
39

Kernel(s) for Problems With No Kernel:
On Out-Trees With Many Leaves

DANIEL BINKELE-RAIBLE, Universität Trier
HENNING FERNAU, Universität Trier
FEDOR V. FOMIN, University of Bergen
DANIEL LOKSHTANOV, University of Bergen
SAKET SAURABH, The Institute of Mathematical Sciences
YNGVE VILLANGER, University of Bergen

The k-LEAF OUT-BRANCHING problem is to find an out-branching, that is a rooted oriented spanning tree,
with at least k leaves in a given digraph. The problem has recently received much attention from the
viewpoint of parameterized algorithms. Here, we take a kernelization based approach to the k-LEAF-OUT-
BRANCHING problem. We give the first polynomial kernel for ROOTED k-LEAF-OUT-BRANCHING, a variant
of k-LEAF-OUT-BRANCHING where the root of the tree searched for is also a part of the input. Our kernel
with O(k3) vertices is obtained using extremal combinatorics.

For the k-LEAF-OUT-BRANCHING problem, we show that no polynomial-sized kernel is possible unless
coNP is in NP/poly. However, our positive results for ROOTED k-LEAF-OUT-BRANCHING immediately
imply that the seemingly intractable k-LEAF-OUT-BRANCHING problem admits a data reduction to n inde-
pendent polynomial-sized kernels. These two results, tractability and intractability side by side, are the first
ones separating Karp kernelization from Turing kernelization. This answers affirmatively an open problem
regarding “cheat kernelization” raised by Mike Fellows and Jiong Guo independently.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Computations on discrete structures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Kernelization, Lower Bounds, Max-Leaf Spanning Tree, Out-Branching,
Parameterized Algorithms

ACM Reference Format:
Binkele-Raible, D., Fernau, H., Fomin, F. V., Lokshtanov, D., Saurabh, S., and Villanger, Y. 2011. Kernel(s)
for problems with no kernel: on out-trees with many leaves. ACM Trans. Algor. 9, 4, Article 39 (March 2011),
20 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

The authors gratefully acknowledge the support given by a German-Norwegian research grant. F. Fomin
is supported by the European Research Council (ERC) grant Rigorous Theory of Preprocessing, reference
267959. An extended abstract of this paper appeared in [Fernau et al. 2009].
Author’s addresses: D. Binkele-Raible and H. Fernau, Fachbereich 4, Abteilung Informatik, Uni-
versität Trier, 54286 Trier, Germany, {fernau|raible}@informatik.uni-trier.de; F. V. Fomin, D.
Lokshtanov and Y. Villanger, Department of Informatics, University of Bergen, Bergen, Norway,
{fedor.fomin|daniello|yngve.villanger}@ii.uib.no; S. Saurabh, The Institute of Mathematical Sci-
ences, C.I.T Campus, Taramani, Chennai 600 113, India, saket@imsc.res.in.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1549-6325/2011/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:2 Daniel Binkele-Raible et al.

1. INTRODUCTION
Parameterized decision problems are defined by specifying the input (I), the parameter
(k), and the question to be answered. A parameterized problem that can be solved in
time f(k)|I|O(1) where f is a function of k alone is said to be fixed parameter tractable
(FPT). Kernelization is a powerful and natural technique in the design of parameter-
ized algorithms. In fact, kernelization characterizes fixed parameter tractability, that
is, a problem is fixed parameter tractable if and only if there exists a polynomial time
Karp reduction that maps a given instance to an instance of size effectively bounded
in terms of the parameter.

The main idea of kernelization is to replace a given parameterized instance (I, k)
of a problem Π by a simpler instance (I ′, k′) of Π in polynomial time, such that (I, k)
is a YES-instance if and only if (I ′, k′) is a YES-instance and the size of I ′ is bounded
by a function of k alone. The reduced instance I ′ is called the kernel for the problem.
Typically kernelization algorithms work by applying reduction rules, which iteratively
reduce the instance to an equivalent “smaller” instance. From this point of view, ker-
nelization can be seen as pre-processing with an explicit performance guarantee, “a
humble strategy for coping with hard problems, almost universally employed” [Fel-
lows 2006].

A parameterized problem is said to have a polynomial kernel if we have a poly-
nomial time kernelization algorithm which reduces the size of the input instance
down to a polynomial in the parameter. There are many parameterized problems for
which polynomial, and even linear (vertex) kernels are known [Bodlaender 2009; Bod-
laender et al. 2009; Chen et al. 2007; Chen et al. 2001; Estivill-Castro et al. 2005;
Fomin et al. 2010; Guo and Niedermeier 2007; Thomassé 2010]. Notable examples
include a 2k-vertex kernel for k-VERTEX COVER [Chen et al. 2001], an O(k2) ker-
nel for k-FEEDBACK VERTEX SET [Thomassé 2010] and a 67k kernel for k-PLANAR-
DOMINATING SET [Chen et al. 2007], among many others. Notice that all the (bounds
on) kernel sizes of graph problems mentioned in this paper are considering the num-
ber of vertices as reflecting the size of the instance. While positive kernelization results
have been around for quite a while, the first results ruling out polynomial kernels for
parameterized problems have appeared only recently. In a seminal paper, Bodlaender
et al. [2009] have shown that a variety of important FPT problems cannot have polyno-
mial kernels unless coNP is in NP/poly, a well known complexity theory hypothesis.
Examples of such problems are k-PATH, k-MINOR ORDER TEST, k-PLANAR GRAPH
SUBGRAPH TEST, and many others. However, while this negative result rules out the
existence of a polynomial kernel for these problems, it does not rule out the possibility
of a kernelization algorithm reducing the instance to |I|O(1) independent polynomial
kernels. This raises the question of the relationship between Karp kernelization and
Turing kernelization, a question raised in [Bodlaender et al. 2008; Estivill-Castro et al.
2005; Guo and Niedermeier 2007]. That is, can we have a natural parameterized prob-
lem for which there is no polynomial kernel but we can “cheat” this lower bound by
providing |I|O(1) independent polynomial kernels. Besides being of theoretical inter-
est, this type of results would be very desirable from a practical point of view as well.
In this paper, we address the issue of Karp kernelization versus Turing kernelization
through k-LEAF OUT-BRANCHING.

The MAXIMUM LEAF SPANNING TREE problem on connected undirected graphs is
to find a spanning tree with the maximum number of leaves in a given input graph
G. The problem is well studied both from an algorithmic [Binkele-Raible and Fernau
2010; Galbiati et al. 1994; Lu and Ravi 1998; Solis-Oba 1998; Fomin et al. 2008] and
combinatorial [Ding et al. 2001; Griggs et al. 1989; Griggs and Wu 1992; Kleitman
and West 1991] point of view. The problem has been studied from the parameterized

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Kernel(s) for Problems With No Kernel: On Out-Trees With Many Leaves 39:3

complexity perspective as well [Bonsma et al. 2003; Estivill-Castro et al. 2005; Fel-
lows et al. 2000; Raible and Fernau 2010]. An extension of MAXIMUM LEAF SPAN-
NING TREE to directed graphs is defined as follows. We say that a subdigraph T of a
digraph D is an out-tree if T is an oriented tree with only one vertex r of in-degree
zero (called the root). The vertices of T of out-degree zero are called leaves. If T is a
spanning out-tree, i.e., V (T) = V (D), then T is called an out-branching of D. The DI-
RECTED MAXIMUM LEAF OUT-BRANCHING problem is to find an out-branching in a
given digraph with the maximum number of leaves. The parameterized version of the
DIRECTED MAXIMUM LEAF OUT-BRANCHING problem is k-LEAF OUT-BRANCHING,
where for a given digraph D and integer k, it is asked to decide whether D has an out-
branching with at least k leaves. If we replace “out-branching” with “out-tree” in the
definition of k-LEAF OUT-BRANCHING, we get a problem called k-LEAF OUT-TREE.

Unlike its undirected counterpart, the study of k-LEAF OUT-BRANCHING has be-
gun only recently. Alon et al. [2007; 2009] proved that the problem is fixed parame-
ter tractable (FPT) by providing an algorithm deciding in time O(f(k)n) whether a
strongly connected digraph has an out-branching with at least k leaves. Bonsma and
Dorn [2008] extended this result to connected digraphs, and improved the running
time of the algorithm. Recently, Kneis et al. [2008] provided a parameterized algorithm
solving the problem in time O(4knO(1)). This result was further improved by Dali-
gault et al. [2010]. In a related work, Drescher and Vetta [2010] described an

√
OPT -

approximation algorithm for the DIRECTED MAXIMUM LEAF OUT-BRANCHING prob-
lem. Let us remark that, despite similarities between directed and undirected variants
of MAXIMUM LEAF SPANNING TREE, the directed case requires a totally different ap-
proach (except from [Kneis et al. 2008]). However, the existence of a polynomial kernel
for k-LEAF OUT-BRANCHING has not been addressed until now. After the appearance
of the conference version of this paper, Daligault et al. [2010] exhibited a vertex-linear
kernel for ROOTED k-LEAF OUT-BRANCHING, restricted to directed acyclic graphs.
Recently, Daligault and Thomassé [2009] improve our bound on the number of vertices
in the kernel for ROOTED k-LEAF OUT-BRANCHING on general graphs from O(k3) to
O(k2).

Our contribution. We prove that ROOTED k-LEAF OUT-BRANCHING, where for a
given vertex r one asks for a k-leaf out-branching rooted at r, admits a polynomial
kernel. In particular, we show how to obtain a kernel of O(k3) vertices. A similar result
also holds for ROOTED k-LEAF OUT-TREE, where we are looking for a rooted (not
necessary spanning) tree with k leaves. While many polynomial kernels are known
for undirected graphs, this is the first known non-trivial parameterized problem on
digraphs admitting a polynomial kernel. To obtain the kernel we establish a number
of results on the structure of digraphs not having a k-leaf out-branching. These results
may be of independent interest.

In the light of our positive results it is natural to suggest that k-LEAF OUT-
BRANCHING admits a polynomial kernel, as well. We find it a bit striking that this
is not the case – k-LEAF OUT-BRANCHING and k-LEAF OUT-TREE do not admit poly-
nomial kernels unless coNP ⊆ NP/poly. While the main idea of our proof is based on
the framework of Bodlaender et al. [2009], our adaptation is non-trivial. In particular,
we use the polynomial kernel obtained for ROOTED k-LEAF OUT-BRANCHING to prove
the lower bound. Our contributions are summarized in Table I.

Finally, let us remark that the polynomial kernels for the rooted versions of our
problems provide a “cheat” solution for the poly-kernel-intractable problems k-LEAF
OUT-BRANCHING and k-LEAF OUT-TREE. Indeed, let D be a digraph on n vertices. By
running the kernelization for the rooted version of the problem for every vertex of D

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:4 Daniel Binkele-Raible et al.

Table I. Our Results

k-LEAF OUT-TREE k-LEAF OUT-BRANCHING

Rooted O(k3)-vertex kernel O(k3)-vertex kernel

Unrooted No poly(k) kernel No poly(k) kernel
n kernels on O(k3) vertices n kernels on O(k3) vertices

as a root, we obtain n graphs where each of them has O(k3) vertices, such that at least
one of them has a k-leaf out-branching if and only if D does.

2. PRELIMINARIES
Graphs and digraphs. Let D be a directed graph or digraph for short. By V (D) and

A(D), we represent the vertex set and arc set, respectively, of D. Given a subset V ′ ⊆
V (D) of a digraph D, by D[V ′] we denote the digraph induced on V ′. A vertex y of D is
an in-neighbor (out-neighbor) of a vertex x if yx ∈ A (xy ∈ A). The in-degree (out-degree)
of a vertex x is the number of its in-neighbors (out-neighbors) in D. Let P = p1p2 . . . pl
be a given path. Then by P [pipj] we denote a subpath of P starting at vertex pi and
ending at vertex pj . For a given vertex q ∈ V (D), by q-out-branching (or q-out-tree) we
denote an out-branching (out-tree) of D rooted at vertex q.

We say that the removal of an arc uv (or a vertex set S) disconnects a vertex w from
the root r if every path from r to w in D contains arc uv (or one of the vertices in S).
An arc uv is contracted as follows: add a new vertex u′, and for each arc wv or wu add
the arc wu′ and for an arc vw or uw add the arc u′w, remove all arcs incident to u and v
and the vertices u and v. We say that a reduction rule is safe for a value k if whenever
the rule is applied to an instance (D, k) to obtain an instance (D′, k′), D has an r-out-
branching with at least k leaves if and only if D′ has an r-out-branching with at least
k′ leaves. We also need the following.

PROPOSITION 2.1. [Kneis et al. 2008] Let D be a digraph and r be a vertex from
which every vertex in V (D) is reachable. Then if we have an out-tree rooted at r with k
leaves then we also have an out-branching rooted at r with k leaves.

Let T be an out-tree of a digraph D. We say that u is a parent of v and v is a child of u
if uv ∈ A(T). We say that u is an ancestor of v if there is a directed path from u to v in
T . An arc uv in A(D) \A(T) is called a forward arc if u is an ancestor of v, a backward
arc if v is an ancestor of u and a cross arc, otherwise.

Kernelization and Turing Kernelization. A parameterized problem Π is a subset of
Γ∗ × N for some finite alphabet Γ. An instance of a parameterized problem consists of
(x, k), where k is called the parameter. We assume that k is given in unary and hence
k ≤ |x|. A central notion in parameterized complexity is fixed parameter tractability
(FPT) which means, for a given instance (x, k), solvability in time f(k) · p(|x|), where
f is an arbitrary function of k and p is a polynomial in the input size. We refer to the
monographs [Downey and Fellows 1999; Flum and Grohe 2006; Niedermeier 2006] for
more information on parameterized complexity.

The notion of kernelization is formally defined as follows.

Definition 2.2. A kernelization algorithm, or in short, a kernelization, for a param-
eterized problem Π ⊆ Γ∗ ×N is an algorithm that given (I, k) ∈ Γ∗ ×N outputs in time
polynomial in |I|+ k a pair (I ′, k′) ∈ Γ∗ × N such that

(a) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π, and
(b) max{|I ′|, k′} ≤ g(k),

where g is some computable function. The reduced problem (I ′, k′) is referred to as the
kernel and the function g is referred to as the size of the kernel.

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Kernel(s) for Problems With No Kernel: On Out-Trees With Many Leaves 39:5

If g(k) = kO(1) or g(k) = O(k), then we say that Π admits a polynomial kernel and
linear kernel respectively. As we are mostly dealing with graph problems, we try to
be more specific when stating kernelization results by explicitly mentioning how we
measure the size |I ′| of a reduced instance. For example, when we speak of 2k-vertex
kernel, we mean that I ′ refers to a graph with at most 2k vertices.

We also define the notion of Turing kernelization. In order to do this we first define
the notion of t-oracle.

Definition 2.3. A t-oracle for a parameterized problem Π is an oracle that takes as
input (I, k) with |I| ≤ t, k ≤ t, and decides whether (I, k) ∈ Π in constant time.

Definition 2.4. A parameterized problem Π is said to have g(k)-sized Turing kernel
if there is an algorithm which, given an input (I, k) together with a g(k)-oracle for Π,
decides whether (I, k) ∈ Π in time polynomial in |I| and k: the mentioned algorithm is
also termed Turing kernelization.

Observe that the standard notion of kernelization (Karp kernelization) can be viewed
as a special case of Turing kernelization given in Definition 2.2. More specifically, Karp
kernelizations are equivalent to Turing kernelizations where the kernelization algo-
rithm is only allowed to make one oracle call at the very end and must return the same
answer as the oracle.

3. REDUCTION RULES FOR ROOTED K-LEAF OUT-BRANCHING
In this section, we give all the data reduction rules we apply on the given instance of
ROOTED k-LEAF OUT-BRANCHING to shrink its size.

REDUCTION RULE 1. [Reachability Rule] If there exists a vertex u which is discon-
nected from the root r, then return NO.

For the ROOTED k-LEAF OUT-TREE problem, Rule 1 translates into the following one:
If a vertex u is disconnected from the root r, then remove u and all in-arcs to u and
out-arcs from u.

REDUCTION RULE 2. [Useless Arc Rule] If vertex u disconnects a vertex v from the
root r, then remove the arc vu.

LEMMA 3.1. Reduction Rules 1 and 2 are safe.

PROOF. If there exists a vertex which can not be reached from the root r, then a
digraph cannot have any r-out-branching. For Reduction Rule 2, all paths from r to v
contain the vertex u and thus the arc vu is a backward arc in any r-out-branching of
D.

REDUCTION RULE 3. [Bridge Rule] If an arc uv disconnects at least two vertices
from the root r, contract arc uv.

LEMMA 3.2. Reduction Rule 3 is safe.

PROOF. Let the arc uv disconnect at least two vertices v and w from r and let D′ be
the digraph obtained from D by contracting the arc uv. Let T be an r-out-branching of
D with at least k leaves. Since every path from r to w contains the arc uv, T contains
uv as well and neither u nor v are leaves of T . Let T ′ be the tree obtained from T by
contracting uv. T ′ is an r-out-branching of D′ with at least k leaves.

In the opposite direction, let T ′ be an r-out-branching of D′ with at least k leaves.
Let u′ be the vertex in D′ obtained by contracting the arc uv, and let x be the parent
of u′ in T ′. Notice that the arc xu′ in T ′ was initially the arc xu before the contraction
of uv, since there is no path from r to v avoiding u in D. We make an r-out-branching

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:6 Daniel Binkele-Raible et al.

x2x1

v

r

w x2x1

v

r

Fig. 1. Illustration of Reduction Rule 4. Vertices x1, x2 are the vertices contained in S. Every path from r
to v passes through x1 or x2.

p1 u v p8pin

p1 p4 p5 p8

pout

p2 p3 p6 p7

Fig. 2. Illustration of Reduction Rule 5.

T of D from T ′ by replacing the vertex u′ by the vertices u and v and adding the arcs
xu, uv and arc sets {vy : u′y ∈ A(T ′) ∧ vy ∈ A(D)} and {uy : u′y ∈ A(T ′) ∧ vy /∈ A(D)}.
All these arcs belong to A(D), because all out-neighbors of u′ in D′ are out-neighbors
either of u or of v in D. Finally, u′ must be an inner vertex of T ′ since u′ disconnects w
from r. Hence, T has at least as many leaves as T ′.

REDUCTION RULE 4. [Avoidable Arc Rule] If a vertex set S, |S| ≤ 2, disconnects a
vertex v from the root r, vw ∈ A(D) and xw ∈ A(D) for all x ∈ S, then delete the arc vw.

LEMMA 3.3. Reduction Rule 4 is safe.

PROOF. Let D′ be the graph obtained by removing the arc vw from D and let T
be an r-out-branching of D. If vw /∈ A(T), T is an r-out-branching of D′, so suppose
vw ∈ A(T). Any r-out-branching of D contains the vertex v, and since all paths from
r to v contain some vertex x ∈ S, some vertex u ∈ S is an ancestor of v in T . Let
T ′ = (T ∪ uw) \ vw. T ′ is an out-branching of D′. Furthermore, since u is an ancestor
of v in T , T ′ has at least as many leaves as T . For the opposite direction, observe that
any r-out-branching of D′ is also an r-out-branching of D.

REDUCTION RULE 5. [Two Directional Path Rule] If there is a path P =
p1p2 . . . pl−1pl with l = 7 or l = 8 such that

— p1 and pin ∈ {pl−1, pl} are the only vertices with in-arcs from the outside of P .
— pl and pout ∈ {p1, p2} are the only vertices with out-arcs to the outside of P .

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Kernel(s) for Problems With No Kernel: On Out-Trees With Many Leaves 39:7

— The path P is the unique out-branching of D[V (P)] rooted at p1.
— There is a path Q that is the unique out-branching of D[V (P)] rooted at pin and ending

in pout.
— The vertex after pout on P is not the same as the vertex after pl on Q.

Then delete R = P \ {p1, pin, pout, pl} and all arcs incident to these vertices from D. Add
two vertices u and v and the arc set {poutu, uv, vpin, plv, vu, up1} to D.

The unique out-branchings of D[V (P)] rooted at p1 and pin are paths, and as a con-
sequence there are no forward arcs on the paths P and Q, as this will generate more
than one out-branching. Another consequence of this is that every vertex on P has in-
degree at most 2 and out-degree at most 2. Figure 2 gives an example of an application
of Reduction Rule 5.

LEMMA 3.4. Reduction Rule 5 is safe.

PROOF. Let D′ be the graph obtained by performing Reduction Rule 5 to a path P
in D. Let Pu be the path p1poutuvpinpl and Qv be the path pinplvup1pout. Notice that
Pu is the unique out-branching of D′[V (Pu)] rooted at p1 and that Qv is the unique
out-branching of D′[V (Pu)] rooted at pin.

Let T be an r-out-branching of D with at least k leaves. Notice that since P is the
unique out-branching of D[V (P)] rooted at p1, Q is the unique out-branching of D[V (P)]
rooted at pin and p1 and pin are the only vertices with in-arcs from the outside of P ,
T [V (P)] is either a path or the union of two vertex disjoint paths. Thus, T has at most
two leaves in V (P) and at least one of the following three cases must apply.

(1) T [V (P)] is the path P from p1 to pl.
(2) T [V (P)] is the path Q from pin to pout.
(3) T [V (P)] is the vertex disjoint union of a path P̃ that is a subpath of P rooted at p1,

and a path Q̃ that is a subpath of Q rooted at pin.

In the first case, we can replace the path P in T by the path Pu to get an r-out-
branching of D′ with at least k leaves. Similarly, in the second case, we can replace the
path Q in T by the path Qv to get an r-out-branching of D′ with at least k leaves. For
the third case, observe that P̃ must contain pout since pout = p1 or p1 appears before
pout on Q and thus, pout can only be reached from p1. Similarly, Q̃ must contain pl.
Thus, T \ R is an r-out-branching of D \ R. We build an r-out-branching T ′ of D′ by
taking T \ R and letting u be the child of pout and v be the child of pl. In this case T
and T ′ have the same number of leaves outside of V (P) and T has at most two leaves
in V (P) while both u and v are leaves in T ′. Hence T ′ has at least k leaves.

To show the other direction, let T ′ be an r-out-branching of D′ with at least k leaves.
Notice that since Pu is the unique out-branching of D′[V (Pu)] rooted at p1, Qv is the
unique out-branching of D′[V (Pu)] rooted at pin and p1 and pin are the only vertices
with in-arcs from the outside of V (Pu), T ′[V (Pu)] is either a path or the union of two
vertex disjoint paths. Thus, T ′ has at most two leaves in V (Pu) and at least one of the
following three cases must apply.

(1) T ′[V (Pu)] is the path Pu from p1 to pl.
(2) T ′[V (Pu)] is the path Qv from pin to pout.
(3) T ′[V (Pu)] is the vertex disjoint union of a path P̃u that is a subpath of Pu rooted at

p1, and a path Q̃v that is a subpath of Qv rooted at pin.

In the first case, path Pu in T ′ can be replaced by the path P , resulting in an r-out-
branching of D with at least k leaves. In the second case, an r-out-branching of D′ with
at least k leaves is obtained by replacing the path Qv in T ′ by path Q. In the third

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:8 Daniel Binkele-Raible et al.

case, we have that pout = p1 or p1 appears before pout on Qv and thus, pout can only
be reached from p1, hence, P̃u must contain pout. By the same arguments, Q̃v must
contain pl. Thus, T ′ \{u, v} is an r-out-branching of D′ \{u, v}. Let x be the vertex after
pout on P , and let y be the vertex after pl on Q. The vertices x and y must be distinct
vertices in R and thus there must be two vertex disjoint paths Px and Qy rooted at x
and y, respectively, so that V (Px) ∪ V (Qy) = R. We build an r-out-branching T from
(T ′ \ {u, v}) ∪ Px ∪ Qy by letting x be the child of pout and y be the child of pin. In this
case, T ′ and T have the same number of leaves outside of V (P) and T ′ has at most two
leaves in V (Pu), while both the leaf of Pu and the leaf of Qv are leaves in T . Hence, T
has at least k leaves.

We say that a digraph D is a reduced instance of ROOTED k-LEAF OUT-BRANCHING
if none of the reduction rules (Rules 1–5) can be applied to D. It is easy to observe
from the description of the reduction rules that we can apply them in polynomial time,
resulting in the following lemma.

LEMMA 3.5. For a digraph D on n vertices, we can obtain a reduced instance D′ in
polynomial time.

4. POLYNOMIAL KERNEL: BOUNDING A REDUCED NO-INSTANCE
In this section, we show that any reduced NO-instance of ROOTED k-LEAF OUT-
BRANCHING must have at most O(k3) vertices. In order to do so, we start with T , a
breadth-first search-tree (or BFS-tree for short) rooted at r, of a reduced instance D
and look at a path P of T such that every vertex on P has out-degree one in T .

We bound the number of endpoints of arcs with one endpoint in P and one endpoint
outside of P (Section 4.1). We then use these results to bound the size of any maximal
path with every vertex having out-degree one in T (Section 4.2). Finally, we combine
these results to bound the size of any reduced NO-instance of ROOTED k-LEAF OUT-
BRANCHING by O(k3).

4.1. Bounding the Number of Entry and Exit Points of a Path
Let D be a reduced NO-instance, and let T be a BFS-tree rooted at r. The BFS-tree T
has at most k − 1 leaves and hence at most k − 2 vertices with out-degree at least 2 in
T . Now, let P = p1p2 . . . pl be a path in T such that all vertices in V (P) have out-degree
1 in T (P does not need to be a maximal path of T). Let T1 be the subtree of T induced
by the vertices reachable from r in T without using vertices in P and let T2 be the
subtree of T rooted at the child r2 of pl in T . Since T is a BFS-tree, it does not have any
forward arcs, and thus plr2 is the only arc from P to T2. Thus, all arcs originating in P
and ending outside of P must have their endpoint in T1.

LEMMA 4.1. Let D be a reduced instance, T be a BFS-tree rooted at r, and P =
p1p2 . . . pl be a path in T such that all vertices in V (P) have out-degree 1 in T . Let
upi ∈ A(D), for some i between 1 and l, be an arc with u /∈ P . There is a path Pupi from
r to pi using the arc upi, such that V (Pupi) ∩ V (P) ⊆ {pi, pl}.

PROOF. Let T1 be the subtree of T induced by the vertices reachable from r in T
without using vertices in P and let T2 be the subtree of T rooted at the child r2 of pl
in T . If u ∈ V (T1) there is a path from r to u avoiding P . Appending the arc upi to this
path yields the desired path Pupi , so assume u ∈ V (T2). If all paths from r to u use the
arc pl−1pl then pl−1pl is an arc disconnecting pl and r2 from r, contradicting the fact
that Reduction Rule 3 can not be applied. Let P ′ be a path from r to u not using the arc
pl−1pl. Let x be the last vertex from T1 visited by P ′. Since P ′ avoids pl−1pl we know
that P ′ does not visit any vertices of P \ {pl} after x. We obtain the desired path Pupi

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Kernel(s) for Problems With No Kernel: On Out-Trees With Many Leaves 39:9

by taking the path from r to x in T1 followed by the subpath of P ′ from x to u appended
by the arc upi.

COROLLARY 4.2. Let D be a reduced NO-instance, T be a BFS-tree rooted at r and
P = p1p2 . . . pl be a path in T such that all vertices in V (P) have out-degree 1 in T . There
are at most k vertices in P that are endpoints of arcs originating outside of P .

PROOF. Let S be the set of vertices in P \ {pl} that are endpoints of arcs originating
outside of P . For the sake of contradiction suppose that there are at least k+1 vertices
in P that are endpoints of arcs originating outside of P . Then |S| ≥ k. By Lemma 4.1
there exists a path from the root r to every vertex in S, that avoids vertices of P \ {pl}
as an intermediate vertex. Using these paths we can build an r-out-tree with every
vertex in S as a leaf. This r-out-tree can be extended to a r-out-branching with at least
k leaves by Proposition 2.1, contradicting the fact that D is a NO-instance.

LEMMA 4.3. Let D be a reduced NO-instance, T be a BFS-tree rooted at r and P =
p1p2 . . . pl be a path in T such that all vertices in V (P) have out-degree 1 in T . There are
at most 7(k − 1) vertices outside of P that are endpoints of arcs originating in P .

PROOF. Let X be the set of vertices outside P which are out-neighbors of the ver-
tices on P . Let P ′ be the path from r to p1 in T and r2 be the unique child of pl in
T . First, observe that since there are no forward arcs, r2 is the only out-neighbor of
vertices in V (P) in the subtree of T rooted at r2. In order to bound the size of X, we
differentiate between two kinds of out-neighbors of vertices on P .

— Out-neighbors of P that are not in V (P ′).
— Out-neighbors of P in V (P ′).

First, observe that |X \ V (P ′)| ≤ k − 1. Otherwise we could have made an r-out-tree
with at least k leaves by taking the path P ′P and adding X \ V (P ′) as leaves with
parents in V (P).

In the rest of the proof we bound |X ∩ V (P ′)|. Let Y be the set of vertices on P ′ with
out-degree at least 2 in T and let P1, P2, . . . , Pt be the remaining subpaths of P ′ when
vertices in Y are removed. For every i ≤ t, Pi = vi1vi2 . . . viq. We define the vertex set
Z containing vi1 if |Pi| = 1 and otherwise the two last vertices of each path Pi. The
number of vertices with out-degree at least 2 in T is at most k − 2 as T has at most
k − 1 leaves. Hence, |Y | ≤ k − 2, t ≤ k − 1 and |Z| ≤ 2(k − 1).

CLAIM 1. For every path Pi = vi1vi2 . . . viq, 1 ≤ i ≤ t,3 ≤ q, there is either an arc
uiviq−1 or an arc uiviq, where ui /∈ V (Pi).

The claim holds, because the removal of arc viq−2viq−1 does not disconnect the root r
from both viq−1 and viq—otherwise Rule 3 would have been applicable to our reduced
instance. Without loss of generality, let us assume that viq−1 is reachable from r after
the removal of arc viq−2viq−1. Hence, there exists a path from r to viq. Let uiviq be the
last arc of this path. The fact that the BFS-tree T does not have any forward arcs
implies that ui /∈ V (Pi).

To every path Pi = vi1vi2 . . . viq, 1 ≤ i ≤ t, we associate an interval Ii = vi1vi2 . . . viq−2

and an arc uiviq′ , q′ ∈ {q − 1, q}. This arc exists by Claim 1. Claim 1 and Lemma 4.1
together imply that for every path Pi there is a path Pri from the root r to viq′ that does
not use any vertex in V (Pi) \ {viq−1, viq} as an intermediate vertex. That is, V (Pri ∩
(V (Pi) \ {viq−1, viq}) = ∅.

Let P ′
ri be a subpath of Pri starting at a vertex xi before vi1 on P ′ and ending in a

vertex yi after viq−2 on P ′. We say that a path P ′
ri covers a vertex x if x is on the subpath

of P ′ between xi and yi and we say that it covers an interval Ij if xi appears before vj1

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:10 Daniel Binkele-Raible et al.

on the path P ′ and yi appears after vjq−2 on P ′. Observe that the path P ′
ri covers the

interval Ii.
Let P = {P ′

1, P
′
2, . . . , P

′
l } ⊆ {P ′

r1, . . . , P
′
rt} be a minimum collection of paths, such that

every interval Ii, 1 ≤ i ≤ t, is covered by at least one of the paths in P. Furthermore,
let the paths of P be numbered by the appearance of their first vertex on P ′. The
minimality of P implies that for every P ′

i ∈ P there is an interval I ′i ∈ {I1, . . . , It} such
that P ′

i is the only path in P that covers I ′i.

CLAIM 2. For every 1 ≤ i ≤ l, no vertex of P ′ is covered by both P ′
i and P ′

i+3.

The path P ′
i+1 is the only path in P that covers the interval I ′i+1 and hence P ′

i does
not cover the last vertex of I ′i+1. Similarly P ′

i+2 is the only path in P that covers the
interval I ′i+2 and hence P ′

i+3 does not cover the first vertex of I ′i+2. Thus the set of
vertices covered by both P ′

i and P ′
i+3 is empty.

Since paths P ′
i and P ′

i+3 do not cover a common vertex, we conclude that the end
vertex of P ′

i appears before the start vertex of P ′
i+3 on P ′ or is the same as the start

vertex of P ′
i+3. Partition the paths of P into three sets P0,P1,P2, where path P ′

i ∈
Pimod 3. Also let Ii be the set of intervals covered by Pi. Observe that every interval Ij ,
1 ≤ j ≤ t, is part of some Ii for i ∈ {0, 1, 2}.

Let i ≤ 3 and consider an interval Ij ∈ Ii. There is a path Pj′ ∈ Pi that covers Ij such
that both endpoints of Pj′ and none of the inner vertices of Pj′ lie on P ′. Furthermore
for any pair of paths Pa, Pb ∈ Pi such that a < b, there is a subpath in P ′ from the
endpoint of Pa to the starting point of Pb. Thus for every i ≤ 3 there is a path P ∗

i from
the root r to p1 which does not use any vertex of the intervals covered by the paths in
Pi.

We now claim that the total number of vertices on intervals Ij , 1 ≤ j ≤ t, which
are out-neighbors of vertices on V (P) is bounded by 3(k − 1). If not, then for some i,
the number of out-neighbors in Ii is at least k. Now we can make an r-out-tree with
k leaves by taking any r-out-tree in D[V (P ∗

i) ∪ V (P)] and adding the out-neighbors of
the vertices on V (P) in Ii as leaves with parents in V (P).

Summing up the obtained upper bounds yields |X| ≤ (k − 1) + |{r2}| + |Y | + |Z| +
3(k − 1) ≤ (k − 1) + 1 + (k − 2) + 2(k − 1) + 3(k − 1) = 7(k − 1), concluding the proof.

Remark: Observe that the path P used in Lemmas 4.1 and 4.3 and Corollary 4.2 need
not be a maximal path in T with its vertices having out-degree one in T .

4.2. Bounding the Length of a Path: On Paths Through Nice Forests
For a reduced instance D and a BFS-tree T of D rooted at r, let P = p1p2 . . . pl be a
path in T such that all vertices in V (P) have out-degree 1 in T , and let S be the set of
vertices in V (P) \ {pl} with an in-arc from the outside of P \ {pl}.

Definition 4.4. A subforest F = (V (P) \ {pl}, A(F)) of D[V (P)] is said to be a nice
forest of P if the following three properties are satisfied:

(a) F is a forest of directed trees rooted at vertices in S;
(b) If pipj ∈ A(F) and i < j, then pi has out-degree at least 2 in F or pj has in-degree 1

in D; and
(c) If pipj ∈ A(F) and i > j, then for all l > q > i, pqpj /∈ A(D).

In order to bound the size of a reduced NO-instance D we are going to consider a
nice forest with the maximum number of leaves. However, in order to do this, we first
have to prove that a nice forest always exists.

LEMMA 4.5. There is a nice forest in P \ {pl}.

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Kernel(s) for Problems With No Kernel: On Out-Trees With Many Leaves 39:11

PROOF. We define a subgraph F of D[V (P) \ {pl}] as follows: The vertex set of F is
V (P) \ {pl} and an arc ptps is in A(F) if ps 6∈ S and 1 ≤ t < l is the largest index such
that ptps ∈ A(D).

Let us argue that F satisfies all three conditions from the definition of the nice forest.
Graph F satisfies condition (c) because selection of t as the largest number such that

ptps ∈ A(D) ensures that pqps 6∈ A(D) for all t < q < l. Condition (b) is ensured by the
fact that for each arc ptps in F we have ps 6∈ S, this ensures that there is no in-arc from
the outside of P \ {pl} ending in ps. If t < s then t = s − 1 and ptps is the only in-arc
to ps as 1 ≤ t < l is the maximum number such that ptps ∈ A(D), P do not have any
forward arcs, and there are no arcs from the outside of P \ {pl} ending in ps. Finally, to
prove (a), we have to show that F is a forest. Suppose for a contradiction that there is
a cycle C in F . By definition of F , every vertex has in-degree at most 1, so C must be
a directed cycle. Since every vertex of S has in-degree 0 in F , we have that C ∩ S = ∅.
Consider the highest numbered vertex pi of C. Since P has no forward arcs, we have
that pi−1 is the predecessor of pi in C. The construction of F implies that there are no
arcs pqpi in A(D), where l > q > i. Also, pi does not have any in-arcs from outside of
P \ {pl}. Thus, pi−1 disconnects pi from the root. Hence, by Rule 2 pipi−1 6∈ A(D). Let
pj be the predecessor of pi−1 in C. Since pipi−1 6∈ A(D) and pi is the highest numbered
vertex in C, we have that j < i− 1. Hence j = i− 2. Path P does not have forward arcs,
i − 2 is the highest number such that pi−2pi−1 ∈ A(D), and there are no in-arcs from
outside of P \ {pl} to pi−2. As a consequence pi−2pi−1 is the only in-arc to pi−1. This
contradicts the fact that D is a reduced instance because the arc pi−2pi−1 disconnects
pi−1 and pi from the root r implying that Rule 3 can be applied. Thus F is a forest and
since every vertex in this forest except for vertices in S have in-degree 1, we have that
every tree of F is rooted in some vertex of S. This completes the proof that F satisfies
properties (a)–(c), and thus is a nice forest.

For a nice forest F of P , we define the set of key vertices of F to be the set of vertices
in S, the leaves of F , the vertices of F with out-degree at least 2 and the set of vertices
whose parent in F has out-degree at least 2.

LEMMA 4.6. Let F be a nice forest of P . There are at most 5(k− 1) key vertices of F .

PROOF. By the proof of Corollary 4.2, there is an r-out-tree TS with (V (TS)∩V (P)) ⊆
(S ∪ {pl}) and (A(TS)∩A(P)) = ∅, such that all vertices in S are leaves of TS . We build
an r-out-tree TF = (V (TS) ∪ V (P), A(TS) ∪ A(F)). Notice that every leaf of F is a leaf
of TF . Since D is a NO-instance, we have that TF has at most k − 1 leaves and k − 2
vertices with out-degree at least 2. Thus, F has at most k − 1 leaves and at most k − 2
vertices with out-degree at least 2. Hence, the number of vertices in F whose parent in
F has out-degree at least 2 is at most 2k − 2. Finally, by Corollary 4.2, |S| ≤ k. Adding
up these upper bounds yields that there are at most k− 1+ k− 2+2k− 2+ k = 5(k− 1)
key vertices of F .

We can now turn our attention to a nice forest F of P with the maximum number of
leaves. Our goal is to show that if the key vertices of F are too spaced out on P then
some of our reduction rules must apply. First, however, we need some more observa-
tions about the interplay between P and F .

OBSERVATION 1. [Unique Path] For any two vertices pi, pj in V (P) such that i < j,
pipi+1 . . . pj is the only path from pi to pj in D[V (P)].

PROOF. As T is a BFS-tree, it has no forward arcs. So, any vertex set X =
{p1, p2, . . . , pq} with q < |V (P)|, the arc pqpq+1 is the only arc in D from a vertex in
X to a vertex in V (P) \X.

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:12 Daniel Binkele-Raible et al.

COROLLARY 4.7. No arc pipi+1 is a forward arc of F .

PROOF. If pipi+1 is a forward arc of F , then there is a path from pi to pi+1 in F . By
Observation 1, pipi+1 is the unique path from pi to pi+1 in D[V (P)]. Hence pipi+1 ∈ A(F)
contradicting the fact that it is a forward arc.

OBSERVATION 2. Let ptpj be an arc in A(F) such that neither pt nor pj are key
vertices, and t ∈ {j − 1, j + 1, . . . , l}. Then for all q > t, pqpj 6∈ A(D).

Observation 2 follows directly from the definitions of a nice forest and key vertices.

OBSERVATION 3. If neither pi nor pi+1 are key vertices, then either pipi+1 /∈ A(F) or
pi+1pi+2 /∈ A(F).

PROOF. Assume for contradiction that pipi+1 ∈ A(F) and pi+1pi+2 ∈ A(F). Since
neither pi nor pi+1 are key vertices, both pi+1 and pi+2 must have in-degree 1 in D.
Then the arc pipi+1 disconnects both pi+1 and pi+2 from the root r and Rule 3 can be
applied, contradicting the fact that D is a reduced instance.

In the following discussion, let F be a nice forest of P with the maximum number
of leaves and let P ′ = pxpx+1 . . . py be a subpath of P containing no key vertices, and
additionally having the property that px−1px /∈ A(F) and pypy+1 /∈ A(F).

LEMMA 4.8. V (P ′) induces a directed path in F .

PROOF. We first prove that for any arc pipi+1 ∈ A(P ′) such that pipi+1 /∈ A(F), there
is a path from pi+1 to pi in F . Suppose for contradiction that there is no path from pi+1

to pi in F , and let x be the parent of pi+1 in F . Then pipi+1 is not a backward arc of F
and hence, F ′ = (F \xpi+1)∪{pipi+1} is a forest of out-trees rooted at vertices in S. Also,
since pi+1 is not a key vertex, x has out-degree 1 in F and thus x is a leaf in F ′. Since
pi is not a leaf in F , F ′ has one more leaf than F . Now, every vertex with out-degree
at least 2 in F has out-degree at least 2 in F ′. Additionally, pi has out-degree 2 in F ′.
Hence F ′ is a nice forest of P with more leaves than F , contradicting the choice of F .

Now, notice that by Observation 1, any path in D[V (P)] from a vertex u ∈ V (P ′)
to a vertex v ∈ V (P ′) that contains a vertex w /∈ V (P ′) must contain either the arc
px−1px or the arc pypy+1. Since neither of those two arcs are arcs of F , it follows that
for any arc pipi+1 ∈ A(P ′) such that pipi+1 /∈ A(F), there is a path from pi+1 to pi
in F [V (P ′)]. Hence F [V (P ′)] is weakly connected, that is, the underlying undirected
graph is connected. Since every vertex in V (P ′) has in-degree 1 and out-degree 1 in F ,
we conclude that F [V (P ′)] is a directed path.

In the following discussion, let Q′ be the directed path F [V (P ′)].

OBSERVATION 4. For any pair of vertices pi, pj ∈ V (P ′), if i ≤ j−2, then pj appears
before pi in Q′.

PROOF. Suppose for contradiction that pi appears before pj in Q′. By Observation 1,
pipi+1pi+2 . . . pj is the unique path from pi to pj in D[V (P ′)]. This path contains both
the arc pipi+1 and pi+1pi+2 contradicting Observation 3.

LEMMA 4.9. All arcs of D[V (P ′)] are contained in A(P ′) ∪A(F).

PROOF. Since P has no forward arcs, it is enough to prove that any arc pjpi ∈
A(D[V (P ′)]) with i < j is an arc of F . Suppose this is not the case and let pq be the
parent of pi in F . We know that pi has in-degree at least 2 in D and also since pi is not
a key vertex pq has in-degree one in F . Hence by definition of F being a nice forest, we
have that for every t > q, ptpi /∈ A(D). It follows that i < j < q. By Lemma 4.8, F [V (P ′)]

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Kernel(s) for Problems With No Kernel: On Out-Trees With Many Leaves 39:13

is a directed path Q′ containing both pi and pj . If pj appears after pi in Q′, Observa-
tion 4 implies that i = j − 1 and that pj has in-degree 1 in D since F is a nice forest.
Thus, pi separates pj from the root and Rule 2 can be applied to pjpi contradicting the
fact that D is a reduced instance. Hence, pj appears before pi in Q′.

Since pj is an ancestor of pi in F and pq is the parent of pi in F , pj is an ancestor
of pq in F and hence pq ∈ V (Q′) = V (P ′). Now, pj comes before pq in Q′ and j < q;
so, Observation 4 implies that q = j + 1 and that pq has in-degree 1 in D since F is a
nice forest. Thus, pj separates pq from the root r and both pjpi and pqpi are arcs of D.
Hence, Rule 4 can be applied to remove the arc pqpi, contradicting the fact that D is a
reduced instance.

LEMMA 4.10. If |P ′| ≥ 3, then there are exactly 2 vertices in P ′ that are endpoints
of arcs starting outside of P ′.

PROOF. By Observation 1, px−1px is the only arc between {p1, p2, . . . , px−1} and P ′.
By Lemma 4.8, F [V (P ′)] is a directed path Q′. Let pq be the first vertex on Q′ and notice
that the parent of pq in F is outside of V (P ′). Observation 4 implies that q ≥ y − 1.
Hence pq and px are two distinct vertices that are endpoints of arcs starting outside
of P ′. It remains to prove that they are the only such vertices. Let pi be any vertex
in P ′ \ {px, pq}. By Lemma 4.8, V (P ′) induces a directed path Q′ in F , and since pq is
the first vertex of Q′, the parent of pi in F is in V (P ′). Observation 2 yields then that
ptpi 6∈ A(D) for any t > y.

OBSERVATION 5. Let Q′ = F [V (P ′)]. For any pair of vertices u, v such that there is
a path Q′[uv] from u to v in Q′, Q′[uv] is the unique path from u to v in D[V (P ′)].

PROOF. By Lemma 4.8, Q′ is a directed path f1f2 . . . f|P ′| and let Q′[f1fi] be the
path f1f2 . . . fi. We prove that for any i < |Q′|, fifi+1 is the only arc from V (Q′[f1fi])
to V (Q′[fi+1f|P ′|]). By Lemma 4.9, all arcs of D[V (P ′)] are either arcs of P ′ or arcs of
Q′. Since Q′ is a path, fifi+1 is the only arc from V (Q′[f1fi]) to V (Q′[fi+1f|P ′|]) in Q′.
By Corollary 4.7, there are no arcs from V (Q′[f1fi]) to V (Q′[fi+1f|P ′|]) in P ′, except
possibly for fifi+1.

LEMMA 4.11. For any vertex x /∈ V (P ′), there are at most 2 vertices in P ′ with arcs
to x.

PROOF. Suppose there are 3 vertices pa, pb, pc in V (P ′) such that a < b < c and such
that pax, pbx, pcx ∈ A(D). By Lemma 4.8, Q′ = F [V (P ′)] is a directed path. If pa appears
before pb in Q′ then Observation 4 implies that a+ 1 = b and that pb has in-degree 1 in
D. Then, pa separates pb from the root and hence Rule 4 can be applied to remove the
arc pbx contradicting the fact that D is a reduced instance. Hence, pb appears before pa
in Q′. By an identical argument, pc appears before pb in Q′.

Let Pb be a path in D from the root to pb and let u be the last vertex in Pb outside
of V (P ′). Let v be the vertex in Pb after u. By Lemma 4.10, v is either px or the first
vertex pq of Q′. If v = px, then Observation 1 implies that Pb contains pa, whereas if
v = pq, by Observation 5, Pb contains pc. Thus the set {pa, pc} separates pb from the
root and hence Rule 4 can be applied to remove the arc pbx contradicting the fact that
D is a reduced instance.

COROLLARY 4.12. There are at most 14(k − 1) vertices in P ′ with out-neighbors
outside of P ′.

PROOF. By Lemma 4.3, there are at most 7(k−1) vertices that are endpoints of arcs
originating in P ′. By Lemma 4.11, each such vertex is the endpoint of at most two arcs
from vertices in P ′.

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:14 Daniel Binkele-Raible et al.

LEMMA 4.13. |P ′| ≤ 154(k − 1) + 10.

PROOF. Assume for contradiction that |P ′| > 154(k − 1) + 10 and let X be the set
of vertices in P ′ with arcs to vertices outside of P ′. By Corollary 4.12, |X| ≤ 14(k − 1).
Removing vertex set X leave 14(k− 1) + 1 paths and the union of these paths contains
at least 154(k − 1) + 10− 14(k− 1) vertices. Hence, one of these paths contains at least
11 vertices. By Observation 3, there is a subpath P ′′ = papa+1 . . . pb of P ′ on 7 or 8
vertices such that neither pa−1pa nor pbpb+1 are arcs of F . By Lemma 4.8, F [V (P ′′)]
is a directed path Q′′. Let pq and pt be the first and last vertices of Q′′, respectively.
By Lemma 4.10, pa and pq are the only vertices with in-arcs from outside of P ′′. By
Observation 4, pq ∈ {pb−1, pb} and pt ∈ {pa, pa+1}. By the choice of P ′′, no vertex of P ′′

has an arc to a vertex outside of P ′. Furthermore, since P ′′ is a subpath of P ′ and Q′′

is a subpath of Q′ Lemma 4.9 implies that pb and pt are the only vertices of P ′ with
out-arcs to the outside of P ′′. By Lemma 1, the path P ′′ is the unique out-branching of
D[V (P ′′)] rooted at pa. By Observation 5, the path Q′′ is the unique out-branching of
D[V (P ′′)] rooted at pq and ending in pt. By Observation 4, pb−2 appears before pa+2 in
Q′′ and hence the vertex after pb in Q′′ and pt+1 is not the same vertex. Thus, Rule 5
can be applied on P ′′, contradicting the fact that D is a reduced instance.

LEMMA 4.14. Let D be a reduced NO-instance to ROOTED k-LEAF OUT-
BRANCHING. Then |V (D)| = O(k3). More specifically, |V (D)| ≤ 1540k3.

PROOF. Let T be a BFS-tree of D. T has at most k−1 leaves and at most k−2 inner
vertices with out-degree at least 2. The remaining vertices can be partitioned into at
most 2k − 3 paths P1 . . . Pt with all vertices having out-degree 1 in T . We prove that
for every q ∈ {1, . . . , t}, |Pq| = O(k2). Let F be a nice forest of Pq with the maximum
number of leaves. Remember that the last vertex of the path is not included in the nice
forest definition. By Lemma 4.6, F has at most 5(k − 1) key vertices. Let pi and pj be
consecutive key vertices of F on Pq. By Observation 3, there is a path P ′ = pxpx+1 . . . py
containing no key vertices, with x ≤ i + 1 and y ≥ j − 1, such that neither px−1px nor
pypy+1 are arcs of F . By Lemma 4.13, |P ′| ≤ 154(k−1)+10 so |Pq| ≤ (5(k−1)+1)(154(k−
1) + 10) + 3(5(k − 1)). Hence, |V (D)| ≤ 2k(5k(154(k − 1) + 10 + 3)) ≤ 1540k3 = O(k3).

Lemma 4.14 results in a polynomial kernel for the problem ROOTED k-LEAF OUT-
BRANCHING as follows.

THEOREM 4.15. Both ROOTED k-LEAF OUT-BRANCHING and ROOTED k-LEAF
OUT-TREE admit a kernel with O(k3) vertices.

PROOF. Let D be the reduced instance of ROOTED k-LEAF OUT-BRANCHING ob-
tained in polynomial time using Lemma 3.5. If the number of vertices of D is more
than 1540k3, then return YES. Otherwise, we have an instance with O(k3) vertices.
The correctness of this step follows from Lemma 4.14 which shows that any reduced
NO-instance to ROOTED k-LEAF OUT-BRANCHING has O(k3) vertices. The result for
ROOTED k-LEAF OUT-TREE follows similarly.

Theorem 4.15 implies the following result about Turing kernelization.

COROLLARY 4.16. Both k-LEAF OUT-BRANCHING and k-LEAF OUT-TREE admit a
Turing kernel with O(k3) vertices.

PROOF. We only give the proof for k-LEAF OUT-BRANCHING. The proof for k-LEAF
OUT-TREE is similar. Let D be a digraph on n vertices. We apply the kernelization
algorithm for ROOTED k-LEAF OUT-BRANCHING described in Theorem 4.15 for every
vertex of D as a root, and obtain n graphs with O(k3) vertices, such that at least one of
them has a k-leaf out-branching if and only if D does. Clearly, this algorithm runs in

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Kernel(s) for Problems With No Kernel: On Out-Trees With Many Leaves 39:15

time polynomial in n. Now using the O(k3)-sized oracle for k-LEAF OUT-BRANCHING
we can solve the problem in linear time. This shows that k-LEAF OUT-BRANCHING
admits a Turing kernel with O(k3) vertices, concluding the proof.

5. KERNELIZATION LOWER BOUNDS
In the last section we gave a polynomial kernel for ROOTED k-LEAF OUT-BRANCHING.
It is natural to ask whether the closely related k-LEAF OUT-BRANCHING has a poly-
nomial kernel. The answer to this question, somewhat surprisingly, is no, unless an
unlikely collapse of complexity classes occurs. To show this we utilize a recent result
of Bodlaender et al. [2009] that states that any compositional parameterized problem
does not have a polynomial kernel unless coNP is in NP/poly.

Let us outline first the proof of the main result of this section that k-LEAF OUT-
BRANCHING has no polynomial kernel. The proof is done in several steps. We start
from using the framework of Bodlaender et al. [2009] to establish that k-LEAF OUT-
TREE has no polynomial kernel unless coNP ⊆ NP/poly (Theorem 5.3). The second
step is to show that a polynomial kernel for k-LEAF OUT-BRANCHING would yield a
polynomial-sized kernel for k-LEAF OUT-TREE. To obtain this goal, we take n copies
of the graph corresponding to different guesses of roots, and for each such graph run
the kernelization algorithm from Theorem 4.15 for ROOTED k-LEAF OUT-TREE. Since
decision versions of both problems, k-LEAF OUT-BRANCHING and ROOTED k-LEAF
OUT-TREE, are NP-complete under Karp reduction, there is a kO(1)-time algorithm
mapping each of the n instances of ROOTED k-LEAF OUT-TREE to an instance of k-
LEAF OUT-BRANCHING of size kO(1). We want to compose these graphs in such a
way that a k-leaf out-branching of the composition can be computed from the max-
imum of out-branchings of its summands. To obtain such composition, we have to
work with graphs with specific properties. But then we must prove that k-LEAF OUT-
BRANCHING remains NP-complete under Karp reduction on this special class of di-
graphs (Lemma 5.4).

Before we proceed with the proofs, we need the following definition.

Definition 5.1 (Composition [Bodlaender et al. 2009]). A composition algorithm for
a parameterized problem L ⊆ Σ∗ × N is an algorithm that

— receives as input a sequence ((x1, k), . . . , (xt, k)), with (xi, k) ∈ Σ∗ × N+ for each
1 ≤ i ≤ t,

— uses time polynomial in
∑t

i=1 |xi|+ k,
— and outputs (y, k′) ∈ Σ∗ × N+ with

(1) (y, k′) ∈ L ⇐⇒ (xi, k) ∈ L for some 1 ≤ i ≤ t.
(2) k′ is polynomial in k.

A parameterized problem is compositional if there is a composition algorithm for it.

Now we state the main result of [Bodlaender et al. 2009], which we need for our pur-
pose.

THEOREM 5.2 ([BODLAENDER ET AL. 2009]). Let L be a compositional parame-
terized language whose unparameterized version L̃ is NP-complete. Unless coNP ⊆
NP/poly, there is no polynomial kernel for L.

THEOREM 5.3. k-LEAF OUT-TREE has no polynomial kernel unless coNP ⊆
NP/poly.

PROOF. The problem is NP-complete [Alon et al. 2007]. We prove that it is composi-
tional and thus, Theorem 5.2 will imply the statement of the theorem. A simple com-

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:16 Daniel Binkele-Raible et al.

p4pn−3pn p2p3pn−2pn−1 p1

Fig. 3. Vertex p1 is the bottom and vertex pn is the top of the willows. The willow is nice because pnpn−1

and pnpn−2 are arcs of D, these arcs are the only arcs of A2 incident to pn−1 or pn−2, and arcs of A2 give
an out-branching of the graph.

position algorithm for this problem is as follows. On input (D1, k), (D2, k), . . . , (Dt, k)
output the instance (D, k) where D is the disjoint union of D1, . . . , Dt. Since an out-tree
must be completely contained in a connected component of the underlying undirected
graph of D, (D, k) is a YES-instance to k-LEAF OUT-TREE if and only if any out of
(Di, k), 1 ≤ i ≤ t, is. This concludes the proof.

A willow graph [Drescher and Vetta 2010] D = (V,A1 ∪A2) is a directed graph such
that D′ = (V,A1) is a directed path P = p1p2 . . . pn on all vertices of D and D′′ = (V,A2)
is a directed acyclic graph with one vertex r of in-degree 0, such that every arc of A2 is
a backwards arc of P . p1 is called the bottom vertex of the willow, pn is called the top of
the willow and P is called the stem. A nice willow graph D = (V,A1 ∪ A2) is a willow
graph where pnpn−1 and pnpn−2 are arcs of D, neither pn−1 nor pn−2 are incident to any
other arcs of A2 and D′′ = (V,A2) has a pn-out-branching. See Fig. 3 for an example of
a nice willow graph.

OBSERVATION 6. Let D = (V,A1∪A2) be a nice willow graph. Every out-branching
of D with the maximum number of leaves is rooted at the top vertex pn.

PROOF. Let P = p1p2 . . . pn be the stem of D and suppose for contradiction that
there is an out-branching T with the maximum number of leaves rooted at pi, i < n.
Since D is a nice willow, D′ = (V,A2) has a pn-out-branching T ′. Since every arc of A2

is a backward arc of P , T ′[{vj : j ≥ i}] is a pn-out-branching of D[{vj : j ≥ i}]. Then,

T ′′ = (V, {vxvy ∈ A(T ′) : y ≥ i} ∪ {vxvy ∈ A(T) : y < i})
is an out-branching of D. If i = n − 1, then pn is not a leaf of T , since the only arcs
going out of the set {pn, pn−1} start in pn. Thus, in this case, all leaves of T are leaves
of T ′′ and pn−1 is a leaf of T ′′ and not a leaf of T , contradicting the fact that T has the
maximum number of leaves.

LEMMA 5.4. k-LEAF OUT-TREE in nice willow graphs is NP-complete under Karp
reductions.

PROOF. We reduce from the well known NP-complete SET COVER problem [Karp
1972]. A set cover of a universe U is a family F ′ of sets over U such that every element
of u appears in some set in F ′. In the SET COVER problem, one is given a family
F = {S1, S2, . . . , Sm} of sets over a universe U , |U | = n, together with a number b ≤ m
and one is asked whether there is a set cover F ′ ⊂ F with |F ′| ≤ b of U . In our
reduction. we will assume that every element of U is contained in at least one set in F .
We will also assume that b ≤ m − 2. These assumptions are safe, because if either of
them does not hold, the SET COVER instance can be resolved in polynomial time. From
an instance of SET COVER, we build a digraph D = (V,A1 ∪A2) as follows. The vertex
set V of D is comprised of (1) a root r, (2) vertices si for each 1 ≤ i ≤ m representing
the sets in F , (3) vertices ei, 1 ≤ i ≤ n representing elements in U and (4) two vertices
p and p′.

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Kernel(s) for Problems With No Kernel: On Out-Trees With Many Leaves 39:17

The arc set A2 is defined as follows. There is an arc from r to each vertex si, 1 ≤ i ≤ m
and there is an arc from a vertex si representing a set to a vertex ej representing an
element if ej ∈ Si. Furthermore, rp and rp′ are arcs in A2. Finally, we let

A1 = {ei+1ei : 1 ≤ i < n} ∪ {si+1si : 1 ≤ i < m} ∪ {e1sm, s1p, pp
′, p′r}.

This concludes the description of D. We now proceed to prove that there is a set cover
F ′ ⊂ F with |F ′| ≤ b if and only if there is an out-branching in D with at least n+m+
2− b leaves.

Suppose that there is a set cover F ′ ⊂ F with |F ′| ≤ b. We build a directed tree
T rooted at r as follows. Every vertex si, 1 ≤ i ≤ m, p and p′ has r as their parent.
For every element ej , 1 ≤ i ≤ n, we choose the parent of ej to be si such that ej ∈ Si

and Si ∈ F ′ and for every i′ < i, either Si′ /∈ |F ′| or ej /∈ Si′ . Since the only inner
nodes of T except for the root r are vertices representing sets in the set cover, T is an
out-branching of D with at least n+m+ 2− b leaves.

In the other direction, suppose that there is an out-branching T of D with at least
n+m+ 2− b leaves, and suppose that T has the most leaves out of all out-branchings
of D. Since D is a nice willow with r as top vertex, Observation 6 implies that T is an
r-out-branching of D. Now, if there is an arc ei+1ei ∈ A(T) then let sj be a vertex such
that ei ∈ Sj . Then, T ′ = (T \ ei+1ei) ∪ sjei is an r-out-branching of D with as many
leaves as T . Hence, without loss of generality, for every i between 1 and n, the parent
of ei in T is some sj . Let F ′ = {Si : si is an inner vertex of T}. F ′ is a set cover of U
with size at most n+m+ 2− (n+m+ 2− b) = b, concluding the proof.

THEOREM 5.5. k-LEAF OUT-BRANCHING has no polynomial kernel unless coNP ⊆
NP/poly.

PROOF. We prove that if k-LEAF OUT-BRANCHING has a polynomial kernel, then
so does k-LEAF OUT-TREE. Let (D, k) be an instance of k-LEAF OUT-TREE. For ev-
ery vertex v ∈ V , we produce an instance (D, v, k) of ROOTED k-LEAF OUT-TREE.
Clearly, (D, k) is a YES-instance for k-LEAF OUT-TREE if and only if (D, v, k) is a YES-
instance for ROOTED k-LEAF OUT-TREE for some v ∈ V . By Theorem 4.15, ROOTED
k-LEAF OUT-TREE has a O(k3) kernel, so we can apply the kernelization algorithm for
ROOTED k-LEAF OUT-TREE separately to each of the n instances of ROOTED k-LEAF
OUT-TREE to get n instances (D1, v1, k), (D2, v2, k), . . ., (Dn, vn, k) with |V (Di)| = O(k3)
for each i ≤ n. By Lemma 5.4, k-LEAF OUT-BRANCHING in nice willow graphs is NP-
complete under Karp reductions, so we can reduce each instance (Di, vi, k) of ROOTED
k-LEAF OUT-TREE to an instance (Wi, bi) of k-LEAF OUT-BRANCHING in nice willow
graphs in polynomial time in |Di|, and hence in polynomial time in k. Thus, in each
such instance, bi ≤ (k + 1)c for some fixed constant c independent of both n and k. Let
bmax = maxi≤n bi. Without loss of generality, bi = bmax for every i. This assumption
is safe, because if it does not hold, we can modify the instance (Wi, bi) by replacing bi
with bmax, subdividing the last arc of the stem bmax−bi times and adding an edge from
ri to each subdivision vertex.

From the instances (W1, bmax), . . ., (Wn, bmax), we build an instance (D′, bmax+1) of k-
LEAF OUT-BRANCHING. Let ri and si be the top and bottom vertices of Wi, respectively.
We build D′ simply by taking the disjoint union of the willows graphs W1,W2, . . . ,Wn

and adding in an arc risi+1 for i < n and the arc rns1. Let C be the directed cycle in D
obtained by taking the stem of D′ and adding the arc rns1.

If for any i ≤ n, Wi has an out-branching with at least bmax leaves, then Wi has
an out-branching rooted at ri with at least bmax leaves. We can extend this to an out-
branching of D′ with at least bmax + 1 leaves by following C from ri. In the other
direction, suppose D′ has an out-branching T with at least bmax + 1 leaves. Let i be
the integer such that the root r of T is in V (Wi). For any vertex v in V (D′) outside of

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:18 Daniel Binkele-Raible et al.

V (Wi), the only path from r to v in D′ is the directed path from r to v in C. Hence,
T has at most one leaf outside of V (Wi). Thus, T [V (W1)] contains an out-tree with at
least bmax leaves.

By assumption, k-LEAF OUT-BRANCHING has a polynomial kernel. Hence, we
can apply a kernelization algorithm to get an instance (D′′, k′′) of k-LEAF OUT-
BRANCHING with |V (D′′)| ≤ (bmax + 1)c2 for a constant c2 independent of n and bmax

such that (D′′, k′′) is a YES-instance if and only if (D′, bmax) is. Finally, since k-LEAF
OUT-TREE is NP-complete, we can reduce (D′′, k′′) to an instance (D∗, k∗) of k-LEAF
OUT-TREE in polynomial time. Hence, k∗ ≤ |V (D∗)| ≤ (|V (D′′)| + 1)c3 ≤ (k + 1)c4 for
some fixed constants c3 and c4. Hence, we conclude that if k-LEAF OUT-BRANCHING
has a polynomial kernel, then so does k-LEAF OUT-TREE. Thus, Theorem 5.3 implies
that k-LEAF OUT-BRANCHING has no polynomial kernel unless coNP ⊆ NP/poly.

6. CONCLUSION AND DISCUSSIONS
In this paper, we demonstrated that Turing kernelization is a more powerful tech-
nique than Karp kernelization. We showed that while k-LEAF OUT-BRANCHING and
k-LEAF OUT-TREE do not have a polynomial kernels, unless an unlikely collapse of
complexity classes occurs, they do have n independent polynomial kernels. Daligault
and Thomassé [2009] have recently improved on the bounds of our kernels. Our pa-
per raises far more questions than it answers. We believe that there are many more
problems waiting to be addressed from the viewpoint of Turing kernelization. A few
concrete open problems in this direction are as follows.

— Which other problems admit a Turing kernelization like the cubic vertex kernels for
k-LEAF OUT-BRANCHING and k-LEAF OUT-TREE obtained here? Is there a frame-
work to rule out the possibility of |I|O(1) polynomial kernels similar to the framework
developed in [Bodlaender et al. 2009]?

— Does there exist a problem for which we do not have a linear Karp kernel, but which
does have linear kernels from the viewpoint of Turing kernelization?

— Can the recent results on lower bounds for kernels by Dell and van Melkebeek
[2010] be used to prove a lower bound on sizes of kernels for the rooted k-Leaf Out-
Branching?

REFERENCES
ALON, N., FOMIN, F. V., GUTIN, G., KRILEVICH, M., AND SAURABH, S. 2009. Spanning directed trees with

many leaves. SIAM Journal of Discrete Mathematics 23, 466–476.
ALON, N., FOMIN, F. V., GUTIN, G., KRIVELEVICH, M., AND SAURABH, S. 2007. Parameterized algorithms

for directed maximum leaf problems. In Automata, Languages and Programming, 34th International
Colloquium, ICALP, L. Arge, C. Cachin, T.Jurdzinski, and A. Tarlecki, Eds. LNCS Series, vol. 4596.
Springer, 352–362.

BINKELE-RAIBLE, D. AND FERNAU, H. 2010. A faster exact algorithm for the directed maximum leaf span-
ning tree problem. In Computer Science in Russia CSR, F. Ablayev and E. W. Mayr, Eds. LNCS Series,
vol. 6072. Springer, 328–339.

BODLAENDER, H. L. 2009. Kernelization: New upper and lower bound techniques. In Parameterized and
Exact Computation, 4th International Workshop, IWPEC, J. Chen and F. V. Fomin, Eds. LNCS Series,
vol. 5917. Springer, 17–37.

BODLAENDER, H. L., DEMAINE, E. D., FELLOWS, M. R., GUO, J., HERMELIN, D., LOKSHTANOV, D.,
MLLER, M., RAMAN, V., VAN ROOIJ, J., AND ROSAMOND, F. A. 2008. Open problems in parameter-
ized and exact computation – iwpec 2008. Tech. Rep. UU-CS-2008-017, Department of Informatics and
Computing Sciences, Utrecht University.

BODLAENDER, H. L., DOWNEY, R. G., FELLOWS, M. R., AND HERMELIN, D. 2009. On problems without
polynomial kernels. Journal of Computer and System Sciences 75, 423–434.

BODLAENDER, H. L., FOMIN, F. V., LOKSHTANOV, D., PENNINKX, E., SAURABH, S., AND THILIKOS, D. M.
2009. (Meta) kernelization. In 50th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2009. IEEE Computer Society, 629–638.

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

Kernel(s) for Problems With No Kernel: On Out-Trees With Many Leaves 39:19

BONSMA, P. S., BRUEGGEMANN, T., AND WOEGINGER, G. J. 2003. A faster FPT algorithm for finding span-
ning trees with many leaves. In Mathematical Foundations of Computer Science 2003, MFCS, B. Rovan
and P. Vojtáś, Eds. LNCS Series, vol. 2747. Springer, 259–268.

BONSMA, P. S. AND DORN, F. 2008. Tight bounds and a fast FPT algorithm for Directed Max-Leaf Spanning
Tree. In Algorithms — ESA 2008, 16th Annual European Symposium, D. Halperin and K. Mehlhorn,
Eds. LNCS Series, vol. 5193. Springer, 222–233.

CHEN, J., FERNAU, H., KANJ, Y. A., AND XIA, G. 2007. Parametric duality and kernelization: lower bounds
and upper bounds on kernel size. SIAM Journal on Computing 37, 1077–1108.

CHEN, J., KANJ, I. A., AND JIA, W. 2001. Vertex cover: further observations and further improvements.
Journal of Algorithms 41, 280–301.

DALIGAULT, J., GUTIN, G., KIM, E. J., AND YEO, A. 2010. FPT algorithms and kernels for the directed
k-leaf problem. Journal of Computer and System Sciences 76, 2, 144–152.

DALIGAULT, J. AND THOMASSÉ, S. 2009. On finding directed trees with many leaves. In Parameterized and
Exact Computation, 4th International Workshop, IWPEC, J. Chen and F. V. Fomin, Eds. LNCS Series,
vol. 5917. Springer, 86–97.

DELL, H. AND VAN MELKEBEEK, D. 2010. Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. In ACM Symposium on Theory of Computing, STOC 2010, L. J.
Schulman, Ed. ACM, 251–260.

DING, G., JOHNSON, T., AND SEYMOUR, P. 2001. Spanning trees with many leaves. Journal of Graph
Theory, 189–197.

DOWNEY, R. G. AND FELLOWS, M. R. 1999. Parameterized Complexity. Springer.
DRESCHER, M. AND VETTA, A. 2010. An approximation algorithm for the maximum leaf spanning arbores-

cence problem. ACM Trans. Algorithms 6, 3, 1–18.
ESTIVILL-CASTRO, V., FELLOWS, M. R., LANGSTON, M. A., AND ROSAMOND, F. A. 2005. FPT is P-time

extremal structure I. In Algorithms and Complexity in Durham ACiD 2005, H. Broersma, M. Johnson,
and S. Szeider, Eds. Texts in Algorithmics Series, vol. 4. King’s College Publications, 1–41.

FELLOWS, M. R. 2006. The lost continent of polynomial time: Preprocessing and kernelization. In Param-
eterized and Exact Computation, Second International Workshop, IWPEC, H. L. Bodlaender and M. A.
Langston, Eds. LNCS Series, vol. 4169. Springer, 276–277.

FELLOWS, M. R., MCCARTIN, C., ROSAMOND, F. A., AND STEGE, U. 2000. Coordinatized kernels and
catalytic reductions: an improved FPT algorithm for Max Leaf Spanning Tree and other problems.
In Foundations of Software Technology and Theoretical Computer Science, 20th Conference, FST TCS,
S. Kapoor and S. Prasad, Eds. LNCS Series, vol. 1974. Springer, 240–251.

FERNAU, H., FOMIN, F. V., LOKSHTANOV, D., RAIBLE, D., SAURABH, S., AND VILLANGER, Y. 2009. Ker-
nel(s) for problems with no kernel: on out-trees with many leaves. In Symposium on Theoretical Aspects
of Computer Science STACS, S. Albers and J.-Y. Marion, Eds. Schloss Dagstuhl — Leibniz-Zentrum für
Informatik, Germany, 421–432.

FLUM, J. AND GROHE, M. 2006. Parameterized Complexity Theory. Text in Theoretical Computer Science.
Springer.

FOMIN, F. V., GRANDONI, F., AND KRATSCH, D. 2008. Solving connected dominating set faster than 2n.
Algorithmica 52, 2, 153–166.

FOMIN, F. V., LOKSHTANOV, D., SAURABH, S., AND THILIKOS, D. M. 2010. Bidimensionality and kernels.
In ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, M. Charikar, Ed. SIAM, 503–510.

GALBIATI, G., MAFFIOLI, F., AND MORZENTI, A. 1994. A short note on the approximability of the Maximum
Leaf Spanning Tree problem. Information Processing Letters 52, 45–49.

GRIGGS, J. R., KLEITMAN, D. J., AND SHASTRI, A. 1989. Spanning trees with many leaves in cubic graphs.
13, 669–695.

GRIGGS, J. R. AND WU, M. 1992. Spanning trees in graphs of minimum degree 4 or 5. Discrete Mathematics.
GUO, J. AND NIEDERMEIER, R. 2007. Invitation to data reduction and problem kernelization. SIGACT

News 38, 1, 31–45.
KARP, R. M. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations,

R. E. Miller and J. W. Thatcher, Eds. New York: Plenum Press, 85–103.
KLEITMAN, D. J. AND WEST, D. B. 1991. Spanning trees with many leaves. SIAM Journal of Discrete

Mathematics 4, 1, 99–106.
KNEIS, J., LANGER, A., AND ROSSMANITH, P. 2008. A new algorithm for finding trees with many leaves. In

Algorithms and Computation, ISAAC, S.-H. Hong, H. Nagamochi, and T. Fukunaga, Eds. LNCS Series,
vol. 5369. Springer, 270–281.

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

39:20 Daniel Binkele-Raible et al.

LU, H.-I. AND RAVI, R. 1998. Approximating maximum leaf spanning trees in almost linear time. Journal
of Algorithms 29, 132–141.

NIEDERMEIER, R. 2006. Invitation to Fixed-Parameter Algorithms. Oxford University Press.
RAIBLE, D. AND FERNAU, H. 2010. An amortized search tree analysis for k-LEAF SPANNING TREE. In SOF-

SEM 2010: Theory and Practice of Computer Science, J. van Leeuwen, A. Muscholl, D. Peleg, J. Pokorný,
and B. Rumpe, Eds. LNCS Series, vol. 5901. Springer, 672–684.

SOLIS-OBA, R. 1998. 2-approximation algorithm for finding a spanning tree with maximum number of
leaves. In Algorithms—ESA ’98, 6th Annual European Symposium, G. Bilardi, G. F. Italiano, A. Pietra-
caprina, and G. Pucci, Eds. LNCS Series, vol. 1461. Springer, 441–452.

THOMASSÉ, S. 2010. A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms 6, 2.

ACM Transactions on Algorithms, Vol. 9, No. 4, Article 39, Publication date: March 2011.

