
A

Exact Algorithms via Monotone Local Search

FEDOR V. FOMIN, University of Bergen, Norway

SERGE GASPERS, UNSW Sydney & Data61, CSIRO, Australia

DANIEL LOKSHTANOV, University of Bergen, Norway

SAKET SAURABH, University of Bergen, Norway & Institute of Mathematical Sciences, Chennai, India

We give a new general approach for designing exact exponential-time algorithms for subset problems. In a

subset problem the input implicitly describes a family of sets over a universe of size n and the task is to
determine whether the family contains at least one set. A typical example of a subset problem is Weighted

d-SAT. Here, the input is a CNF-formula with clauses of size at most d, and an integer W . The universe is

the set of variables and the variables have integer weights. The family contains all the subsets S of variables
such that the total weight of the variables in S does not exceed W , and setting the variables in S to 1 and

the remaining variables to 0 satisfies the formula. Our approach is based on “monotone local search”, where

the goal is to extend a partial solution to a solution by adding as few elements as possible. More formally,
in the extension problem we are also given as input a subset X of the universe and an integer k. The task

is to determine whether one can add at most k elements to X to obtain a set in the (implicitly defined)

family. Our main result is that a cknO(1) time algorithm for the extension problem immediately yields a
randomized algorithm for finding a solution of any size with running time O((2− 1

c
)n).

In many cases, the extension problem can be reduced to simply finding a solution of size at most k.
Furthermore, efficient algorithms for finding small solutions have been extensively studied in the field of

parameterized algorithms. Directly applying these algorithms, our theorem yields in one stroke significant

improvements over the best known exponential-time algorithms for several well-studied problems, including
d-Hitting Set, Feedback Vertex Set, Node Unique Label Cover, and Weighted d-SAT. Our results

demonstrate an interesting and very concrete connection between parameterized algorithms and exact ex-

ponential-time algorithms.
We also show how to derandomize our algorithms at the cost of a subexponential multiplicative factor in

the running time. Our derandomization is based on an efficient construction of a new pseudo-random object

that might be of independent interest. Finally, we extend our methods to establish new combinatorial upper
bounds and develop enumeration algorithms.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-

numerical Algorithms and Problems

Additional Key Words and Phrases: exact exponential algorithm, parameterized algorithm, local search,

satisfiability

ACM Reference Format:
Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh, YYYY. Exact Algorithms via

Monotone Local Search. J. ACM V, N, Article A (January YYYY), 22 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

A preliminary version of this work appeared in proceedings of STOC 2016 [Fomin et al. 2016].
Author’s address:
F. V. Fomin, D. Lokshtanov, Department of Informatics, University of Bergen, N-5020 Bergen, Nor-
way, {fomin|daniello}@ii.uib.no Serge Gaspers, UNSW Australia and Data61, CSIRO, Australia,
sergeg@cse.unsw.edu.au; Saket Saurabh, The Institute of Mathematical Sciences, Chennai - 600113, India,
saket@imsc.res.in
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0004-5411/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 Fomin et al.

1. INTRODUCTION

In the area of exact exponential-time algorithms, the objective is to design algorithms that
outperform brute-force for computationally intractable problems. Because the problems are
intractable we do not hope for polynomial time algorithms. Instead the aim is to allow
super-polynomial time and design algorithms that are significantly faster than brute-force.
For subset problems in NP, where the goal is to find a subset with some specific properties
in a universe on n elements, the brute-force algorithm that tries all possible solutions has
running time 2nnO(1). Thus our goal is typically to design an algorithm with running time
cnnO(1) for c < 2, and we try to minimize the constant c. We refer to the textbook of Fomin
and Kratsch [Fomin and Kratsch 2010] for an introduction to the field.

In the area of parameterized algorithms (see [Cygan et al. 2015]), the goal is to design
efficient algorithms for the “easy” instances of computationally intractable problems. Here
the running time is measured not only in terms of the input size n, but also in terms of a
parameter k which is expected to be small for “easy” instances. For subset problems the
parameter k is often chosen to be the size of the solution sought for, and many subset
problems have parameterized algorithms that find a solution of size k (if there is one) in
time cknO(1) for a constant c, which is often much larger than 2.

In this paper we address the following question: Can an efficient algorithm for the easy
instances of a hard problem yield a non-trivial algorithm for all instances of that problem?
More concretely, can parameterized algorithms for a problem be used to speed up exact
exponential-time algorithms for the same problem? Our main result is an affirmative answer
to this question: we show that, for a large class of problems, an algorithm with running time
cknO(1) for any c > 1 immediately implies an exact algorithm with running time O((2 −
1
c )n+o(n)) for the problem. Our main result, coupled with the fastest known parameterized
algorithms, gives in one stroke the first non-trivial exact algorithm for a number of problems,
and simultaneously significantly improves over the best known exact algorithms for several
well studied problems; see Table I for a non-exhaustive list of corollaries. Our approach is
also useful to prove upper bounds on the number of interesting combinatorial objects, and
to design efficient algorithms that enumerate these objects; see Table II.

At this point it is worth noting that a simple connection between algorithms running
in time cknO(1) for c < 4 and exact exponential-time algorithms beating O(2n) has been
known for a long time. For subset problems, where we are looking for a specific subset of
size k in a universe of size n, to beat O(2n) one only needs to outperform brute-force for
values of k that are very close to n/2. Indeed, for k sufficiently far away from n/2, trying all
subsets of size k takes time

(
n
k

)
nO(1) which is significantly faster than O(2n). Thus, if there

is an algorithm deciding whether there is a solution of size at most k in time cknO(1) for
some c < 4, we can deduce that the problem can be solved in time O((2− ε)n) for an ε > 0
that depends only on c. On the other hand, it is easy to see that this trade-off between ck

and
(
n
k

)
does not yield any improvement over 2n when c ≥ 4. Our main result significantly

outperforms the algorithms obtained by this trade-off for every value of c > 1, and further
yields better than O(2n) time algorithms even for c ≥ 4.

As a concrete example, consider the Interval Vertex Deletion problem. Here the
input is a graph G and an integer k and the task is to determine whether G can be turned
into an interval graph by deleting k vertices. The fastest parameterized algorithm for the
problem is due to Cao [Cao 2016] and runs in time 8knO(1). Combining this algorithm
with the simple trade-off scheme described above does not outperform brute-force, since
8 ≥ 4. The fastest previously known exponential-time algorithm for the problem is due
to Bliznets et al. [Bliznets et al. 2013] and runs in time O((2 − ε)n) for ε < 10−20. On
the other hand, combining the parameterized algorithm, as a black box, with our main
result immediately yields a 1.875n+o(n) time algorithm for Interval Vertex Deletion.
While we focus mostly on decision problems, by a standard self-reduction, one can also

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:3

find a smallest vertex set whose deletion makes the input graph an interval graph in time
1.875n+o(n).

Our Results. We need some definitions in order to state our results precisely. We define
an implicit set system as a function Φ that takes as input a string I ∈ {0, 1}∗ and outputs
a set system (UI ,FI), where UI is a universe and FI is a collection of subsets of UI . The
string I is referred to as an instance and we denote by |UI | = n the size of the universe
and by |I| = N the size of the instance. We assume that N ≥ n. The implicit set system
Φ is said to be polynomial time computable if (a) there exists a polynomial time algorithm
that given I produces UI , and (b) there exists a polynomial time algorithm that given I,
UI and a subset S of UI determines whether S ∈ FI . All implicit set systems discussed in
this paper are polynomial time computable, except for the minimal satisfying assignments
of d-CNF formulas which are not polynomial time computable unless P=NP [Yato and Seta
2003].

An implicit set system Φ naturally leads to some problems about the set system (UI ,FI).
Find a set in FI . Is FI non-empty? What is the cardinality of FI? In this paper we will
primarily focus on the first and last problems. Examples of implicit set systems include
the set of all feedback vertex sets of a graph of size at most k, the set of all satisfying
assignments of a CNF formula of weight at most W , and the set of all minimal hitting sets
of a set system. Next we formally define subset problems.

Φ-Subset
Input: An instance I
Output: A set S ∈ FI if one exists.

An example of a subset problem is Min-Ones d-Sat. Here for an integer k and a proposi-
tional formula F in conjunctive normal form (CNF) where each clause has at most d literals,
the task is to determine whether F has a satisfying assignment with Hamming weight at
most k, i.e., setting at most k variables to 1. In our setting, the instance I consists of the
input formula F and the integer k, encoded as a string over 0s and 1s. The implicit set
system Φ is a function from I to (UI ,FI), where UI is the set of variables of F , and FI is
the set of all satisfying assignments of Hamming weight at most k.

Φ-Extension
Input: An instance I, a set X ⊆ UI , and an integer k.
Question: Does there exists a subset S ⊆ (UI \X) such that S∪X ∈ FI and |S| ≤ k?

Our first main result gives exponential-time randomized algorithms for Φ-Subset based
on single-exponential, deterministic as well as randomized, parameterized algorithms for
Φ-Extension with parameter k. Our randomized algorithms are Monte Carlo algorithms
with one-sided error. On no-instances they always return no, and on yes-instances they
return yes (or output a certificate) with probability > 1

2 . Our algorithms are deterministic
algorithms unless stated otherwise.

Theorem 1.1. If there exists an algorithm for Φ-Extension with running time
ckNO(1) then there exists a randomized algorithm for Φ-Subset with running time (2 −
1
c )nNO(1).

Our second main result is that the algorithm of Theorem 1.1 can be derandomized at the
cost of a subexponential factor in n in the running time.

Theorem 1.2. If there exists an algorithm for Φ-Extension with running time
ckNO(1) then there exists an algorithm for Φ-Subset with running time (2− 1

c )n+o(n)NO(1).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 Fomin et al.

To exemplify the power of these theorems, we give a few examples of applications. We
have already seen the first example, the 1.875n+o(n) time algorithm for Interval Vertex
Deletion. Let us now consider the Min-Ones d-SAT problem described above.

A simple branching algorithm solves the extension problem for Min-Ones d-SAT as
follows. Suppose we have already selected a set X of variables to set to 1, remove all clauses
containing a positive literal on X, and remove negative literals on X from the remaining
clauses. Start from the all-0 assignment on the remaining variables, with a budget for
flipping k variables from 0 to 1. As long as there is an unsatisfied clause, guess which one
of the at most d variables in this clause should be flipped from 0 to 1, and for each proceed
recursively with the budget decreased by one. The recursion tree of this algorithm has depth
at most k, and each node of the recursion tree has at most d children, thus this algorithm
terminates in time dk · nO(1).

Hence, by Theorem 1.2, Min-Ones d-SAT can be solved in time (2 − 1
d )n+o(n). For

d = 3 there is a faster parameterized algorithm with running time 2.562knO(1) due to
Kutzkov and Scheder [Kutzkov and Scheder 2010]. Thus Min-Ones 3-SAT can be solved
in time O(1.6097n). Since d-Hitting Set is a special case of Min-Ones d-SAT, the same
bounds hold for this problem as well, and the same approach works for weighted variants
of these problems. However, due to faster known parameterized algorithms for d-Hitting
Set [Fomin et al. 2010], our theorem implies faster exact algorithms for d-Hitting Set with
running time (2− 1

(d−0.9255) )n. That is, for d-Hitting Set, d ≥ 3, there are parameterized

algorithms running in time (d− 0.9245)k [Fomin et al. 2010], and thus combining this with
our theorem implies exact algorithms for d-Hitting Set with running time (2− 1

(d−0.9255) )n.

Another interesting example is the Feedback Vertex Set problem. Here the task is
to decide, for a graph G and an integer k, whether G can be made acyclic by removing
k vertices. While this problem is trivially solvable in time 2nnO(1) for n-vertex graphs,
breaking the 2n-barrier for the problem was an open problem in the area for some time.
The first algorithm breaking the barrier is due to Razgon [Razgon 2006]. The running time
O(1.8899n) of the algorithm from [Razgon 2006] was improved in [Fomin et al. 2008] to
O(1.7548n). Then Xiao and Nagamochi [Xiao and Nagamochi 2013] gave an algorithm with
running time O(1.7356n). Finally an algorithm of running time O(1.7347n) was obtained
in [Fomin et al. 2015]. For the parameterized version of the problem there was also a chain
of improvements [Cao et al. 2015; Chen et al. 2008; Dehne et al. 2007; Guo et al. 2006]
resulting in a 3knO(1) time randomized algorithm [Cygan et al. 2011] and a 3.591knO(1)

time deterministic algorithm [Kociumaka and Pilipczuk 2014]. This, coupled with our main
theorem, immediately gives us randomized and deterministic algorithms of running times
O(1.6667n) and O(1.7216n), respectively.

More generally, let Π be a hereditary family of graphs. That is, if G ∈ Π then so are all
its induced subgraphs. Examples of hereditary families include the edgeless graphs, forests,
bipartite graphs, chordal graphs, interval graphs, split graphs, and perfect graphs. Of course
this list is not exhaustive. For every hereditary graph family Π there is a natural vertex
deletion problem, that we define here.

Π-Vertex Deletion
Input: An undirected (or directed) graph G and an integer k.
Question: Is there a set S ⊆ V (G) with |S| ≤ k such that G− S ∈ Π?

We can cast Π-Vertex Deletion as a Φ-Subset problem as follows. The instance I
describes the graph G, so UI = V (G) and FI is the family of subsets S of V (G) of size at
most k such that G−S ∈ Π. Notice that a polynomial time algorithm to determine whether
a graph G is in Π yields a polynomial time algorithm to determine whether a set S is in
FI , implying that Φ is polynomial time computable. Moreover, a ckNO(1) time algorithm

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:5

Table I. Summary of known and new results for different optimization problems. NPR means that we are not
aware of any previous algorithms faster than brute-force. All bounds suppress factors polynomial in the input size
N . The algorithms in the first row are randomized (r).

Problem Name Parameterized New bound Previous Bound

Feedback Vertex Set 3k (r) (h) 1.6667n (r)

Feedback Vertex Set 3.592k (q) 1.7217n 1.7347n (m)

Subset Feedback Vertex Set 4k (v) 1.7500n 1.8638n (l)

Feedback Vertex Set in Tournaments 1.6181k (r) 1.3820n 1.4656n (r)

Group Feedback Vertex Set 4k (v) 1.7500n NPR

Node Unique Label Cover |Σ|2k (v) (2− 1
|Σ|2 )n NPR

Vertex (r, `)-Partization (r, ` ≤ 2) 3.3146k (b) 1.6984n NPR

Interval Vertex Deletion 8k (e) 1.8750n (2− ε)n for ε < 10−20 (c)

Proper Interval Vertex Deletion 6k (n) 1.8334n (2− ε)n for ε < 10−20 (c)

Block Graph Vertex Deletion 4k (a) 1.7500n (2− ε)n for ε < 10−20 (c)

Cluster Vertex Deletion 1.9102k (d) 1.4765n 1.6181n (i)

Thread Graph Vertex Deletion 8k (p) 1.8750n NPR

Multicut on Trees 1.5538k (o) 1.3565n NPR

3-Hitting Set 2.0755k (u) 1.5182n 1.6278n (u)

4-Hitting Set 3.0755k (i) 1.6750n 1.8704n (i)

d-Hitting Set (d ≥ 3) (d− 0.9245)k (i) (2− 1
(d−0.9245)

)n (g)

Min-Ones 3-SAT 2.562k (s) 1.6097n NPR
Min-Ones d-SAT (d ≥ 4) dk (2− 1

d
)n NPR

Weighted d-SAT (d ≥ 3) dk (2− 1
d

)n NPR

Weighted Feedback Vertex Set 3.6181k (a) 1.7237n 1.8638n (k)

Weighted 3-Hitting Set 2.168k (t) 1.5388n 1.6755n (f)

Weighted d-Hitting Set (d ≥ 4) (d− 0.832)k (j) (2− 1
d−0.832

)n (f)

(a) [Agrawal et al. 2016]
(b) [Baste et al. 2015; Kolay and Panolan 2015]
(c) [Bliznets et al. 2013]
(d) [Boral et al. 2014]
(e) [Cao 2016]
(f) [Cochefert et al. pear]
(g) [Cochefert et al. pear; Fomin et al. 2010]
(h) [Cygan et al. 2011]
(i) [Fomin et al. 2010]
(j) [Fomin et al. 2010; Shachnai and Zehavi 2017]
(k) [Fomin et al. 2008]

(l) [Fomin et al. 2014]
(m) [Fomin et al. 2015]
(n) [van ’t Hof and Villanger 2013; Cao 2015]
(o) [Kanj et al. 2014]
(p) [Kanté et al. 2015]
(q) [Kociumaka and Pilipczuk 2014]
(r) [Kumar and Lokshtanov 2016]
(s) [Kutzkov and Scheder 2010]
(t) [Shachnai and Zehavi 2017]
(u) [Wahlström 2007]
(v) [Wahlström 2014]

for Π-Vertex Deletion trivially gives the same running time for its extension variant,
since vertices in X can simply be deleted. Also, if Π is characterized by a set of forbidden
induced subgraphs which all have at most d vertices, such as cographs (d = 4) [Corneil et al.
1981] and split graphs (d = 5) [Hammer and Földes 1977], we can reduce the Π-Vertex
Deletion problem to d-Hitting Set where the number of elements is the number of vertices
of the input graph.

In Table I we list more applications of Theorem 1.2. We also provide the running times of
the fastest known parameterized and exact algorithms. The problem definitions are given
in the appendix. For most of these problems, the results are obtained by simply using the
fastest known parameterized algorithm in combination with Theorem 1.2. The results for
Weighted d-Hitting Set follow from a variant that relies on algorithms for a permissive
version of Φ-Extension; see Subsection 2.3.

We also extend the technique to enumeration problems and to prove combinatorial upper
bounds. For example, a minimal satisfying assignment of a d-CNF formula is a satisfying
assignment a such that no other satisfying assignment sets every variable to 0 that a sets to
0. In other words, a satisfying assignment a is minimal, if setting any variable assigned 1 to

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Fomin et al.

0 leads to an unsatisfying assignment. It is interesting to investigate the number of minimal
satisfying assignments of d-CNF formulas, algorithms to enumerate these assignments, and
upper bounds and enumeration algorithms for other combinatorial objects.

Formally, let Φ be an implicit set system and c ≥ 1 be a real-valued constant. We say that
Φ is c-uniform if, for every instance I, set X ⊆ UI , and integer k ≤ n− |X|, the cardinality
of the collection

FkI,X = {S ⊆ UI \X : |S| = k and S ∪X ∈ FI}

is at most cknO(1). The next theorem will provide new combinatorial upper bounds for
collections generated by c-uniform implicit set systems.

Theorem 1.3. Let c > 1 and Φ be an implicit set system. If Φ is c-uniform, then
|FI | ≤

(
2− 1

c

)n
nO(1) for every instance I.

We say that an implicit set system Φ is efficiently c-uniform if there exists an algorithm
that given I, X and k enumerates all elements of FkI,X in time ckNO(1). In this case, we

can enumerate FI in time
(
2− 1

c

)n+o(n)
NO(1).

Theorem 1.4. Let c > 1 and Φ be an implicit set system. If Φ is efficiently c-uniform,

then there is an algorithm that given as input I enumerates FI in time
(
2− 1

c

)n+o(n)
NO(1).

For minimal satisfying assignments of d-CNF formulas, we observe that the afore-mentioned
branching algorithm for the extension version of Min-Ones d-Sat, which explores the
Hamming ball of radius k around the all-0 assignment of the reduced instance, encounters all
minimal satisfying assignments extendingX by at most k variables. Thus, minimal satisfying
assignments for d-CNF formulas are d-uniform. It follows immediately that minimal d-
hitting sets are d-uniform and they are also efficiently d-uniform.

A tournament is a directed graph (digraph) in which every pair of distinct vertices is con-
nected by a single directed edge. That is, it is an orientation of a complete graph. An induced
subgraph of a tournament is called a subtournament. Furthermore, a (sub)tournament is
called transitive if it does not contain any directed cycle. By a classical theorem of Moon
from 1971 [Moon 1971] the number of maximal transitive subtournaments in an n-vertex
tournament does not exceed 1.7170n. In [Gaspers and Mnich 2013], Gaspers and Mnich
improved this bound to 1.6740n. It is well known that a (sub)tournament is transitive if
and only if it does not contain a directed cycle of length 3 (directed 3-cycle). Using this
characterization our approach yields immediately a better bound of O(1.6667n) since every
directed 3-cycle needs to be hit. Similarly, in chordal graphs, a set is a feedback vertex set
(FVS) if it hits every 3-cycle. For maximal r-colorable induced subgraphs of perfect graphs
it suffices to hit every clique of size r+ 1. Some consequences of our results for enumeration
algorithms and combinatorial bounds are given in Table II.

Local Search versus Monotone Local Search. One of the successful approaches for ob-
taining exact exponential-time algorithms for d-SAT is based on sampling and local search.
In his breakthrough paper Schöning [Schöning 1999] introduced the following simple and
elegant approach: sample a random assignment and then do a local search in a Hamming
ball of small radius around this assignment. With the right choice of the parameter for the
local search algorithm (the Hamming distance, in this case) it is possible to prove that with
a reasonable amount of samples this algorithm decides the satisfiability of a given formula
with good probability. The running time of Schöning’s algorithm on formulas with n vari-
ables is O((2 − 2/d)n) and it was shown by Moser and Scheder [Moser and Scheder 2011]
how to derandomize it in almost the same running time, see also [Dantsin et al. 2002].

While this method has been very successful for satisfiability, it is not clear how to apply
this approach to other NP-complete problems, in particular to optimization problems, like

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:7

Table II. Summary of known and new results for different combinatorial bounds. NPR means that we are not aware
of any previous results better than 2n. All bounds suppress factors polynomial in the universe size n.

Problem Name c-uniform New bound Previous Bound

Minimal FVSs in Tournaments 3 1.6667n 1.6740n (a)

Minimal 3-Hitting Sets 3 1.6667n 1.6755n (b)

Minimal 4-Hitting Sets 4 1.7500n 1.8863n (b)

Minimal 5-Hitting Sets 5 1.8000n 1.9538n (b)

Minimal d-Hitting Sets d (2− 1
d

)n (2− εd)n with εd < 1/d (b)

Minimal d-Sat (d ≥ 2) d (2− 1
d

)n NPR

Minimal FVSs in chordal graphs 3 1.6667n 1.6708n (c)

Minimal Subset FVSs in chordal graphs 3 1.6667n NPR
Maximal r-colorable induced subgraphs of perfect graphs r + 1 (2− 1

r+1
)n NPR

(a) [Gaspers and Mnich 2013]
(b) [Cochefert et al. pear]
(c) [Golovach et al. 2013]

finding a satisfying assignment of Hamming weight at most k or finding a hitting set of size
at most k. The reason why Schöning’s approach cannot be directly applied to optimization
problems is that it is very difficult to get efficient local search algorithms for these problems.

Consider for example Min-Ones d-Sat. If we select some assignment a as a center of
Hamming ball Br of radius r, there is a dramatic difference between searching for any
satisfying assignment in Br, and a satisfying assignment of Hamming weight at most k in
Br. In the first case the local search problem can be solved in time dr ·nO(1). In the second
case we do not know any better alternative to a brute-force search. Indeed, an algorithm
with running time on the form f(r) ·nO(1) for any function f would imply that FPT = W[1].
This issue is not specific to Min-Ones d-Sat: it is known that the problem of searching a
Hamming ball Br of radius r is W[1]-hard parameterized by r for most natural optimization
problems [Fellows et al. 2012].

Despite this obstacle, our approach is based on sampling an initial solution, and then
performing a local search from that solution. The way we get around the hardness of local
search is to make the local search problem easier, at the cost of reducing the success prob-
ability of the sampling step. Specifically, we only consider monotone local search, where we
are not allowed to remove any elements from the solution, and only allowed to add at most k
new elements. Instead of searching a Hamming ball around the initial solution, we look for a
solution in a Hamming cone. Monotone local search is equivalent to the extension problem,
and it turns out that the extension problem can very often be reduced to the problem of
finding a solution of size at most k. This allows us to use for our monotone local search the
powerful toolbox developed for parameterized algorithms.

Our Approach. Our algorithm is based on random sampling. Suppose we are looking for
a solution S of size k in a universe U of size n, and we have already found some set X of size
t which we know is a subset of S. At this point, one option we have is to run the extension
algorithm – this would take time ck−t · nO(1). Another option is to pick a random element
x ∈ U \X, add x to X and then proceed. We succeed if x is in S \X, so the probability of
success is at least (k− t)/(n− t). If we succeed in picking x from S \X then k− t drops by
1, so running the extension algorithm on X ∪ {x} is a factor c faster than running it on X.
Therefore, as long as (k− t)/(n− t) ≥ 1/c it is better to keep sampling vertices and adding
them to X. When (k − t)/(n− t) < 1/c it is better to run the algorithm for the extension
problem. This is the entire algorithm!

While the description of the algorithm used to obtain Theorem 1.1 is simple, the analysis
is a bit more involved. In particular, getting the right upper bound on the running time of
the algorithm requires more work. At a first glance it is not at all obvious that a 100k ·nO(1)

time algorithm for the extension problem gives any advantage over trying all subsets of

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 Fomin et al.

size k in
(
n
k

)
time. To see why our approach outperforms

(
n
k

)
, it is helpful to think of the

brute-force algorithm as a randomized algorithm that picks a random subset of size k by
picking one vertex at a time and inserting it into the solution. The success probability of
such an algorithm is at least

k

n
· k − 1

n− 1
· k − 2

n− 2
· . . . · 2

n− (k − 2)
· 1

n− (k − 1)
=

1(
n
k

) .
Notice that in the beginning of the random process the success probability of each step is
high, but that it gets progressively worse, and that in the very end it is close to 1/n. At
some point we have picked t vertices and (k − t)/(n − t) drops below 1/c. Here we run
the extension algorithm, spending time ck−t, instead of continuing with brute-force, which
would take time (

n− t
k − t

)
=
n− t
k − t

· n− t− 1

k − t− 1
· . . . · n− k + 2

2
· n− k + 1

1

which is a product of k−t larger and larger terms, with even the first and smallest term being
greater than c. Thus we can conclude that any ck algorithm will give some improvement
over 2n.

Notice that if the algorithm is looking for a set of size k in a universe of size n, the number
t of vertices to sample before the algorithm should switch from picking more random vertices
to running the extension algorithm can directly be deduced from n, k, and c. The algorithm
picks a random set X of size t, and runs the extension algorithm on X. We succeed if X is
a subset of a solution, hence the success probability is p =

(
k
t

)
/
(
n
t

)
. In order to get constant

success probability, we run the algorithm 1/p times, taking time ck−t · nO(1) for each run.
In order to derandomize the algorithm we show that it is possible to construct in time

(1/p) · 2o(n) a family F of sets of size t, such that |F| ≤ (1/p) · 2o(n), and every set of
size k has a subset of size t in F . Thus, it suffices to construct F and run the extension
algorithm on each set X in F . The construction of the family F lends ideas from Naor
et al. [Naor et al. 1995], however their methods are not directly applicable to our setting.
We also refer to the work of Alon and Gutner in this line of research [Alon and Gutner
2010]. Our construction appears in Theorem 1.2 and constitutes one of the main technical
contributions of the paper.

The main conceptual contribution of this paper is a non-trivial generalization of local-
search based satisfiability algorithms to a wide class of optimization problems. Instead of
covering the search space by Hamming balls, we cover it by Hamming cones and use a
parameterized algorithm to search for a solution in each of the cones.

2. COMBINING RANDOM SAMPLING WITH FPT ALGORITHMS

In this section we prove our main results, Theorems 1.1–1.4, that will give new algorithms
to find a set in FI and to enumerate the sets in FI . For many potential applications, the
objective is to find a minimum-size set with certain properties, for example that the removal
of this set of vertices yields an acyclic graph. This can easily be done using the algorithms
resulting from Theorems 1.1 and 1.2 with only a polynomial overhead by using binary search
over k, the size of the targeted set S, and specifying that FI contains only sets of size at
most k.

2.1. Picking Random Subsets of the Solution

This subsection is devoted to the proof of Theorem 1.1 that we recall here. Note that the
algorithm mentioned in Theorem 1.1 is a Monte Carlo algorithm with one-sided error. That
is, on no-instances it always returns no, and on yes-instances it returns yes (or output a
certificate) with probability > 1

2 . Recall that Φ-Extension is the following problem: given

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:9

an instance I, a subset X ⊆ UI , and an integer k, find a set S ⊆ UI \X with |S| ≤ k such
that X ∪ S ∈ FI .

Theorem 1.1. If there exists an algorithm for Φ-Extension with running time ckNO(1)

then there exists a randomized algorithm for Φ-Subset with running time (2− 1
c )nNO(1).

The theorem will follow from the following lemma, which gives a new randomized algo-
rithm for Φ-Extension. The next lemma formalizes the intuition given in our approach
paragraph of the the introduction.

Lemma 2.1. If there is a constant c > 1 and an algorithm for Φ-Extension with
running time ckNO(1), then there is a randomized algorithm for Φ-Extension with running
time (2− 1

c )n−|X|NO(1).

Proof. Let B be an algorithm for Φ-Extension with running time ckNO(1). We now
give another algorithm, A, for the same problem. A is a randomized algorithm and consists
of the following two steps for an input instance (I,X, k′) with k′ ≤ k.

(1) Choose an integer t ≤ k′ depending on c, n, k′ and |X|, and then select a random subset
Y of UI \X of size t. The choice of t will be discussed towards the end of the proof.

(2) Run Algorithm B on the instance (I,X ∪ Y, k′ − t) and return the answer.

This completes the description of Algorithm A. Since the running time of step (1) is poly-

nomial in N , the running time of the whole algorithm is upper bounded by ck
′−tNO(1).

If A returns yes for (I,X, k′), this is because B returned yes for (I,X ∪ Y, k′ − t). In this
case there exists a set S ⊆ UI \(X∪Y ) of size at most k′−t ≤ k−t such that S∪X∪Y ∈ FI .
Thus, Y ∪ S witnesses that (I,X, k) is indeed a yes-instance.

Next we lower bound the probability that A returns yes in case there exists a set S ⊆
UI \X of size exactly k′ such that X ∪ S ∈ FI . The algorithm A picks a set Y of size t at

random from UI \ X. There are
(
n−|X|
t

)
possible choices for Y . If A picks one of the

(
k′

t

)
subsets of S as Y then A returns yes. Thus, given that there exists a set S ⊆ UI \X of size
k′ such that X ∪ S ∈ FI , we have that

Pr [A returns yes] ≥ Pr[Y ⊆ S] =

(
k′

t

)
/

(
n− |X|

t

)
.

Let p(k′) =
(
k′

t

)
/
(
n−|X|
t

)
. For each k′ ∈ {0, . . . , k}, our main algorithm runs A independently

1/p(k′) times with parameter k′. The algorithm returns yes if any of the runs of A return
yes. If (I,X, k) is a yes-instance, then the main algorithm returns yes with probability at

least mink′≤k{1− (1− p(k′))1/p(k′)} ≥ 1− 1
e >

1
2 . Next we upper bound the running time

of the main algorithm, which is

∑
k′≤k

1

p(k′)
· ck

′−tNO(1) ≤ max
k′≤k

(
n−|X|
t

)(
k′

t

) · ck
′−tNO(1)

≤ max
k≤n−|X|

(
n−|X|
t

)(
k
t

) · ck−tNO(1).

We are now ready to discuss the choice of t in the algorithm A. The algorithm A chooses

the value for t that gives the minimum value of
(n−|X|

t )
(k′

t )
· ck′−t. Thus, for fixed n and |X|

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Fomin et al.

the running time of the algorithm is upper bounded by

max
0≤k≤n−|X|

{
min

0≤t≤k

{(
n−|X|
t

)(
k
t

) ck−tNO(1)

}}
. (1)

We upper bound the expression in (1) by
(
2− 1

c

)n−|X|
NO(1) in Lemma 2.3 below. The

running time of the algorithm is thus upper bounded by
(
2− 1

c

)n−|X|
NO(1), completing

the proof.

Remark 2.2. The proof of Lemma 2.1 goes through just as well when B is a randomized
algorithm. If B is deterministic or has one-sided error (possibly saying no whereas it should
say yes), then the algorithm of Lemma 2.1 also has one sided error. If B has two sided error,
then the algorithm of Lemma 2.1 has two sided error as well.

Now we give the technical lemma that was used to upper bound the running time of the
algorithm described in Lemma 2.1.

Lemma 2.3. Let c > 1 be a fixed constant, and let n be a non-negative integer. Then,

max
0≤k≤n

{
min

0≤t≤k

{(
n
t

)(
k
t

) ck−t}} ≤ (2− 1

c

)n
nO(1).

Proof. For k ≤ n/c, we can choose t = 0 and obtain that the expression is at most
cn/c ≤ (2− 1/c)n.

Now, assume k > n/c. We have that(
n
t

)(
k
t

) ck−t =
n!

t!(n− t)!
· t!(k − t)!

k!
· (n− k)!

(n− k)!
· ck−t

=

(
n
k

)(
n−t
k−t
) (

1
c

)k−t . (2)

Let us lower bound the denominator. Using ordinary generating functions one can show
that, for any x ∈ [0, 1) and any integer m ≥ 0,∑

i≥0

(
m+ i

i

)
xi =

∑
i≥0

(
m+ i

m

)
xi =

1

(1− x)m+1

and this identity is well-known. Setting m = n− k and x = 1/c, the summand at i = k − t
equals the denominator of (2). Remember that we aim to choose a value for t, and therefore
also for i that maximizes the denominator. Let us first show that the maximum term of the
sum occurs when i ≤ k. When i > k we can rewrite a term of the sum as

(m+ i)!

i! ·m!
· xi

=
(m+ i) · (m+ i− 1) · . . . · (m+ k + 1) · (m+ k) · . . . · (m+ 1)

i(̇i− 1) · . . . · (k + 1) · (k) · . . . · 1
xi−k · xk

=
m+ i

i
· x · m+ i− 1

i− 1
· x · . . . · m+ k + 1

k + 1
· x · (m+ k) · (m+ k − 1) · . . . · (m+ 1)

(k) · (k − 1) · . . . · 1
· xk.

Let Γk = (m+k)·(m+k−1)·...·(m+1)
(k)·(k−1)·...·1 · xk. The quantity Γk corresponds to the (k + 1)th term of

the sum. Furthermore, since n
k < c, we have that m+j

j · x < 1 whenever j ≥ k. This implies

that any term after (k + 1)th term of the sum is less than Γk. From here, we conclude that

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:11

the maximum term of the sum occurs for i ≤ k. Then expanding the sum for i > k and
extracting Γk from each term we get

m+ k + 1

k + 1
·x+

m+ k + 2

k + 2
·x·m+ k + 1

k + 1
·x+. . .

m+ k + 3

k + 3
·x·m+ k + 2

k + 2
·x·m+ k + 1

k + 1
·x+. . .

This sum is upper bounded by the following sum:∑
j≥1

(
m+ k + 1

k + 1

)j
· xj . (3)

This is a geometric series with ratio m+k+1
k+1 x < 1. Now, since the sum of a geometric series

converges for coefficients in [0; 1), we also have that the series in Equation 3 can be upper
bounded by a constant. Therefore, the sum of the terms for i > k can be upper bounded by
a constant times the largest summand. We conclude that the value of the largest summand

is Ω
((

1
1−x

)m)
up to a lower order factor of O(k). So, the expression (2) is at most(

n

k

)
(1− x)n−knO(1) =

(
2− 1

c

)n
nO(1)

by the binomial theorem.

By running the algorithm from Lemma 2.1 with X = ∅ and for each value of k ∈ {0, . . . , n},
we obtain an algorithm for Φ-Subset, and this proves Theorem 1.1.

2.2. Derandomization

In this subsection we prove Theorem 1.2 by derandomizing the algorithm of Theorem 1.1,
at the cost of a subexponential factor in the running time. Recall Theorem 1.2.

Theorem 1.2. If there exists an algorithm for Φ-Extension with running time ckNO(1)

then there exists an algorithm for Φ-Subset with running time (2− 1
c )n+o(n)NO(1).

The key tool in our derandomization is a new pseudo-random object, which we call set-
inclusion-families, as well as an almost optimal (up to subexponential factors) construction
of such objects.

Definition 2.4. Let U be a universe of size n and let 0 ≤ q ≤ p ≤ n. A family C ⊆
(
U
q

)
is

an (n, p, q)-set-inclusion-family, if for every set S ∈
(
U
p

)
, there exists a set Y ∈ C such that

Y ⊆ S.

Let κ(n, p, q) =
(
n
q

)
/
(
p
q

)
. Observe that that κ−1(n, p, q) is exactly the probability of a fixed p

sized set being covered by a randomly selected q-sized set. Let t = κ(n, p, q)·nO(1). Construct
the family C = {C1, . . . , Ct} by selecting each set Ci independently and uniformly at random

from
(
U
q

)
. Then, using an application of probabilistic method one can show that C is an

(n, p, q)-set-inclusion-family with a positive probability. We give details of this construction
in Lemma 3.1. However, in order to obtain a deterministic algorithm, we need an efficient and
deterministic construction. In Section 3 (Theorem 3.3) we give a deterministic construction
of an (n, p, q)-set-inclusion-family, C, of size at most κ(n, p, q) · 2o(n). The running time of
the algorithm constructing C is also upper bounded by κ(n, p, q) · 2o(n). This construction
crucially uses a constructive version of Lemma 3.1.

The proof of Theorem 1.2 is now almost identical to the proof of Theorem 1.1. However,
in Lemma 2.1 we replace the sampling step where the algorithm A picks a set Y ⊆ UI \X
of size t at random, with a construction of an (n − |X|, k′, t)-set-inclusion-family C using
Theorem 3.3. Instead of κ(n− |X|, k′, t) ·nO(1) independent repetitions of the algorithm A,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Fomin et al.

the new algorithm loops over all Y ∈ C. The correctness follows from the definition of set-
inclusion-families, while the running time analysis is identical to the analysis of Lemma 2.1.

2.3. Extension to Permissive FPT Subroutines

For some of our applications, specifically the ones for weighted hitting set problems, our
results rely on algorithms for permissive variants of the Φ-Extension problem. Permissive
problems were introduced in the context of local search algorithms [Marx and Schlotter
2011] and it has been shown that permissive variants can be fixed-parameter tractable even
if the strict version is W[1]-hard and the optimization problem is NP-hard [Gaspers et al.
2012].

Permissive Φ-Extension
Input: An instance I, a set X ⊆ UI , and an integer k.
Output: If there is a subset S ⊆ (UI \X) such that S ∪X ∈ FI and |S| ≤ k, then
answer yes;
else if |FI | > 0, then answer yes or no;
else answer no.

We observe that any algorithm solving Φ-Extension also solves Permissive Φ-Exten-
sion. However, using an algorithm for Permissive Φ-Extension will only allow us to solve
a decision variant of the Φ-Subset problem, unless it also returns a certificate in case it
answers yes.

Decision Φ-Subset
Input: An instance I
Question: Is |FI | > 0?

The proof of Lemma 2.1 can easily be adapted to the Permissive Φ-Extension problem.

Lemma 2.5. If there exists a constant c > 1 and an algorithm for Permissive Φ-Ex-
tension with running time ckNO(1), then there exists a randomized algorithm for Permis-
sive Φ-Extension with running time (2− 1

c )n−|X|NO(1).

Now, any algorithm for Permissive Φ-Extension also solves Decision Φ-Subset. If the
algorithm for Permissive Φ-Extension also returns a certificate whenever it answers yes,
this also leads to an algorithm for Φ-Subset. Again, these algorithms can be derandomized
at the cost of a factor 2o(n) in the running time.

Theorem 2.6. If there is an algorithm for Permissive Φ-Extension with running
time ckNO(1) then there is an algorithm for Decision Φ-Subset with running time
(2− 1

c )n+o(n)NO(1). Moreover, if the algorithm for Permissive Φ-Extension computes a
certificate whenever it answers yes, then there is an algorithm for Φ-Subset with running
time (2− 1

c )n+o(n)NO(1).

2.4. Enumeration and Combinatorial Upper Bounds

In this subsection, we prove Theorems 1.3 and 1.4 on combinatorial upper bounds and
enumeration algorithms. Let us first restate Theorem 1.3.

Theorem 1.3. Let c > 1 and Φ be an implicit set system. If Φ is c-uniform, then
|FI | ≤

(
2− 1

c

)n
nO(1) for every instance I.

For the intuition behind Theorem 1.3, consider the following random process:

(1) Choose an integer t based on c, n, and k, then randomly sample a subset X of size t
from UI .

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:13

(2) Uniformly at random pick a set S from Fk−tI,X , and output W = X ∪ S. In the special

case where Fk−tI,X is empty return the empty set.

An analysis similar to the one in Lemma 2.1 shows that each set in the family FI is selected
with probability at least (2− 1

c )−n·n−O(1). This implies that there are at most
(
2− 1

c

)n
nO(1)

such sets. Next we formalize this intuition.

Proof of Theorem 1.3. Let I be an instance and k ≤ n. We prove that the number of
sets in FI of size exactly k is upper bounded by

(
2− 1

c

)n
nO(1). Since k is chosen arbitrarily

the bound on |FI | will follow. We describe below a random process that picks a set W of
size k from FI as follows.

(1) Choose an integer t based on c, n, and k, then randomly sample a subset X of size t
from UI .

(2) Uniformly at random pick a set S from Fk−tI,X , and output W = X ∪S. In the corner case

where Fk−tI,X is empty return the empty set.

This completes the description of the process.
For each set Z ∈ FI of size exactly k, let EZ denote the event that the set W output by

the random process above is equal to Z. Now we lower bound the probability of the event
EZ . We have the following lower bound.

Pr[EZ ] = Pr[X ⊆ Z ∧ S = Z \X]

= Pr[X ⊆ Z]× Pr[S = Z \X | X ⊆ Z] (4)

=

(
k
t

)(
n
t

) × 1

|Fk−tI,X |

Since Φ is c-uniform we have that |Fk−tI,X | ≤ ck−tnO(1), hence

Pr[EZ ] ≥
(
k
t

)(
n
t

)c−(k−t)n−O(1).

We are now ready to discuss the choice of t in the random process. The integer t is chosen
such that the above expression for Pr[EZ ] is maximized (or, in other words, it’s reciprocal
is minimized). By Lemma 2.3 we have that for every k ≤ n there exists a t ≤ k such that(

k
t

)(
n
t

)c−(k−t) ≥ (2− 1

c
)−n · n−O(1).

Hence Pr[EZ ] ≥ (2 − 1
c )−n · n−O(1) for every Z ∈ FI of size k. Since the events EZ are

disjoint for all the different sets Z ∈ FI we have that∑
Z∈FI

|Z|=k

Pr[EZ ] ≤ 1.

This, together with the lower bound on Pr[EZ ] implies that the number of sets in FI of size

exactly k is upper bounded by
(
2− 1

c

)n
nO(1), completing the proof.

If the implicit set system Φ is efficiently c-uniform then the proof of Theorem 1.3 can
be made constructive by replacing the sampling step by a construction of an (n, k, t)-set-
inclusion-family C using Theorem 3.3. For each X ∈ C the algorithm uses the fact that Φ
is efficiently c-uniform to loop over all sets S ∈ Fk−tI,X and output X ∪ S for each such S.

Looping over C instead of sampling X incurs a 2o(n) overhead in the running time of the

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Fomin et al.

algorithm. In order to avoid enumerating duplicates, we also store each set that we output
in a trie and for each set that we output, we check first in linear time whether we have
already output that set.

Theorem 1.4. Let c > 1 and Φ be an implicit set system. If Φ is efficiently c-uniform,

then there is an algorithm that given as input I enumerates FI in time
(
2− 1

c

)n+o(n)
NO(1).

3. EFFICIENT CONSTRUCTION OF SET-INCLUSION-FAMILIES

In this section we give the promised construction of set-inclusion-families. The (n, p, q)-set-
inclusion-family is actually related to (n, k, l) covering design [Kuzjurin 2000; Jukna 2011]
and it is very plausible that a modification of these known constructions can be used for
our purposes. It is also related to the concepts of splitters and universal sets introduced by
Naor et al. [Naor et al. 1995]. Here we present a simple and self-contained construction. We
start by giving a construction of set-inclusion-families with good bounds on the size, but
with a poor bound on the construction time. Recall that κ(n, p, q) =

(
n
q

)
/
(
p
q

)
.

Before proceeding with the technical proof of Theorem 3.3, let us provide a high-level
overview. The proof is based on the following ideas.

(a.) Existential Proof (Lemma 3.1). This lemma shows that there exists an (n, p, q)-set-
inclusion-family C of size at most κ(n, p, q)·nO(1). Essentially, it shows that if we construct
the family C = {C1, . . . , Ct} by selecting each set Ci independently and uniformly at ran-

dom from
(
U
q

)
, then with positive probability C is indeed an (n, p, q)-set-inclusion-family.

This also leads to not “so fast algorithm” to design the family C using an approximation
algorithm for the Set Cover problem.

(b.) Universe Reduction. The construction obtained in Lemma 3.1 has only one
drawback—the time is much larger what we can afford. To overcome this lacuna, we
do not apply the construction in Lemma 3.1 directly. We first prove a result which helps
us in reducing the universe size to something smaller. This is done using the known con-
struction of pairwise independent hash families of size O(n2). This makes the universe
small enough that we can apply the construction given in Lemma 3.1.

Lemma 3.1. There is an algorithm that given n, p and q outputs an (n, p, q)-set-
inclusion-family C of size at most κ(n, p, q) · nO(1) in time O(8n).

Proof. We start by giving a randomized algorithm that with positive probability
constructs an (n, p, q)-set-inclusion-family C with the claimed size. We will then dis-
cuss how to deterministically compute such a C within the required time bound. Set
t = κ(n, p, q) · (p + 1) log n and construct the family C = {C1, . . . , Ct} by selecting each

set Ci independently and uniformly at random from
(
U
q

)
.

By construction, the size of C is within the required bounds. We now argue that with
positive probability C is indeed an (n, p, q)-set-inclusion-family. For a fixed set A ∈

(
U
p

)
,

and integer i ≤ t, we consider the probability that Ci ⊆ A. This probability is 1/κ(n, p, q).
Since each Ci is chosen independently from the other sets in C, the probability that no Ci
satisfies Ci ⊆ A is (

1− 1

κ(n, p, q)

)t
≤ e−(p+1) logn ≤ 1

np+1
.

There are
(
n
p

)
choices for A ∈

(
U
p

)
, therefore the union bound yields that the probability

that there exists an A ∈
(
U
p

)
such that no set Ci ∈ C satisfies Ci ⊆ A is upper bounded by

1
np+1 · np = 1

n .

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:15

To construct C within the stated running time proceed as follows. We construct an in-
stance of Set Cover, and then, using a known approximation algorithm for Set Cover,
we construct the desired family. An instance of Set Cover consists of a universe U and a
family S of subsets of U . The objective is to find a minimum sized sub-collection S ′ ⊆ S
such that the union of elements of the sets in S ′ is U . It is known [Johnson 1974] that Set
Cover admits a polynomial time approximation algorithm with factor O(log |U|). For our

problem, the elements of the universe U are uA for every A ∈
(
U
p

)
. For every set B ∈

(
U
q

)
,

let FB consist of all the elements uA ∈ U such that B ⊆ A. The set family S contains
FB for each choice of B ∈

(
U
q

)
. Given a sub-collection S ′ ⊆ S we construct the family

C(S ′) by taking the sets B ∈
(
U
q

)
such that FB ∈ S ′. Clearly, any C(S ′) corresponding to

a sub-collection S ′ ⊆ S covering U is a (n, p, q)-set-inclusion-family, and vice versa.
Let OPT denote the size of a minimum sized sub-collection S ′ ⊆ S covering U . We run

the known O(log |U|)-factor approximation algorithm on our instance and obtain a sub-
collection S ′ ⊆ S covering U . Let C = C(S ′). By discussions above we know that C is an
(n, p, q)-set-inclusion-family. Clearly, the size of C is upper bounded by

|C| ≤ OPT · O(log |U|) ≤ t · O(log |U|)
≤ O(t(log np)) ≤ κ(n, p, q) · nO(1).

It is well known that one can implement the approximation algorithm for Set Cover to
run in time O(|U| ·

∑
S∈S |S|) = O(

(
n
p

)
·
(
n
q

)(
n−q
p−q
)
) = O(2n · 2n · 2n) = O(8n) [Korte and

Vygen 2012]. This concludes the proof.

Next we will reduce the problem of finding an (n, p, q)-set-inclusion-family to the same prob-
lem, but with a much smaller value of n. To that end we will use a well-known construction
of pair-wise independent families of functions. Let U be a universe of size n and b be a
positive integer. Let X be a collection of functions from U to [b]. That is, each function f
in X takes as input an element of U and returns an integer from 1 to b. The collection X
is said to be pair-wise independent if, for every i, j ∈ [b] and every u, v ∈ U such that u 6= v
we have that

Pr
f∈X

[f(u) = i ∧ f(v) = j] =
1

b2
.

Observe that this implies that any pairwise independent family of functions from U to [b]
with |U | ≥ 2 also satisfies that for every i ∈ [b] and u ∈ U we have Prf∈X [f(u) = i] = 1

b .
We will make use of the following known construction of pair-wise independent families.

Proposition 3.2 ([Alon et al. 1986]). There is a polynomial time algorithm that
given a universe U and integer b constructs a pair-wise independent family X of functions
from U to [b]. The size of X is O(n2).

Using Proposition 3.2 we can give a much faster construction of an (n, p, q)-set-inclusion-
family than the one in Lemma 3.1 at the cost of a subexponential overhead in the size of
the family.

We will also use the following well known bounds on binomial coefficients to simplify our
expressions in the proof of next theorem,

1

nO(1)

[(
k

n

)− k
n
(

1− k

n

) k
n−1

]n
≤
(
n

k

)
≤

[(
k

n

)− k
n
(

1− k

n

) k
n−1

]n
. (5)

Theorem 3.3. There is an algorithm that given n, p and q outputs an (n, p, q)-set-
inclusion-family C of size at most κ(n, p, q) · 2o(n) in time κ(n, p, q) · 2o(n).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 Fomin et al.

Proof. The construction sets β = q/p, selects a number b = dlog ne of buckets and
applies Proposition 3.2 to construct a pairwise independent family X of functions from U
to [b]. For each function f ∈ X and integer i ∈ [b] we set U if = {u ∈ U : f(u) = i} and

nif = |U if |. Call a function f good if, for every i ∈ [b] we have that |nif − n/b| ≤
√
n · b.

For every good function f ∈ X , every i ∈ [b] and every integer s ≤ nif we construct

an (nif , s, dβse)-set-inclusion-family C(i,s)
f using Lemma 3.1. We now describe the family C

output by the construction. Each set Y ∈ C is defined by

(1) a good f ∈ X ,
(2) a sequence p1, . . . , pb of integers such that |pi − p

b | ≤
√
n · b,

(3) a sequence Y1, . . . , Yb of sets with Yi ∈ C(i,pi)
f ,

(4) a set D ⊆ U of size at most b.

The set Y defined by the tuple (f, p1, . . . , pb, Y1, . . . , Yb, D) is set to Y = (
⋃
i≤b Yi)\D. This

concludes the construction. Let T denote the set of tuples.
First we analyze the running time of the construction. Constructing the set X takes

polynomial time by Proposition 3.2. For each good f , i ∈ [b] and s ≤ nif , constructing

C(i,s)
f using Lemma 3.1 takes time 2o(n) because nif ≤ n

b +
√
n · log n = O( n

logn ). There

are O(n2) choices for f , at most O(log n) choices for i and O( n
logn ) choices for s. Thus,

the overall time of the construction is 2o(n) plus the time to output C. Outputting C can
be done spending polynomial time for each set Y ∈ T by enumerating over all the tuples
(f, p1, . . . , pb, Y1, . . . , Yb, D). Thus, the running time of the construction is upper bounded
by 2o(n) + |T | · nO(1).

Further, note that the size of C is upper bounded by the number of tuples
(f, p1, . . . , pb, Y1, . . . , Yb, D). That is, |C| ≤ |T |. It remains to upper bound |T |. There are
O(n2) choices for f, at most nb choices for p1, . . . , pb and nO(b) choices for D. Thus, the
number of tuples is upper bounded by 2o(n) times the maximum number of choices for

Y1 . . . Yb for any fixed choice of f, p1 . . . pb and D. For each i, we choose Yi from C(i,pi)
f , so

there are κ(nif , pi, dβpie) · nO(1) choices for Yi. It follows that the total number of choices
for Y1, . . . , Yb is upper bounded by

∏
i≤b

κ(nif , pi, dβpie) · nO(1) ≤ 2o(n) ·
∏
i≤b

( ni
f

dβpie

)(
pi
dβpie

) . (6)

Now, we have that

∏
i≤b

(
nif
dβpie

)
≤
∏
i≤b

[(
dn/be
dp/be

)
· nO(

√
n logn)

]
≤
(
n

p

)
· 2o(n). (7)

In the last transition we used that the number of ways to pick b sets of size dp/be, each from
a universe of size dn/be is upper bounded by the number of ways to pick a set of size b ·dp/be

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:17

from a universe of size b · dn/be. This in turn is upper bounded by
(
n
p

)
· 2o(n). Furthermore,∏

i≤b

(
pi

dβpie

)
≥
∏
i≤b

[(
dp/be
dβ(p/b)e

)
· n−O(

√
n logn)

]
≥
[(
β−β(1− β)β−1

)(p/b) · n−O(1)
]b
· 2−o(n) (8)

≥
(
p

q

)
· 2−o(n)

Here the two last transitions use Equation 5. Inserting the bounds from (7) and (8) into (6)
yields that the total number of choices for Y1, . . . , Yb is upper bounded by κ(n, p, q) · 2o(n)

and thus, |C| ≤ κ(n, p, q) · 2o(n) as well.
All that remains is to argue that C is in fact an (n, p, q)-set-inclusion-family. Towards

this, consider any subset S of U of size exactly p. For any fixed i ∈ [b], consider the process
of picking a random function f from X . We are interested in the random variables |U if | and

|U if ∩ S|. Using indicator variables for each element in U it is easy to show that

E
f∈X

[
|U if |

]
=
n

b
and E

f∈X

[
|U if ∩ S|

]
=
p

b
.

Furthermore, X is pairwise independent, and therefore the covariance of any pair of indicator

variables is 0. Thus, Var
f∈X

[
|U if |

]
≤ n and Var

f∈X

[
|U if ∩ S|

]
≤ n. By Chebyshev’s inequality it

follows that

Pr
[∣∣|U if | − n

b

∣∣ ≥ √n · b] ≤ 1

b2
and

Pr
[∣∣|U if ∩ S| − p

b

∣∣ ≥ √n · b] ≤ 1

b2
.

Consider now the probability that at least one of the variables |Ui| or |Ui∩S| deviates from
its expectation by at least

√
n · b. Combining the above inequalities with the union bound

taken over all i ∈ [b] yields that this probability is upper bounded by 2b · 1
b2 ≤

2
b . Since

b = log n > 2 we have that with non-zero probability, all the random variables |U1|, . . . , |Ub|
and |U1 ∩ S|, . . . , |Ub ∩ S| are within

√
n · b of their respective means. Thus there exists a

function f ∈ X such that for every i ∈ [b] we have∣∣|U if | − n

b

∣∣ ≤ √n · b and
∣∣|U if ∩ S| − p

b

∣∣ ≤ √n · b.
In the remainder of the proof let f be such a function in X .

The choice of f implies that f is a good function. For each i ≤ b, let Si = |U if ∩ S|
and pi = |Si|. Again, by the choice of f we have that |pi − p

b | ≤
√
n · b. Since C(i,pi)

f is

an (nif , pi, dβpie)-set-inclusion-family, there exists a set Yi ∈ C(i,pi)
f such that Yi ⊆ Si and

|Yi| = dβpie. For each i ∈ [b] select such a Yi from C(i,pi)
f . Finally let D be any subset of⋃

i≤b Yi of size
∑
i≤b |Yi| − q. Note that |Yi| ≤ βpi + 1, thus

∑
i≤b |Yi| − q ≤ b, so |D| ≤ b.

Consider finally the tuple (f, p1 . . . pb, Y1, . . . Yb, D). We have just proved that this tuple
satisfies all of the conditions for giving rise to a set Y =

⋃
i≤b Yi \D in C. However, Yi ⊆ Si

for all i, so Y ⊆ S, proving that C is a (n, p, q)-set-inclusion-family.

4. CONCLUSION AND DISCUSSION

In this paper we have shown that for many subset problems, an algorithm that finds
a solution of size k in time cknO(1) directly implies an algorithm with running time

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Fomin et al.

O((2 − 1
c )n+o(n)). We also show that often, an upper bound of cknO(1) on the number

of sets of size at most k in a family F can yield an upper bound of O((2 − 1
c )n+o(n)) on

the size of F . Our results reveal an exciting new connection between parameterized algo-
rithms and exponential-time algorithms. All of our algorithms have a randomized and a
deterministic variant. The only down-side of using the deterministic algorithm rather than
the randomized one is a 2o(n) multiplicative factor in the running time, and an additional
2o(n) space requirement. It is possible to reduce the space overhead to a much smaller (but
still super-polynomial) term, however this would make the presentation considerably more
involved.

For the enumeration algorithm of Theorem 1.4, it is well worth noting that the algorithm
only uses subexponential space if the algorithm is allowed to output the same set multiple
times. If duplicates are not allowed the algorithm needs exponential space in order to store
a trie of the sets that have already been output. Another approach is to use an output-
sensitive algorithm. For example, there is a polynomial-delay polynomial-space algorithm
enumerating all feedback vertex sets in a tournament [Gaspers and Mnich 2013], and its
running time is O(1.6667n) by our combinatorial upper bound.

Our analysis also reveals that in order to obtain a (2− ε)n time algorithm with ε > 0 for

a subset problem, it is sufficient to get a O(ck
(
n−|X|
k

)1−δ
) algorithm for any constant c and

δ > 0 for the extension problem. This might be a promising route for obtaining better exact
exponential-time algorithms for problems that currently do not have single-exponential-
time parameterized algorithms. For example, it would be interesting to see whether it is
possible to improve on Razgon’s O(1.9977n) time algorithm [Razgon 2007] for Directed

Feedback Vertex Set by designing a O(ck
(
n−|X|
k

)1−δ
) time algorithm.

5. ACKNOWLEDGEMENTS

Many thanks to Russell Impagliazzo, Meirav Zehavi, and anonymous reviewers for useful
comments and insightful discussions. The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreements n. 267959/no. 306992 and Research
Council of Norway via MULTIVAL. Serge Gaspers is the recipient of an Australian Research
Council (ARC) Future Fellowship (project number FT140100048) and acknowledges sup-
port under the ARC’s Discovery Projects funding scheme (project number DP150101134).
Daniel Lokshtanov is supported by the Beating Hardness by Pre-processing grant under the
recruitment programme of the of Bergen Research Foundation. The final part of this work
was done while the authors were visiting the Simons Institute for the Theory of Computing.

REFERENCES

Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. 2016. A Faster FPT Algorithm
and a Smaller Kernel for Block Graph Vertex Deletion. In Proceedings of the 12th Latin American
Symposium on Theoretical Informatics (LATIN 2016) (Lecture Notes in Computer Science), Vol. 9644.
Springer, 1–13. DOI:http://dx.doi.org/10.1007/978-3-662-49529-2 1

Noga Alon, László Babai, and Alon Itai. 1986. A fast and simple randomized parallel algorithm for the
maximal independent set problem. J. Algorithms 7, 4 (1986), 567–583.

Noga Alon and Shai Gutner. 2010. Balanced families of perfect hash functions and their applications. ACM
Transactions on Algorithms 6, 3 (2010).

Julien Baste, Luerbio Faria, Sulamita Klein, and Ignasi Sau. 2015. Parameterized complexity dichotomy for
(r, `)-Vertex Deletion. Technical Report abs/1504.05515. arXiv CoRR.

Ivan Bliznets, Fedor V. Fomin, Michal Pilipczuk, and Yngve Villanger. 2013. Largest Chordal and Interval
Subgraphs Faster Than 2n. In Proceedings of the 21st Annual European Symposium on Algorithms
(ESA) (Lecture Notes in Comput. Sci.), Vol. 8125. Springer, 193–204.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:19

Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. 2014. A Fast Branching Algo-
rithm for Cluster Vertex Deletion. In Proceedings of the 9th International Computer Science Symposium
in Russia (CSR) (Lecture Notes in Computer Science), Vol. 8476. Springer, 111–124.

Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. 1999. Graph Classes: A Survey. SIAM.

Yixin Cao. 2015. Unit Interval Editing is Fixed-Parameter Tractable. In Proceedings of the 42nd Inter-
national Colloquium of Automata, Languages and Programming (ICALP) (Lecture Notes in Comput.
Sci.), Vol. 9134. Springer, 306–317.

Yixin Cao. 2016. Linear recognition of almost interval graphs, In Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2016). arXiv preprint arXiv:1403.1515 (2016), 1096–1115.

Yixin Cao, Jianer Chen, and Yang Liu. 2015. On Feedback Vertex Set: New Measure and New Structures.
Algorithmica 73, 1 (2015), 63–86. DOI:http://dx.doi.org/10.1007/s00453-014-9904-6

Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. 2008. Improved algorithms for
feedback vertex set problems. J. Computer and System Sciences 74, 7 (2008), 1188–1198.

Manfred Cochefert, Jean-François Couturier, Serge Gaspers, and Dieter Kratsch. to appear. Faster algo-
rithms to enumerate hypergraph transversals. In Proceedings of the 12th Latin American Theoretical
Informatics Symposium (LATIN 2016) (Lecture Notes in Computer Science). Springer. Available as
arXiv CoRR abs/1510.05093.

Derek G. Corneil, H. Lerchs, and L. Stewart Burlingham. 1981. Complement reducible graphs. Discrete
Applied Mathematics 3, 3 (1981), 163–174. DOI:http://dx.doi.org/10.1016/0166-218X(81)90013-5

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Micha l
Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer. http://dx.doi.org/10.1007/
978-3-319-21275-3

Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Micha l Pilipczuk, Johan M. M. van Rooij, and
Jakub Onufry Wojtaszczyk. 2011. Solving Connectivity Problems Parameterized by Treewidth in Sin-
gle Exponential Time. In Proceedings of the 52nd Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 150–159.

Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon Kleinberg, Christos Papadimitriou,
Prabhakar Raghavan, and Uwe Schöning. 2002. A deterministic (2− 2/(k + 1))n algorithm for k-SAT
based on local search. Theoretical Computer Science 289, 1 (2002), 69–83.

Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Kim Stevens.
2007. An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem. Theory of
Computing Systems 41, 3 (2007), 479–492.

Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh, and Yngve
Villanger. 2012. Local search: Is brute-force avoidable? J. Comput. Syst. Sci. 78, 3 (2012), 707–719.
DOI:http://dx.doi.org/10.1016/j.jcss.2011.10.003

Fedor V. Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Saket Saurabh. 2010. Iterative com-
pression and exact algorithms. Theor. Comput. Sci. 411, 7-9 (2010), 1045–1053.

Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. 2016. Exact algorithms via mono-
tone local search. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC 2016). ACM, 764–775. DOI:http://dx.doi.org/10.1145/2897518.2897551

Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. 2008. On the Minimum Feedback
Vertex Set Problem: Exact and Enumeration Algorithms. Algorithmica 52, 2 (2008), 293–307.

Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and Yngve Villanger.
2014. Enumerating Minimal Subset Feedback Vertex Sets. Algorithmica 69, 1 (2014), 216–231.
DOI:http://dx.doi.org/10.1007/s00453-012-9731-6

Fedor V. Fomin and Dieter Kratsch. 2010. Exact Exponential Algorithms. Springer. An EATCS Series: Texts
in Theoretical Computer Science.

Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. 2015. Large Induced Subgraphs via Triangulations
and CMSO. SIAM J. Comput. 44, 1 (2015), 54–87. DOI:http://dx.doi.org/10.1137/140964801

Serge Gaspers, Eun Jung Kim, Sebastian Ordyniak, Saket Saurabh, and Stefan Szeider. 2012. Don’t Be
Strict in Local Search!. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence
(AAAI). AAAI Press.

Serge Gaspers and Matthias Mnich. 2013. Feedback Vertex Sets in Tournaments. Journal of Graph Theory
72, 1 (2013), 72–89. DOI:http://dx.doi.org/10.1002/jgt.21631

Petr A. Golovach, Pim van ’t Hof, and Daniël Paulusma. 2013. Obtaining planarity by contracting few
edges. Theoretical Computer Science 476 (2013), 38–46.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 Fomin et al.

Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke. 2006. Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. System Sci. 72,
8 (2006), 1386–1396.

Peter L Hammer and Stéphane Földes. 1977. Split graphs. Congressus Numerantium 19 (1977), 311–315.

David S. Johnson. 1974. Approximation Algorithms for Combinatorial Problems. J. Comput. System Sci.
9, 3 (1974), 256–278. DOI:http://dx.doi.org/10.1016/S0022-0000(74)80044-9

Stasys Jukna. 2011. Extremal Combinatorics. Springer.

Iyad A. Kanj, Guohui Lin, Tian Liu, Weitian Tong, Ge Xia, Jinhui Xu, Boting Yang, Fenghui Zhang,
Peng Zhang, and Binhai Zhu. 2014. Algorithms for Cut Problems on Trees. In Proceedings of the 8th
International Conference on Combinatorial Optimization and Applications (COCOA) (Lecture Notes
in Computer Science), Vol. 8881. Springer, 283–298.

Mamadou Moustapha Kanté, Eun Jung Kim, O.-joung Kwon, and Christophe Paul. 2015. An FPT Algo-
rithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion, In Proceedings of the 10th
International Symposium on Parameterized and Exact Computation (IPEC 2015). CoRR 43 (2015),
138–150. http://arxiv.org/abs/1504.05905

Tomasz Kociumaka and Marcin Pilipczuk. 2014. Faster deterministic Feedback Vertex Set. Inf. Process.
Lett. 114, 10 (2014), 556–560.

Sudeshna Kolay and Fahad Panolan. 2015. Parameterized Algorithms for Deletion to (r, `)-graphs. In Pro-
ceedings of the 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS 2015) (LIPIcs), Vol. 45. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 420–433.

Bernhard Korte and Jens Vygen. 2012. Combinatorial optimization. Springer.

Mithilesh Kumar and Daniel Lokshtanov. 2016. Faster Exact and Parameterized Algorithm for Feedback
Vertex Set in Tournaments. In Proceedings of the 33rd International Symposium on Theoretical As-
pects of Computer Science (STACS 2016) (LIPIcs), Vol. 47. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 49:1–49:13.

Konstantin Kutzkov and Dominik Scheder. 2010. Using CSP To Improve Deterministic 3-SAT. CoRR
abs/1007.1166 (2010). http://arxiv.org/abs/1007.1166

Nikolai N. Kuzjurin. 2000. Explicit Constructions Of Rödl’s Asymptotically Good Packings And Coverings.
Combinatorics, Probability & Computing 9, 3 (2000), 265–276. http://journals.cambridge.org/action/
displayAbstract?aid=54643

Dániel Marx and Ildikó Schlotter. 2011. Stable assignment with couples: Parameterized complexity and
local search. Discrete Optimization 8, 1 (2011), 25–40.

J. W. Moon. 1971. On maximal transitive subtournaments. Proc. Edinburgh Math. Soc. (2) 17 (1971),
345–349.

Robin A. Moser and Dominik Scheder. 2011. A full derandomization of Schöning’s k-SAT algorithm. In
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC). ACM, 245–252.

Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. 1995. Splitters and Near-Optimal Derandom-
ization. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 182–191.

Igor Razgon. 2006. Exact computation of maximum induced forest. In Proceedings of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT 2006) (Lecture Notes in Comput. Sci.), Vol. 4059. Springer,
Berlin, 160–171.

Igor Razgon. 2007. Computing Minimum Directed Feedback Vertex Set in O(1.9977n). In Proceedings of
the 10th Italian Conference on Theoretical Computer Science (ICTCS). 70–81.

Uwe Schöning. 1999. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In 40th
Annual Symposium on Foundations of Computer Science (New York, 1999). IEEE Computer Soc.,
Los Alamitos, CA, 410–414.

Hadas Shachnai and Meirav Zehavi. 2017. A multivariate framework for weighted FPT algorithms. J.
Comput. System Sci. 89 (2017), 157–189. DOI:http://dx.doi.org/10.1016/j.jcss.2017.05.003

Pim van ’t Hof and Yngve Villanger. 2013. Proper Interval Vertex Deletion. Algorithmica 65, 4 (2013),
845–867. DOI:http://dx.doi.org/10.1007/s00453-012-9661-3

Magnus Wahlström. 2007. Algorithms, measures and upper bounds for satisfiability and related problems.
Ph.D. Dissertation. Linköping University, Sweden.

Magnus Wahlström. 2014. Half-integrality, LP-branching and FPT Algorithms. In Proceedings of the 24th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 1762–1781.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:21

Mingyu Xiao and Hiroshi Nagamochi. 2013. Exact Algorithms for Maximum Independent Set, In Pro-
ceedings of the 24th International Symposium on Algorithms and Computation (ISAAC). CoRR 8283
(2013), 328–338. http://arxiv.org/abs/1312.6260 See also arXiv CoRR abs/1312.6260.

Takayuki Yato and Takahiro Seta. 2003. Complexity and completeness of finding another solution and
its application to puzzles. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences E86-A, 5 (2003), 1052–1060.

A. PROBLEM DEFINITIONS

We list the definitions of the problems considered in this paper.

Feedback Vertex Set Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is
acyclic?

Weighted Feedback Vertex Set Parameter: k
Input: An undirected graph G, a positive integer k, a weight function w : V (G)→ N,
and a positive integer W .
Question: Is there a set S ⊆ V (G) of size at most k and weight at most W such that
G− S is acyclic?

Subset Feedback Vertex Set Parameter: k
Input: An undirected graph G, a vertex subset T ⊆ V (G), and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G−S has
no cycle that contains a vertex from T?

Let Γ be a finite group with identity element 1Γ. A Γ-labeled graph is a graph G = (V,E)
with a labeling λ : E → Γ such that λ(u, v)λ(v, u) = 1Γ for every edge uv ∈ E. For a cycle
C = (v1, . . . , vr, v1), define λ(C) = λ(v1, v2) · · · · · λ(vr, v1).

Group Feedback Vertex Set Parameter: k
Input: A group Γ, a Γ-labelled graph (G,λ), and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that every cycle
C in G− S has λ(C) = 1Γ?

Node Unique Label Cover Parameter: |Σ|+ k
Input: An undirected graph G = (V,E), a finite alphabet Σ, an integer k, and for
each edge e ∈ E and each of its endpoints v a permutation ψe,v of Σ such that if
e = xy then ψe,x = ψ−1

e,v

Question: Is there a vertex subset S ⊂ V of size at most k and a function Ψ : V \S →
Σ such that for every edge uv ∈ E(G− S) we have (Ψ(u),Ψ(v)) ∈ ψuv,u?

For fixed integers r, ` ≥ 0, a graph G is called an (r, `)-graph if the vertex set V (G) can
be partitioned into r independent sets and ` cliques.

Vertex (r, `)-Partization Parameter: k
Input: A graph G and a positive integer k
Question: Is there a vertex subset S ⊆ V (G) of size at most k such that G− S is an
(r, `)-graph?

Several special cases of this problem are well known and have been widely studied. For
example, (2, 0)- and (1, 1)-graphs correspond to bipartite graphs and split graphs respec-
tively. We note that Vertex (r, `)-Partization can be solved in O(1.1996(r+`)·n) by taking

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 Fomin et al.

r copies of the input graph, ` copies of its complement, making all the copies of a same
vertex into a clique and computing a maximum independent set of this graph using the
algorithm from [Xiao and Nagamochi 2013]. This is faster than O(2n) when r + ` ≤ 3. We
improve on this algorithm for r, ` ≤ 2 and r + ` ≥ 3.

For the definition of graph classes, including interval graphs, proper interval graphs, block
graphs, cluster graphs, we refer to [Brandstädt et al. 1999].

Proper Interval Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is
a proper interval graph?

Interval Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is
an interval graph?

Block Graph Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is
a block graph?

Cluster Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is
a cluster graph?

Thread Graph Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is
of linear rank-width one?

Multicut on Trees Parameter: k
Input: A tree T and a set R = {{s1, t1}, . . . , {sr, tr}} of pairs of vertices of T called
terminals, and a positive integer k.
Question: Does there exist a subset S ⊆ E(T ) of size at most k whose removal
disconnects each si from ti, i ∈ [r]?

d-Hitting Set Parameter: k
Input: A family S of subsets of size at most d of a universe U and a positive integer
k.
Question: Does there exist a subset S ⊆ U of size at most k such that F is a hitting
set for S ?

Weighted d-Hitting Set Parameter: k
Input: A family S of subsets of size at most d of a universe U , a weight function
w : U → N, and positive integers k and W .
Question: Does there exist a subset S ⊆ U of size at most k and weight at most W
such that F is a hitting set for S ?

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Exact Algorithms via Monotone Local Search A:23

Min-Ones d-Sat Parameter: k
Input: A propositional formula F in conjunctive normal form (CNF) where each
clause has at most d literals and an integer k.
Question: Does F have a satisfying assignment with Hamming weight at most k?

Weighted d-Sat Parameter: k
Input: A CNF formula F where each clause has at most d literals, a weight function
w : var(F )→ Z, and integers k and W .
Question: Is there a set S ⊆ var(F ) of size at most k and weight at most W such
that F is satisfied by the assignment that sets the variables in S to 1 and all other
variables to 0?

Tournament Feedback Vertex Set Parameter: k
Input: A tournament G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is
a transitive tournament?

Split Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is
a split graph?

Cograph Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is
a cograph?

Directed Feedback Vertex Set Parameter: k
Input: A directed graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is
directed acyclic graph?

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.


