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Abstract

Given a digraph G, two vertices s, t ∈ V (G) and a non-negative integer k, the Long
Directed (s, t)-Path problem asks whether G has a path of length at least k from s to t.
We present a simple algorithm that solves Long Directed (s, t)-Path in time O?(4.884k).
This results also in an improvement upon the previous fastest algorithm for Long Directed
Cycle.

1 Introduction

Given a digraph (directed graph) G, two vertices s, t ∈ V (G) and a non-negative integer k, the
Long (Directed) (s, t)-Path problem asks whether G has an (s, t)-path (i.e. a path from
s to t) of length at least k. Here, the term length refers to the number of vertices on the
path, and paths are assumed to be directed simple paths. Observe that Long (s, t)-Path and
k-(s, t)-Path are not equivalent problems, where that latter problem asks whether G has an
(s, t)-path of length exactly k. Indeed, G may not have any (s, t)-path of length exactly k,
or more generally, it may not even have any (s, t)-path of “short” length, but it may have an
(s, t)-path of “long” length. For example, the only (s, t)-path of length at least k in G might be
a Hamiltonian path.

Both Long (s, t)-Path and k-(s, t)-Path are generalizations of the classic k-Path problem,
whose objective is to determine whether G has a path of length at least k. In particular, many
papers developed parameterized algorithms for this problem (e.g., for some recent developments,
see [2, 8, 1, 4, 7, 3, 9]). Notably, algorithms for k-Path implicitly solve k-(s, t)-Path. However,
in the case of Long (s, t)-Path, these algorithms do not solve the problem. To substantiate
the difficulty posed by Long (s, t)-Path, let us consider the related Long (Directed) Cycle
and k-Cycle problems. The first problem asks whether G has a cycle of length at least k, while
the second problem asks whether G has a cycle of length exactly k. It has been known how to
solve k-Cycle in time O?(2O(k)) already in 1994.1 In contrast, only in 2014 was it first known
how to solve Long Cycle in time O?(2O(k)) [5] (previously, this problem was only known to be
solvable in time O?(kO(k)) [6]). Currently, the fastest deterministic and randomized algorithms
for Long Cycle run in times O?(6.74k) and O?(4k), respectively [10].
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In this work, we present a very simple (deterministic) algorithm for Long (s, t)-Path that
runs in timeO?(4.884k). We remark that as our algorithm invokes an algorithm for k-(s, t)-Path
as a black box, a faster deterministic algorithm for k-(s, t)-Path than the current state-of-art
(that is, a deterministic algorithm that solves k-(s, t)-Path in time O?(2.597k) [9]) would also
directly speed-up our algorithm. As a consequence of our result, we also obtain a deterministic
algorithm that solves Long Cycle in time O?(4.884k), improving upon the previous best
O?(6.74k)-time deterministic algorithm for this problem. We remark that our algorithm revisits
ideas introduced in the papers [5] and [10], and employs them in a manner that is (a) clean
and simple, (b) extendible to k-(s, t)-Path, and (c) results in a faster running time for Long
Cycle.

Preliminaries. Given a graph G, let V (G) and E(G) denote the vertex and edge sets of
G, respectively, and denote n = |V (G)|. For a set A ⊆ V (G), let G[A] denote the subgraph
of G induced by A, and define G \ A as G[V (G) \ A]. Given two vertices s, t ∈ V (G) and an
integer k, let ΛkG(s, t) denote the minimum length of an (s, t)-path in G whose length is at least
k, where ΛkG(s, t) = −∞ if not such path exists.

For a universe U , we let 2U denote the family of all subsets of U . Our algorithm relies on
the notion of universal set:

Definition 1.1. Let U be an n-element universe, and p, q ∈ N0. A family F ⊆ 2U is an
(n, p, q)-universal set if for all disjoint A,B ⊆ U such that |A| ≤ p and |B| ≤ q, there exists
F ∈ F such that A ⊆ F and B ∩ F = ∅.

It is known that small universal sets can be computed efficiently:

Proposition 1.1 ([5]). Given an n-element universe, and p, q ∈ N0, an (n, p, q)-universal set
F of size O(

(
p+q
p

)
2o(p+q) · log n) can be computed in time O(

(
p+q
p

)
2o(p+q) · n log n).

2 Balancedly Annotated Long (s, t)-Paths

The purpose of this section is to handle the special case of Long (s, t)-Path where it is assumed
that no “short” path of length at least k exists, and that the prefix and suffix of a solution (if
one exists) are “annotated”. Specifically, we prove the following lemma.

Lemma 2.1. There is a deterministic polynomial-time algorithm, Alg1, that given an instance
(G, s, t, k) of Long (s, t)-Path, and a partition (L,R) of V (G), satisfies the following.2

• If ΛkG(s, t) ≥ 2k and G has an (s, t)-path s = v1 → v2 → · · · → v` = t such that
` = ΛkG(s, t), v1, v2, . . . , vk ∈ L and v`−k+1, v`−k+2, . . . , v` ∈ R, then Alg1 accepts.

• If G does not have any (s, t)-path of length at least k, then Alg1 rejects.

Towards the proof of this lemma, we need to establish two results. We prove them in a
general form in order to reuse them in the next section.

Lemma 2.2. Fix 1 ≤ α. Let (G, s, t, k) be an instance of Long (s, t)-Path, and (L,R) be a
partition of V (G). Suppose that ΛkG(s, t) ≥ dαke, and G has an (s, t)-path s = v1 → v2 → · · · →
v` = t such that ` = ΛkG(s, t), v1, v2, . . . , vd(α−1)ke ∈ L and v`−k+1, v`−k+2, . . . , v` ∈ R. Then, the
length of a shortest path from v1 to vd(α−1)ke in G[L] is d(α− 1)ke.

2In cases not covered by these conditions, Alg1 can either accept or reject.
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Proof. Let P be a shortest (v1, vd(α−1)ke)-path in G[L]. It is clear that |V (P )| ≤ d(α − 1)ke.
Thus, to prove that |V (P )| = d(α − 1)ke, suppose by way of contradiction that |V (P )| ≤
d(α − 1)ke − 1. Denote P = u1 → u2 → · · · → ur, where s = u1 and vd(α−1)ke = ur.
Since v`−k+1, v`−k+2, . . . , v` ∈ R, we have that V (P ) ∩ {v`−k+1, v`−k+2, . . . , v`} = ∅. Then,
s = u1 → u2 → · · · → ur → vk+1 → vk+2 → v`−k is a walk in G that avoids the vertices
v`−k+1, v`−k+2, . . . , v`. In particular, as r ≤ d(α− 1)ke − 1, this means that G has an (s, v`−k)-
path of length at most ` − k − 1 that avoids the vertices v`−k+1, v`−k+2, . . . , v`. By traversing
this path and then the path v`−k → v`−k+1 → · · · → v`, we exhibit an (s, t)-path in G of length
strictly smaller than ` (but of length at least k and where the last k vertices belong to R), which
is a contradiction to ` = ΛkG(s, t).

Lemma 2.3. Fix 1 ≤ α. Let (G, s, t, k) be an instance of Long (s, t)-Path, and (L,R) be a
partition of V (G). Suppose that ΛkG(s, t) ≥ dαke, and G has an (s, t)-path s = v1 → v2 → · · · →
v` = t such that ` = ΛkG(s, t), v1, v2, . . . , vd(α−1)ke ∈ L and v`−k+1, v`−k+2, . . . , v` ∈ R. Then, for
any path P of length d(α− 1)ke from v1 to vd(α−1)ke in G[L], there exists a path from vd(α−1)ke
to v` in G \ (V (P ) \ {vd(α−1)ke}) of length at least k + 1.

Proof. Let P be a (v1, vd(α−1)ke)-path of length d(α−1)ke in G[L]. Since v`−k+1, v`−k+2, . . . , v` ∈
R, to prove the lemma it is sufficient to show that P does not contain any vertex from
{vd(α−1)ke+1, vd(α−1)ke+2, . . . , v`−k}. Suppose, by way of contradiction, that this claim is false,
and let i be the largest index of a vertex in {vd(α−1)ke+1, vd(α−1)ke+2, . . . , v`−k} such that vi ∈
V (P ). Now, consider the path obtained by traversing P from v1 until vi, then traversing
vi → vi+1 → · · · → v`−k, and finally traversing v`−k → v`−k+1 → · · · → v`. Notice that this is
an (s, t)-path in G of length strictly smaller than ` (but of length at least k and where the last
k vertices belong to R), which is a contradiction to ` = ΛkG(s, t).

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. Let (G, s, t, k) be an instance of Long (s, t)-Path, and a partition (L,R)
of V (G). For every vertex v ∈ L, Alg1 executes the following procedure. First, it uses BFS to
find a shortest path P from s to v in G[L]. If such a path P exists and its length is k, then Alg1
proceeds as follows. It uses BFS to determine whether t is reachable from v in G\ (V (P )\{v}).
If the answer is positive, Alg1 accepts. Eventually, if Alg1 did not accept for any v ∈ L, then it
rejects. Clearly, the algorithm runs in polynomial time.

In one direction, it is clear that if the algorithm accepts, then G has an (s, t)-path of length
at least k. For the other direction, suppose that ΛkG(s, t) ≥ 2k, and G has an (s, t)-path s =
v1 → v2 → . . .→ v` = t such that ` = ΛkG(s, t), v1, v2, . . . , vk ∈ L and v`−k+1, v`−k+2, . . . , v` ∈ R.
Then, there exists a path of length k from v1 to vk in G[L]. By Lemma 2.2 (with α = 2), we
also know that no shorter path exists. Moreover, Lemma 2.3 (with α = 2) states that for any
path P of length k from s to vk in G[L], t is reachable from vk in G \ (V (P ) \ {vk}). Thus, at
the latest, Alg1 accepts in the iteration where it examines v = vk.

3 Unbalancedly Annotated Long (s, t)-Paths

In this section we handle another special case of Long (s, t)-Path where the prefix and suffix of
a solution (if one exists) are “annotated”. However, the current annotation may not be balanced
as in Lemma 2.1, and the paths whose absence is assumed are not as long as those in Lemma
2.1. This special case lies at the heart of our algorithm, and it invokes the algorithm developed
in the previous section as a black box. Specifically, we prove the following lemma.
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Lemma 3.1. Fix 1.5 ≤ α ≤ 2. There is a deterministic O?(4(2−α)k2o(k))-time algorithm, Alg2,
that given an instance (G, s, t, k) of Long (s, t)-Path, and a partition (L,R) of V (G), satisfies
the following.

• If ΛkG(s, t) ≥ dαke, and G has an (s, t)-path s = v1 → v2 → · · · → v` = t such that
` = ΛkG(s, t), v1, v2, . . . , vd(α−1)ke ∈ L and v`−k+1, v`−k+2, . . . , v` ∈ R, then Alg2 accepts.

• If G does not have any (s, t)-path of length at least k, then Alg2 rejects.

Proof. Let (G, s, t, k) be an instance of Long (s, t)-Path, and let (L,R) be a partition of
V (G). For every vertex v ∈ L, Alg2 executes the following procedure. First, it uses BFS to find
a shortest path P from s to v in G[L]. If such a path P exists and its length is d(α − 1)ke,
then Alg2 executes the following. It first uses Proposition 1.1 to compute an (n, k − d(α −
1)ke, k − d(α − 1)ke)-universal set F . For every F ∈ F and vertex u /∈ V (P ) that is an
outgoing neighbor of v, Alg2 calls Alg1 with (G \ V (P ), u, t, k − d(α − 1)ke) and the partition
(F \V (P ), V (G) \ (F ∪V (P ))) as input. Eventually, Alg2 accepts if and only if at least one call
to Alg1 accepted.

By Proposition 1.1 and Lemma 2.1, Alg2 runs in time O?(
(2(k−d(α−1)ke)
k−d(α−1)ke)e

)
2o(k)), which implies

the bound O?(4(2−α)k2o(k)).
In one direction, suppose that Alg2 accepted. Then, by Lemma 2.1, there is a vertex v ∈

V (G) and an out-neighbor u of v for which there exist vertex disjoint paths P and P ′ in G such
that P is a path of length at least d(α−1)ke from s to v, and P ′ is a path of length k−d(α−1)ke
from u to t. Thus, G has an (s, t)-path of length at least k.

For the other direction, suppose that ΛkG(s, t) ≥ dαke, and G has an (s, t)-path s = v1 →
v2 → · · · → v` = t such that ` = ΛkG(s, t), v1, v2, . . . , vd(α−1)ke ∈ L and v`−k+1, v`−k+2, . . . , v` ∈
R. Then, there exists a path of length d(α− 1)ke from v1 to vd(α−1)ke in G[L]. By Lemma 2.2,
we also know that no shorter path exists. Let us now examine iterations where v = vd(α−1)ke.
Then, by the former arguments, Alg2 computes a path P of length exactly d(α− 1)ke from s to
vd(α−1)ke. By Lemma 2.3, there exists a path from vd(α−1)ke to v` in G \ (V (P ) \ {vd(α−1)ke}) of
length at least k+1. Let us denote a shortest path from vd(α−1)ke to v` inG\(V (P )\{vd(α−1)ke})of
length at least k + 1 by P ′. Define P ? as P ′ from which we remove vd(α−1)ke. Next, consider
the iteration where u is selected to be the first vertex on P ?.

We claim that the length of P ? is Λ
k−d(α−1)ke
G\V (P ) (u, t) (which means that Λ

k−d(α−1)ke
G\V (P ) (u, t) ≥ k).

To prove this claim, we need to show that G \ V (P ) has no (u, t)-path of length at least
k − d(α − 1)ke that is shorter than k. Suppose, by way of contradiction, that such a path
P̂ exists. Then, by traversing first P , then the edge from v to u and next the path P̂ , we
exhibit a path Q such that |V (Q)| = |V (P )|+ |V (P̂ )| ≥ d(α− 1)ke+ (k − d(α− 1)ke) = k and
|V (Q)| = |V (P )| + |V (P̂ )| ≤ d(α − 1)ke + k − 1 < dαke. However, this is a contradiction to
ΛkG(s, t) ≥ dαke.

Let us observe that k − d(α − 1)ke ≤ 0.5k because α ≥ 1.5. Thus, by Definition 1.1,
there exists F ∈ F such that each of the first k − d(α − 1)ke vertices on P ? belong to F and
none of the last k − d(α − 1)ke vertices on P ? belongs to F . Consider an iteration where
such F is examined. In order to complete the proof, it is sufficient to show that Alg1 accepts
(G \ V (P ), u, t, k − d(α− 1)ke) with the partition (F \ V (P ), V (G) \ (F ∪ V (P ))). To this end,

by Lemma 2.1, it remains to show that Λ
k−d(α−1)ke
G\V (P ) (u, t) ≥ 2(k−d(α− 1)ke). However, we have

shown that Λ
k−d(α−1)ke
G\V (P ) (u, t) ≥ k, and k ≥ 2(k − d(α− 1)ke) because α ≥ 1.5.

4 (Normal) Long (s, t)-Paths

Having proved Lemma 3.1, we now proceed to prove a lemma that, together with Proposition
4.1, will lead us to our main theorem.
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Lemma 4.1. Fix 1.5 ≤ α ≤ 2. There is a deterministic O?(( 42−ααα

(α− 1)α−1
)k · 2o(k))-time algo-

rithm, LongAlg, that given an instance (G, s, t, k) of Long (s, t)-Path where ΛkG(s, t) ≥ dαke,
accepts if and only if G has an (s, t)-path of length at least k.

Proof. Let (G, s, t, k) be an instance of Long (s, t)-Path where ΛkG(s, t) ≥ dαke. LongAlg first
uses Proposition 1.1 to compute an (n, d(α−1)ke, k)-universal set F . For every F ∈ F , LongAlg
calls Alg2 with (G, s, t, k) and the partition (F, V (G)\F ) as input. Eventually, LongAlg accepts
if and only if at least one call to Alg2 accepted.

By Proposition 1.1 and Lemma 3.1, LongAlg runs in time O?(
(dαke

k

)
2o(k) · 4(2−α)k), which

implies (by Stirling’s approximation) the bound O?(( 42−ααα

(α−1)α−1 )k ·2o(k)). In one direction, Lemma

3.1 directly implies that if LongAlg accepts, then G has an (s, t)-path of length at least k. For
the other direction, suppose that G has an (s, t)-path of length at least k. Then, G has a path
s = v1 → v2 → · · · → v` = t such that ` = ΛkG(s, t) ≥ dαke. By Definition 1.1, there exists
F ∈ F such that v1, v2, . . . , vd(α−1)ke ∈ F and v`−k+1, v`−k+2, . . . , v` /∈ F . By Lemma 3.1, when
this set F is examined, Alg2 accepts. Thus, LongAlg eventually accepts.

Our algorithm also relies on the following proposition.

Proposition 4.1 ([9]). There is a deterministic algorithm, ShortAlg, that solves k-(s, t)-Path
in time O?(2.59606k).

Finally, we prove our main theorem.

Theorem 1. There is a deterministic algorithm, MainAlg, that solves Long (s, t)-Path in time
O?(4.884k).

Proof. Fix 1.5 ≤ α ≤ 2 (to be determined). Given an instance (G, s, t, k) of Long (s, t)-Path,
MainAlg executes the following computation. For all ` ∈ {k, k + 1, . . . , bαkc}, it calls ShortAlg
(from Proposition 4.1) with (G, s, t, `) as input, and accepts if ShortAlg accepts. If it did not
accept in any iteration, then it calls LongAlg with (G, s, t, `) as input, and accepts if and only if
LongAlg accepts.

The correctness of the algorithm directly follows from Lemma 4.1 and Proposition 4.1.
Moreover, by Lemma 4.1 and Proposition 4.1, the running time of MainAlg is

O?(max{2.59606αk, (
42−ααα

(α− 1)α−1
)k · 2o(k)}).

By choosing α = 1.6624, we derive that MainAlg runs in time O?(4.884k).

As one can solve Long Cycle by running, for every edge e ∈ E(G), MainAlg with s and t
being the target and source of e, respectively, we have the following corollary.

Corollary 4.1. There is a deterministic algorithm that solves Long Cycle in time O?(4.884k).
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