
Balanced Judicious Bipartition is FPT
Daniel Lokshtanov1, Saket Saurabh1,2, Roohani Sharma2, and
Meirav Zehavi1

1 Department of Informaics, University of Bergen, Norway
{daniello,meirav.zehavi}@uib.no

2 Institute of Mathematical Sciences, HBNI, India
{saket,roohani}@imsc.res.in

Abstract
The family of judicious partitioning problems, introduced by Bollobás and Scott to the field of
extremal combinatorics, has been extensively studied from a structural point of view for over
two decades. This rich realm of problems aims to counterbalance the objectives of classical
partitioning problems such as Min Cut, Min Bisection and Max Cut. While these classical
problems focus solely on the minimization/maximization of the number of edges crossing the cut,
judicious (bi)partitioning problems ask the natural question of the minimization/maximization
of the number of edges lying in the (two) sides of the cut. In particular, Judicious Bipartition
(JB) seeks a bipartition that is “judicious” in the sense that neither side is burdened by too many
edges, and Balanced JB also requires that the sizes of the sides themselves are “balanced” in
the sense that neither of them is too large. Both of these problems were defined in the work by
Bollobás and Scott, and have received notable scientific attention since then. In this paper, we
shed light on the study of judicious partitioning problems from the viewpoint of algorithm design.
Specifically, we prove that BJB is FPT (which also proves that JB is FPT).

Keywords and phrases Judicious Partition, Tree Decomposition, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

More than twenty years ago, Bollobás and Scott [3] defined the notion of judicious partitioning
problems. Since then, the family of judicious partitioning problems has been extensively
studied in the field of Extremal Combinatorics, as can be evidenced by the abundance
of structural results described in surveys such as [7, 36]. This rich realm of problems
aims to counterbalance the objectives of classical partitioning problems such as Min Cut,
Min Bisection, Max Cut and Max Bisection. While these classical problems focus
solely on the minimization/maximization of the number of edges crossing the cut, judicious
(bi)partitioning problems ask the natural questions of the minimization/maximization of the
number of edges lying in the (two) sides of the cut. Another significant feature of judicious
partitioning problems that also distinguishes them from other classical partitioning problems
is that they inherently and naturally encompass several objectives, aiming to minimize (or
maximize) the number of edges in several sets simultaneously.

In this paper, we shed light on properties of judicious partitioning problems from the
viewpoint of the design of algorithms. Up until now, the study of such problems has
essentially been overlooked at the algorithmic front, where one of the underlying reasons for
this discrepancy might be that standard machinery does not seem to handle them effectively.
Specifically, we focus on the Judicious Bipartition problem, where we seek a bipartition
that is “judicious” in the sense that neither side is burdened by too many edges, and on the
Balanced Judicious Bipartition problem, where we also require that the sizes of the

© Daniel Lokshtanov, Saket Saurabh, Roohani Sharma, Meirav Zehavi;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Balanced Judicious Bipartition is FPT

sides themselves are “balanced” in the sense that neither of them is too large. Both of these
problems were defined in the work by Bollobás and Scott, and have received notable scientific
attention since then. Formally, Balanced Judicious Partition is defined as follows.

Balanced Judicious Bipartition (BJB) Parameter: k1 + k2

Input: A multi-graph G, and integers µ, k1 and k2
Question: Does there exist a partition (V1, V2) of V (G) such that |V1| = µ and for all
i ∈ {1, 2}, it holds that |E(G[Vi])| ≤ ki?

We note that in the literature, the term BJB refers to the case where µ = d |V (G)|
2 e, and

hence it is more restricted then the definition above. By dropping the requirement that
|V1| = µ, we get the Judicious Bipartition (JB) problem. By using new crucial insights
into these problems on top of the most advanced machinery in Parameterized Complexity
to handle partitioning problems,1 we are able to resolve the question of the Parameterized
Complexity of BJB (and hence also of JB). In particular, we prove the following theorem.

I Theorem 1. BJB can be solved in time 2kO(1) · |V (G)|O(1).

Structural Results. Denote n = |V (G)| and m = |E(G)|. To survey several structural
results about judicious partitioning problems, we first define the notions of t-cut andmax (min)
t-judicious partitioning. Given a partition of V (G) into t parts, a t-cut is the number of edges
going across the parts, while a max (min) judicious t-partitioning is the maximum (minimum)
number of edges in any of the parts. When t = 2, we use the standard terms bipartite-cut and
judicious bipartitioning, respectively. Furthermore, by t-judicious partitioning we mean max t-
judicious partitioning. As stated earlier, Bollobás and Scott [3] defined the notion of judicious
partitioning problems in 1993. In that paper, they showed that for any positive integer t
and graph G, we can partition V (G) into t sets, V1, . . . , Vt, so that |E(G[Vi])| ≤ t

t+1m for
all i ∈ {1, . . . , t}. Bollobás and Scott also studied this problem on graphs of maximum
degree ∆, and showed that there exists a partition of V (G) into t sets V1, . . . , Vt so that
it simultaneously satisfies an upper bound and a lower bound on the number of edges in
each part as well as on edges between every pair of parts. Later, Bollobás and Scott [7]
gave several new results, leaving open other new questions around judicious partitioning.
In [8] they showed an optimal bound for judicious partitioning on bounded-degree graphs.
These problems have also been studied on general hypergraphs [4], uniform hypergraphs [24],
3-uniform hypergraphs [6] and directed graphs [26].

The special cases of judicious partitioning problems called judicious bipartitioning and
balanced judicious bipartitioning problems have also been studied intensively. Bollobás and
Scott [5] proved an upper bound on judicious bipartitioning and proved that every graph that
achieves the essentially best known lower bound on bipartite-cut, given by Edwards in [18]
and [19], also achieves this upper bound for judicious bipartitioning. In fact, they showed
that this is exact for complete graphs of odd order, which are the only extremal graphs
without isolated vertices. Alon et al. [1] gave a non-trivial connection between the size of a
bipartite-cut in a graph and judicious partitioning into two sets. In particular, they showed
that if a graph has a bipartite-cut of size at least m

2 + δ where δ ≤ m/30, then there exists a
bipartition (V1, V2) of V (G) such that |E(G[Vi])| ≤ m

4 −
δ
2 + 10δ2

m + 3
√
m for i ∈ {1, 2}. They

complemented these results by showing an upper bound on the number of edges in each

1 To the best of our knowledge, up until now, this machinery has actually only been proven useful to
solve one natural problem which could not have been tackled using earlier tools.

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:3

part when δ > m/30. Bollobás and Scott [9] studied similar relations between t-cuts and
t-judicious partitionings for t ≥ 3. Recently, these results were further refined [39, 28]. Xu et
al. [38] and Xu and Yu [40] studied balanced judicious bipartitioning where both parts are of
almost equal size (that is, one of the sizes is dn2 e). Both of these papers concern the following
conjecture of Bollobás and Scott [7]: if G is a graph with minimum degree of at least 2, then
V (G) admits a balanced bipartition (V1, V2) such that for each i ∈ {1, 2}, |E(G[Vi])| ≤ m

3 .
For further results on judicious partitioning, we refer to the surveys [7, 36].
Algorithmic Results. While classical partitioning problems such as Min Cut, Min
Bisection, Max Cut and Max Bisection have been studied extensively algorithmically,
the same is not true about judicious partitioning problems. Apart from Min Cut, all the
above mentioned partitioning problems are NP-complete. These NP-complete partitioning
problems were investigated by all algorithmic paradigms meant for coping with NP-complete,
including approximation algorithms and parameterized complexity. In what follows, we
discuss known results related to these problems in the realm of parameterized complexity.

First, note that for every graph G, there always exists a bipartition of the vertex set
into two parts (in fact equal parts [22, Corollory 1]) such that at least m/2 edges are going
across. This immediately implies that Max Cut and Max Bisection are FPT when
parameterized by the cut size (the number of edges going across the partition). This led
Mahajan and Raman [29] to introduce the notion of above-guarantee parameterization. In
particular, they showed that one can decide whether a graph has a bipartite-cut of size m

2 +k

in time O(m+ n+ k4k). However, Edwards [18] showed that every connected graph G has
a bipartite-cut of size m

2 + n−1
4 . Thus, a more interesting question asks whether finding a

bipartite-cut of size at least m
2 + n−1

4 + k is FPT. Crowston et al. [16] showed that indeed
this is the case as they design an algorithm with running time O(8kn4). Recently, Etscheid
and Mnich [20] discovered a kernel with a linear number of vertices (improving upon a kernel
by Crowston et al. [15]), and the aforementioned algorithm was sped-up to run in time
O(8km) [20]. Gutin and Yeo studied an above-guarantee version of Max Bisection [22],
proving that finding a balanced bipartition such that it has at least m

2 +k edges is FPT (also
see [33]).2 In this context Max Bisection, it is also relevant to mention the (k, n− k)-Max
Cut, which asks for a bipartite-cut of size at least p where one of the sides is of size exactly
k. Parameterized by k, this problems is W[1]-hard [11], but parameterized by p, this problem
is solvable in time O∗(2p) [35] (this result improved upon algorithms given in [10, 37]).

Until recently, the parameterized complexity of Min Bisection was open. Approaches
to tackle this problem materialized when the parameterized complexity of `-Way Cut was
resolved. Here, given a graph G and positive integers k and `, the objective is to delete at
most k edges from G such that it has at least ` components. Kawarabayashi and Thorup [25]
showed that this problem is FPT. Later, Chitnis et al. [13] developed a completely new
tool based on this, called randomized contractions, to deal with plethora of cut problems.
Other cut problems that have been shown to be FPT include the generalization of Min Cut
to Multiway Cut and Multicut [12, 31, 32]. Eventually, Cygan et al. [17], combining
ideas underlying the algorithms developed for Multiway Cut, Multicut, `-Way Cut
and randomized contractions together with a new kind of decomposition, showed Min
Bisection to be FPT. Finally, let us also mention the min c-judicious partitioning (which is
a maximization problem), called c-Load Coloring, where given a graph G and a positive
integer k, the goal is to decide whether V (G) can be partitioned into c parts so that each
part has at least k edges. Barbero et al. [2] showed that this problem is FPT (also see [21]).

2 We refer to surveys [30, 23] for details regarding above-guarantee parameterizations.

CVIT 2016

23:4 Balanced Judicious Bipartition is FPT

Despite the abundance of work described above, the parameterized complexity of JB and
BJB has not yet considered. We fill this gap in our studies by showing that both of these
problems are FPT. It is noteworthy to remark that one can show that the generalization
of Min Bisection to c-Min Bisection, where the objective is to find a partition into
c-parts such that each part are almost equal and there are at most k edges going across
different parts, is FPT [17]. However, such a generlization is not possible for either JB or
BJB. Indeed, even the existence of an algorithm with running time nf(k), for any arbitrary
function f , would imply a polynomial-time algorithm for 3-Coloring, where k is set to 0.

Our Approach. For the sake of readability, our strategy of presentation of our proof
consists of the definition of a series of problems, each more “specialized” (in some sense)
than the previous one, where each section shows that to eventually solve BJB, it is sufficient
to focus on some such problem rather than the previous one. We start by showing that we
can focus on the solution of the case of BJB where the input graph is bipartite at the cost
of the addition of annotations. For this purpose, we present a (not complicated) Turing
reduction that employes a known algorithm for the Odd Cycle Transversal problem
(see Section 3). The usefulness of the ability to assume that the input graph is bipartite is a
key insight in our approach. In particular, the technical parts of our proof crucially rely on
the observation that a connected bipartite graph has only two bipartitions (here, we consider
bipartitions as ordered pairs). Keeping this intuition in mind, our next step is to reduce the
current annotated problem to one where the input graph is also assumed to be connected
(this specific argument relies on a simple application of dynamic programming).

Having at hand an (annotated) problem where the input graph is assumed to be a
connected bipartite graph, we proceed to the technical part of our proof, which employs
the (heavy) machinery developed by Cygan et al. [17]. While this machinery primarily
aims to tackle problems where one seeks small cuts in addition to some size constraint, our
problem involves a priori seemingly different type of constraints. Nevertheless, we observe
that once we handle a connected graph, the removal of any set of k edges (to deal with the
size constraint and annotations) would not break the graph to more than k + 1 connected
components, and each of these components would clearly be a bipartite graph. Hence, we
can view (in some sense) our problem as a cut problem. In practice, the relation between
our problem and a cut problem is quite more intricate, and to realize our idea, we crucially
rely on the fact that the connected components are bipartite graphs, which allows us to
“guess” a binary vector specifying the biparition of their vertex sets in the final solution.
This operation entitles the employment of coloring functions (employing k + 1 colors) and
their translation into bipartitions (which at a certain point in our paper, we would start
viewing as colorings employing two colors). Let us remark that the machinery introduced
by [17] is the computation of a special type of tree decomposition. Accordingly, our approach
would eventually involve the introduction of a specialization of BJB that aims to capture
the work to perform when handling a bag of the tree decomposition. The definition of this
specific problem is very technical, and hence we defer the description of related intuitive
explanations to the appropriate locations in Section 5, where we have already set up the
required notations to discuss it.

Note that the proofs of statements marked by (?) can be found in the appendix.

2 Preliminaries

General Notation. Let f : A→ B be some function. Given A′ ⊆ A, the notation f(A′) = b

indicates that for all a ∈ A′, it holds that f(a) = b. An extension f ′ of the function f is a

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:5

function whose domain A′ is a superset of A and whose range is B, such that for all a ∈ A,
it holds that f ′(a) = f(a). For any A′ ⊆ A, the restriction f |A′ of f is a function from A′ to
B such that for any a ∈ A′, f |A′(a) = f(a). Bold face lowercase letters are used to denote
tuples (vectors). For any tuple v, we let v[i] denote the ith coordinate of v. Given some
condition ψ, we define [ψ] = 1 if ψ is true and [ψ] = 0 otherwise. For any positive integer x,
we denote by [x] the set {1, 2, . . . , x} and by [x]0 the set {0, 1, . . . , x}.
Graph Theory. Given a graph G, we let V (G) and E(G) denote the vertex-set and the
edge-set of G, respectively. For a subset A ⊆ V (G), we denote by δ(A) the set of boundary
vertices of A, that is, δ(A) = {v ∈ A : there exists u ∈ V (G) \ A such that {u, v} ∈ E(G)}.
We let G \A denote the subgraph of G induced by V (G) \A. A bipartite graph is a graph G
such that there exists a bipartition (X,Y) of V (G) where X and Y are independent sets. In
this paper, we treat such bipartitions as ordered pairs. That is, if (X,Y) is a bipartition of
some bipartite graph G, then (Y,X) is assumed to be a different bipartition of the graph G.
For connected bipartite graphs, we have the following simple yet powerful insight.

I Proposition 1 (Folklore). Any connected bipartite graph G has exactly 2 bipartitions, (X,Y)
and (Y,X).

The treewidth of a graph aims to measure how close the graph is to a tree. Formally, this
notion is defined as follows.

I Definition 2. A tree decomposition of a graph G is a pair (T, β) such that T is a rooted
tree, β : V (T)→ 2V (G), and the following conditions are satisfied.

1. For all {u, v} ∈ E(G), there exists t ∈ V (T) such that u, v ∈ β(t).
2. For all v ∈ V (G), the subgraph of T induced by Xv = {t : v ∈ β(t)} is a (connected)

subtree of T on at least one node.

Given t, t̂ ∈ V (G), the notation t̂ � t indicates that t̂ is a descendant of t in T . Note that
t is a descendant of itself. For any t ∈ V (T), let t′ denote the unique parent of t in T . We
also need the standard notations σ(t) = β(t) ∩ β(t′) and γ(t) =

⋃
t̂�t

β(t̂).

I Proposition 2 (Folklore). Let (T, β) be a tree decomposition of a graph G. Given a node
t ∈ V (T), let t1, . . . , ts denote the children of t in T , and for all i ∈ [s], define Vti = γ(ti)\β(t).
Let Vt′ = V (G)\ (β(t)∪

s⋃
i=1

Vti). Then, the vertex-set of each connected component of G\β(t)

is a subset of one of Vt1 , . . . , Vts , Vt′ .

Let H be some hypergraph. A spanning forest of H is a subset E′ ⊆ E(H) of minimum
size such that the set containing all endpoints of the hyperedges in E′ is equal to V (H). In
this paper, we implicitly assume that hypergraphs contain no isolated vertices.
Unbreakability. A separation of a graph G is a pair (X,Y) such that X,Y ⊆ V (G) and
X ∪ Y = V (G). The order of a separation (X,Y) is equal to |X ∩ Y |.

I Definition 3. Let G be a graph, A ⊆ V (G), and q, k ∈ N. The set A is said to be (q, k)-
unbreakable in G if for every separation (X,Y) of G of order at most k, either |(X \Y)∩A| ≤ q
or |(Y \X) ∩A| ≤ q.

We also define a notion of unbreakability in the context of functions.

I Definition 4. A function g : U → [k]0 is called (q, k)-unbreakable if there exists i ∈ [k]0
such that

∑
j∈[k]0\{i}

|g−1(j)| ≤ q.

CVIT 2016

23:6 Balanced Judicious Bipartition is FPT

Let us now claim that there do no exist “too many” (q, k)-unbreakable functions.

I Lemma 5 (?). For all q, k ∈ N, the number of (q, k)-unbreakable functions from a universe

U to [k]0 is upper bounded by
q∑
l=0

(|U |
l

)
· qk · (k + 1).

3 Solving Balanced Judicious Bipartition

In this section, we prove Theorem 1 under the assumption that we are given an algorithm
for an annotated, yet restricted, variant of BJB. Throughout this section, an instance of
BJB is denoted by BJB(G,µ, k1, k2), and we define k = k1 + k2. Given a partition (V1, V2)
that witnesses that an instance BJB(G,µ, k1, k2) is a YES-instance, we think of the vertices
in V1 as colored 1 and the vertices in V2 as colored 2; hence, we call such a partition a
witnessing coloring of BJB(G,µ, k1, k2). To prove Theorem 1, we first define the Odd Cycle
Transversal problem. Here, given a graph G, a set S ⊆ V (G) is called an odd cycle
transversal if G \ S is a bipartite graph.

Odd Cycle Transversal (OCT) Parameter: k

Input: An undirected multi-graph graph G, and an integer k.
Question: Does G have an odd cycle transversal of size at most k?

An instance of Odd Cycle Transversal is denoted by OCT(G, k). The algorithm
given by the result below shall be a central component in the design of our algorithm for BJB.

I Proposition 3 ([27]). Odd Cycle Transversal can be solved in time 2.3146knO(1).

Apart from OCT, we also need to define an auxiliary problem that we call Annotated
Bipartite-BJB (AB-BJB). As we proceed with our proofs, we shall continue defining
auxiliary problems, where each problem captures a task more specific and technically more
challenging than the previous one. The choice of this structure aims to ease the readability
of our paper. Intuitively, AB-BJB is basically the BJB problem on bipartite graphs, with
an extra constraint that demands that certain vertices are assigned a particular color by the
witnessing coloring. We remark that the necessity of the reduction to bipartite graphs stems
from the fact that we would like to employ Proposition 1 later. The formal definition of
AB-BJB is given below.

Annotated Bipartite-BJB (AB-BJB) Parameter: k1 + k2

Input: A bipartite multi-graph G with bipartition (P,Q), A,B ⊆ V (G) such that
A ∩B = ∅, and integers µ, k1 and k2.
Question: Does there exist a partition (V1, V2) of V (G) such that A ⊆ V1, B ⊆ V2,
|V1| = µ and for i ∈ {1, 2}, |E(G[Vi])| ≤ ki?

An instance of AB-BJB is denoted by AB-BJB(G,A,B, µ, k1, k2). A partition (V1, V2)
satisfying the above properties is called a witnessing coloring of AB-BJB(G,A,B, µ, k1, k2).
Furthermore, we need the following theorem, proven later in this paper.

I Theorem 6. AB-BJB can be solved in time 2kO(1) · nO(1).

Let us now turn to focus on the proof of Theorem 1.

Proof of Theorem 1. Given an instance BJB(G,µ, k1, k2), call the algorithm given by Pro-
position 3 with the instance OCT(G, k) as input.

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:7

P

G

F

S \ F

P
wF

xF

yF

zF

ExF

EyF

EwF

EzF

GF

QQ

Figure 1 The construction in the proof of Theorem 1.

I Claim 1. If OCT(G, k) is a NO-instance, then BJB(G,µ, k1, k2) is a NO-instance.

Proof. Suppose BJB(G,µ, k1, k2) is a YES-instance. Let (V1, V2) be a witnessing coloring
for this instance. Let E′ = E(G[V1]) ∪ E(G[V2]). Then, observe that G \ E′ is a bipartite
graph. Let V ′ be a set of vertices of minimum size such that every edge in E′ has at least
one endpoint in V ′. Since |E′| ≤ k, it holds that |V ′| ≤ k. Moreover, G \ V ′ is bipartite.
Therefore, V ′ is an odd cycle transversal of G of size at most k. Thus, OCT(G, k) is a
YES-instance. �

Henceforth, let S be an odd cycle transversal of G of size at most k. Then, G \ S is a
bipartite graph. Fix some bipartition (P,Q) of G \ S. Let F be the family of all subsets of
S, that is, F = 2S . For any F ∈ F , denote lF1 = |E(G[F])| and lF2 = |E(G[S \ F])|, and let
GF be the graph constructed as follows (see Fig. 1).

V (GF) = V (G \ S) ∪ {wF , xF , yF , zF }, where wF , xF , yF , zF are new distinct vertices.
E(GF) = E(G \ S) ∪ EwF

∪ ExF
∪ EyF

∪ EzF
, where the multisets EwF

, ExF
, EyF

and
EzF

are defined as follows.
EwF

= {eu = (wF , u) : u ∈ P, and there exists v ∈ F such that (u, v) ∈ E(G)},
ExF

= {eu(xF , u) : u ∈ Q, and there exists v ∈ F such that (u, v) ∈ E(G)},
EyF

= {eu = (yF , u) : u ∈ Q, and there exists v ∈ S \ F such that (u, v) ∈ E(G)},
EzF

= {eu = (zF , u) : u ∈ P, and there exists v ∈ S \ F such that (u, v) ∈ E(G)}.

Observe that GF is a bipartite graph with (P ∪ {xF , yF }, Q ∪ {wF , zF }) as a bipartition.

I Claim 2. BJB(G,µ, k1, k2) is a YES-instance if and only if there exists F ∈ F such that
AB-BJB(GF , {wF , xF }, {yF , zF }, µ− |F |+ 2, k1 − lF1 , k2 − lF2) is a YES-instance.

Proof. In the forward direction, suppose that BJB(G,µ, k1, k2) is a YES-instance, and
let (V1, V2) be a witnessing coloring for BJB(G,µ, k1, k2). Moreover, let F = V1 ∩ S.
Now, we define a partition (V ′1 , V ′2) of V (GF) as follows: V ′1 = (V1 \ S) ∪ {xF , yF } and
V ′2 = (V2 \ S) ∪ {wF , zF }. Let us now argue that (V ′1 , V ′2) is a witnessing coloring for
AB-BJB(GF , {wF , xF }, {yF , zF }, µ− |F |+ 2, k1− lF1 , k2− lF2). First, by the construction of
(V ′1 , V ′2), we have that {xF , yF } ⊆ V ′1 and {wF , zF } ⊆ V ′2 . Second, as V ′1 = (V1\S)∪{xF , yF },
we also have that |V ′1 | = |V1| − |F |+ 2 = µ+ |F |+ 2. Third, observe that for any i ∈ {1, 2},
|E(G[V ′i])| = |E(G[Vi])| − |E(G[F])|. Thus, |E(G[Vi])| ≤ ki − lFi .

In the backward direction, suppose that there exists an F ∈ F such that AB-BJB(GF , {wF ,
xF }, {yF , zF }, µ − |F | + 2, k1 − lF1 , k2 − lF2) is a YES-instance, and let (V ′1 , V ′2) be a wit-
nessing coloring for this instance. We now define a partition (V1, V2) of V (G) as fol-
lows: V1 = (V ′1 ∩ V (G)) ∪ F and V2 = (V ′2 ∩ V (G)) ∪ (S \ F). Let us now argue
that (V1, V2) is a witnessing coloring for BJB(G,µ, k1, k2). From the definition of V1,
and since V (G) = (V (GF) \ {wF , xF , yF , zF }) ∪ F and F ∩ V (GF) = ∅, we have that

CVIT 2016

23:8 Balanced Judicious Bipartition is FPT

|V1| = |V ′1 |−|{xF , yF }|+ |F | = µ−|F |+2−2+ |F | = µ. Moreover, observe that |E(G[V1])| =
|E(G[V ′1])| + |E(G[F])| ≤ k1 + lF1 and |E(G[V2])| = |E(G[V ′2])| + |E(G[S \ F])| ≤ k2 + lF2 .
This concludes the proof of the claim. �

Thus, to solve an instance of BJB, it is enough to solve 2|S| ≤ 2k instances of AB-BJB.
Hence, by Theorem 6, BJB can be solved in time 2kO(1)

nO(1). J

4 Solving Annotated Bipartite-BJB

Recall the problem definition of Annotated Bipartite-BJB (AB-BJB) from Section
3. In this section, we prove Theorem 6. For this purpose, let us define another auxiliary
problem, which we call Annotated Bipartite Connected-BJB (ABC-BJB). Intuitively,
ABC-BJB is exactly the same problem as AB-BJB where we are interested in an answer
for every choice of µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0, and additionally we demand the input
graph to be connected.

Annotated Bipartite Connected-BJB (ABC-BJB) Parameter: k1 + k2

Input: A connected bipartite multi-graph G = (P,Q), A,B ⊆ V (G) such that A∩B = ∅,
and integers k1 and k2.
Output: For all µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0, output a binary value, aJP[µ, l1, l2],
which is 1 if and only if there exists a partition (V1, V2) of V (G) such that

A ⊆ V1 and B ⊆ V2,
|V1| = µ, and
for i ∈ {1, 2}, |E(G[Vi])| ≤ li.

For any µ ∈ [n]0, l1 ∈ [k1]0, l2 ∈ [k2]0, a partition witnessing that aJP[µ, l1, l2] = 1 is called
a witnessing coloring for aJP[µ, l1, l2] = 1. Moreover, an instance of ABC-BJB is denoted
by ABC-BJB(G,A,B, k1, k2). In the rest of this paper, we prove the following theorem.

I Theorem 7. ABC-BJB can be solved in time 2kO(1) · nO(1).

Having Theorem 7 at hand, a simple application of the method of dynamic programming
results in the proof of Theorem 6 (see Appendix A.2).

5 Solving Annotated Bipartite Connected-BJB

Recall the problem definition of ABC-BJB from Section 5. In this section, we prove
Theorem 7. Let us start by stating a known result that is a crucial component of our
proof. By this result, we would have an algorithm that efficiently computes a special type
of tree decomposition, that we call a highly connected tree decomposition, where every bag
is “highly-connected” rather than “small” as in the case of standard tree decompositions.
While this property is the main feature of this decomposition, it is also equipped with other
beneficial properties, such as a (non-trivial) upper bound on the size of its adhesions, which
are all exploited by our algorithm.

I Theorem 8 ([17]). There exists an 2O(k2)n2m-time algorithm that, given a connected
graph G together with an integer k, computes a tree decomposition (T, β) of G with at most
n nodes such that the following conditions hold, where η = 2O(k).

1. For each t ∈ V (T), the graph G[γ(t) \ σ(t)] is connected and N(γ(t) \ σ(t)) = σ(t).
2. For each t ∈ V (T), the set β(t) is (η, k)-unbreakable in G[γ(t)].

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:9

3. For each non-root t ∈ V (T), we have that |σ(t)| ≤ η and σ(t) is (2k, k)-unbreakable in
G[γ(parent(t))].

In order to process such a tree decomposition in a bottom-up fashion, relying on the
method of dynamic programming, we need to address a specific problem associated with
every bag, called Hypergraph Painting (HP). We chose the name HP to be consistent
with the choice of problem name in [17], yet we stress that our problem is more general than
the one in [17] (since the handling of a bag in our case is more intricate than the one in [17]).

Roughly speaking, an input of HP would consist of the following components. First, we
are given “budget” parameters k1 and k2 as in an instance of ABC-BJB. Second, we are
given an argument b which would simply be n (to upper bound |γ(t)|) when we construct an
instance of HP while processing some node t in the tree decomposition. Third, we are given a
hypergraph H which would essentially be the graph G[β(t)] to which we add hyperedges that
are supposed to represent the sets σ(t̂) for the children t̂ of t. Fourth, we are given an integer
q whose purpose is clarified in the discussion below the definition of HP (in Definition 11).
Finally, for every hyperedge F , we are given a function fF : [k]F0 × [b]0× [k1]0× [k2]0 → {0, 1}.
To roughly understand the meaning of this function, first recall that F is supposed to
represent σ(t̂) for some child t̂ of t. Now, the function fF aims to capture all information
obtained while we processed the child t̂ of t that might be relevant to the node t. In particular,
let us give an informal, intuitive interpretation of an element (Γ, µ, l1, l2) in the domain of
fF . For this purpose, note that when we remove at most k edges from the (connected) graph
G[γ(t̂)], we obtain at most k + 1 connected components. The function Γ can be thought of
as a method to assign to each vertex in σ(t̂) the connected component in which it should lie.
Such information is extremely useful since each such connected component is in particular a
bipartite graph, and hence by relying on Proposition 1 and an exhaustive search, we would be
able to use it to extract a witnessing coloring for an instance of ABC-BJB. The arguments
µ, l1 and l2 can be thought of as those in the definition of an output of ABC-BJB. Now, the
value fF (Γ, µ, l1, l2) aims to indicate whether Γ, µ, l1 and l2 are “realizable” in the context of
the child t̂ (the precise meaning of this value would become clearer later, once we establish
additional necessary definitions.)

Let us now give the formal definition of HP. In this definition, we denote k = k1 + k2.

Hypergraph Painting (HP)
Input: Integers k1, k2, b, d and q, a multi-hypergraph H with hyperedges of size at most
d, and for all F ∈ E(H), a function fF : [k]F0 × [b]0 × [k1]0 × [k2]0 → {0, 1}.
Output: For all 0 ≤ µ ≤ b, 0 ≤ l1 ≤ k1, 0 ≤ l2 ≤ k2, output the binary value

aHP[µ, l1, l2] =
∨

Υ:V (H)→[k]0

∨
{µF }|F∈E(H)

{lF1 }|F∈E(H)

{lF2 }|F∈E(H)

∧
F∈E(H)

fF (Υ|F , µF , lF1 , lF2),

where µ =
∑

F∈E(H)
µF ,

∑
F∈E(H)

lF1 ≤ l1,
∑

F∈E(H)
lF2 ≤ l2 and each of µF , lF1 and lF2 is a

non-negative integer.

For a particular choice of µ, l1 and l2, a function Υ witnessing that aHP[µ, l1, l2] = 1
is called a witnessing coloring for aHP[µ, l1, l2]. An instance of Hypergraph Painting is
denoted by HP(k1, k2, b, d, q,H, {fF }|F∈E(H)).

Although we are not able to tackle HP efficiently at its full generality, we are still able to
solve those instances that are constructed when we would like to “handle” a single bag in a

CVIT 2016

23:10 Balanced Judicious Bipartition is FPT

highly connected tree decomposition. For the sake of clarity, let us now address the beneficial
properties that these instances satisfy individually, where each of them ultimately aims to
ease our search for a witnessing coloring. The first property, called local unbreakability,
unconditionally restricts the way a function Γ : F → [k]0, to be thought of as a restriction of
the witnessing coloring we seek, can color a hyperedge F so that the value of fF is 1.3

I Definition 9 (Local Unbreakability). An instance HP(k1, k2, b, d, q,H, {fF }|F∈E(H)) is
locally unbreakable if every F ∈ E(H) satisfies the following property: for any Γ : F → [k]0
that is not (3k2, k)-unbreakable, fF (Γ, µ, l1, l2) = 0 for all 0 ≤ µ ≤ b, 0 ≤ l1 ≤ k1 and
0 ≤ l2 ≤ k2.

The second property, called connectivity, implies that if we would like to use a function
Γ : F → [k]0 to color a hyperedge (as a restriction of a witnessing coloring) with more than
one color, then we would have to “pay” at least 1 from our budget l1 + l2.

I Definition 10 (Connectivity). An instance HP(k1, k2, b, d, q,H, {fF }|F∈E(H)) is connected
if every F ∈ E(H) satisfies the following property: for any Γ : F → [k]0 for which there exist
distinct i, j ∈ [k]0 such that |Γ−1(i)|, |Γ−1(j)| > 0, it holds that fF (Γ, µ, l1, l2) = 1 only if
l1 + l2 ≥ 1.

The third property, called global unbreakability, directly restricts our “solution space” by
implying that we only need to determine whether there exists a (q, k)-unbreakable witnessing
coloring.

I Definition 11 (Global Unbreakability). An instance HP(k1, k2, b, d, q,H, {fF }|F∈E(H)) is
globally unbreakable if for all 0 ≤ µ ≤ b, 0 ≤ l1 ≤ k1, 0 ≤ l2 ≤ k2: if aHP[µ, l1, l2] = 1, then
there exists a witnessing coloring Υ : V (H)→ [k]0 that is (q, k)-unbreakable.

An instance HP (k1, k2, b, d, q,H, {fF }|F∈E(H)) is called a favorable instance of HP if it
locally unbreakable, connected and globally unbreakable. For such instances we have the
following theorem.

I Theorem 12 (?). HP on favorable instances is solvable in time 2O(min(k,q) log(k+q))dO(k2)mO(1).

The proof of this theorem is very technical, involving non-trivial analysis of a very “messy”
picture obtained by guessing part of a hypothetical witnessing coloring via the method of
color coding. Due to space constraints, the details are relegated to Appendix B.

From now onwards, to simplify the presentation of arguments ahead with respect to
ABC-BJB, we would abuse notation and directly define a witnessing coloring as a function
rather than a partition. More precisely, the term witnessing coloring for aJP[µ, l1, l2] = 1
would refer to a function col : V (G)→ {V1, V2} such that A ⊆ V1, B ⊆ V2, |V1| = µ and for
i ∈ {1, 2}, |E(G[Vi])| ≤ li. To proceed to our proof of Theorem 7, we first need to introduce
an additional notation. Roughly speaking, this notation translates a coloring Υ of the form
that witnesses some aHP[µ, l1, l2] = 1 to a coloring of the form that witnesses aJP[µ, l1, l2] = 1
via some tuple v ∈ {0, 1}k+1. Formally,

I Definition 13. For a tuple v ∈ {0, 1}k+1, bipartite graph G with bipartition (P,Q),
A ⊆ V (G) and Υ : A→ [k]0, define Υ̂v : A→ {V1, V2} as follows.

For all v ∈ P , Υ̂v(v) = V1 if and only if v[Υ(v)] = 0.
For all v ∈ Q, Υ̂v(v) = V1 if and only if v[Υ(v)] = 1.

3 In this context, it may be insightful to recall Lemma 5.

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:11

Suppose we are given an instance ABC-BJB(G,A,B, k1, k2). Fix some bipartition (P,Q)
of G. Let (T, β) be the highly connected tree decomposition computed by the algorithm of
Theorem 8, and let r be the root of T . In what follows, η = 2O(k) as in Theorem 8, and
q = (η + k)k. We now proceed to define a binary variable that is supposed to represent the
answer we would like to compute when we process the bag of a specific node of the tree. Hence,
one of the arguments is a node t, and three additional arguments are µ ∈ [n]0, l1 ∈ [k1]0 and
l2 ∈ [k2]0. However, we cannot be satisfied with one answer, but need an answer for every
possible “interaction” between the bag of t and the bag of its parent t′. Thus, the definition
also includes a coloring of σ(t). The tuple v ∈ {0, 1}k+1 is necessary for the translation
process described in Definition 13 (the way in which we shall obtain such a “right” tuple
later in the proof would essentially rely on brute-force).

I Definition 14. Given t ∈ V (T), a (3k2, k)-unbreakable function Υσ : σ(t) → [k]0, a
tuple v ∈ {0, 1}k+1, and integers µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0, the binary variable
y[t,Υσ,v, µ, l1, l2] is 1 if and only if there exists Υ : γ(t)→ [k]0 extending Υσ such that

1. The translation Υ̂v maps to V1 exactly µ vertices, that is, |Υ̂−1
v (V1)| = µ.

2. The translation Υ̂v maps A ∩ γ(t) to V1 and B ∩ γ(t) to V2, that is, A ∩ γ(t) ⊆ Υ̂−1
v (V1)

and B ∩ γ(t) ⊆ Υ̂−1
v (V2).

3. For all i ∈ {1, 2}, it holds that |E(G[Υ̂−1
v (Vi)])| ≤ li.

4. The set of edges between vertices receiving different colors by Υ is exactly the set of edges
between vertices that are mapped to the same side by the translation Υ̂v, that is,⋃

i,j∈[k]0,i6=j

E(Υ−1(i),Υ−1(j)) = E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)]).

A function Υ as above is called a witnessing coloring for y[t,Υσ,v, µ, l1, l2].

I Lemma 15 (?). For any µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0, aJP[µ, l1, l2] = 1 if and only if
there exists v ∈ {0, 1}k+1 such that y[r, φ,v, µ, l1, l2] = 1.

By Lemma 15, it is sufficient to compute y[r, φ,v, µ, l1, l2] for all µ ∈ [n], l1 ∈ [k1]0 and
l2 ∈ [k2]0. To this end, we need to compute y[t,Υσ,v, µ, l1, l2] for every node t ∈ V (T),
function Υσ : σ(t) → [k]0 that is (3k2, k)-unbreakable, tuple v ∈ {0, 1}k+1, and integers
µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0. Here, we employ bottom-up dynamic programming over
the tree decomposition (T, β). Let us now zoom into the computation of y[t,Υσ,v, µ, l1, l2]
for all µ ∈ [n], l1 ∈ [k1]0 and l2 ∈ [k2]0, for some specific t,Υσ and v. Note that we now
assume that values corresponding to the children of t (if such children exist) have been already
computed correctly. Moreover, note that |σ(t)| ≤ η, the number of (3k2, k)-unbreakable
functions Υσ : σ(t) → [k]0 is at most |η|kO(1) = 2kO(1) (by Lemma 5), and the number of
binary vectors of size k + 1 is at most 2k+1. Thus, the total running time would consist of
the computation time of (T, β), and n · qO(k) · 2k+1 times the computation time for a set of
values as the one we examine now. Hence, it remains to show how to compute the current
set of values in time 2kO(1) .

To compute our current set of values, let us construct an instance HP(k1, k2, n, η, q,H,

{fF }|F∈E(H)) of HP where V (H) = β(t), and E(H) and {fF }|F∈E(H) are defined as follows.

CVIT 2016

23:12 Balanced Judicious Bipartition is FPT

1. Type-1 Hyperedges. For all v ∈ β(t), insert F = {v} into E(H). Define fF :
[k]F0 × [n]0 × [k1]0 × [k2]0 → {0, 1} as

fF (Γ, µ, l1, l2) =



0, if v ∈ σ(t) and Γ(v) 6= Υσ(v)
1, if v ∈ A, Γ̂v(F) = V1, l1 = l2 = 0 and µ = 1
1, if v ∈ B, Γ̂v(F) = V2, l1 = l2 = 0 and µ = 0
1, if v 6∈ A ∪B, l1 = l2 = 0 and µ = [Γ̂v(F) = V1]
0, otherwise

2. Type-2 Hyperedges. For all (u, v) ∈ E(G[β(t)]), add F = {u, v} in E(H). Define
fF : [k]F0 × [n]0 × [k1]0 × [k2]0 → {0, 1} as

fF (Γ, µ, l1, l2) =



0, if µ 6= 0
1, if Γ̂v(u) 6= Γ̂v(v) and Γ(u) = Γ(v)
1, if Γ̂v(u) = Γ̂v(v) = V1 and l1 ≥ 1
1, if Γ̂v(u) = Γ̂v(v) = V2 and l2 ≥ 1
0, otherwise

3. Type-3 Hyperedges. For all t̂ ∈ V (T) that is a child of t in the tree T , insert F = σ(t̂)
into E(H). Define fF : [k]F0 × [n]0 × [k1]0 × [k2]0 → {0, 1} as

fF (Γ, µ, l1, l2) =
{

0, if Γ is not (3k2, k)-unbreakable or y[t̂,Γ, µ+ µ′, l1 + l′1, l2 + l′2] = 0
1, otherwise

where µ′ = |Γ̂−1
v (V1)|, and l′i = |{{u, v} ∈ E(G[σ(t̂)]) : Γ̂v(u) = Γ̂v(v) = Vi}| for i ∈ [2].

Let us first claim that witnessing colorings related to HP(k1, k2, n, η, q,H, {fF }|F∈E(H))
are useful in the sense that they can be extended to witnessing colorings for the binary values
in which we are interested.

I Lemma 16 (?). For all µ ∈ [n], l1 ∈ [k1]0, l2 ∈ [k2]0, if aHP[µ, l1, l2] = 1, then
y[t,Υσ,v, µ, l1, l2] = 1. In fact, for any witness Υ : β(t) → [k]0 of aHP[µ, l1, l2] = 1,
there exists a function Υ′ : γ(t)→ [k]0 that extends Υ and witnesses y[t,Υσ,v, µ, l1, l2] = 1.

In light of Lemma 16, we now turn to verify that HP(k1, k2, n, η, q,H, {fF }|F∈E(H)) is
of the form that we are actually able to solve.

I Lemma 17 (?). HP(k1, k2, n, η, q,H, {fF }|F∈E(H)) is a favorable instance of HP.

Finally, we turn to address the statement complementary to the one of Lemma 16.

I Lemma 18 (?). For all µ ∈ [n], l1 ∈ [k1]0 and l2 ∈ [k2]0, if y[t,Υσ,v, µ, l1, l2] = 1, then
aHP[µ, l1, l2] = 1.

Recall that we have argued that to prove Theorem 12, it is sufficient to show that the
current set of values y[t,Υσ,v, µ, l1, l2] can be computed in time 2kO(1)

nO(1). Here, n refers
to |V (G)|. By Lemmas 16 and 18, this set of values can be derived from the solution of
HP(k1, k2, n, η, q,H, {fF }|F∈E(H)). Since HP(k1, k2, n, η, q,H, {fF }|F∈E(H)) is a favorable
instance of HP (by Lemma 17), the algorithm given by Theorem 12 solves it in time
2O(min(k,q) log(k+q))dO(k2)|E(H)|O(1) = 2kO(1)

nO(1). This concludes the proof of Theorem 12.

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:13

References

1 Noga Alon, Béla Bollobás, Michael Krivelevich, and Benny Sudakov. Maximum cuts and
judicious partitions in graphs without short cycles. Journal of Combinatorial Theory, Series
B, 88(2):329–346, 2003.

2 Florian Barbero, Gregory Gutin, Mark Jones, and Bin Sheng. Parameterized and approx-
imation algorithms for the load coloring problem. Algorithmica, pages 1–19, 2015.

3 Béla Bollobás and Alex D Scott. Judicious partitions of graphs. Periodica Mathematica
Hungarica, 26(2):125–137, 1993.

4 Béla Bollobás and Alex D Scott. Judicious partitions of hypergraphs. Journal of Combin-
atorial Theory, Series A, 78(1):15–31, 1997.

5 Béla Bollobás and Alex D Scott. Exact bounds for judicious partitions of graphs. Combin-
atorica, 19(4):473–486, 1999.

6 Béla Bollobás and Alex D Scott. Judicious partitions of 3-uniform hypergraphs. European
Journal of Combinatorics, 21(3):289–300, 2000.

7 Béla Bollobás and Alex D Scott. Problems and results on judicious partitions. Random
Structures & Algorithms, 21(3-4):414–430, 2002.

8 Béla Bollobás and Alex D Scott. Judicious partitions of bounded-degree graphs. Journal
of Graph Theory, 46(2):131–143, 2004.

9 Béla Bollobás and Alex D Scott. Max k-cut and judicious k-partitions. Discrete Mathem-
atics, 310(15):2126–2139, 2010.

10 Edouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Emeric Tourniaire. Multi-
parameter analysis for local graph partitioning problems: Using greediness for para-
meterization. Algorithmica, 71(3):566–580, 2015. URL: http://dx.doi.org/10.1007/
s00453-014-9920-6, doi:10.1007/s00453-014-9920-6.

11 Leizhen Cai. Parameterized complexity of cardinality constrained optimization problems.
Comput. J., 51(1):102–121, 2008. URL: http://dx.doi.org/10.1093/comjnl/bxm086,
doi:10.1093/comjnl/bxm086.

12 Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the
minimum node multiway cut problem. Algorithmica, 55(1):1–13, 2009.

13 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions.
SIAM J. Comput., 45(4):1171–1229, 2016.

14 Rajesh Hemant Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk,
and Michal Pilipczuk. Designing FPT algorithms for cut problems using randomized con-
tractions. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS
2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 460–469. IEEE Computer So-
ciety, 2012. URL: http://dx.doi.org/10.1109/FOCS.2012.29, doi:10.1109/FOCS.2012.
29.

15 Robert Crowston, Gregory Gutin, Mark Jones, and Gabriele Muciaccia. Maximum balanced
subgraph problem parameterized above lower bound. Theor. Comput. Sci., 513:53–64, 2013.

16 Robert Crowston, Mark Jones, and Matthias Mnich. Max-cut parameterized above the
edwards-erdős bound. Algorithmica, 72(3):734–757, 2015.

17 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed parameter tractable. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 323–332, 2014. URL:
http://doi.acm.org/10.1145/2591796.2591852, doi:10.1145/2591796.2591852.

18 Christopher S Edwards. Some extremal properties of bipartite subgraphs. Canad. J. Math,
25(3):475–483, 1973.

CVIT 2016

http://dx.doi.org/10.1007/s00453-014-9920-6
http://dx.doi.org/10.1007/s00453-014-9920-6
http://dx.doi.org/10.1007/s00453-014-9920-6
http://dx.doi.org/10.1093/comjnl/bxm086
http://dx.doi.org/10.1093/comjnl/bxm086
http://dx.doi.org/10.1109/FOCS.2012.29
http://dx.doi.org/10.1109/FOCS.2012.29
http://dx.doi.org/10.1109/FOCS.2012.29
http://doi.acm.org/10.1145/2591796.2591852
http://dx.doi.org/10.1145/2591796.2591852

23:14 Balanced Judicious Bipartition is FPT

19 Christopher S Edwards. An improved lower bound for the number of edges in a largest
bipartite subgraph. In Proc. 2nd Czechoslovak Symposium on Graph Theory, Prague, pages
167–181, 1975.

20 Michael Etscheid and Matthias Mnich. Linear kernels and linear-time algorithms for finding
large cuts. In 27th International Symposium on Algorithms and Computation, ISAAC 2016,
December 12-14, 2016, Sydney, Australia, pages 31:1–31:13, 2016. URL: http://dx.doi.
org/10.4230/LIPIcs.ISAAC.2016.31, doi:10.4230/LIPIcs.ISAAC.2016.31.

21 Gregory Gutin and Mark Jones. Parameterized algorithms for load coloring problem. In-
formation Processing Letters, 114(8):446–449, 2014.

22 Gregory Gutin and Anders Yeo. Note on maximal bisection above tight lower bound.
Information Processing Letters, 110(21):966–969, 2010.

23 Gregory Gutin and Anders Yeo. Constraint satisfaction problems parameterized above or
below tight bounds: A survey. In The Multivariate Algorithmic Revolution and Beyond -
Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, volume 7370
of Lecture Notes in Computer Science, pages 257–286. Springer, 2012.

24 John Haslegrave. Judicious partitions of uniform hypergraphs. Combinatorica, 34(5):561–
572, 2014.

25 Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is
fixed-parameter tractable. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 160–169, 2011.

26 Choongbum Lee, Po-Shen Loh, and Benny Sudakov. Judicious partitions of directed graphs.
Random Structures & Algorithms, 48(1):147–170, 2016.

27 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Al-
gorithms, 11(2):15:1–15:31, October 2014. URL: http://doi.acm.org/10.1145/2566616,
doi:10.1145/2566616.

28 Jie Ma and Xingxing Yu. On judicious bipartitions of graphs. Combinatorica, 36(5):537–
556, 2016.

29 Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values: Maxsat
and maxcut. Journal of Algorithms, 31(2):335–354, 1999.

30 Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing above or below
guaranteed values. J. Comput. Syst. Sci., 75(2):137–153, 2009.

31 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–
406, 2006.

32 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by
the size of the cutset. SIAM J. Comput., 43(2):355–388, 2014.

33 Matthias Mnich and Rico Zenklusen. Bisections above tight lower bounds. In Graph-
Theoretic Concepts in Computer Science - 38th International Workshop, WG 2012, Jeru-
salem, Israel, June 26-28, 2012, Revised Selcted Papers, volume 7551 of Lecture Notes in
Computer Science, pages 184–193. Springer, 2012.

34 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal de-
randomization. In 36th Annual Symposium on Foundations of Computer Science, Milwau-
kee, Wisconsin, 23-25 October 1995, pages 182–191. IEEE Computer Society, 1995. URL:
http://dx.doi.org/10.1109/SFCS.1995.492475, doi:10.1109/SFCS.1995.492475.

35 Saket Saurabh and Meirav Zehavi. (k, n−k)-max-cut: AnO∗(2k)-time algorithm and a poly-
nomial kernel. In LATIN 2016: Theoretical Informatics - 12th Latin American Symposium,
Ensenada, Mexico, April 11-15, 2016, Proceedings, pages 686–699, 2016. URL: http://dx.
doi.org/10.1007/978-3-662-49529-2_51, doi:10.1007/978-3-662-49529-2_51.

36 Alex D Scott. Judicious partitions and related problems. Surveys in combinatorics, 327:95–
117, 2005.

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.31
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.31
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.31
http://doi.acm.org/10.1145/2566616
http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.1109/SFCS.1995.492475
http://dx.doi.org/10.1109/SFCS.1995.492475
http://dx.doi.org/10.1007/978-3-662-49529-2_51
http://dx.doi.org/10.1007/978-3-662-49529-2_51
http://dx.doi.org/10.1007/978-3-662-49529-2_51

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:15

37 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based
approach. J. Comput. Syst. Sci., 82(3):488–502, 2016. URL: http://dx.doi.org/10.
1016/j.jcss.2015.11.008, doi:10.1016/j.jcss.2015.11.008.

38 Baogang Xu, Juan Yan, and Xingxing Yu. Balanced judicious bipartitions of graphs.
Journal of Graph Theory, 63(3):210–225, 2010.

39 Baogang Xu and Xingxing Yu. Judicious k-partitions of graphs. Journal of Combinatorial
Theory, Series B, 99(2):324–337, 2009.

40 Baogang Xu and Xingxing Yu. On judicious bisections of graphs. J. Comb. Theory, Ser.
B, 106:30–69, 2014.

CVIT 2016

http://dx.doi.org/10.1016/j.jcss.2015.11.008
http://dx.doi.org/10.1016/j.jcss.2015.11.008
http://dx.doi.org/10.1016/j.jcss.2015.11.008

23:16 Balanced Judicious Bipartition is FPT

A Omitted Proofs

A.1 Proof of Lemma 5
Let g : U → [k]0 be some (q, k)-unbreakable function. By the definition of a (q, k)-unbreakable
function, there exists i ∈ [k]0 such that

∑
j∈[k]0\i

|g−1(j)| ≤ q. There are (k+1) ways of choosing

such an index i,
q∑
l=0

(|U |
l

)
ways of choosing at most q elements that are not mapped to i, and

at most qk ways of partitioning this set of at most q elements into k parts. Thus, the total
number of such functions g is upper bounded by

q∑
l=0

(|U |
l

)
qk(k + 1). J

A.2 Proof of Theorem 6
Let AB-BJB(G,A,B, µ, k1, k2) be an instance of AB-BJB. Let C1, . . . , Cr be the con-
nected components of G. For all i ∈ [r], let Ai = A ∩ Ci and Bi = B ∩ Ci. Let
Ii = ABC-BJB(Ci, Ai, Bi, k1, k2). Let aJPi be the output table for the instance Ii, re-
turned by the algorithm of Theorem 7. For any j ∈ [r], let Gj = G[

⋃
i∈[j]

Ci]. Note that

G = Gr. Let us define a 4-dimensional binary table M in the following way. For all i ∈ [r],
µ′ ∈ [|V (G)|]0, l1 ∈ [k1]0 and l2 ∈ [k2]0, M[i, µ′, l1, l2] = 1 if and only if there exists a partition
(V1, V2) of V (Gi) such that (A ∩ Gi) ⊆ V1, (B ∩ Gi) ⊆ V2, |V1| = µ′ and for j ∈ {1, 2},
|E(G[Vj])| ≤ lj . Observe that AB-BJB(G,A,B, µ, k1, k2) is a YES-instance if and only if
M[r, µ, k1, k2] = 1. We now compute M[r, µ, k1, k2] recursively using the following recurrences.

M[1, µ′, l1, l2] = aJP1(µ′, l1, l2)

For all i ∈ {2, . . . , r}, µ′ ∈ [|V (G)|]0, l1 ∈ [k1]0 and l2 ∈ [k2]0,

M[i, µ′, l1, l2] =
∨

µ′=µ1+µ2

l1=l11+l21
l2=l12+l22

(M[i− 1, µ1, l11, l
1
2] ∧ aJPi[µ2, l21, l

2
2]),

where for all j ∈ {1, 2}, µj , lj1 and lj2 are non-negative integers.
Note that the time taken to compute M[r, µ, k1, k2] is at most (r · n2 · k2

1 · k2
2 · τ), where τ

is the time taken to solve an instance of ABC-BJB. Since from Theorem 7, an instance of
ABC-BJB can be solved in time 2kO(1) · nO(1) and r ≤ n, AB-BJB can be solved in time
2kO(1) · nO(1). J

A.3 Proof of Lemma 15
Let us prove the backward direction first. Let v ∈ {0, 1}k+1 be such that y[r, ∅,v, µ, l1, l2] = 1
and let Υ : V (G) → [k]0 be one of its witnessing coloring. Then, Definition 14 directly
implies that Υ̂v is a witnessing coloring for aJP[µ, l1, l2] = 1.

For the forward direction, let col : V (G) → {V1, V2} be a witnessing coloring for
aJP[µ, l1, l2]. Let X = E(G[col−1(V1)]) ∪ E(G[col−1(V2)]). Let C0, . . . , Cr be the con-
nected components of G \X. Since X ⊆ E(G) and |X| ≤ l1 + l2 ≤ k1 + k2 = k, we have
that the number of connected components r is upper bounded by k. For any i ∈ [r]0, let
(Pi = (P ∩ Ci), Qi = (Q ∩ Ci)) be a bipartition of Ci (recall that G is a connected bipartite
graph with fixed bipartition (P,Q)).

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:17

I Claim 3. For any i ∈ [r]0, either both Pi ⊆ col−1(V1) and Qi ⊆ col−1(V2) or both
Pi ⊆ col−1(V2) and Qi ⊆ col−1(V1).

Proof. Consider a bipartition (P ′i, Q′i) of Ci, where P ′i = col−1(V1) and Q′i = col−1(V2).
Since Ci is connected, from Proposition 1, either Pi ⊆ P ′i and Qi ⊆ Q′i, or Pi ⊆ Q′i and
Qi ⊆ P ′i. Hence the claim follows. �

Let us now construct a k-length binary string, v, as follows. For any i ∈ [r]0, v[i] = 0 if
and only if Pi ⊆ col−1(V1) and Qi ⊆ col−1(V2). For i ∈ {r + 1, . . . , k}, v[i] = 0.

Define Υ : V (G)→ [k]0 as follows. For any v ∈ V (G), Υ(v) = i if and only if v ∈ Ci.

I Claim 4. Υ̂v = col.

Proof. Consider some vertex v ∈ V (G). Denote Vj = col(v), i = Υ(v) and b = v[i], and note
that j ∈ {1, 2}, i ∈ [k]0 and b ∈ {0, 1}. We divide the argument into two cases corresponding
to whether v ∈ Pi or v ∈ Qi. Since v ∈ col−1(Vj), if v ∈ Pi, then by Claim 3, Pi ⊆ col−1(Vj)
and Qi ⊆ col−1(V3−j). Thus, by the construction of v, b = j − 1. Hence, by the definition of
Υ̂v, Υ̂v(v) = Vj . Similarly, if v ∈ Qi, then by Claim 3, Qi ⊆ col−1(Vj) and Pi ⊆ col−1(V3−j).
Thus, by the construction of v, b = 2− j. Hence, by the definition of Υ̂v, Υ̂v(v) = Vj .

Since the choice of v was arbitrary, by the definition of Υ̂v, we have that Υ̂v(v) = Vj . �

I Claim 5. For the binary string v constructed as above, the function Υ constructed above
is a witnessing coloring for y[r, ∅,v, µ, l1, l2] = 1.

Proof. Since Υ̂v = col, from the definition of col, we have that |Υ̂−1
v (V1)| = µ, A ⊆

Υ̂−1
v (V1), B ⊆ Υ̂−1

v (V2), and for all i ∈ {1, 2}, |E(G[Υ̂−1
v (Vi)])| ≤ li. Observe that⋃

i,j∈[k]0,i6=j
E(Υ−1(i),Υ−1(j)) = X. Therefore,

⋃
i,j∈[k]0,i6=j

E(Υ−1(i),Υ−1(j)) = E(G[Υ̂−1
v (V1)])∪

E(G[Υ̂−1
v (V2)]). Thus, Υ is a witnessing coloring for y[r, ∅,v, µ, l1, l2] = 1. �

This concludes the proof of the lemma. J

A.4 Proof of Lemma 16
If aHP[µ, l1, l2] = 1, let Υ : β(t)→ [k]0 be a witnessing coloring for aHP[µ, l1, l2] = 1. Then,
there exist µ =

∑
F∈E(H)

µF ,
∑

F∈E(H)
lF1 ≤ l1 and

∑
F∈E(H)

lF2 ≤ l2, such that for all F ∈ E(H),

fF (Υ|F , µF , lF1 , lF2) = 1. In particular, the following conditions hold.

1. Since for any type-1 hyperedge F , it holds that fF (Υ|F , µF , lF1 , lF2) = 1, we overall have
that Υσ ⊆ Υ, A ∩ β(t) ⊆ Υ̂−1

v (V1), B ∩ β(t) ⊆ Υ̂−1
v (V2) and∑

F is a type-1 hyperedge
µF = |Υ̂−1

v (V1) ∩ β(t)|.

2. Since for any type-2 hyperedge F and i ∈ {1, 2}, it holds that fF (Υ|F , µF , lF1 , lF2) = 1,
we overall have that

|E(G[Υ̂−1
v (Vi) ∩ β(t)])| ≤

∑
F is a type-2 hyperedge

lFi .

3. For any type-3 hyperedge F = σ(ti), since fF (Υ|F , µF , lF1 , lF2) = 1, we have that
Υ|F is (3k2, k)-unbreakable and y[ti,Υ|F , µF + µ′, lF1 + l′1, l

F
2 + l′2] = 1, where µ′ =

CVIT 2016

23:18 Balanced Judicious Bipartition is FPT

|Υ̂−1
v (V1) ∩ F |, l′1 = |{(u, v) ∈ E(G[σ(ti)])|Υ̂v(u) = Υ̂v(v) = V1}| and l′2 = |{(u, v) ∈

E(G[σ(ti)])|Υ̂v(u) = Υ̂v(v) = V2}|.
We thus derive that there exists a witnessing coloring Υi : γ(ti)→ [k]0 for the condition
y[ti,Υ|F , µF + µ′, lF1 + l′1, l

F
2 + l′2] = 1. Specifically, the following conditions are satisfied.

a. Υi extends Υ|F .
b. |Υ̂i

−1
v (V1)| = µF + µ′.

c. A ∩ γ(ti) ⊆ Υ̂i
−1
v (V1) and B ∩ γ(ti) ⊆ Υ̂i

−1
v (V2).

d. |E(G[Υ̂i
−1
v (V1) ∩ γ(ti)])| ≤ lF1 + l′1, and |E(G[Υ̂−1

v (V2) ∩ γ(ti)])| ≤ lF2 + l′2.
e.

⋃
`,j∈[k]0, 6̀=j

E(Υi−1(`),Υ−1(j)) = E(G[Υ̂i
−1
v (V1)]) ∪ E(G[Υ̂i

−1
v (V2)]).

Keeping the above items in mind, we proceed to identify a witnessing coloring for y[t,Υσ,v, µ,
l1, l2] = 1. We construct such a coloring Υ′ : γ(t) → [k]0 as follows. For all v ∈ γ(t), if
v ∈ β(t), then define Υ′(v) = Υ(v), and otherwise there exists a unique child ti of t such that
v ∈ γ(ti), in which case we define Υ′(v) = Υi(v). For the sake of clarity, let us extract the
required argument to the proof of a separate claim.

I Claim 6. The aforementioned Υ′ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2] = 1.

Proof. First, note that by Item 1, we have that Υσ ⊆ Υ and therefore Υσ ⊆ Υ′. Let us now
verify that all of the other conditions specified in Definition 14 are satisfied.

Let us first prove Condition 1. To this end, we observe that by Items 1, 3a and 3b, we
have that the three following equalities hold.
|Υ̂′
−1
v (V1)| = |Υ̂′

−1
v (V1) ∩ β(t)|+

∑
ti is a child of t in T

|Υ̂′
−1
v (V1) ∩ (γ(ti) \ σ(ti))|.

|Υ̂′
−1
v (V1) ∩ β(t)| = |Υ̂−1

v (V1) ∩ β(t)| =
∑

F is a type-1 hyperedge
µF .

For every child ti of t, |Υ̂′
−1
v (V1) ∩ (γ(ti) \ F)| = µF , where F = σ(ti).

Thus, since
∑

F is a type-2 hyperedge
µF = 0, we conclude that |Υ̂′

−1
v (V1)| =

∑
F∈E(H)

µF = µ.

Next, we prove Condition 2. However, by Items 1 and 3c, we directly deduce that both
A ∩ γ(t) ⊆ Υ̂′

−1
v (V1) and B ∩ γ(t) ⊆ Υ̂′

−1
v (V2) as required.

We now turn to prove Condition 3. In light of Item 3a, note that
|E(G[Υ̂′

−1
v (V1)])| = |E(G[Υ̂′

−1
v (V1) ∩ β(t)])|+

∑
ti is a child of t in T

|E(G[Υ̂′
−1
v (V1) ∩ γ(ti)])|

−
∑

ti is a child of t in T
|E(G[Υ̂′

−1
v (V1) ∩ σ(ti)])|.

Now, observe that by Items 2, 3a and 3d, the two following equations hold.
|E(G[Υ̂′

−1
v (V1) ∩ β(t)])| = |E(G[Υ̂−1

v (V1) ∩ β(t)])| ≤
∑

F is a type-2 hyperedge
lF1 .

For every child ti of t, |E(G[Υ̂′
−1
v (V1)∩ γ(ti)])| = lF1 + |E(G[Υ̂′

−1
v (V1)∩ σ(ti)])|, where

F = σ(ti).
Since

∑
F is a type-1 hyperedge

lF1 = 0, we conclude that

|E(G[Υ̂′
−1
v (V1)])| ≤

∑
F∈E(H)

lF1 ≤ l1.

Similarly, we derive that |E(G[Υ̂′
−1
v (V2)])| ≤

∑
F∈E(H)

|lF2 | ≤ l2.

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:19

Finally, we prove Condition 4. In the first direction, consider some edge e ∈ E(G[Υ̂′
−1
v (V1)])

∪E(G[Υ̂′
−1
v (V2)]). Let us denote e = {u, v}, and observe that Υ̂′v(v) = Υ̂′v(u). If u, v ∈

γ(ti) for some child ti of t, then by Item 3e, we have that e ∈
⋃

i,j∈[k]0,
i6=j

E(Υ′−1(i),Υ′−1(j)).

Otherwise, u, v ∈ β(t), and thus e is some type-2 hyperedge F . Since fF (Υ|F , µF , lF1 , lF2) =
1, the definition of fF (Υ|F , µF , lF1 , lF2) directly implies that Υ(v) 6= Υ(v), and therefore
again e ∈

⋃
i,j∈[k]0,
i 6=j

E(Υ′−1(i),Υ′−1(j)).

In the other direction, consider some edge e ∈
⋃

i,j∈[k]0,
i6=j

E(Υ′−1(i),Υ′−1(j)). Let us

denote e = {u, v}, and observe that Υ′(v) 6= Υ′(u). If u, v ∈ γ(ti) for some child ti

of t, then by Item 3e, we have that e ∈ E(G[Υ̂′
−1
v (V1)]) ∪ E(G[Υ̂′

−1
v (V2)]). Otherwise,

u, v ∈ β(t), and thus e is some type-2 hyperedge F . Since fF (Υ|F , µF , lF1 , lF2) = 1, the
definition of fF (Υ|F , µF , lF1 , lF2) directly implies that Υ̂′v(v) = Υ̂′v(u), and therefore
again e ∈ E(GΥ̂′

−1
v (V1)]) ∪ E(G[Υ̂′

−1
v (V2)]).

Thus, we have proved that Υ′ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2]. Moreover, Υ′,
which extends Υ, is the desired function for the second part of the lemma. �

This concludes the proof of the lemma. J

A.5 Proof of Lemma 17

Let us verify that each of the three properties of a favorable instance is satisfied.

Local Unbreakability: Let us choose an arbitrary F ∈ E(H). If F is a type-1 or a
type-2 hyperedge, then since |F | ≤ 2, we have that local unbreakability is trivially satisfied.
Otherwise, if F is a type-3 hyperedge, then the satisfaction of local unbreakability directly
follows from the construction of fF .
Connectivity: Choose an arbitrary F ∈ E(H) along with a tuple (Γ, µ, l1, l2) in the
domain of fF such that fF (Γ, µ, l1, l2) = 1. If F is a type-1 hyperedge, then connectivity
trivially holds. If F is a type-2 hyperedge, then connectivity follows from the construction
of fF . Indeed, to see this, let us denote F = {u, v}. Then, if Γ(u) 6= Γ(v), by the second
and last cases in the definition of fF , we deduce that Γ̂v(u) = Γ̂v(v), else we contradict
the supposition that fF (Γ, µ, l1, l2) = 1. Then, connectivity directly follows from the
third and fourth cases.
Now, suppose that F = σ(t̂) is a type-3 hyperedge, and say Γ : F → [k]0 is such that there
exist i, j ∈ [k]0, i 6= j, satisfying |Γ−1(i)| > 0 and |Γ−1(j)| > 0. We need to show that
l1 + l2 ≥ 1. Since fF (Γ, µ, l1, l2) = 1, it holds that y[t̂,Γ, µ+ µ′, l1 + l′1, l2 + l′2] = 1, where
µ′, l′1 and l′2 are as defined at the construction of fF . Let Υ : γ(t̂)→ [k]0 denote some
witnessing coloring for this condition. Since (T, β) is a highly connected tree decomposition,
the Property 1 of such a decomposition implies that G∗ = G[γ(t̂)]\E(G[σ(t̂)]) is connected
and that every vertex in σ(t̂ has at least one vertex in V (G∗) that is its neighbor in
G[γ(t̂]. In particular, every two vertices in σ(t̂) are connected by a path in G∗ (observe
that V (G∗) = γ(t̂) as we have only edges are discarded when G[γ(t̂)] is modified to be
G∗). Let u ∈ Γ−1(i) and v ∈ Γ−1(j). Note that u 6= v and i 6= j. Since u and v are

CVIT 2016

23:20 Balanced Judicious Bipartition is FPT

connected by a path in G∗, we derive that G∗ has an edge e such that

e ∈

 ⋃
c,d∈[k]0,c 6=d

E(Υ−1(c),Υ−1(d))

 \ E(G[σ(t′)]).

Recall that
⋃

c,d∈[k]0,c6=d

E(Υ−1(c),Υ−1(d)) = E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)]). Therefore,

we have that e ∈ (E(G[Υ̂−1
v (V1)]) ∪E(G[Υ̂−1

v (V2)])) \E(G[σ(t̂)]). Thus, by the inductive
hypothesis, l1 + l2 ≥ 1.
Global Unbreakability: Suppose that aHP[µ, l1, l2] = 1. Then, by Lemma 18, there
exists Υ′ : γ(t)→ [k]0 satisfying the properties listed in that lemma. From here, we get
that

∑
i,j∈[k]0,i<j

|E(Υ′−1(i),Υ′−1(j))| ≤ l1 + l2 ≤ k1 + k2 ≤ k. We argue that Υ′|β(t) is a

witnessing coloring for global unbreakability, that is, this function is (q, k)-unbreakable.
In this context, we remind that q = (η + k)k. To prove our argument, we first prove the
following claim.
I Claim 7. Suppose that there exists i ∈ [k]0 such that |Υ′−1(i) ∩ β(t)| > η + k. Then,∑
j∈[k]0,i6=j

|Υ′−1(j) ∩ β(t)| ≤ η + k.

Proof. Suppose that the claim is false. Then, both |Υ′−1(i) ∩ β(t)| > η + k and∑
j∈[k]0,i6=j

|Υ′−1(j) ∩β(t)| > η + k. Thus,

(
X = Υ′−1(i) ∩ β(t), Y =

(⋃
j∈[k]0,i6=j

Υ′−1(j) ∩ β(t)
)
∪ δ(Υ′−1(i) ∩ β(t))

)

is a separation of order at most k of G[γ(t)] as we have already shown that∑
i,j∈[k]0,i≤j

|E(Υ′−1(i),Υ′−1(j))| ≤ l1 + l2 ≤ k1 + k2 ≤ k.

Moreover, |(X \ Y) ∩ β(t)| > η and |(Y \X) ∩ β(t)| > η, which contradicts that β(t) is
(η, k)-unbreakable in G[γ(t)]. �

Thus, if there exist i ∈ [k]0 as defined in Claim 7, then we are done. That is, we
conclude that Υ′|β(t) is a (q, k)-unbreakable. Otherwise, for all i ∈ [k]0, it holds that
|Υ′−1(i)| ≤ η+k. In particular, for any i ∈ [k]0,

∑
j∈[k]0,i6=j

|Υ′−1(j)| ≤ (η+k)k = q. Thus,

we again conclude that Υ′|β(t) is (q, k)-unbreakable. J

A.6 Proof of Lemma 18
Fix some µ ∈ [n], l1 ∈ [k1]0 and l2 ∈ [k2]0 such that y[t,Υσ,v, µ, l1, l2] = 1. Our objective is to
show that aHP[µ, l1, l2] = 1. To this end, let Υ be a witnessing coloring for y[t,Υσ,v, µ, l1, l2] =
1. We would like to prove that Υ|β(t) is a witnessing coloring for aHP[µ, l1, l2] = 1, which
would complete the proof of the lemma. To do so, we proceed as follows.

First, for any hyperedge F ∈ E(H), let us define µF , l1F and l2F as follows.

If F is a type-1 hyperedge: Set µF = 1 if Υ̂v(F) = V1, and µF = 0 otherwise. Set
lF1 = 0 and lF2 = 0.

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:21

If F = {u, v} is a type-2 hyperedge: Set µF = 0. If Υ̂v(u) 6= Υ̂v(v) and Υ(u) = Υ(v),
set l1F = l2

F = 0. Otherwise, if Υ̂v(u) = Υ̂v(v) = V1, set l1F = 1 and l2
F = 0, and

if Υ̂v(u) = Υ̂v(v) = V2, set l1F = 0 and l2F = 1. The case where Υ̂v(u) 6= Υ̂v(v) and
Υ(u) 6= Υ(v) cannot arise. Indeed, since Υ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2] =
1, we have that

⋃
i,j∈[k]0,i6=j

E(Υ−1(i),Υ−1(j)) = E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)]).

If F is a type-3 hyperedge: Denote F = σ(t̂), where t̂ is a child of t in T. Set
µF = |Υ̂−1

v (V1)∩ (γ(t̂) \σ(t̂))|, lF1 = |E(G[Υ̂−1
v (V1)∩ γ(t̂)])| − |E(G[Υ̂−1

v (V1)∩σ(t̂)])| and
lF2 = |E(G[Υ̂−1

v (V2) ∩ γ(t̂)])| − |E(G[Υ̂−1
v (V2) ∩ σ(t̂)])|.

Let us proceed by proving three claims that would together imply that Υ|β(t) is a witnessing
coloring for aHP[µ, l1, l2] = 1.

I Claim 8. Let t̂ be a child of t in T , and let i ∈ [k]0 be such that |Υ−1(i) ∩ σ(t̂)| > 3k.
Then,

∑
j∈[k]0,i6=j

|Υ−1(j) ∩ σ(t̂)| ≤ 3k.

Proof. Suppose, by way of contradiction, that the claim is false. That is, we have that
both |Υ−1(i) ∩ σ(t̂)| > 3k and

∑
j∈[k]0,i6=j

|Υ−1(j) ∩ σ(t̂)| > 3k. Consider the separation

(X,Y) of G[γ(t)], where X = Υ−1(i) and Y = (γ(t) \ Υ−1(i)) ∪ δ(Υ−1(i)). Observe that
X ∩ Y = δ(Υ−1(i)). Since Υ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2], we have that⋃

i,j∈[k]0,i6=j

E(Υ−1(i),Υ−1(j)) = E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)])

and |E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)])| ≤ l1 + l2 ≤ k1 + k2 ≤ k. Therefore, |δ(Υ−1(i))| ≤ k,
and thus the order of separation (X,Y) is at most k. Moreover, since |Υ−1(i) ∩ σ(t̂)| > 3k,
we have that |(X \Y)∩σ(t̂)| > 3k− k = 2k, and since

∑
j∈[k]0,i6=j

|Υ−1(j)∩σ(t̂)| > 3k, we also

have that |(Y \X) ∩ σ(t̂)| > 3k. This implies that σ(t̂) is not (2k, k)-unbreakable in G[γ(t)],
which mean that σ(t̂) is not (2k, k)-unbreakable in G[γ(parent(t̂)]. This is a contradiction to
the fact that (T, β) is a highly connected tree decomposition—specifically, it should satisfy
Property 3 in Theorem 8. �

Having Claim 8 at hand, we now verify that each function fF assigns 1 to the required tuple.

I Claim 9. For any F ∈ E(H), fF (Υ|F , µF , lF1 , lF2) = 1.

Proof. First, note that since Υ be a witnessing coloring for y[t,Υσ,v, µ, l1, l2] = 1, we
have that Υ ⊆ Υσ, A ∩ γ(t) ⊆ Υ̂−1

v (V1) and B ∩ γ(t) ⊆ Υ̂−1
v (V2). Thus, from the con-

struction of a type-1 hyperedge F and the corresponding function fF with respect to
HP (k1, k2, n, η, q,H, (fF)F∈E(H)), it is clear that fF (Υ|F , µF , lF1 , lF2) = 1. Second, suppose
F is a type-2 hyperedge. The specifications of fF , together with our definition of µF , lF1 and
lF2 , directly implies that fF (Υ|F , µF , lF1 , lF2) = 1.

Third, suppose that F is a type-3 hyperedge, and denote F = σ(ti) for some ti that is a
child of t in T . Note that y[ti,Υ|F ,v, µF+µ′, lF1 +l′1, lF2 +l′2] = 1 because Υ|γ(ti) is a witnessing
coloring for this equality, where µ′ = |Υ̂−1

v (V1) ∩ σ(t̂)|, l′1 = |E(G[Υ̂−1
v (V1) ∩ σ(t̂)])| and

l′2 = |E(G[Υ̂−1
v (V2)∩ σ(t̂)])|. We now need to show that Υ|F is (3k2, k)-unbreakable, as then

we would be able to conclude that fF (Υ|F , µF , lF1 , lF2) = 1. By Claim 8, if there exists i ∈ [k]0
such that |Υ−1(i)∩σ(t̂)| > 3k, then we deduce that Υ|

σ(̂t) is (3k2, k)-unbreakable. Otherwise,
for all i ∈ [k]0, |Υ−1(i) ∩ σ(t̂)| ≤ 3k. Hence, for any i ∈ [k]0,

∑
j∈[k]0,i6=j

|Υ−1(j) ∩ σ(t̂)| ≤ 3k2.

Thus, we have proved that Υ|F is (3k2, k)-unbreakable. �

CVIT 2016

23:22 Balanced Judicious Bipartition is FPT

Finally, we present our third claim.

I Claim 10. µ =
∑

F∈E(H)
µF ,

∑
F∈E(H)

lF1 ≤ l1 and
∑

F∈E(H)
lF2 ≤ l2.

Proof. By the property of (T, β) being a tree decomposition, for any two children ti and
tj of t in T , γ(ti) ∩ γ(tj) ⊆ β(t), and also from definition, σ(ti) ⊆ β(t) for any child ti of t.
Now, note that µ = |Υ̂−1

v (V1)|. Thus, to show that µ =
∑
F∈E(H) µ

F , it is sufficient to show
that |Υ̂−1

v (V1)| =
∑
F∈E(H) µ

F . However, keeping the above argument in mind, the claim
that |Υ̂−1

v (V1)| =
∑
F∈E(H) µ

F directly follows from the satisfaction of the three following
conditions. We remark that the satisfaction of these conditions is a direct consequence of
the supposition that Υ be a witnessing coloring for y[t,Υσ,v, µ, l1, l2] = 1, together with our
definition of the values µF , lF1 and lF2 .
1. For any type-1 hyperedge F , we have that µF = 1 only if Υ̂v(F) = V1. In particular,∑

F∈E(H) of type-1
µF = |Υ̂−1

v (V1) ∩ β(t)|.

2. For any type-2 hyperedge F , µF = 0. Thus,
∑

F∈E(H) of type-2
µF = 0.

3. For any type-3 hyperedge F , µF = |Υ̂−1
v (V1) ∩ (γ(ti) \ σ(ti))|.

Similarly, let us observe that |E(G[Υ̂−1
v (V1)])| ≤ l1. Thus, to show that

∑
F∈E(H) l

F
1 ≤ l1,

it is sufficient to show that
∑
F∈E(H) l

F
1 ≤ |E(G[Υ̂−1

v (V1)])|. However, the latter inequality
that directly follows from the satisfaction of all of the following conditions.

1. For any type-1 hyperedge F , lF1 = 0. Thus,
∑

F∈E(H) of type-1
lF1 = 0.

2. For any type-2 hyperedge F = {u, v}, l1F = 1 only if Υ̂v(u) = Υ̂v(v) = V1. In particular,∑
F∈E(H) of type-1

lF1 = |E(G[Υ̂−1
v (V1)]) ∩ E(G[β(t)])|.

3. For any type-3 hyperedge F , |E(G[Υ̂−1
v (V1) ∩ (γ(ti) \ σ(ti))])| ≤ lF1 .

Symmetrically,
∑
F∈E(H) l

F
2 ≤ l2. This concludes the proof of the claim. �

As we have proved Claims 9 and 10, we derive that Υ|β(t) is a witnessing coloring for
aHP[µ, l1, l2] = 1. This concludes the proof of the lemma. J

B Solving Favorable Instances of HP

Recall the problem statement of Hypergraph Painting (HP) and the definition of a
favourable instance of HP from Section 5. In this appendix, we prove Theorem 12. For this
purpose, let HP (k1, k2, b, d, q,H, (fF)F∈E(H)) be a favorable instance of HP. We aim to show
how to compute aHP[µ, l1, l2] in time 2O(min(k,q) log(k+q))dO(k2)mO(1) for an arbitrarily fixed
choice of 0 ≤ µ ≤ b, 0 ≤ l1 ≤ k1 and 0 ≤ l2 ≤ k2. Since there are only (b+ 1)(k1 + 1)(k2 + 1)
choices for such µ, l1 and l2, we would thus indeed derive the correctness of Theorem 12.

B.1 Classifying Hyperedges
We begin by analyzing the structure of the input instance HP (k1, k2, b, d, q,H, (fF)F∈E(H))
under the assumption that aHP[µ, l1, l2] = 1. Recall that k = k1 + k2. Then, by the property
of global unbreakability, there exists a witnessing coloring Υ : V (H) → [k]0 such that∑
j∈[k]0,j 6=i

|Υ−1(j)| ≤ q for some index i ∈ [k]0. Without loss of generality, suppose that i = 0

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:23

is such an index, that is,
∑
j∈[k] |Υ−1(j)| ≤ q. In the forthcoming arguments, we aim to

elucidate the behavior of the function that is the restriction of the witnessing coloring Υ
with respect to each hyperedge of the hypergraph H. As we see later, we may not be able
to find the restriction of Υ on every hyperedge, but we would be able to assign a set of
colorings to each hyperedge and prove that one of them is exactly the restriction of Υ to that
hyperedge. We will then use this information together with dynamic programming procedures
to compute aHP[µ, l1, l2]. The difficulty lies in the fact that if the set of colorings (with
the above-mentioned property) that we would like to have with respect to each hyperedge
is arbitrary, the efficiency of our dynamic programming based procedures would not be
guaranteed. More precisely, at any given point of the computation, when we choose some
coloring for a specific hyperedge using the respective set of colorings of that hyperedge, we
would like to be able to automatically assume that this coloring together with all previously
chosen colorings should form one coherent coloring that is compatible with a global witnessing
coloring. In order to achieve such a property, we perform several phases of color coding of the
hypergraph (here, these phases of color coding are hidden under a layer of derandomization
tools). These phases would exploit the properties of a favourable instance, and eventually
highlight a “nice” structure that would help us achieve our goal.

To proceed with the implementation of the above-mentioned idea, we first categorize
the hyperedges of H into the following types, based on the witnessing coloring Υ. In this
context, we remind that the notation f(A′) = b indicates that for all a ∈ A′, it holds that
f(a) = b (see Section 2).

Let Eb = {F ∈ E(H) : Υ(F) = 0}. Here, ‘b’ stand for big.
For each i ∈ [k], let Esi

= {F ∈ E(H) : Υ(F) = i}. Here, ‘s’ stands for small.
Let Em = {F ∈ E(H) : there exist u, v ∈ F such that Υ(u) 6= Υ(v)}. Here, ‘m’ stands
for multichromatic.

Observe that each hyperedge F ∈ E(H) belongs to exactly one of the sets Eb, Em, Es1 , . . . ,

Esk
. Furthermore, let E′si

denote the edge set of some arbitrary spanning forest of the
hypergraph on the vertex set V (H) and the edge set Esi

. Let Es =
⋃
i∈[k]E

′
si

denote the
union of these edge sets. Since we are working with a favourable instance of HP, we would
see (in Lemmas 19 and 20) that the sizes of the sets Es and Em can be upper bounded by
q and k, respectively. We exploit these bounds to highlight the hyperedges in Em and Es
(Lemma 24) efficiently. In addition to this, as we shall see in Lemma 21, the total number of
possible restrictions of Υ on any hyperedge can also bounded effectively. Thus, we can not
only highlight the hyperedges in Em and Es, but we can also guess the restrictions of Υ to
these hyperedges. We remark that since we aim to solve a favourable instance of HP in time
that is proportional to a single exponential function of q, we do not guess the restriction of
Υ to the hyperedges of Es straightaway (as |Es| ≤ q from Lemma 19). The proof of Lemma
24 would capture the idea of the performance of highlighting and guessing. As one would
expect, this highlighting does concludes our arguments, as it does not just highlight the
hyperedges in Em and Es, but also some hyperedges from Eb. We deal with the inherent
challenges of handling such a “messy picture” later in our proof.

I Lemma 19. |Es| ≤ q.

Proof. Recall that for each i ∈ [k], we defined E′si
as the edge set of a spanning forest of

the hypergraph with the vertex set V (H) and the edge set Esi
. Hence, by this definition,

|E′si
| ≤ |Υ−1(i)|. Now, recall that since Υ witnesses the global unbreakability property, we

assumed w.l.o.g. that
∑
i∈[k] |Υ−1(i)| ≤ q. We thus have that

∑
i∈[k] |E′si

| ≤ q. Therefore,
|Es| ≤ q. J

CVIT 2016

23:24 Balanced Judicious Bipartition is FPT

I Lemma 20. |Em| ≤ k.

Proof. Since aHP[µ, l1, l2] = 1, for all F ∈ E(H) there exist µF , lF1 and lF2 such that
fF (Υ|F , µF , lF1 , lF2) = 1. Hence, the connectivity property implies that for each F ∈ Em,
we have that lF1 + lF2 ≥ 1. However,

∑
F∈E(H) l

F
1 + lF2 ≤ l1 + l2 ≤ k1 + k2 = k. Thus,

|Em| ≤ k. J

B.2 Introducing Good Assignments
Let us first note that by Lemma 5, for any hyperedge F ∈ E(H), the number of (3k2, k)-
unbreakable functions (that we call (3k2, k)-unbreakable colorings) from F to [k]0 is at most

α =
3k2∑
l=1

(
d
l

)
· (3k2)k · (k + 1) = dO(k2). For each hyperedge F , let us arbitrarily order all

possible (3k2, k)-unbreakable colorings. For each i ∈ [α], let λF,i denote the i-th such coloring.
If for an heperedge F , the number of such colorings is strictly smaller than α, then we extend
its list of possible colorings to be of size α by letting some colorings be present multiple times.
Thus, for each F ∈ E(H) and i ∈ [α], we ensure λF,i is well-defined.

I Lemma 21. For any F ∈ E(H), there exists i ∈ [α] such that Υ|F = λF,i.

Proof. Since Υ is a witnessing coloring for aHP[µ, l1, l2] = 1, we have that for any F ∈ E(H)
there exist µF , lF1 and lF2 such that fF (Υ|F , µF , lF1 , lF2) = 1. Since the property of local
unbreakability is then enforced by the definition of fF , we have that Υ|F is a (3k2, k)-
unbreakable coloring. Since {λF,1, . . . , λF,α} is contains all possible (3k2, k)-unbreakable
colorings from F to [α], there exists i ∈ [α] such that Υ|F = λF,i. J

Here, we are interested in assignments that are functions associating each hyperedge
F ∈ E(H) with a coloring λF,i. Let us proceed by defining which assignments would be
useful for us to have at hand.

I Definition 22. An assignment p : E(H) → [α]0 is said to be a good assignment if the
following conditions hold.
1. For all F ∈ Es, p(F) = 0.
2. For all F ∈ Em, p(F) = i > 0 and Υ|F = λF,i.

To employ coloring coding, we first mention the required derandomization tools.

I Proposition 4 (Lemma 1.1, [14]). Given a set U of size n and y, z ∈ [n]0, we can construct in
time O(2O(min(y,z) log(y+z))n logn) a family F of at most O(2O(min(y,z) log(y+z)) logn) subsets
of U , such that the following holds: for all sets Y,Z ⊆ U such that Y ∩ Z = ∅, |Y | ≤ y and
|Z| ≤ z, there exists a set S ∈ F with Y ⊆ S and Z ∩ S = ∅.

I Definition 23 ((N, r)-perfect family). An (N, r)-perfect family is a family of functions from
[N] to [r], such that for any subset X ⊆ [N] of size r, there exists a function in the family
that is injective on X.

I Proposition 5 ([34]). An (N, r)-perfect family of size O(errO(log r) logN) can be computed
in time O(errO(log r)N logN).

We are now ready to present our color coding phases.

I Lemma 24. There exists a set A of assignments from E(H) to [α]0, such that |A| ≤
2O(min(k,q) log(k+q)) · dO(k2) · log2|E(H)| and there exists a good assignment in A. Moreover,
such a set A is computable in time O(2O(min(k,q) log(k+q)) · dO(k2) · |E(H)|O(1)).

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:25

Proof. We start by defining three several families, which would guide us through the
construction of A. For U = E(H), y = k and z = q, let F = {S1, . . . , Sν} be the family of
size ν = 2O(min(k,q) log(k+q)) log |E(H)| obtained by calling the algorithm of Proposition 4.
For each j ∈ [ν], let Pj be a (|Sj |, k)-perfect family of size at most ζ = ekkO(log k) log |Sj | =
ekkO(log k) log |E(H)| computed by the algorithm of Proposition 5. Let Q be the family of
all possible functions from [k] to [α]. Observe that |Q| = αk.

For each set Sj ∈ F , function κ ∈ Pj and function κ0 ∈ Q, let p[Sj , κ, κ0] : E(H)→ [α]0
be defined as follows.

p[Sj , κ, κ0](F) =
{

0, if F ∈ Sj
κ0(κ(F)) otherwise

Let A = {p[Sj , κ, κ0] : Sj ∈ F , κ ∈ Pj , κ0 ∈ Q}. We claim that there exists a good
assignment in A. Since |Em| ≤ k (from Lemma 20) and |Es| ≤ q (from Lemma 19), from
Proposition 4 there exists Sj ∈ F such that Em ⊆ Si and Es ∩ Sj = ∅. By Proposition 5,
there exists a function κ ∈ Pj which is injective on Em. Let Em = {F1, . . . , Fc} where c ≤ k.
Without loss of generality, κ(Ey) = y for all y ∈ [c]. Since Q contains all possible functions
from [k] to [α], and for each F ∈ Em there exists i ∈ [α] such that Υ|F = λF,i (from Lemma
21), there exists κ0 ∈ Q such that for each F ∈ Em, Υ|F = λF,κ0(κ(F)). Moreover, since
Es ∩ Sj = ∅, we have that p[Sj , κ, κ0] = 0. Thus, p[Sj , κ, κ0] ∈ A is a good assignment.

Recall that α = dO(k2). Now, as we have upper bounded ν and ζ, we observe that
|A| ≤ νζαk = 2O(min(k,q) log(k+q))ekkO(log k)dO(k2)log2|E(H)|. Thus, the size of A is upper
bounded by 2O(min(k,q) log(k+q)) · dO(k2) · log2|E(H)|.

The time taken to compute A is proportional to the time taken to compute F ,Pj for
each j ∈ {ν} and Q. By Propositions 4 and 5, we thus derive that the running time is upper
bounded O(2O(min(k,q) log(k+q)) · dO(k2) · |E(H)|O(1)). J

The algorithm we design to compute aHP[µ, l1, l2] first constructs the set A of Lemma
24. Observe that this computation can be done regardless of whether aHP[µ, l1, l2] = 1 or
aHP[µ, l1, l2] = 0. (We only use the supposition that aHP[µ, l1, l2] = 1 to analyze structural
properties of an input instance satisfying this condition.) Next, the algorithm branches on
all possible assignments in A. By Lemma 24, assuming that aHP[µ, l1, l2] = 1, we know that
there exists at least one assignment from E(H) to [α]0 that is good. Henceforth, we assume
that we currently consider a branch that corresponds to a good assignment, denoted by
p : E(H)→ [α]0. Thus, we would like to show that we correctly determine at the current
branch that aHP[µ, l1, l2] = 1. (If it were the case that aHP[µ, l1, l2] = 0, it would also be clear
from our arguments that we would not determine that aHP[µ, l1, l2] = 1, which would overall
imply that no branch determines that this condition holds, and hence we would eventually
decide that aHP[µ, l1, l2] = 0.)

B.3 Associating the Graph Lp with an Assignment p

For our assignment p : E(H) → [α]0, let us now construct an undirected simple graph Lp
with V (Lp) = V (H). For each F ∈ E(H) such that p(F) = 0, make F a clique in Lp. We
say that the edges of this clique are the edges that correspond to the hyperedge F . For any
F ∈ E(H) such that p(F) = i > 0, for each j ∈ [k]0, make the set λF,i−1(j) a clique in Lp.
We say that the edges of all such cliques are the edges that correspond to the hyperedge F .
Since we want Lp to be a simple graph, between any two vertices of Lp we retain at most
one copy of the edge between them (if one exists). If a deleted copies of some edge e in Lp
corresponds to some hyperedge F , then in the simple graph the retained copy of that edge e

CVIT 2016

23:26 Balanced Judicious Bipartition is FPT

is the one that is said to correspond to that hyperedge F (even if we originally added the
retained copy of e due to a different hyperedge). Note that it may thus be the case that one
edge in Lp corresponds to to seversal hyperedges in E(H).

We proceed by analyzing the connected components of Lp. Informally, we first argue that
every connected component behaves as a single unit with respect to Υ.

I Lemma 25. Let D be any connected component of Lp. Then, Υ(D) = i for some i ∈ [k]0,
that is, all the vertices in D are assigned the same color by Υ.

Proof. For any F ⊆ E(H), let Lp[F] be the simple graph on the same vertex set as Lp,
whose edge set contains only those edges of Lp that correspond to some hyperedge in F .
Observe that Lp[E(H)] = Lp. Moreover, observe that if a set of vertices is connected in
Lp[F] then it is also connected in Lp[F ′] for any F ′ ⊇ F .

Let E(H) = {F1, . . . , Fr}. Moreover, for any j ∈ [r], denote Fj =
j⋃
c=1

Fc. Let us prove

by induction on j that for each component D of Lp[Fj], we have that Υ(D) = i for some
i ∈ [k]0. The proof of this claim would conclude the proof of the lemma, as by setting j = r,
we thus derive that for each component D of Lp[Fr] = Lp, we have that Υ(D) = i for some
i ∈ [k]0. Hence, we next focus only on the proof of the claim.

To prove the base case, where j = 1, consider the graph Lp[F1]. If F1 6∈ Em, then
Υ(F1) = i for some i ∈ [k]0 (by the definition of Em). Hence, for each connected component
D of Lp[F1], Υ(D) = i for some i ∈ [k]0. Otherwise, F1 ∈ Em. In this case, let p(F1) = s > 0.
Since p is a good assignment, λF1,s = Υ|F1 . Since each component D of Lp[F1] is either an
isolated vertex or λ−1

F1,s
(i) for some i ∈ [k]0, we conclude that Υ(D) = i for some i ∈ [k]0.

We now suppose that j ≥ 2. By induction hypothesis, for each connected component D
of Lp[Fj−1], we have that Υ(D) = i for some i ∈ [k]0. Let us now examine the graph Lp[Fj]
and the hyperedge Fj . Note that Fj = Fj \ Fj−1. If Fj 6∈ Em, then Υ(Fj) = i for some
i ∈ [k]0 (from the definition of Em). Let D be the collection of every connected components
of Lp[Fj−1] which intersects Fj . Then, the definition of Lp and the inductive hypothesis
directly imply that Υ(

⋃
D) = i for some i ∈ [k]0. Thus, by the inductive hypothesis, for

each connected component D of Lp[Fj], we have that Υ(D) = i for some i ∈ [k]0. Otherwise,
Fj ∈ Em. Then, denote p(F1) = s > 0. Since p is a good assignment, λF1,s = Υ|F1 . For
each i ∈ [k]0, let Di be the collection of all connected components of Lp[Fj−1] that intersect
λ−1
Fj ,s

(i). Then, the definition of Lp and the inductive hypothesis directly imply Υ(Di) = i.
Hence, by the inductive hypothesis, for each connected component D of Lp[Fj], we have that
Υ(D) = i for some i ∈ [k]0. J

Roughly speaking, we now argue that hyperedges crossing several different components,
where to at least one of them Υ assigns some i > 0, should belong to Em.

I Lemma 26. Let D be any connected component of Lp such that Υ(D) = i > 0 for some
i ∈ [k]. For any F ∈ E(H) such that F ∩D 6= ∅ and F \D 6= ∅, then F ∈ Em.

Proof. Suppose that the statement is false, that is, there exists F ∈ E(H) \ Em such that
F ∩D 6= ∅ and F \D 6= ∅. Since F /∈ Em, F ∩D 6= ∅ and Υ(D) > 0, there exists j ∈ [k] such
that F ∈ Esj

. Since F ∩D 6= ∅ and Υ(D) = i, we have that j = i, that is, F ∈ Esi
. Consider

any spanning forest E′si
of the hypergraph with vertex set V (H) and edge set Esi

. Observe
that by the definition of Lp, for any spanning forest Esi

, all vertices of F are present in some
single tree of that spanning forest. Therefore, there exists some F ′ ∈ E′si

, where F ′ could be
the same as the hyperedge F , such that the vertices of F ′ form a superset of F . Since p is

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:27

a good assignment, p(F ′) = 0. Thus, the definition of Lp implies that all the vertices of F
belong to the same connected component, which contradicts that F \D 6= ∅. J

B.4 Rules to Modify a Good Assignment
We first modify the good assignment p by applying the following two rules exhaustively,
prioritizing Rule 1 over Rule 2. Note that whenever we change p, we update Lp accordingly.

Rule 1: If there exist a connected component D of Lp and a hyperedge F ∈ E(H)
such that F ⊆ D and p(F) > 0, then update p(F) = 0.

Rule 2: If there exist a connected component D of Lp, vertices v1, v2 ∈ D (v1 could
be equal to v2) and hyperedges F1, F2 ∈ E(H) (F1 could be equal to F2) such that
F1 ∩ D 6= ∅, F2 ∩ D 6= ∅, F1 \ D 6= ∅, F2 \ D 6= ∅, p(F1) = i > 0, p(F2) = j > 0,
λF1,i(v1) ∈ [k] and λF2,j(v2) = 0, then update p(F1) = 0.

I Lemma 27. After any application of Rule 1 and Rule 2, p remains a good assignment.

Proof. Let us first prove that if p was a good assignment, then after the application of Rule 1,
the modified p is still a good assignment. From Lemma 25, Υ(D) = i for some i ∈ [k]0. Thus,
if F ⊆ D, then F 6∈ Em. Hence, when we redefine p(F) = 0, p remains a good assignment.

Let us now prove that if p was a good assignment, then after the application of Rule
2, the modified p is still a good assignment. To prove this, it is enough to prove that
F1 /∈ Em. Suppose, for the sake of contradiction, that F1 ∈ Em. Since p is a good assignment,
λF1,i = Υ|F . Denote λF1,i(v1) = c, where c ∈ [k]. Since v1 ∈ D and λF1,i(v1) = c > 0,
from Lemma 25, Υ(D) = c > 0. From Lemma 26, F2 ∈ Em. Again, since p is a good
assignment, λF2,j = Υ|F . Since λF2,j(v2) = 0 and v2 ∈ D, this implies that Υ(D) = 0, which
is a contradiction. J

For each connected component D of Lp, let us now define a label set L(D) ⊆ [k]0 as
follows. For any i ∈ [k]0, we insert i into L(D) if and only if there exists F ∈ E(H) such
that F ∩D 6= ∅, p(F) = j > 0 and λF,j(F ∩D) = i. Observe that L(D) could be empty.

Let us now turn to analyze the labels sets we have just defined.

I Lemma 28. Let D be connected component of Lp such that L(D) = ∅. Then, for any
F ∈ E(H) such that F ∩D 6= ∅, F \D = ∅.

Proof. Observe that if there exists F ∈ E(H) such that p(F) > 0 and F ∩ D 6= ∅, then
|L(D)| ≥ 1. Therefore, if L(D) = ∅, then for all F ∈ E(H) such that F ∩D 6= ∅, we have
that p(F) = 0. Thus, from the construction of Lp, we have that F \D = ∅. J

I Lemma 29. For any connected component D of Lp, if Υ(D) = i > 0, then either L(D) = ∅
or L(D) = {i}.

Proof. Suppose that L(D) 6= ∅. Then, there exists F ∈ E(H) such that F ∩ D 6= ∅ and
p(F) = j > 0. Let λF,j(F ∩ D) = s. We will now show that s = i. First of all, let us
argue that F \D 6= ∅. Indeed, if F \D = ∅, then F ⊆ D. In this case, since p is a good
assignment, where Rule 1 has been exhaustively applied, p(F) should be equal to 0, which is
a contradiction. Thus, since Υ(D) = i > 0, F ∩D 6= ∅ and F \D 6= ∅, from Lemma 26, we
have that F ∈ Em. Then, since p is a good assignment, λF,j(F ∩D) = Υ|F . Since Υ(D) = i,
we derive that indeed λF,j(F ∩D) = i. Thus, L(D) = {i}. J

CVIT 2016

23:28 Balanced Judicious Bipartition is FPT

By Lemma 29, we have that if for a connected component D of Lp, either L(D) = {0} or
|L(D)| ≥ 2, then Υ(D) = 0.

I Lemma 30. If D is a connected component of Lp such that L(D) = {ld}, then either
Υ(D) = ld or Υ(D) = 0.

Proof. Since L(D) = {ld}, there exists F ∈ E(H) such that p(F) = i > 0, F ∩D 6= ∅ and
λF,i(F ∩D) = ld. Denote Υ(D) = j, and suppose that j 6= 0, else we are done. Since j 6= 0,
from Lemma 26 we have that F ∈ Em. Then, since p is a good assignment, λF,i = Υ|F .
Finally, since all the vertices of D are assigned the same color by Υ (by Lemma 25), we have
that Υ(D) = ld. J

For a connected component D of Lp such that |L(D)| ≥ 2, let us redefine the label set of
D to be L(D) = {0}. Now, for any connected component D of Lp, |L(D)| ≤ 1. Moreover, if
L(D) = {0}, then Υ(D) = 0 (by Lemma 29). We call a connected component D of Lp such
that L(D) = {0} a 0-component.

Let us continue modifying the good assignment p, now with the following rule. Again,
whenever we modify p, we update Lp accordingly.

Rule 3: If there exist F ∈ E(H) and two distinct 0-connected components of Lp, D1
and D2, such that F ∩D1 6= ∅ and F ∩D2 6= ∅, then update p(F) = 0.

I Lemma 31. The assignment resulting by applying Rule 3 to p is a good assignment.

Proof. To prove the lemma, it is sufficient to show that F /∈ Em. Suppose that this claim
is false, that is, F ∈ Em and hence after the update, we obtain an assignment that is not
good. Since (the original) p is a good assignment, we have that p(F) = i > 0 such that
λF,i = Υ|F . Since D1 and D2 are different connected components of Lp, (F ∩D1) ⊆ λ−1

F,i(j1),
(F ∩ D2) ⊆ λ−1

F,i(j2) and j1 6= j2. However, since D1 and D2 are 0-components of Lp,
Υ(D1) = 0 and Υ(D2) = 0. This contradicts that λF,i = Υ|F . Therefore, F /∈ Em. J

To further analyze 0-components, define B as the set containing every vertex v ∈ V (H)
such that Υ(v) = 0 and there exists F ∈ Em that is incident to v.

I Lemma 32. Let D be a connected component of Lp containing a vertex v ∈ B. Then, D
is a 0-component.

Proof. From the definition of the set B, there exists F ∈ Em such that v ∈ F . Since p is a
good assignment, p(F) = i > 0 such that λF,i = Υ|F . Since Υ(v) = 0, v ∈ F and v ∈ D, we
have that λF,i(F ∩D) = 0. Hence, 0 ∈ L(D). Therefore, by Lemma 29, we conclude that D
is a 0-component of Lp. J

B.5 Constructing a Supergraph L∗
p of Lp

Let us now construct another simple undirected graph L∗p, which is a supergraph of Lp with
the same vertex set as of Lp and the following additional edges. If there exist F ∈ E(H) and
two distinct connected components of Lp, D1 and D2, such that F ∩D1 6= ∅, F ∩D2 6= ∅,
L(D1) 6= {0} and L(D2) 6= {0}, then insert an edge between some vertex of D1 and some
vertex of D2 into L∗p. Clearly, any connected component D of Lp is contained in some
connected component of L∗p. This leads us to the following definition.

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:29

I Definition 33. Give a connected component D∗ of L∗p, we say that a connected component
D of Lp is a constituent of D∗ if D ⊆ D∗.

A component D∗ of L∗p is called a 0-component of L∗p if it has only one constituent
component and that constituent component is a 0-component in Lp. We now proceed to
analyze the new graph L∗p.

I Lemma 34. Let D∗ be some connected component of L∗p that has a constituent component
D such that L(D) = ∅. Then, D is the only constituent component of D∗, that is, D∗ = D.

Proof. By Lemma 28, for any F ∈ E(H) such that F ∩ D 6= ∅, we have that F \ D = ∅.
Thus, by the construction of L∗p, it holds that D∗ = D. J

I Lemma 35. For any F ∈ E(H), either F ⊆ D∗ for some connected component D∗ of L∗p,
or F intersects exactly two connected components of L∗p, a 0-connected component D∗1 of L∗p
and a non 0-connected component D∗2 of L∗p.

Proof. Suppose that there exists F ∈ E(H) such that for any connected component D∗ of
L∗p, F 6⊆ D∗, else we are done. First, observe that in this case p(F) > 0, as otherwise F ⊆ D
for a connected component D of Lp, which would imply that F is contained in a connected
component of L∗p. We claim that F intersects at most one 0-component of L∗p. To show this,
suppose by way of contradiction, that F intersects at least two 0-components of L∗p, which we
denote by D∗i and D∗j . From the definition of a 0-component in L∗p, it follows that D∗i and D∗j
are also different 0-components in Lp. Since p is a good assignment and Rule 3 is no longer
applicable, we have that p(F) should be equal to 0, which is a contradiction. Therefore, F
can intersect at most one 0-component of L∗p. From the construction of L∗p, observe that F
cannot intersect more than one non 0-component of L∗p. Hence, we conclude that if F 6⊆ D∗,
for some connected component D∗ of L∗p, then F intersects exactly one 0-component of L∗p,
say D∗1 , and exactly one non 0-component of L∗p, say D∗2 . That is, F = (F ∩D∗1) ∪ (F ∩D∗2).
This concludes the proof. J

For any 0-connected component D∗ of L∗p, let ED∗ = {F : F ⊆ D∗}. For any non
0-connected component D∗of L∗p, let ED∗ = {F : F ∩D∗ 6= ∅}.

I Lemma 36. E(H) =
⊎

D∗∈L∗p
ED∗ .

Proof. The lemma follows from the definition of ED∗ and Lemma 35. J

For each connected component D∗ of L∗p and for each i ∈ [k]0, let us define the coloring
function Φ[D∗, i] : D∗ → [k]0 as follows. First, if i = 0, then define Φ[D∗, 0](D∗) = 0, that is,
for all v ∈ D∗, define Φ[D∗, 0] = 0. Otherwise, if i ∈ [k], then for each constituent component
D of D∗ such that L(D) = {ld}, define Φ[D∗, i](D) = ld, and for each constituent component
D of D∗ such that L(D) = ∅, define Φ[D∗, i](D) = i.

We now prove that for any connected component D∗ of L∗p, there exists i ∈ [k]0 such
that our above definition of Φ[D∗, i] precisely captures the way the hypothetical witnessing
coloring Υ colors D∗.

I Lemma 37. For any connected component D∗ of L∗p, there exists i ∈ [k]0 such that
Υ|D∗ = Φ[D∗, i].

Proof. Let D1, . . . , Dr be the constituent components of D∗. First assume that r = 1, that
is, there is only one constituent component of D∗. From Lemma 25, since D∗ = D1, we have

CVIT 2016

23:30 Balanced Judicious Bipartition is FPT

that Υ(D∗) = i for some i ∈ [k]0. Hence, if L(D) = ∅, then Υ|D∗ = Φ[D∗, i]. Otherwise, let
L(D) = {ld}. In this case, from Lemma 30, either Υ(D∗) = ld or Υ(D∗) = 0. Thus, either
Υ|D∗ = Φ[D∗, 0] or Υ|D∗ = Φ[D∗, i] for any i ∈ [k].

Now, we need prove the claim for the case where r ≥ 2. Then, by Lemma 34, for any
constituent component Di of D∗, we have that L(Di) 6= ∅. For any i ∈ [r], let L(Di) = {ldi

}.
From the construction of L∗p, for each i ∈ [r], we have that ldi ∈ [k], which in particular
means that ldi

6= 0. From Lemma 30, either Υ(Di) = 0 or Υ(Di) = ldi
. We aim to prove

that either Υ|D∗ = Φ[D∗, 0] or Υ|D∗ = Φ[D∗, i] for any i ∈ [k]. In other words, we next show
that either all constituent components of D∗ are colored 0 by Υ or Υ colors each constituent
component with the color represented by the label of that constituent component. To this
end, let D′ be the collection of all constituent components of D∗ such that for all Di ∈ D′,
Υ(Di) = ldi

and let D′′ be the collection of all constituent components of D∗ such that for
all Di ∈ D′′, Υ(Di) = 0. We need to show that either D′ = ∅ or D′′ = ∅. Suppose not, that
is, D′ 6= ∅ and D′′ 6= ∅. Then, there exist D1 ∈ D′ and D2 ∈ D′′. Since D∗ is a connected
component in L∗p, there exists F ∈ E(H) such that F ∩ D1 6= ∅ and F ∩ D2 6= ∅. Since
Υ(D1) = ld1 6= 0, from Lemma 26, we have that F ∈ Em. Since Υ(D2) = 0, F ∩D2 6= ∅ and
F ∈ Em, we deduce that D contains a vertex from the set B. Thus, by Lemma 32, we have
that D2 is a 0-component of L∗p. Since no constituent component of D∗ (which contains at
least two constituent components) can be a 0-component from the construction of L∗p, we
have reached a contradiction. J

B.6 Dynamic Programming
For the sake of clarity of presentation, for every hyperedge F ∈ ED∗ , we denote hF (µ′, l′1, l′2) =∨
i∈[k]0 fF (Φ[D∗, i]|F , µ′, l′1, l′2). Moreover, we let D∗1 , . . . , D∗y denote the connected compon-

ents of L∗p. For each i ∈ [y], denote ED∗
i

= {Fi,1, . . . , Fi,zi} (recall that ED∗i was defined in
Appendix B.5). For all i ∈ [y], µ′ ∈ [µ], l′i ∈ [l1]0 and l′2 ∈ [l2], define H[i, µ′, l′1, l′2] as follows.

H[i, µ′, l′1, l′2] =
∨

(µj)j∈[zi]

(lj1)j∈[zi]

(lj2)j∈[zi]

∧
j∈[zi]

hFi,j
(µj , l1j , l2j),

where µ′ =
∑
j∈[zi]

µj ,
∑
j∈[zi]

lj1 ≤ l′1,
∑
j∈[zi]

l2
j ≤ l′2, and each µj , lj1, l

j
2 is a non-negative integer.

I Lemma 38. aHP[µ, l1, l2] =
∨

(µj)j∈[zi]

(lj1)j∈[zi]

(lj2)j∈[zi]

∧
i∈[y]

H[i, µj , lj1, l
j
2],

where µ =
∑
j∈[zi]

µj,
∑
j∈[zi]

lj1 ≤ l1,
∑
j∈[zi]

l2
j ≤ l2, and each µj, lj1, l

j
2 is a non-negative integer.

Proof. By Lemma 36, we have the following equality.

aHP[µ, l1, l2] =
∨

Υ:V (H)→[k]0
(µF)F∈E(H)

(lF1)F∈E(H)

(lF2)F∈E(H)

∧
i∈[y]

∧
F∈ED∗

i

fF (Υ|F , µF , lF1 , lF2),

where µ =
∑

F∈E(H)
µF ,

∑
F∈E(H)

lF1 ≤ l1,
∑

F∈E(H)
lF2 ≤ l2, and for all F ∈ F (H), µF , lF1 and lF2

are non-negative integers.

D. Lokshtanov, S. Saurabh, R. Sharma and M. Zehavi 23:31

From Lemma 37, we thus further have the following equality.

aHP[µ, l1, l2] =
∨

(µF)F∈E(H)

(lF1)F∈E(H)

(lF2)F∈E(H)

∧
i∈[y]

∧
F∈ED∗

i

hF (µF , lF1 , lF2),

where µ =
∑

F∈E(H)
µF ,

∑
F∈E(H)

lF1 ≤ l1,
∑

F∈E(H)
lF2 ≤ l2, and for all F ∈ F (H), µF , lF1 and lF2

are non-negative integers.
Hence, by the definition of H[i, µ′, l′1, l′2], we conclude that the equation in the statement

of the lemma is correct.
J

I Lemma 39. Suppose that for all i ∈ [y], F ∈ ED∗
i
, µ′ ≤ µ, l′1 ≤ l1 and l′2 ≤ l2, it holds

that hF (µ′, l′1, l′2) is computable in time τ . Then, for all i ∈ [y], µ′ ≤ µ, l′1 ≤ l1 and l′2 ≤ l2,
it holds that H[i, µ′, l′1, l′2] can be computed in time O(τ · zi · b2 · k3

1 · k3
2).

Proof. Arbitrarily choose some i ∈ [y], µ∗ ≤ µ, l∗1 ≤ l1 and l∗2 ≤ l2. Under the given
supposition, we would show that H[i, µ∗, l∗1, l∗2] can be computed in time O(τ · zi · b2 · k3

1 · k3
2).

To this end, for all c ∈ [zi], µ′ ≤ µ, l′1 ≤ l1 and l′2 ≤ l2, define Hc[i, µ′, l′1, l′2] as follows.

Hc[i, µ′, l′1, l2] =
∨

(µj)j∈[c]

(lj1)j∈[c]

(lj2)j∈[c]

∧
j∈[c]

hFi,j
(µj , lj1, l

j
2),

where µ′ =
∑
j∈[c]

µj ,
∑
j∈[c]

lj1 ≤ l′1,
∑
j∈[c]

lj2 ≤ l′2 and each µj , lj1, l
j
2 is a non-negative integer.

Now, for all µ′ ≤ µ, l′1 ≤ l1 and l′2 ≤ l2, Hzi [i, µ′, l′1, l′2] can be computed in time
O(τ · zi · b2 · k2

1 · k2
2) using the following recurrences.

H1[i, µ′, l′1, l′2] = hFi,1(µ′, l′1, l′2).

For all c ∈ {2, . . . , zi}, i ∈ [y], µ′ ≤ µ, l′1 ≤ l1 and l′2 ≤ l2,

Hc[i, µ′, l′1, l′2] =
∨

µ′=µ1+µ2

l′1≥l
1
1+l22

l′2≥l
1
2+l22

Hc−1[i, µ1, l11, l
1
2] ∧ hFi,c

(µ2, l21, l
2
2).

Observe that H[i, µ∗, l∗1, l∗2] = Hzi
[i, µ∗, l∗1, l∗2]. This concludes the proof. J

I Lemma 40. Suppose that for all i ∈ [y], µ′ ≤ µ, l′1 ≤ l1 and l′2 ≤ l2, H[i, µ′, l′1, l′2] can be
computed in time ψ. Then, aHP[µ, l1, l2] can be computed in time O(ψ · y · b2 · k3

1 · k3
2).

Proof. For all i ∈ [y], µ′ ≤ µ, l′1 ≤ l1 and l′2 ≤ l2, let us first define aHPi[µ′, l′1, l′2] as follows.

aHPi[µ′, l′1, l′2] =
∨

(µj)j∈[i]

(lj1)j∈[i]

(lj2)j∈[i]

∧
j∈[i]

H[j, µj , lj1, l
j
2],

where µ′ =
∑
j∈[c]

µj ,
∑
j∈[c]

lj1 ≤ l′1,
∑
j∈[c]

lj2 ≤ l′2 and each µj , lj1, l
j
2 is a non-negative integer.

CVIT 2016

23:32 Balanced Judicious Bipartition is FPT

Observe that aHP[µ, l1, l2] = aHPy[µ, l1, l2] from Lemma 38. Now, we can compute
aHPy[µ, l1, l2] using the following recurrences in time O(ψ · y · b2 · k2

1 · k2
2).

aHP1[µ′, l′1, l′2] = H[1, µ′, l′1, l′2].

For all i ∈ {2, . . . , y}, µ′ ≤ µ, l′1 ≤ l1 and l′2 ≤ l2,

aHPi[µ′, l′1, l′2] =
∨

µ′=µ1+µ2

l′1≥l
1
1+l21

l′2≥l
1
2+l22

aHPi−1[µ1, l11, l
1
2] ∧H[i, µ2, l21, l

2
2].

This concludes the proof of the lemma. J

Clearly, for all i ∈ [y], F ∈ ED∗
i
, µ′ ≤ µ, l′1 ≤ l1 and l′2 ≤ l2, it holds that hF (µ′, l′1, l′2)

is computable in polynomial time. Thus, by Lemmas 39 and 40, we conclude the proof of
Theorem 12.

	Introduction
	Preliminaries
	Solving Balanced Judicious Bipartition
	Solving Annotated Bipartite-BJB
	Solving Annotated Bipartite Connected-BJB
	Omitted Proofs
	Proof of Lemma 5
	Proof of Theorem 6
	Proof of Lemma 15
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 18

	Solving Favorable Instances of HP
	Classifying Hyperedges
	Introducing Good Assignments
	Associating the Graph Lp with an Assignment p
	Rules to Modify a Good Assignment
	Constructing a Supergraph L*p of Lp
	Dynamic Programming

