| and m = |E(G)|. Each application1049

of a reduction rule takes linear time. Moreover, after each application of a reduction rule,1050

the number of vertices in the graph drops by at least one. Therefore, the total time taken1051

to apply all the reduction rules together in one branch of the branching tree is upper1052

bounded by O(n(n + m)). Each application of a branching rule takes linear time. The1053

number of branches created during an application of Branching Rules 2 or 3 is at most 8d.1054

Moreover, after each application of Branching Rules 2 and 3, the measure associated with1055

the instance drops by at least one. Therefore, the total running time is upper bounded by1056

O((8d)k+γ(GW )(n+m) + n(n+m)). This concludes the proof. J1057
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