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Abstract1

We present an algorithm for the extensively studied Long Path and Long Cycle problems on2

unit disk graphs that runs in time 2O(
√

k)(n + m). Under the Exponential Time Hypothesis, Long3

Path and Long Cycle on unit disk graphs cannot be solved in time 2o(
√

k)(n + m)O(1) [de Berg et4

al., STOC 2018], hence our algorithm is optimal. Besides the 2O(
√

k)(n + m)O(1)-time algorithm for5

the (arguably) much simpler Vertex Cover problem by de Berg et al. [STOC 2018] (which easily6

follows from the existence of a 2k-vertex kernel for the problem), this is the only known ETH-optimal7

parameterized algorithm on UDGs. Previously, Long Path and Long Cycle on unit disk graphs8

were only known to be solvable in time 2O(
√

k log k)(n + m). This algorithm involved the introduction9

of a new type of a tree decomposition, entailing the design of a very tedious dynamic programming10

procedure. Our algorithm is substantially simpler: we completely avoid the use of this new type11

of tree decomposition. Instead, we use a marking procedure to reduce the problem to (a weighted12

version of) itself on a standard tree decomposition of width O(
√

k).13
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1 Introduction14

Unit disk graphs are the intersection graphs of disks of radius 1 in the Euclidean plane. That15

is, given n disks of radius 1, we represent each disk by a vertex, and insert an edge between16

two vertices if and only if their corresponding disks intersect. Unit disk graphs form one of the17

most well studied graph classes in computational geometry because of their use in modelling18

optimal facility location [56] and broadcast networks such as wireless, ad-hoc and sensor19

networks [35, 45, 58]. These applications have led to an extensive study of NP-complete20

problems on unit disk graphs in the realms of computational complexity and approximation21

algorithms. We refer the reader to [16, 24, 38] and the citations therein for these studies.22

However, these problems remain hitherto unexplored in the light of parameterized complexity23

with exceptions that are few and far between [1, 14, 33, 42, 54].24

We study the Long Path (resp. Long Cycle) problem on unit disk graphs. Here, given25

a graph G and an integer k, the objective is to decide whether G contains a path (resp. cycle)26

on at least k vertices. To the best of our knowledge, the Long Path problem is among the27
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five most extensively studied problems in Parameterized Complexity [17, 23] (see Section 1.1).28

One of the most well known open problems in Parameterized Complexity was to develop a29

2O(k)nO(1)-time algorithm for Long Path on general graphs [52], that is, shaving the log k30

factor in the exponent of the previously best 2O(k log k)nO(1)-time parameterized algorithm31

for this problem on general graphs [49]. This was resolved in the positive in the seminal work32

by Alon, Yuster and Zwick on color coding 25 years ago [5], which was recently awarded the33

IPEC-NERODE prize for the most outstanding research in Parameterized Complexity. In34

particular, the aforementioned 2O(k)nO(1)-time algorithm for Long Path on general graphs35

is optimal under the Exponential Time Hypothesis (ETH).36

Both Long Path and Long Cycle are known to be NP-hard on unit disk graphs [40],37

and cannot be solved in time 2o(
√

n)(and hence also in time 2o(
√

k)nO(1)) on unit disk graphs38

unless the ETH fails [19]. Our contribution is an optimal parameterized algorithm for Long39

Path (and Long Cycle) on unit disk graphs under the ETH. Specifically, we prove the40

following theorem.41

I Theorem 1. Long Path and Long Cycle are solvable in time 2O(
√

k)(n+m) on unit42

disk graphs.43

Two years ago, a celebrated work by de Berg et al. [19] presented (non-parameterized)44

algorithms with running time 2O(
√

n) for a number of problems on intersection graphs of so45

called “fat”, “similarly-sized” geometric objects for a number of problems, accompanied by46

matching lower bounds of 2Ω(
√

n) under the ETH. Only for the Vertex Cover problem does47

this work implies an ETH-tight parameterized algorithm. More precisely, Vertex Cover48

admits a 2k-vertex kernel on general graphs [50, 17], hence the 2Ω(
√

n)-time algorithm for49

Vertex Cover by de Berg et al. [19] is trivially a 2Ω(
√

k)nO(1)-time parameterized algorithm50

for this problem. None of the other problems in [19] is known to admit a linear-vertex kernel,51

and we know of no other work that presents a 2Ω(
√

k)nO(1)-time parameterized algorithm52

for any basic problem on unit disk graphs. Thus, we present the second known ETH-tight53

parameterized algorithm for a basic problem on unit disk graphs, or, in fact, on any family54

of geometric intersection graphs of fat objects. In a sense, our work is the first time where55

tight ETH-optimality of parameterized algorithms on unit disk graphs is explicitly answered.56

(The work of de Berg et al. [19] primarily concerned non-parameterized algorithms.) We57

believe that our work will open a door to the realm to an ETH-tight optimality program for58

parameterized algorithms on intersection graphs of fat geometric objects.59

Prior to our work, Long Path and Long Cycle were known to be solvable in time61

2O(
√

k log k)(n+m) on unit disk graphs [32]. Thus, we shave the log k factor in the exponent in62

the running time, and thereby, in particular, achieve optimality. Our algorithm is substantially63

simpler, both conceptually and technically, than the previous algorithm as we explain below.64

The main tool in the previous algorithm (of [32].) for Long Path (and Long Cycle) on65

unit disk graphs was a new (or rather refined) type of a tree decomposition.1 The width of66

the tree decomposition constructed in [32]. is kO(1), which on its own does not enable to67

design a subexponential (or even single-exponential) time algorithm. However, each of its68

bags (of size kO(1)) is equipped with a partition into O(
√
k) sets such that each of them69

induces a clique. By establishing a property that asserts the existence of a solution (if at70

least one solution exists) that crosses these cliques “few” times, the tree decomposition71

can be exploited. Specifically, this exploitation requires to design a very tedious dynamic72

programming algorithm (significantly more technical than algorithms over “standard” tree73

1 We refer the reader to Section 2 for the definition of a tree decomposition.60
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decompositions, that is, tree decompositions of small width) to keep track of the interactions74

between the cliques in the partitions.75

We completely avoid the use of the new type of tree decomposition of [32]. Instead, we76

use a simple marking procedure to reduce the problem to (a weighted version of) itself on77

a tree decomposition of width O(
√
k). Then, the new problem can be solved by known78

algorithms as black boxes by employing either an essentially trivial twO(tw)n-time algorithm,79

or a more sophisticated 2O(tw)n-time algorithm (of [10] or [28]). On a high level, we are able80

to mark few vertices in certain cliques (which become the cliques in the above mentioned81

partitions of bags in [32]), so that there exists a solution (if at least one solution exists) that82

uses only marked vertices as “portals”—namely, it crosses cliques only via edges whose both83

endpoints are marked. Then, in each clique, we can just replace all unmarked vertices by84

a single weighted vertex. This reduces the size of each clique to be constant, and yields a85

tree decomposition of width O(
√
k). We believe that our idea of identification of portals and86

replacement of all non-portals by few weighted vertices will find further applications in the87

design of ETH-tight parameterized algorithms on intersection graphs of fat geometric objects.88

Before we turn to briefly survey some additional related works, we would like to stress that89

shaving off logarithmic factors in the exponent of running times of parameterized algorithms90

is a major issue in this field. Indeed, when they appear in the exponent, logarithmic91

factors have a critical effect on efficiency that can render algorithms impractical even on92

small instances. Over the past two decades, most fundamental techniques in Parameterized93

Complexity targeted not only the objective of eliminating the logarithmic factors, but even94

improving the base c in running times of the form cknO(1). For example, this includes95

the aforementioned color coding technique [5] that was developed to shave off the log k96

in a previous 2O(k log k)nO(1)-time algorithm, which further entailed a flurry of research on97

techniques to improve the base of the exponent (see Section 1.1), and the cut-and-count98

technique to design parameterized algorithms in time 2O(t)nO(1) rather than 2O(t log t)nO(1)
99

(in fact, for connectivity problems such as Long Path) on graphs of treewidth t [18].100

Accompanying this active line of research, much efforts were devoted to prove that problems101

that have long resisted the design of algorithms without logarithmic factors in the exponent102

are actually unlikely to admit such algorithms [48].103

1.1 Related Works on Long Path and Long Cycle104

We now briefly survey some known results in Parameterized Complexity on Long Path and105

Long Cycle. Clearly, this survey is illustrative rather than comprehensive. The standard106

parameterization of Long Path and Long Cycle is by the solution size k, and here we107

will survey only results that concern this parameterization.108

The Long Path (parameterized by the solution size k on general graphs) is arguably one109

of the five (or even fewer) problems with the richest history in Parameterized Complexity,110

having parameterized algorithms continuously developed since the early days of the field and111

until this day. The algorithms developed along the way gave rise to some of the most central112

techniques in the field, such as color-coding [5] and its incarnation as divide-and-color [15],113

techniques based on the polynomial method [46, 47, 57, 8], and matroid based techniques114

[29]. The first parameterized algorithm for this problem was an 2O(k log k)nO(1)-time given115

in 1985 by Monien [49], even before the term “parameterized algorithm” was in known use.116

Originally in 1994, the logarithmic factor was shaved off [5], resulting in an algorithm with117

running time cknO(1) for c = 2e. After that, a long line of works that presented improvements118

over c has followed [46, 47, 57, 8, 29, 59, 37, 53, 15, 55], where the algorithm with the current119

best running time is a randomized algorithm whose time complexity is 1.66knO(1) [8]. Unless120
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the ETH fails, Long Path (as well as Long Cycle) does not admit any algorithm with121

running time 2o(k)nO(1) [39].122

For a long time, the Long Cycle problem was considered to be significantly harder123

than Long Path due to the following reason: while the existence of a path of size at least k124

implies the existence of a path of size exactly k, the existence of a cycle of size at least k does125

not imply the existence of a cycle of size exactly k—in fact, the only cycle of size at least k in126

the input graph might be a Hamiltonian cycle. Thus, for this problem, the first parameterized127

algorithm appeared (originally) only in 2004 [34], and the first parameterized algorithm with128

running time 2O(k)nO(1) appeared (originally) only in 2014 [29]. Further improvements on129

the base of the exponent in the running time were given in [60, 30]. Lastly, we remark that130

due to their importance, over the past two decades there has been extensive research of131

Long Path and Long Cycle parameterized by k above some guarantee [7, 26, 43, 27],132

and the (approximate) counting versions of these problems [25, 6, 2, 4, 3, 13, 9]. Both Long133

Path and Long Cycle are unlikely to admit a polynomial kernel [11], and in fact, are even134

conjectured not to admit Turing kernels [36, 44].135

While Long Path and Long Cycle remain NP-complete on planar graphs, they admit136

2O(
√

k)nO(1)-time algorithms: By combining the bidimensionality theory of Demaine et al.137

[20] with efficient algorithms on graphs of bounded treewidth [22], Long Path and Long138

Cycle, can be solved in time 2O(
√

k)nO(1) on planar graphs. Moreover, the parameterized139

subexponential “tractability” of Long Path/Cycle can be extended to graphs excluding140

some fixed graph as a minor [21]. Unfortunately, unit disk graphs are somewhat different than141

planar graphs and H-minor free graphs—in particular, unlike planar graphs and H-minor142

free graphs where the maximum clique size is bounded by 5 (for planar graphs) or some other143

fixed constant (for H-minor free graphs), unit disk graphs can contain cliques of arbitrarily144

large size and are therefore “highly non-planar”. Nevertheless, Fomin et al. [33] were able to145

obtain subexponential parameterized algorithms of running time 2O(k0.75 log k)nO(1) on unit146

disk graphs for Long Path, Long Cycle, Feedback Vertex Set and Cycle Packing.147

None of these four problems can be solved in time 2o(
√

n)(and hence also in time 2o(
√

k)nO(1))148

on unit disk graphs unless the ETH fails [19]. Afterwards (originally in 2017), Fomin et149

al. [32] obtained improved, yet technically quite tedious, 2O(
√

k log k)nO(1)-time algorithms for150

Long Path, Long Cycle and Feedback Vertex Set and Cycle Packing. Recall that151

this work was discussed earlier in the introduction. Later, the same set of authors designed152

2O(
√

k log k)nO(1) time algorithms for the aforementioned problems on map graphs [31]. We153

also remark that recently, Panolan et al. [51] proved a contraction decomposition theorem on154

unit disk graphs as an application of the theorem, they proved that Min-Bisection on unit155

disk graphs can be solved in time 2O(k)nO(1).156

2 Preliminaries157

For a positive integer `, let [`] = {1, . . . , `}. We refer to Appendix A for standard graph158

theoretic terms.159

Unit disk graphs. Let P = {p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)} be a set of160

points in the Euclidean plane. Let D = {d1, d2, . . . , dn} where for every i ∈ [n], di is the161

disk of radius 1 whose centre is pi. Then, the unit disk graph of D is the graph G such that162

V (G) = D and E(G) = {{di, dj} | di, dj ∈ D, i 6= j,
√

(xi − xj)2 + (yi − yj)2 ≤ 2}.163
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Figure 1 A clique-grid graph G. For the sake of illustration, in phase II of marking let
Mark2(v, (i′, j′)) denote a set of 5 vertices in f−1(i′, j′) that are adjacent to v in G, where if
no 5 vertices with this property exist, then let Mark2(v, (i′, j′)) denote the set of all vertices with
this property. Then the good and bad edges are colored blue and red, respectively (see Definition 7).
The marked vertices are colored black.

176

177

178

179

180

Clique-Grids. Intuitively, a clique-grid is a graph whose vertices can be embedded in grid164

cells (where multiple vertices can be embedded in each cell), so that the each cell induces165

a clique and “interacts” (via edges incident to its vertices) only with cells at “distance” at166

most 2 (see Figure 1).167

I Definition 2 (Clique-Grid). A graph G is a clique-grid if there exists a function f :168

V (G)→ [t]× [t] for some t ∈ N, called a representation, such that the following conditions169

are satisfied.170

1. For all (i, j) ∈ [t]× [t], G[f−1(i, j)] is a clique.171

2. For all {u, v} ∈ E(G), |i− i′| ≤ 2 and |j − j′| ≤ 2 where f(u) = (i, j) and f(v) = (i′, j′).172

We call a pair (i, j) ∈ [t]× [t] a cell. It is easy to see that a unit disk graph is a clique-grid,173

and a representation of it, can be computed in linear time. A formal proof can be found in174

[32] (also see [41] for a similar result). Specifically, we will refer to the following proposition.175

I Proposition 3 ([41, 32]). Let G be the unit disk graph of a set of points D in the Euclidean181

plane. Then, G is a clique-grid, and a representation of G can be computed in linear time.182

Treewidth. The treewidth of a graph, which is a standard measure of its “closeness” to a183

tree, whose formal definition (not explicitly used in this paper) can be found in Appendix A.184

The treewidth of a graph can be approximated within a constant factor efficiently as follows.185

I Proposition 4 ([12]). Given a graph G and a positive integer k, in time 2O(k) · n, we can186

either decide that tw(G) > k or output a tree decomposition of G of width 5k.187

We will need the following proposition to argue that a unit disk graph of bounded degree188

contains a grid minor of dimension linear in its treewidth.189

CVIT 2016
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I Proposition 5 ([33]). Let G be a unit disk graph with maximum degree ∆ and treewidth190

tw. Then, G contains a tw
100∆3 ×

tw
100∆3 grid as a minor.191

3 Marking Scheme192

In this section, we present a marking scheme whose purpose is to mark a constant number193

of vertices in each cell of a clique-grid G so that, if G has a path (resp. cycle) on at least k194

vertices, then it also has a path (resp. cycle) on at least k vertices that “crosses” cells only at195

marked vertices. Then, we further argue that unmarked vertices in a cell can be thought of,196

in a sense, as a “unit” that is representable by one weighted vertex. We remark that we did197

not make any attempt to optimize the number of vertices marked, but only make the proof198

simple.199

Marking Scheme. Let G be a clique-grid graph with representation f : V (G) → [t]× [t].200

Then, the marking scheme consists of two phases defined as follows.201

Phase I. For each pair of distinct cells (i, j), (i′, j′) ∈ [t]× [t] with |i− i′| ≤ 2 and |j− j′| ≤ 2,202

let M be a maximal matching where each edge has one endpoint in f−1(i, j) and the other203

endpoint in f−1(i′, j′); if |M | ≤ 241, then denote Mark1({(i, j), (i′, j′)}) = M , and otherwise204

choose a subset M ′ of M of size 241 and let Mark1({(i, j), (i′, j′)}) = M ′.205

For each cell (i, j) ∈ [t]× [t], let Mark1(i, j) denote the set of all vertices in f−1(i, j) that206

are endpoints of edges in
⋃

(i′,j′) Mark1({(i, j), (i′, j′)}) where (i′, j′) ranges over every cell207

such that |i− i′| ≤ 2 and |j − j′| ≤ 2; the vertices that belong to this set are called marked208

vertices.209

Phase II. For each ordered pair of distinct cells (i, j), (i′, j′) ∈ [t]× [t] with |i− i′| ≤ 2 and210

|j − j′| ≤ 2 and vertex v ∈ Mark1(i, j), let Mark2(v, (i′, j′)) denote a set of 121 vertices in211

f−1(i′, j′) that are adjacent to v in G, where if no 121 vertices with this property exist, then212

let Mark2(v, (i′, j′)) denote the set of all vertices with this property; the vertices that belong213

to this set are also called marked vertices.214

Altogether. For each cell (i, j) ∈ [t]× [t], let Mark?(i, j) denote the set of all marked vertices215

in f−1(i, j).216

Clearly, given G and f , Mark?(i, j) is not uniquely defined. Whenever we write Mark?(i, j),217

we refer to an arbitrary set that can be the result of the scheme above. We have the following218

simple observation regarding the size of Mark?(i, j) and the computation time.219

I Observation 3.1. Let G be a clique-grid with representation f : V (G)→ [t]× [t]. For each220

cell (i, j) ∈ [t]× [t],|Mark?(i, j)| ≤ 1010. Moreover, the computation of all the sets Mark?(i, j)221

together can be done in linear time.222

Proof. Consider a cell (i, j) ∈ [t]× [t]. In the first phase, at most 24 · 241 vertices in f−1(i, j)223

are marked. In the second phase, for each of the 24 cells (i′, j′) such that |i− i′| ≤ 2 and224

|j − j′| ≤ 2, and each of the at most 24 · 241 marked vertices in f−1(i′, j′), at most 121 new225

vertices in f−1(i, j) are marked. Therefore, in total at most 24 ·241+24 · (24 ·241) ·121 ≤ 1010
226

vertices in f−1(i, j) are marked.227

The claim regarding the computation time is immediate. J228

As part of the proof that our marking scheme has the property informally stated earlier,229

we will use the following proposition.230
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(a) The case when û /∈ V (P ).242
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(b) Rerouting when û /∈ V (P ).242
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(c) The case when dP (û) = 1.243
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(d) Rerouting when dP (û) = 1.243
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(e) The case when dP (û) = 2.244

(i, j) (i′, j′)

u •

•

• •
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(f) Rerouting when dP (û) = 2.244

Figure 2 Illustration of Case I in the proof of Lemma 8. The vertices colored black and red
are marked and unmarked, respectively. The blue colored vertices are either marked or unmarked.
Good and bad edges are colored blue and red, respectively. The curves colored green are part of the
path P . The dashed lines are part of the path P2.

245

246

247

248

I Proposition 6 ([32]). Let G be a clique-grid with representation f that has a path231

(resp. cycle) on at least k vertices. Then, G also has a path (resp. cycle) P on at least k232

vertices with the following property: for every two distinct cells (i, j) and (i′, j′), there exist233

at most 5 edges {u, v} ∈ E(P ) such that f(u) = (i, j) and f(v) = (i′, j′).234

We now formally state and prove the property achieved by our marking scheme. For this235

purpose, we have the following definition (see Figure 1) and lemma.236

I Definition 7. Let G be a clique-grid with representation f . An edge {u, v} ∈ E(G)237

where f(u) 6= f(v) is good if u ∈ Mark?(i, j) and v ∈ Mark?(i′, j′) where f(u) = (i, j) and238

f(v) = (i′, j′); otherwise, it is bad.239

Intuitively, the following lemma asserts the existence of a solution (if any solution exists)240

that crosses different cells only via good edges, that is, via marked vertices.241

CVIT 2016
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I Lemma 8. Let G be a clique-grid with representation f that has a path (resp. cycle) on249

at least k vertices. Then, G also has a path (resp. cycle) P on at least k vertices with the250

following property: every edge {u, v} ∈ E(P ) where f(u) 6= f(v) is good.251

Proof. By Proposition 6, G has a path (resp. cycle) on at least k vertices with the following252

property: for every two distinct cells (i, j) and (i′, j′), there exist at most 5 edges {u, v} ∈ E(P )253

such that f(u) = (i, j) and f(v) = (i′, j′). Among all such paths (resp. cycles), let P be one254

that minimizes the number of bad edges. The following claim follows immediately from the255

choice of P and Property 2 in Definition 2.256

B Claim 9. For each cell (i, j) ∈ [t] × [t], there are at most 24 · 5 = 120 vertices in257

f−1(i, j) ∩ V (P ) that are adjacent in P to at least one vertex that does not belong to258

f−1(i, j).259

Next, we show that P has no bad edge, which will complete the proof. Targeting a260

contradiction, suppose that P has some bad edge {u, v}. By Definition 7, u /∈ Mark?(i, j) or261

v /∈ Mark?(i′, j′) (or both) where f(u) = (i, j) and f(v) = (i′, j′). Without loss of generality,262

suppose that u /∈ Mark?(i, j). We consider two cases as follows.263

Case I. First, suppose that v ∈ Mark1(i′, j′). Because u is adjacent to v but it is not marked265

in the second phase, it must hold that |Mark2(v, (i, j))| ≥ 121. By Claim 9, this means that266

there exists a vertex û ∈ Mark2(v, (i, j)) ∩ V (P ) whose neighbors in P—which might be 0 if267

û does not belong to P , 1 if it is an endpoint of P or 2 if it is an internal vertex of P—also268

belong to f−1(i, j) (see Figure 2). In case û /∈ V (P ), denote P1 = P . Else, by Property 1269

in Definition 2, by removing û from P , and if û has two neighbors on P , then also making270

these two neighbors adjacent,2 we still have a path (resp. cycle) in G, which we denote by271

P1, whose size is at least |V (P )| − 1. Now, note that because û ∈ Mark2(v, (i, j)), we have272

that û is adjacent to v in G and also û ∈ f−1(i, j). Because u ∈ f−1(i, j), Property 1 in273

Definition 2 implies that û is also adjacent to u. Thus, by inserting û between u and v in P1274

and making it adjacent to both, we still have a path (resp. cycle) in G, which we denote by275

P2 (see Figure 2). Note that |V (P2)| = |V (P1)|+ 1 ≥ |V (P )| ≥ k. Moreover, the only edges276

that appear only in one among P2 and P are as follows.277

1. If û has two neighbors in P , then the edges between û and these two neighbors might278

belong only to P , and the edge between these two neighbors belongs only to P2. As û279

and its neighbors in P belong to the same cell (by the choice of û), none of these edges is280

bad, and also none of these edges crosses different cells.281

2. If û has only one neighbor in P , then the edge between û and this neighbor might belong282

only to P .283

3. {u, v} ∈ E(P ) \ E(P2) is a bad edge that crosses different cells by its initial choice.284

4. {u, û} might belong only to P2, and it is a neither a bad edge nor an edge that crosses285

different cells because u and û belong to the same cell.286

5. {û, v} ∈ E(P2) \ E(P ) is a not a bad edge because both û and v are marked (since287

v ∈ Mark1(i′, j′) and û ∈ Mark2(v, (i, j))), but it crosses different cells.288

Thus, P2 has no bad edge that does not belong to P , and P has at least one bad edge that289

does not belong to P2 (specifically, {u, v}), and therefore P2 has fewer bad edges than P .290

Moreover, notice that the items above also imply that P2 has at most one edge that crosses291

different cells and does not belong to P (specifically, {û, v}), and P has at least one edge292

that crosses the same cells and does not belong to P2 (specifically, {u, v}). Therefore, P2293

2 If û is an endpoint of P , then only the removal of û is performed.264
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(i, j) (i′, j′)

u •

•û

• •

• v̂

• •

v•

(a) The case when û, v̂ /∈ V (P ).297

(i, j) (i′, j′)

u •

•

• •

û

v•

• v̂

• •

(b) Rerouting when û, v̂ /∈ V (P ).297

(i, j) (i′, j′)

u •

•

• •

û

v•

• v̂

• •

(c) The case when dP (û) = dP (v̂) = 2.298

(i, j) (i′, j′)

u •

•

• •

û

v•

• v̂

• •

(d) Rerouting when dP (û) = dP (v̂) = 2.298

Figure 3 Illustration of two subcases of Case II in the proof of Lemma 8. Other subcases are
handled similarly to the subcases depicted here. The vertices colored black and red are marked and
unmarked, respectively. The blue colored vertices are either marked or unmarked. Good and bad
edges are colored blue and red, respectively. The curves colored green are part of the path P . The
dashed lines are part of the path P2.

299

300

301

302

303

also has the property of P that for every two distinct cells (̃i, j̃) and (̃i′, j̃′), there exist at294

most 5 edges {ũ, ṽ} ∈ E(P2) such that f(ũ) = (̃i, j̃) and f(ṽ) = (̃i′, j̃′). Therefore, we have295

reached a contradiction to the minimality of the number of bad edges in our choice of P .296

Case II. Second, suppose that v /∈ Mark?(i′, j′). Then, the addition of {u, v} to Mark1(i, j)304

maintains the property that it is a matching. Therefore, because this edge was not marked305

in the first phase, it must hold that |Mark1({(i, j), (i′, j′)})| = 241. By Claim 9, there are at306

most 120 vertices in f−1(i, j) ∩ V (P ) that are adjacent in P to at least one vertex that does307

not belong to f−1(i, j), and notice that u (which is unmarked) is one of them. Similarly, there308

are at most 120 vertices in f−1(i′, j′) ∩ V (P ) that are adjacent in P to at least one vertex309

that does not belong to f−1(i′, j′), and notice that v (which is unmarked) is one of them.310

Therefore, because Mark1({(i, j), (i′, j′)}) is a matching, it must contain at least one edge311

{û, v̂} such that neither û nor v̂ has a neighbor in P that belongs to a different cell than itself312

(see Figure 3)—either because û (and in the same way v̂) does not belong to P , or it does313

and all its (one or two) neighbors belong to the same cell as itself. Define P ′1 as follows: if û314

does not belong to P , then P ′1 = P , and otherwise let it be the graph obtained by removing315

û from P and making its two neighbors (if both exist) adjacent. Because these two neighbors316

(if they exist) belong to the same cell, Property 1 in Definition 2 implies that P ′1 is a path317

(resp. cycle) in G. Similarly, let P1 be the path (resp. cycle) obtained by the same operation318

with respect to P ′1 and v̂. Now, let P2 be the graph obtained from P1 by inserting û and v̂319

between u and v with the edges {u, û}, {û, v̂} and {v̂, v} (see Figure 3). Because of Property320

1 in Definition 2, and since u and û belong to the same cell, they are adjacent in G. Similarly,321

v and v̂ are adjacent in G. Moreover, because {û, v̂} ∈ Mark1({(i, j), (i′, j′)}), it is an edge322
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in G. Thus, P2 is a path (resp. cycle) in G. Additionally, V (P ) ⊆ V (P2), and therefore323

|V (P2)| ≥ k. The only edges that appear only in one among P2 and P are as follows.324

1. If û belongs to P and has two neighbors in P , then the edges between û and these two325

neighbors might belong only to P , and the edge between these two neighbors belongs326

only to P2. As û and its neighbors in P belong to the same cell (by the choice of û), none327

of these edges is bad, and none of them crosses different cells. The same holds for v̂.328

2. If û belongs to P and has only one neighbor in P , the edge between û and this neighbor329

might belong only to P . The same holds for v̂.330

3. {u, v} ∈ E(P ) \ E(P2) is a bad edge that crosses different cells by its initial choice.331

4. {u, û} might belong only to P2, and it is a neither a bad edge nor it crosses different cells332

because u and û belong to the same cell. The same holds for {v, v̂}.333

5. {û, v̂} ∈ E(P2) \ E(P ) is a not a bad edge because both û and v̂ are marked (since334

{û, v̂} ∈ Mark1({(i, j), (i′, j′)})), but it crosses different cells.335

Thus, P2 has no bad edge that does not belong to P , and P has at least one bad edge336

that does not belong to P2 (specifically, {u, v}), and therefore P2 has fewer bad edges than P .337

Moreover, notice that the items above also imply that P2 has at most one edge that crosses338

different cells and does not belong to P (specifically, {û, v̂}), and P has at least one edge339

that crosses the same cells and does not belong to P2 (specifically, {u, v}). Therefore, P2340

also has the property of P that for every two distinct cells (̃i, j̃) and (̃i′, j̃′), there exist at341

most 5 edges {ũ, ṽ} ∈ E(P2) such that f(ũ) = (̃i, j̃) and f(ṽ) = (̃i′, j̃′). Therefore, we have342

reached a contradiction to the minimality of the number of bad edges in our choice of P .343

In both cases we have reached a contradiction, and therefore the proof is complete. J344

Next, we further strengthen Lemma 8 with the following definition and Lemma 13.345

Intuitively, the following definition says that a cell is good with respect to some path if346

either none of its unmarked vertices is traversed by that path, or all of its unmarked vertices347

are traversed by that path consecutively and can be “flanked” only by marked vertices (see348

Figure 4).349

I Definition 10. Let G be a clique-grid with representation f . Let P be a path (resp. cycle)352

in G with endpoints x, y (resp. no endpoints). We say that a cell (i, j) ∈ [t]× [t] is good if353

(i) V (P ) = f−1(i, j) \Mark?(i, j), or (ii) V (P ) ∩ (f−1(i, j) \Mark?(i, j)) = ∅, or (iii) there354

exist distinct u, v ∈ (V (P ) ∩Mark?(i, j)) ∪ ({x, y} ∩ f−1(i, j)) (resp. not necessarily distinct355

u, v ∈ V (P ) ∩Mark?(i, j)) such that the set I of internal vertices of the (resp. a) subpath of356

P between u and v is precisely f−1(i, j) \ (Mark?(i, j) ∪ {u, v});3 otherwise, it is bad.357

It will be convenient to have, as an intermediate step, a definition and lemma that are360

weaker than Definition 10 and Lemma 13. Intuitively, this definition drops that requirement361

that none or all the unmarked vertices of a cell should be visited by the path at hand, but362

only requires that those unmarked vertices that are visited, are visited consecutively and can363

be “flanked” only by marked vertices (see Figure 5).364

I Definition 11. Let G be a clique-grid with representation f . Let P be a path (resp. cycle)365

in G with endpoints x, y (resp. no endpoints). We say that a cell (i, j) ∈ [t]× [t] is nice if366

(i) V (P ) ⊆ f−1(i, j) \Mark?(i, j), or (ii) V (P ) ∩ (f−1(i, j) \Mark?(i, j)) = ∅, or (iii) there367

exist distinct u, v ∈ (V (P ) ∩Mark?(i, j)) ∪ ({x, y} ∩ f−1(i, j)) (resp. not necessarily distinct368

3 In other words, I ⊆ f−1(i, j) \Mark?(i, j) and (f−1(i, j) \Mark?(i, j)) \ I can only include endpoints of
this subpath, in which case P is a path and any included endpoint is an endpoint of P as well.

350

351
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Figure 4 Illustration of good cells. The vertices colored black and red are marked and unmarked
vertices, respectively. The green curve represent the path/cycle P .

358

359

•

•

• ••

• •

Figure 5 Illustration of a nice cell which is not good. The vertices colored black and red are
marked and unmarked vertices, respectively. The green curve represents the path P .

371

372

u, v ∈ V (P ) ∩Mark?(i, j)) such that the set of internal vertices of the (resp. a) subpath of P369

between u and v is precisely (V (P ) ∩ f−1(i, j)) \ (Mark?(i, j) ∪ {u, v}).370

I Lemma 12. Let G be a clique-grid with representation f that has a path (resp. cycle) on373

at least k vertices. Then, G also has a path (resp. cycle) P on at least k vertices with the374

following property: every cell (i, j) ∈ [t]× [t] is nice.375

Proof. Given a path (resp. cycle) P with endpoints x, y (resp. no endpoints) and a cell376

(i, j) ∈ [t]× [t], we say that a subpath of P is (i, j)-nice if there exist distinct u, v ∈ (V (P ) ∩377

Mark?(i, j))∪ ({x, y}∩f−1(i, j)) (resp. u, v ∈ V (P )∩Mark?(i, j)) such that the set of internal378

vertices of the (resp. a) subpath of P between u and v is a subset I of f−1(i, j) \Mark?(i, j)379

such that if this subset I is empty, then the subpath has an endpoint in f−1(i, j) \Mark?(i, j)380

(which implies that P is a path and {u, v} ∩ {x, y} ∩ (f−1(i, j) \Mark?(i, j)) 6= ∅); we further381

say that a subpath of P is nice if it is (i, j)-nice for some (i, j). By Lemma 8, G has a path382

(resp. cycle) on at least k vertices with the following property: every edge {u, v} of that path383

where f(u) 6= f(v) is good. Among all such paths (resp. cycles), let P be one with minimum384

number of nice subpaths, and let x, y be its endpoints (resp. no endpoints). (Notice that if x385

is unmarked, then because every edge {u, v} of P where f(u) 6= f(v) is good, it must be that386

x is an endpoint of a nice subpath. The same holds for y.) We next show that for every cell387

(i, j) ∈ [t]× [t], P has at most one nice (i, j)-subpath. Because either V (P ) ⊆ f−1(i, j) or388

every vertex in (V (P )∩f−1(i, j))\(Mark?(i, j)∪{x, y}) (resp. (V (P )∩f−1(i, j))\Mark?(i, j))389

must be an internal vertex of a nice subpath (since every edge {u, v} of P where f(u) 6= f(v)390

is good), this would imply that every cell (i, j) ∈ [t] × [t] is nice, which will complete the391

proof. Targeting a contradiction, suppose that P yields some cell (i, j) such that there392

exist two distinct subpaths Q,Q′ of P that are (i, j)-nice (see Figure 6), that is, each of393

them has both endpoints in Mark?(i, j) ∪ ({x, y} ∩ f−1(i, j)) (resp. Mark?(i, j)) and the set394
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Figure 6 Illustration of the proof of Lemma 12. The vertices colored black and red are the
marked and unmarked vertices in the cell, respectively. In the first figure the union of internal
vertices of Q and Q′ is the set of unmarked vertices in the cell, and the second figure depicts how to
reroute to make the cell nice. The third figure illustrate the case when both the endpoints x and y

of the path P are in the cell, and the fourth figure depicts how to reroute to make the cell nice.

409

410

411

412

413

of its internal vertices is a subset of f−1(i, j) \Mark?(i, j) that is either non-empty or some395

endpoint belongs to {x, y} ∩ (f−1(i, j) \Mark?(i, j)).396

Note that if Q and Q′ intersect, then they intersect only at their endpoints. Define P̂ by397

removing from P all the internal vertices of Q′ as well as its endpoint in f−1(i, j)\Mark?(i, j)398

if such an endpoint exists (in which case P is a path and this endpoint it is also an endpoint399

of P ), and inserting them arbitrarily between the vertices of Q (where multiple vertices can400

be inserted between two vertices); see Figure 6. By Property 1 in Definition 2, we have401

that P̂ is also a path (resp. cycle). Clearly, |V (P̂ )| = |V (P )| ≥ k, and it is also directly402

implied by the construction that P̂ also has the property that every edge {u, v} ∈ E(P̂ )403

where f(u) 6= f(v) is good (since we did not make any change with respect to the set of404

edges that cross different cells). Notice that each subpath that is nice with respect to P̂ is405

either the subpath obtained by merging Q and Q′ or a subpath that also exists in P and is406

therefore also a nice subpath with respect to P . Therefore, P̂ has one less nice subpath than407

P , which contradicts the minimality of P . J408

We now state the main lemma of this section, whose proof is relegated to Appendix B.414

I Lemma 13. Let G be a clique-grid with representation f that has a path (resp. cycle) on415

at least k vertices. Then, G also has a path (resp. cycle) P on at least k vertices with the416

following property: every cell (i, j) ∈ [t]× [t] is good.417

4 The Algorithm418

Our algorithm is based on a reduction of Long Path (resp. Long Cycle) on unit disk graphs419

to the weighted version of the problem, called Weighted Long Path (resp. Weighted420

Long Cycle), on unit disk graphs of treewidth O(
√
k). In Weighted Long Path421

(resp. Weighted Long Cycle), we are given a graph G with a weight function w : V (G)→422

N and an integer k ∈ N, and the objective is to determine whether G has a path (resp. cycle)423

whose weight, defined as the sum of the weights of its vertices, is at least k.424

The following proposition will be immediately used in our algorithm.425

I Proposition 14 ([10, 28]). Weighted Long Path and Weighted Long Cycle are426

solvable in time 2O(tw)n where tw is the treewidth of the input graph.427
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Figure 7 The graphs G′ and G? constructed from the graph G in Figure 1 are depicted on the
left side and right side figures, respectively. Here, w(x) = 2, w(y) = 3, and for all z ∈ V (G′) \ {x, y},
w(z) = 1.

447

448

449

Algorithm Specification. We call our algorithm ALG. Given an instance (G, k) of Long428

Path (resp. Long Cycle) on unit disk graphs, it works as follows.429

1. Use Proposition 3 to obtain a representation f : V (G)→ [t]× [t] of G.430

2. Use Observation 3.1 to compute Mark?(i, j) for every cell (i, j) ∈ [t]× [t]. Let Mark? =431 ⋃
(i,j)∈[t]×[t] Mark?(i, j).432

3. Let G′ be the graph defined as follows (see Figure 7). For any cell (i, j) ∈ [t] × [t], let433

c(i,j) denote a vertex in f−1(i, j)\Mark?(i, j) (chosen arbitrarily), where if no such vertex434

exists, let c(i,j) = nil. Then, V (G′) = Mark? ∪ ({c(i,j) : (i, j) ∈ [t] × [t]} \ {nil}) and435

E(G′) = E(G[V (G′)]). Because G′ is an induced subgraph of G, it is a unit disk graph.436

4. Define w : V (G′)→ N as follows. For every v ∈ V (G′), if v = c(i,j) for some (i, j) ∈ [t]×[t]437

then w(v) = |f−1(i, j) \Mark?(i, j)|, and otherwise w(v) = 1.438

5. Let G? be the graph defined as follows (see Figure 7): V (G?) = V (G′) and E(G?) =439

E(G′) \ {{c(i,j), v} ∈ E(G′) : (i, j) ∈ [t]× [t], v /∈ f−1(i, j)}.440

6. Let ∆ be the maximum degree of G?. Use Proposition 4 to decide either tw(G?) >441

100∆3
√

2k or tw(G?) ≤ 500∆3
√

2k.442

7. If it was decided that tw(G?) > 100∆3
√

2k, then return Yes and terminate.443

8. Use Proposition 14 to determine whether (G?, w, k) is a Yes-instance of Weighted Long444

Path (resp. Weighted Long Cycle). If the answer is positive, then return Yes, and445

otherwise return No.446

Analysis. We first analyze the running time of the algorithm.450

I Lemma 15. The time complexity of ALG is upper bounded by 2O(
√

k)(n+m).451

Proof. By Proposition 3 and Observation 3.1, Steps 1 and 2 are performed in time O(n+m).452

By the definition of G′, w and G?, they can clearly be computed in time O(n+m) as well453

(Steps 3, 4 and 5). Moreover, Step 7 is done in time O(1). By Proposition 4, Step 6 is454

performed in time 2O(100∆3√2k)n = 2O(∆3√k)n. Thus, because we reach Step 8 only if we455

do not terminate in Step 7, we have that by Proposition 14, Step 8 is performed in time456

2O(tw(G?))n = 2O(500∆3√2k) = 2O(∆3√k)n.457

Thus, to conclude the proof, it remains to show that ∆ = O(1). Let ∆′ be the maximum458

degree of G′. Since G? is a subgraph of G′, ∆? ≤ ∆′. Thus, to prove ∆ = O(1), it is459

enough to prove that ∆′ = O(1). To this end, let M = max(i,j)∈[t]×[t] |(f−1(i, j) ∩ V (G′)) ∪460

({c(i,j)} \ {nil})|. Since G′ is a clique-grid, by Property 2 in Definition 2, we have that461
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∆′ ≤ M25, hence it suffices to show that M = O(1). The definition of G′ yields that462

M ≤ max(i,j)∈[t]×[t] |Mark?(i, j)|+1. By Observation 3.1, max(i,j)∈[t]×[t] |Mark?(i, j)| = O(1),463

and therefore indeed M = O(1). J464

Finally, we prove that the algorithm is correct.465

I Lemma 16. ALG solves Long Path and Long Cycle on unit disk graphs correctly.466

Proof. Let (G, k) be an instance of Long Path or Long Cycle on unit disk graphs. By467

the specification of the algorithm, to prove that it solves (G, k) correctly, it suffices to prove468

that the two following conditions are satisfied.469

1. If tw(G?) > 100∆3
√

2k, then (G, k) is a Yes-instance of Long Path and Long Cycle.470

2. (G, k) is a Yes-instance of Long Path (resp. Long Cycle) if and only if (G?, w, k) is a471

Yes-instance of Weighted Long Path (resp. Weighted Long Cycle).472

The proof of satisfaction of the first condition is simple and can be found in Appendix C.473

Now, we turn to prove the second condition. In one direction, suppose that (G, k) is474

a Yes-instance of Long Path (resp. Long Cycle). Then, by Lemma 13, G has a path475

(resp. cycle) P on at least k vertices with the following property: every cell (i, j) ∈ [t]× [t] is476

good. Notice that every maximal subpath Q of P that consists only of unmarked vertices477

satisfies (i) V (Q) = f−1(iQ, jQ) \Mark?(iQ, jQ) for some cell (iQ, jQ) ∈ [t] × [t], and (ii)478

the endpoints of Q are adjacent in P to vertices in f−1(iQ, jQ) (unless Q = P ). Obtain P ?
479

from P as follows: every maximal subpath Q of P that consists only of unmarked vertices is480

replaced by c(iQ,jQ). (Notice that c(iQ,jQ) 6= nil because V (Q) 6= ∅.) Because of Property481

(ii) above and Property 1 in Definition 2, we immediately have that P ? is a path (resp. cycle)482

in G?. Moreover, by Property (i) above and the definition of the weight function w (in Step483

4), each subpath Q is replaced by a vertex c(iQ,jQ) whose weight equals |V (Q)|. Because484

|V (P )| ≥ k, we have that P ? is a path (resp. cycle) of weight at least k in G?. Thus,485

(G?, w, k) is a Yes-instance of Weighted Long Path (resp. Weighted Long Cycle).486

In the other direction, suppose that (G?, w, k) is a Yes-instance of Weighted Long487

Path (resp. Weighted Long Cycle). Then, G? has a path (resp. cycle) P ? of weight488

at least k. Obtain P from P ? by replacing each vertex of the form c(i,j) ∈ V (P ) for some489

(i, j) ∈ [t]× [t] by a path Q whose vertex set is f−1(i, j) \Mark?(i, j) (the precise ordering490

of the vertices on this path is arbitrary). Notice that because all edges in {{c(i,j), v} ∈491

E(G′) : (i, j) ∈ [t] × [t], v /∈ f−1(i, j)} were removed from G′ to derive G?, each vertex492

of the form c(i,j) ∈ V (P ) for some (i, j) ∈ [t] × [t] is adjacent in P ? only to vertices in493

Mark?(i, j). Therefore, by Property 1 in Definition 2, we have that P is a path (resp. cycle)494

in G. Moreover, by the definition of the weight function w (in Step 4), each vertex c(i,j) was495

replaced by w(c(i,j)) vertices. Because the weight of P ? is at least k, we have that P is a496

path (resp. cycle) on at least k vertices in G. Thus, (G, k) is a Yes-instance of Long Path497

(resp. Long Cycle). J498

Thus, Theorem 1 follows from Lemmas 15 and 16.499
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A Preliminaries (Cont.)672

For a graph G, let V (G) and E(G) denote its vertex set and edge set, respectively. When G is673

clear from context, let n = |V (G)| and m = |E(G)|. For a subset U ⊆ V (G), let G[U ] denote674

the subgraph of G induced by U . A graph H is a minor of G if H can be obtained from G675

by a sequence of edge deletions, edge contractions and vertex deletions. Given a, b ∈ N, an676

a× b-grid is a graph on a · b vertices that can be denoted by vi,j for (i, j) ∈ [a]× [b], such677

that E(G) = {{vi,j , vi+1,j} : i ∈ [a− 1], j ∈ [b]} ∪ {{vi,j , vi,j+1} : i ∈ [a], j ∈ [b− 1]}.678

I Definition 17 (Treewidth). A tree decomposition of a graph G is a pair (T, β), where679

T is a tree and β is a function from V (T ) to 2V (G), that satisfies the following conditions.680

For every edge {u, v} ∈ E(G), there exists x ∈ V (T ) such that {u, v} ⊆ β(x).681

For every vertex v ∈ V (G), T [{x ∈ V (T )}] is a tree on at least one vertex.682

The width of (T, β) is maxx∈V (T ) |β(x)| − 1. The treewidth of G, denoted by tw(G), is the683

minimum width over all tree decompositions of G.684

B Proof of Lemma 13685

Proof. By Lemma 12, G has a path (resp. cycle) P on at least k vertices with the following686

property: every cell (i, j) ∈ [t] × [t] is nice. Among all such paths (resp. cycles), let P687

be one with minimum number of bad cells. Next, we show that P yields no bad cell,688

which will complete the proof. Targeting a contradiction, suppose that P yields some bad689

cell (i, j) ∈ [t] × [t]. Because this cell is not good, (V (P ) ∩ f−1(i, j)) \ Mark?(i, j) 6= ∅.690

Further, because (i, j) is nice, either V (P ) ⊆ f−1(i, j) \Mark?(i, j) or there exist distinct691

u, v ∈ (V (P ) ∩Mark?(i, j)) ∪ ({x, y}) ∩ f−1(i, j)) (resp. u, v ∈ V (P ) ∩Mark?(i, j)) such that692

the set of internal vertices of the (resp. a) subpath Q of P between u and v is precisely693

(V (P ) ∩ f−1(i, j)) \ (Mark?(i, j) ∪ {u, v}) (see Figure 8). In the first case, notice that since694

f−1(i, j) \Mark?(i, j) induces a clique (by Property 1 in Definition 2) and its size is at least695

k (because |V (P )| ≥ k), it is clear that G contains a path (resp. cycle) whose vertex set is696

f−1(i, j) \Mark?(i, j) and which has at least k vertices, for which every cell is trivially good.697

Thus, we next suppose that only the second case happens.698

Notice that Q must contain a vertex from Mark?(i, j) as an endpoint, because its endpoints699

u, v ∈ (V (P ) ∩ Mark?(i, j)) ∪ ({x, y}) ∩ f−1(i, j)) (resp. u, v ∈ V (P ) ∩ Mark?(i, j)) and it700

is not possible that {u, v} = {x, y} (since then the first case happens). Because also701
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Figure 8 Illustration of the proof of Lemma 13. The vertices colored black and red are marked
and unmarked vertices, respectively. In the first figure V (P ) ⊆ f−1(i, j)\Mark?(i, j), and the second
figure illustrates that there is a path of length at least |V (P )| whose vertex set is the set of unmarked
vertices in the cell. The third figure illustrates the case where P is not fully contained the cell, and
the fourth figure depicts a possibility to reroute it to make the cell good.

712

713

714

715

716

(V (P ) ∩ f−1(i, j)) \ Mark?(i, j) 6= ∅, we know that Q contains one edge {a, b} with both702

endpoints from f−1(i, j). Then, we derive P̂ from P by inserting all the vertices in (f−1(i, j)\703

Mark?(i, j)) \ V (P ) between a and b in some arbitrary order (see Figure 8). By Property 1704

in Definition 2, we still have a path (resp. cycle). Further, notice that (i, j) is a good cell705

with respect to P̂ . As the adjacencies of all vertices outside the cell (i, j) are the same in706

P and P̂ , we have that P̂ has only nice cells (because P has this property), and that every707

cell that is bad with respect to P̂ is also bad with respect to P . Thus, we obtain a path708

(resp. cycle) on at least k vertices with fewer bad cells than P and still with the property709

every cell (i, j) ∈ [t]× [t] is nice. This is a contradiction to the choice of P , and therefore the710

proof is complete. J711

C Satisfaction of the First Condition in the Proof of Lemma 16717

Proof. For the proof of satisfaction of the first condition, suppose that tw(G?) > 100∆3
√

2k.718

Then, by Proposition 5, G? contains a
√

2k×
√

2k-grid as a minor. Clearly, a
√

2k×
√

2k-grid719

contains a cycle (and hence also a path) on k vertices. By the definition of minor, this means720

that G contains cycle (and hence also a path) on at least k vertices, and therefore (G, k) is a721

Yes-instance of Long Path and Long Cycle. J722
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