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Abstract1

Given two points in the plane, a set of obstacles defined by closed curves, and an integer k, does2

there exist a path between the two designated points intersecting at most k of the obstacles? This is3

a fundamental and well-studied problem arising naturally in computational geometry, graph theory,4

wireless computing, and motion planning. It remains NP-hard even when the obstacles are very5

simple geometric shapes (e.g., unit-length line segments). In this paper, we show that the problem6

is fixed-parameter tractable (FPT) parameterized by k, by giving an algorithm with running time7

kO(k3)nO(1). Here n is the number connected areas in the plane drawing of all the obstacles.8
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1 Introduction9

In the Connected Obstacle Removal problem we are given as input a source point s14

and a target point t in the plane, and our goal is to move from the source to the target along15

a continous curve. The catch is that the plane is also littered with obstacles – each obstacle16

is represented by a closed curve, and the goal is to get from the source to the target while17

intersecting as few of the obstacles as possible. Equivalently we can ask for the minimum18

number of obstacles that have to be removed so that one can move from s to t without19

touching any of the remaining ones.1. The problem has a wealth of applications, and has been20

studied under different names, such as Barrier Coverage or Barrier Resilience in21

networking and wirless computing [1, 3, 15, 16, 17, 18], or Minimum Constraint Removal22

in planning [7, 10, 13, 14]. The problem is NP-hard even when the obstacles are restricted to23

simple geometric shapes, such as line segments (e.g., see [1, 17, 18]). On the other hand, for24

unit-disk obstacles in a restricted setting, the problem can be solved in polynomial time [16].25

Whether Connected Obstacle Removal can be solved in polynomial time for unit-disk26

obstacles remains open. The problem is known to be hard to approximate within a factor of27

c logn for c < 1 [2], and, perhaps surprisingly, no factor o(n)-approximation is known. For28

1 We assume that the regions formed by the obstacles can be computed in polynomial time. We do not
assume that the obstacles contain their interiors. We may assume without loss of generality that the
intersection of two obstacles is a 2-D region, if it is not then we can thicken the borders of the obstacles
without changing the sets of obstacles they intersect, so that their intersection becomes a 2-D region.
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restricted inputs (such as unit disc or rectangle obstacles) better approximation algorithms29

are known [2, 3].30

In this paper we approach the general Connected Obstacle Removal problem from31

the perspective of parameterized algorithms (see [4] for an introduction). In particular it is32

easy to see that the problem is solvable in time nk+O(1) if the solution curve is to intersect33

at most k obstacles. Here n is the number of connected regions in the plane defined by34

the simultaneous drawing of all the obstacles. If k is considered a constant then this is35

polynomial time, however the exponent of the polynomial grows with the parameter k. A36

natural problem is whether the algorithm can be improved to a Fixed Parameter Tractable37

(FPT) one, that is an algorithm with running time f(k)nO(1). In this paper we give the first38

FPT algorithm for the problem. Our algorithm substantially generalizes previous work by39

Kumar et al. [16] as well as the first author and Kanj [8].40

I Theorem 1.1. There is an algorithm for Connected Obstacle Removal with running41

time kO(k3)nO(1).42

Our arguments and the relation between our results and previous work are more con-47

veniently stated in terms of an equivalent graph problem, which we now discuss. Given a48

graph G, a set C ⊂ N (interpreted as a set of colors), and a function χ : V (G)→ 2C that49

assigns a set of colors to every vertex of v, a vertex set S uses the color set
⋃
v∈S χ(v). In the50

Colored Path problem input consists of G, s, t, χ and k, and the goal is to find an s− t51

path P that uses at most k colors. It is easy to see that Connected Obstacle Removal52

reduces to Colored Path (see Figure 1). Of course, reducing from Connected Obstacle

s

t

Figure 1 The figure shows an instance of Connected Obstacle Removal and the graph G

of an equivalent instance of Colored Path. G is the plane graph that is the dual of the plane
subdivision determined by the obstacles. Every obstacle corresponds to a color, and the color set of
a vertex are the obstacles that contain the vertex in their interior.
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53

Removal in this way can not produce all possible instances of Colored Path: the graph G54

is always a planar graph, and for every color c ∈ C the set χ−1(c) = {v ∈ V (G) : c ∈ χ(v)}55

induces a connected subgraph of G. We shall denote the Colored Path problem restricted56

to instances that satisfy the two properties above by Colored Path?. With these additional57

restrictions it is easy to reduce back, and therefore Connected Obstacle Removal and58

Colored Path? are, for all practical purposes, different formulations of the same problem.59
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Related Work in Parameterized Algorithms, and Barriers to Generalization. Korman60

et al. [15] initiated the study of Connected Obstacle Removal from the perspective61

of parameterized complexity. They show that Connected Obstacle Removal is FPT62

parameterized by k for unit-disk obstacles, and extended this result to similar-size fat-region63

obstacles with a constant overlapping number, which is the maximum number of obstacles64

having nonempty intersection. Eiben and Kanj [8] generalize the results of Korman et al. [15]65

by giving algorithms for Colored Path? with running time f(k, t)nO(1) and g(k, `)nO(1)
66

where t is the treewidth of the input graph G, and ` is an upper bound on the number of67

vertices on the shortest solution path P .68

Eiben and Kanj [8] leave open the existence of an FPT algorithm for Colored Path? -69

Theorem 1.1 provides such an algorithm. Interestingly, Eiben and Kanj [8] also show that70

if an FPT algorithm for Colored Path? were to exist, then in many ways it would be71

the best one can hope for. More concretely, for each of the most natural ways to try to72

generalize Thoerem 1.1, Eiben and Kanj [8] provide evidence of hardness. Specifically, the73

Colored Path? problem imposes two constraints on the input – the graph G has to be74

planar and the color sets need to be connected. Eiben and Kanj [8] show that lifiting either75

one of these constraints results in a W[1]-hard problem (i.e. one that is not FPT assuming76

plausible complexity theoretic hypotheses) even if the treewidth of the input graph G is77

a small constant, and the length of the a solution path (if one exists) is promised to be a78

function of k.79

Algorithms that determine the existence of a path can often be adapted to algorithms80

that find the shortest such path. Eiben and Kanj [8] show that for Colored Path?, this81

can not be the case! Indeed, they show that an algorithm with running time f(k)nO(1) that82

given a graph G, color function χ and integers k and ` determines whether there exists an83

s− t path of length at most ` using at most k colors, would imply that FPT = W[1]. Thus,84

unless FPT = W[1] the algorithm of Theorem 1.1 can not be adapted to an FPT algorithm85

that finds a shortest path through k obstacles.86

1.1 Overview of the Algorithm87

The naive nk+O(1) time algorithm enumerates all choices of a set S on at most k colors in88

the graph, and then decides in polynomial time whether S is a feasible color set, in other89

words whether there exists a solution path that only uses colors from S. At a very high level90

our algorithm does the same thing, but it only computes sets S that can be obtained as a91

union of colors of at most k vertices and additionally it performs a pruning step so that not92

all nk choices for S are enumerated.93

In FPT algorithms such a pruning step is often done by clever branching: when choosing94

the i’th vertex defining S one would show that there are only f(k) viable choices that could95

possibly lead to a solution. We are not able to implement a pruning step in this way. Instead,96

our pruning step is inspired by algorithms based on representative sets [12].97

In particular, our algorithm proceeds in k rounds. In each round we make a family Pi of98

color sets of size at most i, with the following properties. First, |Pi| ≤ kO(k3)nO(1). Second,99

if there exists a solution path, then there exists a solution such that the set containing the100

first i visited colors is in Pi.101

In each round i the algorithm does two things: first it extends the already computed102

families P0, . . .Pi−1 by going over every set S ∈
⋃i−1
j=0 Pj and every vertex v ∈ V (G) and103

inserting S ∪ χ(v) into the new family P̂i if |S ∪ χ(v)| = i. It is quite easy to see that P̂i104

satisfies the second property - however it is a factor of n larger than the union of previous105

Pj ’s. If we keep extending P̂i in this way then after a super-constant number of steps we106

SoCG 2020
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will break the first requirement that the family size should be at most kO(k3)nO(1). For this107

reason the algorithm also performs an irrelevant set step: as long as P̂i is “too large” we108

show that one can identify a set S ∈ P̂i that can be removed from P̂i without breaking the109

first property. We repeat this irrelevant set step until P̂i is sufficiently small. At this point110

we declare that this is our i’th family Pi and proceed to step i+ 1.111

The most technically involved part of our argument is the proof of correctness for the112

irrelevant set step - this is outlined and then proved formally in Section 3.2. This argument113

crucially exploits the structure of a large set of paths in a planar graph that start and end in114

the same vertex.115

2 Preliminaries116

For integers n,m with n ≤ m, we let [n,m] := {n, n+ 1, . . . ,m} and [n] := [1, n]. Let F be117

a family of subsets of a universe U . A sunflower in F is a subset F ′ ⊆ F such that all pairs118

of elements in F ′ have the same intersection.119

I Lemma 2.1 ([9, 11]). Let F be a family of subsets of a universe U , each of cardinality120

exactly b, and let a ∈ N. If |F| ≥ b!(a− 1)b, then F contains a sunflower F ′ of cardinality at121

least a. Moreover, F ′ can be computed in time polynomial in |F|.122

We assume familiarity with the basic notations and terminologies in graph theory and123

parameterized complexity. We refer the reader to the standard books [4, 5, 6] for more124

information on these subjects.125

Graphs. All graphs in this paper are simple (i.e., loop-less and with no multiple edges).126

Let G be an undirected graph. For an edge e = uv in G, contracting e means removing the127

two vertices u and v from G, replacing them with a new vertex w, and for every vertex y in128

the neighborhood of v or u in G, adding an edge wy in the new graph, not allowing multiple129

edges. Given a connected vertex-set S ⊆ V (G), contracting S means contracting the edges130

between the vertices in S to obtain a single vertex at the end. For a set of edges E′ ⊆ E(G),131

the subgraph of G induced by E′ is the graph whose vertex-set is the set of endpoints of the132

edges in E′, and whose edge-set is E′.133

A graph is planar if it can be drawn in the plane without edge intersections (except at the134

endpoints). A plane graph is a planar graph together with a fixed drawing. Each maximal135

connected region of the plane minus the drawing is an open set; these are the faces. One is136

unbounded, called the ourter face.137

Given a graph G, a walk W = (v1, . . . , vq) in G is a sequence of vertices in V (G) such138

that for each i ∈ {1, . . . , q − 1} it holds that {vi, vi+1} ∈ E(G). A path is a walk with all139

vertices distinct. Let W1 = (u1, . . . , up) and W2 = (v1, . . . , vq), p, q ∈ N, be two walks such140

that up = v1. Define the gluing operation ◦ that when applied to W1 and W2 produces that141

walk W1 ◦W2 = (u1, . . . , up, v2, . . . , vq). For a path P = (v1, . . . , vq), q ∈ N and i ∈ [q], we142

let pre(P, vi) be the prefix of the P ending at vi, that is the path (v1, v2, . . . vi). Similarly,143

we let suf(P, vi) be the suffix of the P starting at vi, that is the path (vi, vi+1, . . . vq).144

For a graph G and two vertices u, v ∈ V (G), we denote by dG(u, v) the distance between145

u and v in G, which is the length (number of edges) of a shortest path between u and v in G.146

Parameterized Complexity. A parameterized problem Q is a subset of Ω∗ ×N, where Ω147

is a fixed alphabet. Each instance of the parameterized problem Q is a pair (x, k), where148

k ∈ N is called the parameter. We say that the parameterized problem Q is fixed-parameter149
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tractable (FPT) [6], if there is a (parameterized) algorithm, also called an FPT-algorithm,150

that decides whether an input (x, k) is a member of Q in time f(k) · |x|O(1), where f is a151

computable function. Let FPT denote the class of all fixed-parameter tractable parameterized152

problems. By FPT-time we denote time of the form f(k) · |x|O(1), where f is a computable153

function and |x| is the input instance size.154

Colored Path and Colored Path?. For a set S, we denote by 2S the power set of S.155

Let G = (V,E) be a graph, let C ⊂ N be a finite set of colors, and let χ : V −→ 2C . A vertex156

v in V is empty if χ(v) = ∅. A color c appears on, or is contained in, a subset S of vertices if157

c ∈
⋃
v∈S χ(v). For two vertices u, v ∈ V (G), ` ∈ N, a u-v walk W = (u = v0, . . . , vr = v) in158

G is `-valid if |
⋃r
i=0 χ(vi)| ≤ `; that is, if the total number of colors appearing on the vertices159

of W is at most `. A color c ∈ C is connected in G, or simply connected, if
⋃
c∈χ(v){v}160

induces a connected subgraph of G. The graph G is color-connected, if for every c ∈ C, c is161

connected in G.162

For an instance (G,C, χ, s, t, k) of Colored Path?, if s and t are nonempty vertices, we163

can remove their colors and decrement k by |χ(s)∪χ(t)| because their colors appear on every164

s-t path. If afterwards k becomes negative, then there is no k-valid s-t path in G. Moreover,165

if s and t are adjacent, then the path (s, t) is a path with the minimum number of colors166

among all s-t paths in G. Therefore, we will assume:167

B Assumption 2.2. For an instance (G,C, χ, s, t, k) of Colored Path or Colored Path?,168

we can assume that s and t are nonadjacent empty vertices.169

I Definition 2.3. Let s, t be two designated vertices in G, and let x, y be two adjacent170

vertices in G such that χ(x) = χ(y). We define the following operation to x and y, referred171

to as a color contraction operation, that results in a graph G′, a color function χ′, and two172

designated vertices s′, t′ in G′, obtained as follows:173

G′ is the graph obtained from G by contracting the edge xy, which results in a new vertex z;174

s′ = s (resp. t′ = t) if s /∈ {x, y} (resp. t /∈ {x, y}), and s′ = z (resp. t′ = z) otherwise;175

χ′ : V (G′) −→ 2C is defined as χ′(w) = χ(w) if w 6= z, and χ′(z) = χ(x) = χ(y).176

G is irreducible if there does not exist two vertices in G to which the color contraction177

operation is applicable.178

B Observation 1. Let G be a color-connected plane graph, C a color set, χ : V −→ 2C ,179

s, t ∈ V (G), and k ∈ N. Suppose that the color contraction operation is applied to two180

vertices x, y in G to obtain G′, χ′, s′, t′, as described in Definition 2.3. For any two vertices181

u, v ∈ V (G) and p ⊆ C there is a u-v walk W with χ(W ) = p in G if and only if there is a182

u′-v′ walk W ′ with χ(W ′) = p, where u′ = u (resp. v′ = v) if u /∈ {x, y} (resp. v /∈ {x, y}),183

and u′ = z (resp. v′ = z) otherwise.184

3 FPT algorithm for Colored Path?
185

Given an instance (G,C, χ, s, t, k) and a vertex v ∈ V (G), we say that a vertex u is reachable186

from a vertex v by a color set p ⊆ C if there exists a v-u path p with χ(P ) ⊆ p. Furthermore,187

we say that a color set p ⊆ C is v-opening if there is a vertex u ∈ V (G) such that u is188

reachable from v by p, but not by any proper subset of p. Note that necessarily χ(v) ⊆ p. A189

set of colors p completes a v-t walk Q if there is an s-v path P with χ(P ) = p, |p∪χ(Q)| ≤ k,190

and v is the only vertex on Q reachable from s by p. We say p minimally completes a v-t191

walk Q, if p completes Q and there is no s-v path P ′ with χ(P ′) ( p. We say that an s-t192

SoCG 2020
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path P is nice, if for every prefix pre(P, u) of P ending at the vertex u ∈ V (G) there is no193

s-u path P ′ with χ(P ′) ( χ(pre(P, u)).194

B Observation 2. There is a k-valid s-t path if and only if there is a nice k-valid s-t path.195

I Definition 3.1 (k-representation). Given an instance (G,C, χ, s, t, k) of Colored Path?,196

a vertex v ∈ V (G), and two families P and P ′ of s-opening subsets of C of size ` ≤ k, we197

say that P ′ k-represents P w.r.t. v if for every p ∈ P and every v-t walk Q such that p198

minimally completes Q, there is a set p′ ∈ P ′ such that |p′ ∪χ(Q)| ≤ k, p′ ∩χ(Q) ⊇ p∩χ(Q),199

and there is an s-v path P ′ with χ(P ′) = p′.200

The main technical result of this paper is then the following theorem stating that if a201

family P of color sets is large, then we can find an irrelevant color set in P.202

I Lemma 3.2. Let (G,C, χ, s, t, k) be an instance of Colored Path?. Given a family P of203

s-opening color sets of set of size ` ≤ k and a vertex v ∈ V (G), if |P| > f(k), f(k) = kO(k3),204

then we can in time polynomial in |P|+ |V (G)| find a set p ∈ P such that P \{p} k-represents205

P w.r.t. v.206

3.1 Algorithm assuming Lemma 3.2207

In this subsection, we show how to get an FPT-algorithm for Colored Path? assuming208

Lemma 3.2 is true. The whole algorithm is relatively simple and is given in Algorithm 1.209

The main goal of the subsection is to show that, given Lemma 3.2, the algorithm is correct210

and runs in FPT-time.211

While the definition of k-representation is not the most intuitive definition of representation214

(for example it is not transitive), we show that it is sufficient to preserve a path of some215

specific form. Let P be a k-valid s-t path. For i ∈ [0, k] let vi(P ) be the last vertex on P such216

that |χ(pre(P, vi(P )))| ≤ i and let `i(P ) be the length, i.e., number of edges, of suf(P, vi(P )).217

If the path P is clear from the context, we write vi and `i instead of vi(P ) and `i(P ). For218

example, we write pre(P, vi) instead of pre(P, vi(P )). Note that for a k-valid s-t path P ,219

`k(P ) = 0 and since G is irreducible w.r.t. color contraction, `0(P ) is precisely the length of220

P . For two vectors (a0, a1, a2, . . . , ak), (b0, b1, b2, . . . , bk) we say (a0, . . . , ak) < (b0, . . . , bk) if221

there exists i ∈ [0, k] such that ai < bi and for all j > i aj = bj . For a k-valid s-t path, we222

call the vector ~̀(P ) = (`0(P ), . . . , `k(P )) the characteristic vector of P (see also Figure 2).

s
v5(P )

{} {1} {} {1} {} {2, 3} {2} {4} {2, 4} {3, 5} {}

v1(P )
v2(P )

v3(P ) v4(P )v0(P )
t

v6(P )

Figure 2 Figure depicting the definition of vi(P ) for k = 6 and a path using 5 colors. The
characteristic vector ~̀(P ) = (`0(P ), . . . , `6(P )) is (10, 6, 6, 4, 2, 0, 0).

212

213

223

I Lemma 3.3. Let P be a k-valid s-t path with characteristic vector ~̀(P ), then there exists250

a nice k-valid s-t path P ′ with characteristic vector ~̀(P ′) such that ~̀(P ′) ≤ ~̀(P ).251

Proof. Let P ′ be a path such that ~̀(P ′) ≤ ~̀(P ) and there does not exist a path P ′′ with252

~̀(P ′′) < ~̀(P ′). Since ~̀(P ) ≤ ~̀(P ), the relation < is antisymmetric, and there are at253

most nk+1 different characteristic vectors of a path in an n vertex graph, it follows that254

such P ′ always exists. We claim that P ′ is nice. We prove the claim by contradiction.255

Assume that P ′ is not nice and let v be a vertex on P ′ such that |χ(pre(P ′, v))| = i,256
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224 Data: An instance (G,C, χ, s, t, k) of Colored Path?
225 Result: A k-valid s-t path or NO, if such a path does not exists
226 P0 = {∅};
227 for i ∈ [k] do
228 P̂i = ∅
229 for v ∈ V (G) do
230 for p ∈

⋃
j∈[0,i−1] Pj do

231 if |χ(v) ∪ p| = i then
232 if there is a k-valid s-t path P with χ(P ) ⊆ χ(v) ∪ p then
233 Output P and stop
234 end
235 P̂i = P̂i ∪ {χ(v) ∪ p}
236 end
237 end
238 end
239 for v ∈ V (G) do
240 Pvi = P̂i
241 while |Pvi | > f(k) do
242 Compute p ∈ Pvi such that Pvi \ {p} k-represents Pvi w.r.t. v (by

Lemma 3.2)
243 Pvi = Pvi \ {p}
244 end
245 end
246 Pi =

⋃
v∈V (G) Pvi

247 end
248 Output NO

Algorithm 1 The algorithm for Colored Path?
249

i ∈ [k], but v can be reached from s by p ( χ(pre(P ′, v)). Let Pv be an s-v path using257

precisely colors in p and let P ′′ = Pv ◦ suf(P ′, v). Clearly, χ(P ′′) ⊆ χ(P ′) and P ′′ is258

k-valid. Moreover, p = χ(pre(P ′′, v)) ( χ(pre(P ′, v)) hence `|p|(P ′′) < `|p|(P ′) andl vertices259

u ∈ V (suf(P ′, v)), χ(pre(P ′′, u)) ⊆ χ(pre(P ′, u)) hence `j(P ′′) ≤ `j(P ′) for all j ∈ [|p|, k].260

But then ~̀(P ′′) < ~̀(P ′), which is a contradiction with the choice of P ′. J261

The following technical lemma will help us later show that replacing a prefix of a path P with262

χ(pre(P, vi)) ∈ P by its representative will always lead to a path P ′ with ~̀(P ′) ≤ ~̀(P ).263

I Lemma 3.4. Let P be an s-t path, w ∈ V (P ), let pre = pre(P,w), suf = suf(P,w), and let264

pre′ be an s-w path such that |χ(pre′)∪ (χ(pre)∩χ(suf))| ≤ |χ(pre)| and |χ(pre′)| < |χ(pre)|.265

Then ~̀(pre′ ◦ suf) < ~̀(P ).266

Proof. Let |χ(pre′)| = j and let P ′ = pre′ ◦ suf. As suf(P,w) = suf(P ′, w) = suf and vj(P ′)267

is after w on P ′, but vj(P ) is before w on P , we get `j(P ′) < `j(P ). We now need to show268

that `j′(P ′) ≤ `j′(P ) for all j′ > j. This is the same as showing that for all u ∈ suf it holds269

that |χ(pre(P ′, u))| ≤ |χ(pre(P, u))|.270

For u ∈ suf let Pu be the subpath of P between w and u, that is pre(suf, u). For271

all u ∈ suf, we have χ(pre(P, u)) = χ(pre) ∪ χ(Pu) and χ(pre(P ′, u)) = χ(pre′) ∪ χ(Pu).272

SoCG 2020
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Therefore, we can split the respective sizes of the color sets as follows:273

|χ(pre(P, u))| = |χ(pre)|+ |χ(Pu) \ χ(pre)|274

|χ(pre(P ′, u))| = |χ(pre)′ ∪ (χ(pre) ∩ χ(Pu))|+ |χ(Pu) \ (χ(pre) ∪ χ(pre′))|.275

Since |χ(pre′) ∪ (χ(pre) ∩ χ(suf))| ≤ |χ(pre)| and χ(Pu) ⊆ χ(suf), it is easy to see that276

|χ(pre(P ′, u))| ≤ |χ(pre(P, u))| and the lemma follows. J277

Next, we show that k-representativity preserve in a sense a representation of a k-valid paths278

with minimal characteristic vector. Before we state the next lemma we introduce the following279

notation. We say that a set of colors p i-captures a s-t path P if |χ(pre(P, vi)| = |p|, p280

completes suf(P, vi), and p contains χ(pre(P, vi)) ∩ χ(suf(P, vi)). The main point of the281

following two lemmas is to show that if we fix P to be a nice k-valid path minimizing ~̀(P ),282

then our computed representative Pi set will always contain a color set p that i-captures283

P . This is useful because for a k-valid s-t path it holds suf(P, vk) is single vertex path284

containing t. Hence, if p k-captures P , we obtain that t is reachable from s by p.285

I Lemma 3.5. Let (G,C, χ, s, t, k) be a YES-instance, P a nice k-valid path minimizing ~̀(P ),286

and P ′ and P two families of s-opening subsets of C of size i ≤ k. If |χ(pre(P, vi))| = i, P ′287

k-represents P w.r.t. vi = vi(P ), and there is p ∈ P such that p i-captures P . Then there is288

p′ ∈ P ′ such that p′ i-captures P .289

Proof. Since |p| = |pre(P, vi)| = i and p completes suf Pvi, it follows from the choice of290

P and Lemma 3.4 that p minimally completes P . Because, P ′ k-represents P w.r.t. vi, it291

follows that there exists p′ ∈ P ′ such that |p′ ∪ χ(suf Pvi)|, there is a s-vi path P ′ with292

χ(P ′) = p′ and293

p′ ∩ χ(suf(P, vi)) ⊇ p ∩ χ(suf(P, vi)) ⊇ χ(pre(P, vi)) ∩ χ(suf(P, vi)).294

Where the second containment follows, because p i-captures P . Therefore p′ contains295

χ(pre(P, vi)) ∩ χ(suf(P, vi)). To finish the proof it only remains to show that no vertex296

on suf(P, vi) other than vi is reachable from s by p′. Assume otherwise and let w ∈297

V (suf(P, vi)) \ {vi} be the last vertex that is reachable by p′. Since |p′| = i, it is easy to see298

that299

|p′ ∪ (χ(pre(P,w)) ∩ χ(suf(P,w)))| = i+ |(χ(pre(P,w)) ∩ χ(suf(P,w))) \ p′|.300

As p′ ∩ χ(suf(P, vi)) ⊇ χ(pre(P, vi) ∩ suf(P, vi)), it holds that everything in χ(pre(P, vi) ∩301

suf(P,w)) is also in p′ and it follows that302

|(χ(pre(P,w)) ∩ χ(suf(P,w))) \ p′| ≤ |(χ(pre(P,w)) \ χ(pre(P, vi))) ∩ χ(suf(P,w))|303

≤ |χ(pre(P,w)) \ χ(pre(P, vi))|304

≤ |χ(pre(P,w))| − i305

Moreover, vi is the last vertex on P such that pre(P, vi) uses at most i colors. Hence306

|p′| < |χ(pre(P,w))| and the lemma follows by applying Lemma 3.4 and from the choice of307

P . J308

I Lemma 3.6. Let (G,C, χ, s, t, k) be a YES-instance, P a nice k-valid s-t path minimizing309

the vector ~̀(P ). Moreover, let P0 = ∅ and P1, . . . ,Pk the color sets created in the step on310

line 246 of Algorithm 1. Then for all i ∈ [0, k] such that |χ(pre(P, vi))| = i, there is pi ∈ Pi311

such that pi i-captures P .312
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Proof. We will prove the lemma by induction. Since P0 contains ∅ and χ(s) = ∅, it is easy314

to see that the lemma is true for i = 0 and that χ(pre(P, v0)) = 0. Let us assume that315

the lemma is true for all j < i. If vi = vi−1,2 then the statement is true for i, because316

|χ(pre(P, vi))| ≤ i − 1. Hence, we assume for the rest of the proof that vi 6= vi−1. Let317

j ∈ [0, i−1] be such that vj−1 6= vi−1 but vj = vi−1 and let u be the vertex on P just after vj .318

It follows from definition of vj−1, vj , and vi−1 that |χ(pre(P, vj))| = j and |χ(pre(P, u))| = i.319

By the induction hypothesis there is pj ∈ Pj such that pj i-captures P . In particular vj is320

the last vertex on suf(P, vj) reachable from s by pj and pj ⊇ χ(pre(P, vj)) ∩ χ(suf(P, vj)).321

B Claim 3.7. |pj ∪ χ(u)| = i and pj ∪ χ(u) minimally completes suf(P, vi).322

Proof of Claim. First, as pj completes suf(P, vj), it follows that |p∪χ(u)∪χ(suf(P, vi))| ≤323

|p ∪ suf Pvj | ≤ k.324

Second, since |χ(pre(P, u))| = i = |χ(pre(P, vi))|, it follows that vi is reachable by325

χ(pre(P, vj)) ∪ χ(u). Moreover, any color c ∈ C on a vertex on suf(P, vj) between vj and326

vi is either already in χ(u) or is in χ(pre(P, vj)) ∩ χ(suf(P, vj)). Since vj is reachable by pj327

and pj ⊇ χ(pre(P, vj)) ∩ χ(suf(P, vj)), vi is reachable by pj ∪ χ(u) from s.328

Moreover, |pj | = |χ(pre(P, vj))| = j and because pj ⊇ χ(pre(P, vj)) ∩ χ(suf(P, vj)) it is329

not difficult to see that |pj ∪ χ(u)| ≤ |χ(pre(P, vj)) ∪ χ(u)| = i. If vi is reachable from s by330

a a subset (not necessarily proper) q of pj ∪ χ(u) of size at most i− 1, then if we replace the331

prefix pre(P, vi) by an s-vi path using only colors in q, we get, by Lemma 3.4, a k-valid s-t332

path P ′ with `(P ′) < `(P ), which is not possible by the choice of P and Lemma 3.3. Hence333

|pj ∪ χ(u)| = i.334

Finally, it remains to show that vi is the only vertex on suf(P, vi) reachable by pj ∪ χ(u).335

We prove it by contradiction. Let w ∈ V (suf(P, vi)) \ {vi} be the last vertex on P that is336

reachable by pj ∪ χ(u). Since pj ⊇ χ(pre(P, vj))∩ χ(suf(P, vj)), it follows that (pj ∪ χ(u)∪337

χ(pre(suf(P, u), w))) ⊇ χ(pre(P,w)) ∩ χ(suf(P,w)). Moreover, |χ(pre(P,w))| ≥ i+ 1 and338

|χ(p ∪ χ(u)| = i by the previous claim. Therefore the claim follows by Lemma 3.4. �339

From the above claim, it follows that P̂i contains a color set p̂ = pj ∪ χ(u) such that |p̂| = i340

minimally completes suf(P, vi). Moreover, p̂ ⊇ χ(pre(P, vi))∩χ(suf(P, vi)) and p̂ i-captures341

P . The rest of the proof follows by applying Lemma 3.5 in every loop between the steps on342

lines 241 and 244 for v = vi. J343

Now we are ready to prove the main result of the paper.344

I Theorem 3.8. There is an algorithm that given an instance (G,C, χ, s, t, k) of Colored345

Path? either outputs k-valid s-t path or decides that no such path exists, in time O(kO(k3) ·346

|V (G)|O(1)).347

Proof. Given an instance (G,C, χ, s, t, k) we simply run Algorithm 1 and return its output.348

B Claim 3.9. Algorithm 1 runs in time O(kO(k3) · |V (G)|O(1)).349

Proof of Claim. Let n = |V (G)|. The algorithm loops k times and in each loop it goes350

through all n vertices in G and all at most k ·kO(k3) ·n already computed color sets. For each351

of k · kO(k3) · n2 pairs of vertex and color set it first verifies if |χ(v) ∪ (p)| = i, if yes it create352

auxiliary (non-colored) graph G′, induced subgraph of G, with precisely the vertices w with353

χ(w) ⊆ χ(v) ∪ (p) and verify if there is an s-t path in G′ in time O(n). If such path exists it354

2 Throughout the proof, to improve readability we write vi instead of vi(P ).313
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outputs it and stops. Else it adds χ(v)∪ (p) to P̂i. It follows that P̂i ≤ k · kO(k3) · n2. Hence,355

between steps 239 and 245 Algorithm 1 runs at most k · kO(k3) · n3 times the algorithm from356

Lemma 3.2, each of these runs is done in kO(k3) · nO(1) time. �357

B Claim 3.10. Algorithm 1 correctly solves Colored Path?.358

Proof of Claim. Clearly, Algorithm 1 outputs a path only in step 233 and before it outputs359

a path it checks whether it is a k-valid s-t path. Now assume that (G,C, χ, s, t, k) is a360

YES-instance and let P be a nice k-valid s-t path minimizing the characteristic vector ~̀(P ).361

Let i = |χ(P )|. Note that vi(P ) = t and suf(P, t) is one-vertex path. By Lemma 3.6 there is362

pi ∈ Pi such that pi i-captures P . Therefore, t is reachable from s by pi and hence there is363

a k-valid s-t path P ′ with χ(P ′) ⊆ pi. Moreover, as Pi ⊆ P̂i it follows that pi ∈ P̂i and it364

would be added to P̂i in the step on line 235 of Algorithm 1. But in the step on line 232365

Algorithm 1 verified whether there is a k-valid path P ′ with χ(P ′) ⊆ pi and then outputted366

one such path and terminated. �367

J368

Note that by the reduction from Connected Obstacle Removal to Colored Path?369

discussed in the introduction, Theorem 3.8 implies also an algorithm for Connected370

Obstacle Removal with the asymptotically same running time and hence Theorem 1.1.371

3.2 Proof of Lemma 3.2372

B Observation 3. Let P be a family of s-opening subsets of C of size ` ≤ k, v ∈ V (G), and373

p ∈ P. If there is an s-v path P with χ(P ) ( p, then P \ {p} k-represents P.374

For the rest of the section we will fix v ∈ V (G), ` ∈ [k], and we let P be a family of375

s-opening color sets of size ` such that, for every p ∈ P , v is reachable from s by p but is not376

reachable from s by any proper subset of p. Our goal in the remainder of the section is to377

show that if |P| > f(k), f(k) = kO(k3), then we can find in FPT-time a color set p ∈ P such378

that P \ {p} k-represents P w.r.t. v. We refer to such p also as an irrelevant color set.379

3.2.1 Sketch of the Proof380

The main idea is to show that if the family P is large, in our case of size at least kO(k3),381

then we can find a subfamily of P that is structured and this structure makes it easier to382

find an irrelevant color set that can be always represented within the structured subfamily.383

We can first apply sunflower lemma and restrict our search to a subfamily of size at least384

kO(k2) whose color sets pairwise intersect in the same color sets c, but are otherwise pairwise385

color-disjoint. Now we can remove colors in c from the graph and apply the color contraction386

operation to newly created neighbors with the same color (see Subsection 3.2.3).387

In the rest of the proof, we can restrict our search for an irrelevant color set to a family P388

whose color sets are pairwise color disjoint. Moreover, we assume the graph is irreducible w.r.t.389

color contraction. Now for each pi ∈ P we compute an s-v path Pi such that χ(Pi) = pi, by390

Observation 3 this is simply done by finding an s-v path in the subgraph induced on vertices391

with colors in pi. The goal is to further restrict the search for an irrelevant path to a set of392

paths P such that there is a small set of vertices U , |U | ≤ 2k, such that all the paths in P393

visit all vertices of U in the same order, but every vertex in V (G) \ (U ∪ {s, v}) appears on394

at most |P|f(k) paths. This is simply done by finding a vertex that appear on the most paths in395

P, including the vertex in U if the vertex appears on at least |P|
|U |!·f(k) paths, and restricting396
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P to the paths containing the vertex. Otherwise, we stop. We show in Lemma 3.14 that397

because each path in P has at most k colors, we stop after including at most 2k vertices into398

U . To get the paths that visit U in the same order, we just go through all |U |! orderings of399

U and pick the one most paths adhere to. To finish the proof, we show that thanks to the400

structure of paths in P, for any two consecutive vertices in U , there is a large set of paths401

that are pairwise vertex disjoint between the two consecutive vertices of U (Lemma 3.18).402

Hence, we get into the situation similar to the one in Figure 3. Any v-t path (walk) that403

contains at most k colors and does not contain vertices in U can only interact with a few of404

these paths between the two consecutive vertices. Hence, because P was large and because405

of the structure of paths in P, we find a path that cannot share a color with any v-t walk406

with at most k colors (Lemma 3.19). But the color set of such a path is then represented by407

any other color set in P, as they have the same size.408

s

u1 u2

v

t

w

Figure 3 A set of pairwise color-disjoint paths that intersects exactly in u1 and u2 in the same
order. If a path P from v to t do not contain s, u1, nor u2 but it shares a color with some vertex w

on the part of the red. Then P has to cross at least 4 of the color-disjoint path and hence it has to
contain at least 3 colors. For example for the blue path are vertices outside of the orange region,
inside the purple region, and the region between red and green path pairwise color-disjoint. In each
of these regions the blue path contains at least 2 consecutive vertices, hence at least one is not empty.

409

410

411

412

413

414

3.2.2 The Color-Disjoint Case415

The goal of this subsection is to show that Lemma 3.2 is true for a special case when the416

color sets in P are pairwise color-disjoint and the input graph is irreducible w.r.t. color417

contraction. This is the most difficult and technical part of the proof. For the rest of the418

subsection we will have the following assumption:419

B Assumption 3.11. For an instance (G,C, χ, s, t, k) of Colored Path? and family P of420

color sets each of size ` ≤ k, we assume that G is irreducible w.r.t. color contraction and the421

sets in P are pairwise color-disjoint.422

In this subsection, it will be more convenient to work with a set of paths instead of a423

set of color sets. Given a set P = {p1, . . . , p|P|} of color-disjoint color sets such that v is424

reachable by each p ∈ P from s but not by any proper subset of p, we will construct a set425

of paths P = {P1, . . . , P|P|} such that χ(Pi) = pi for all i ∈ [|P|]. Note that, since v is not426

reachable from s by any proper subset of pi, this can be simply done by finding a shortest427

s-v path in the graph obtained from G by removing all vertices containing a color not in pi.428

Now we restrict our attention to a subset of paths Q constructed by Algorithm 2.429

We will start by showing that when the algorithm is finished, |U | is bounded by 2k. To440

show this claim we first need two topological lemmas.441
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430 Data: A set of pairwise color-disjoint paths P in a graph G
431 Result: A subset Q of P and U ⊆ V (G) such that |Q| > |P|

((|U |+1)!·(8k2+8k+2))|U| , all
paths in Q contains all the vertices in U , and for every vertex w ∈ V (G) \U
at most |Q|

(|U |+1)!·(8k2+8k+2) paths in Q contains w.
432 U = ∅ and Q = P
433 let u be a vertex in V (G) \ U contained by the highest number of paths in Q
434 if u is contained in more than |Q|

(|U |+1)!·(8k2+8k+3) paths then
435 U = U ∪ {u}
436 restrict Q to contain only the paths containing u
437 go to the step on line 433
438 end

Algorithm 2439

I Lemma 3.12 (Lemma 4.8 in the full version of [8]). Let G′ be a plane graph, and let442

x, y, z ∈ V (G′). Let x1, . . . , xr, r ≥ 3, be the neighbors of x in counterclockwise order.443

Suppose that, for each i ∈ [r], there exists an x-y path Pi containing xi such that Pi does444

not contain z and does not contain any xj, j ∈ [r] and j 6= i. Then there exist two paths445

Pi, Pj, i, j ∈ [r] and i 6= j, such that the two paths Pi, Pj induce a Jordan curve separating446

{x1, . . . , xr} \ {xi, xj} from z.447

I Lemma 3.13. Let G a color-connected plane graph that is irreducible w.r.t. color contrac-448

tion, s, u1, u2, u3, v be vertices in G and let P = {P1, . . . , P|P|} be pairwise color-disjoint s-v449

paths all going through the vertices u1, u2, and u3 in the same order. Then there are at most450

two paths Pi ∈ P such that if wij , j ∈ [3], denotes the vertex on Pi immediately after uj then451

χ(wi1) ∩ χ(wi3) 6= ∅.452

Proof. Since the paths in P are color-disjoint, it follows that the vertices s, u1, u2, u3, v are453

empty. Moreover, G is irreducible w.r.t. color contraction. Therefore, all wij ’s are not empty454

and wij and wi
′

j are different vertices whenever i 6= i′. Applying Lemma 3.12 to G, vertices455

u1, u2, u3, and the restriction of the paths to the subpaths between u1 and u2. We get that456

there are two paths Pj ,Pj′ , j, j′ ∈ [|P|] that induce a Jordan curve separating wi1’s, for all457

paths Pi, i ∈ [|P|] \ {j, j′}, from u3. But wi3 is a neighbor of u3. Moreover wi3 is not empty,458

therefore it cannot appear on Pj nor Pj′ . Hence, the same Jordan curve separates wi1 and459

wi3. Since the paths are color-disjoint, this Jordan curve does not contain any color on Pi.460

Since G is color-connected, we get that χ(wi1) ∩ χ(wi3) = ∅. J461

Now we can show that if |U | ≥ 2k + 1, then at the point when Algorithm 2 adds 2k + 1-st462

element to U , we can find k2 + k + 1 paths in Q that visit the first 2k + 1 vertices of463

U in the same order. Lemma 3.13 then implies that there is a path Pi ∈ P such that464

χ(wij) ∩ χ(wij′) = ∅ for all j 6= j′, j, j′ ∈ {1, 3, 5, . . . , 2k + 1}, where wij denotes the vertex on465

Pi immediately after uj . Then |χ(Pi)| ≥ k + 1 which contradicts definition of P.466

I Lemma 3.14. If |P| ≥ f(k), f(k) = kO(k2), then when Algorithm 2 terminates, it holds467

that |U | < 2k + 1.468

Proof. We show that the lemma holds for f(k) = ((2k + 1)! · (8k2 + 8k + 3))2k+1 · (k2 +469

k) · (2k + 1)! + 1, which is easily seen to be in kO(k2). Assume this is not the case and470

|U | ≥ 2k+ 1. Let U ′ be the first 2k+ 1 vertices of U found by the previous algorithm and let471

Q′ be the subset of the paths in P that contains all vertices in U ′. Clearly, there are least472
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d |P|
((2k+1)!·(8k2+8k+3))2k+1 e ≥ (k2 + k) · (2k+ 1)! + 1 paths in Q′ and hence there is an ordering473

of U ′ such that at least k2 + k + 1 paths visit vertices of U ′ in this order, let Q′′ be the474

restriction of Q′ to these paths. Let Q′′ = {P1, . . . , P|Q′′|} and for i ∈ [|Q′′|] and j ∈ [2k+ 1]475

let wij be the vertex immediately after uj on Pi. Since the path in Q′′ are color-disjoint,476

all the vertices in U are empty. Moreover, G is color contracted, hence χ(wij) 6= ∅. By477

Lemma 3.13, χ(wij) ∩ χ(wij′) 6= ∅ for |j − j′| ≥ 2 for at most 2 paths. Therefore, if we have478

more than 2 ·
(
k+1

2
)

= k2 + k paths in Q′′, then there is a path such that χ(wij) ∩ χ(wij′) = ∅479

for all j 6= j′, j, j′ ∈ {1, 3, 5, . . . , 2k + 1}. But |χ(Pi)| ≥ |χ(wi1) ∪ χ(wi3) ∪ . . . ∪ χ(wi2k+1)|.480

Since the sets χ(wij), j ∈ {1, 3, 5, . . . , 2k + 1}, are pairwise color-disjoint and non-empty, we481

get |χ(Pi)| ≥ k + 1. But Pi is a k-valid path, contradiction. J482

Now we have bounded |U | and the number of paths intersecting in any vertex outside U .483

We first fix an ordering τ = (u1, u2, . . . , u|U |) of vertices in U which maximizes the number484

of paths in Q that visit U in the same order as τ and let Q′ be the restriction of Q to the485

paths that are consistent with this ordering. Clearly |Q| ≤ |Q′| · (2k)! and it suffice to show486

that we can find an irrelevant path in Q′ if |Q′| is large. The agenda for the rest of the487

proof is as follows. Because |U | ≤ 2k and intersection number of each vertex outside |U | is488

small compared to the size of Q′, only "few" paths can share a color with any k-valid v-t489

walk that do not contain a vertex in U hence we can find an irrelevant path. The color set of490

this irrelevant path is then the irrelevant color set in P.491

Let us first show the following simple setting, where the paths in Q′ intersects pairwise492

precisely in the vertices of U . While this lemma is not necessary for our proof, it gives an493

intuition what kind of a structure/arguments we are looking for if the intersection outside of494

U is small.495

I Lemma 3.15. Let Q′ be a set of k-valid color-disjoint s-v paths that pairwise intersects496

precisely in vertices u1, . . . , ur, r ≤ k, in the same order. If |Q′| > 4k · (r + 1), then we can497

in polynomial time find a path P ∈ Q′ such that χ(P ) ∩ χ(Q) = ∅ for every k-valid v-t walk498

Q that do not contain any vertex in U ∪ {s, v} as inner vertex.499

Proof. See also Figure 3. Let us first restrict our attention to the restriction of the paths500

between two consecutive vertices in U ∪ {s, v}. Let us for convenience denote s by u0 and501

v by u|U |+1 and let these two vertices be ui and ui+1 and let us denote P ij the restriction502

of Pj to the subpath between ui and ui+1. The paths between ui and ui+1 pairwise only503

intersect in ui and ui+1. Let H be the plane subgraph of G induced by restriction of paths504

in Q′ to subpaths between ui and ui+1. Let us assume that P i1, . . . , P i|Q′| are ordered in505

counterclockwise order around ui such that t is in the face of H bounded by P i1 and P i|Q′|.506

Now let j ∈ [|Q′|] be such that 2k + 1 ≤ j ≤ |Q′| − 2k. The union of P ij−1 and P ij+1 forms507

a vertex separator between t and P ij . Moreover, G is color-connected and paths in Q′ are508

pairwise color-disjoint. Therefore, any v-t walk Q that contains a color of P ij has to contain509

a vertex w inside the region bounded by P ij−1 and P ij+1. Now, let us restrict our attention to510

a w-t path Q′ that is contained in Q. Since Q does not contain ui nor ui+1 as inner vertex511

the path Q′ has to either cross all paths in P1 = {P i1, P i2, . . . , P ij−1}, or all the paths in512

P2 = {P ij+1, P
i
j+2, . . . , P

i
|Q′|}. Let us assume without loss of generality that Q′ cross all the513

paths in P1. Now consider following k+1 faces in H: f1 bounded by P1 and P|Q′|, f2 bounded514

by P2 and P3,. . ., fi′ bounded by P2i′−2 and P2i′−1, . . ., and fk+1 bounded by P2k and P2k+1.515

Since j ≥ 2k+1 and Q′ crosses all the paths in P1, Q′ has to contain at least two consecutive516

vertices that are either on the boundary or on the interior of each fi′ for i′ ∈ [k+ 1]. As G is517

color contracted, at least one of two neighbors is always non-empty. Let wi′ be a colored518
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vertex in fi′ . Moreover, for j′ 6= i′ the boundaries of fi′ and fj′ are color-disjoint. Therefore,519

χ(wi′) ∩ χ(wj′) = ∅. It follows that |χ(Q′)| ≥ |
⋃
i′∈[k+1] χ(wi′)| ≥ k + 1. However, Q′ is a520

path containing only vertices in Q, hence also |χ(Q)| ≥ k + 1, contradiction with the choice521

of Q. Hence, χ(P ij ) ∩ χ(Q) = ∅. It follows that at most 4k paths can share a color with any522

v-t walk with at most k colors between ui and ui+1 for i ∈ [0, |U |]. Hence, there are at most523

4k · (|U |+ 1) many paths that can share a color with any k-valid v-t walk and we can find524

them easily by marking 4k paths closest to t between each ui and ui+1. J525

Recall that due to Assumption 3.11, we assume that the graph G is color contracted and526

no two neighbors have the same color set. Moreover, the paths in Q′ are color-disjoint, so527

the vertices in U ∪ {s, v} are all empty and each neighbor of these vertices belongs to at528

most one path in Q′. The goal in the following few technical lemmas is to show that for any529

two consecutive vertices ui and ui+1 in U we can find a large (of size at least 4k + 1) subsets530

of paths in Q′ that pairwise do not intersect between ui and ui+1.531

u

w1

w2

w3

w4

w5

w6

w7

v

Figure 4 Situation in Lemma 3.16. On the picture are seven u-v paths, no 3 of them intersecting
in the same vertex. The red w2-w6 path on the picture intersects the three paths containing w3, w4,
and w5, respectively. Any such path has to contain at least 2 vertices, else the only vertex on the
path would be the intersection of 3 u-v paths.

532

533

534

535

I Lemma 3.16. Given an instance (G,C, χ, s, t, k) which is irreducible w.r.t. color contrac-536

tion, two vertices u, v, b ∈ N and a set P of k-valid u-v paths such that no b paths intersect537

in the same vertex. Let w1, . . . , wr be the neighbors of u, each the second vertex of a different538

path in P, in counterclockwise order. For i ∈ [r] let Pi denote the path in P containing wi.539

Let 1 ≤ i < j ≤ r, then the shortest curve σ from wi to wj that intersects G only in vertices540

of V (G) \ {u, v} contains at least min{j−i,r+i−j}−1
b vertices on paths in P \ {Pi, Pj}.541

Proof. See an example of the situation in Figure 4. Given a curve σ, we can easily find a542

closed curve σ′ that intersect G in u, wi, wj and the vertices that are intersected by σ. The543

vertices on σ′ are then the vertex separator separating v from either wi+1, . . . , wj−1 or from544

w1, . . . , wi−1 and wj+1, . . . , wr. If the vertices on σ′ are the vertex separator separating v545

from wi+1, . . . , wj−1, then all the paths Pi+1, . . . , Pj−1 has to pass a vertex on σ different546

than wi or wj . Since no b paths intersect in the same vertex, we get that σ contains at547

least j−i−1
b vertices in this case. The case when the vertices on σ′ are the vertex separator548

separating v from w1, . . . , wi−1 and wj+1, . . . , wr is symmetric and the lemma follows. J549

I Lemma 3.17. Let (G,C, χ, s, t, k) be an instance of Colored Path? such that G is550

irreducible w.r.t. color contraction, H a subgraph of G, and P a k-valid u-v path with551

u, v ∈ V (H) and χ(P ) ∩ χ(H) = ∅. Then P intersects at most k faces of H.552
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Proof. Since P is color-disjoint from H, P intersects H only in empty vertices. Moreover,553

because G is irreducible w.r.t. color contraction, it follows that P does not contain two554

consecutive empty vertices and hence P contains a colored vertex in every face it intersects.555

Finally, the vertices incident to a face in H form a separator between the vertices of G that556

lie inside and the vertices of G that lie outside of the face. Since G is color-connected, any557

color that appear inside two distinct faces of H appears also on a vertex of H. Finally, P558

contains at most k colors and in each face of H it intersects it has at least one color that is559

unique to this face. Therefore, P intersects at most k faces of H. J560

The combination of the two above lemma immediately yields the following:561

I Lemma 3.18. Given an instance (G,C, χ, s, t, k) which is irreducible w.r.t. color con-562

traction, two vertices u, v, an integer b ∈ N and a set P of k-valid pairwise color-disjoint563

u-v paths such that no b paths intersect in the same vertex. Let w1, . . . , wr be the neigh-564

bors of u, each the second vertex of a different path in P, in counterclockwise order. Let565

1 ≤ i < j ≤ r and let Pi and Pj be the two paths in P containing wi and wj , respectively. If566

min{j − i, r + i− j} > 2k · b, then Pi and Pj do not intersect.567

Proof. Let P′ = P \ {Pi, Pj}. By Lemma 3.16 the shortest curve σ from wi−1 to wj that568

intersects G only in vertices of V (G) \ {u, v} contains at least 2k vertices on paths in P′. Let569

H be the subgraph of H induced by paths in P′. By Lemma 3.17 both Pi and Pj intersect at570

most k faces of H. If Pi and Pj intersects, then these 2k faces form one connected component571

and there is a curve from wi to wj that intersects at most 2k − 1 vertices of H, which are572

precisely the vertices on paths in P′, a contradiction. J573

I Lemma 3.19. If no b paths in Q′ intersect in the same vertex in V (G) \ (U ∪ {s, v}) and574

|Q′| > (8k2 + 8k + 2) · (|U |+ 1) · b, then we can in polynomial time find a path P ∈ Q′ such575

that for every k-valid v-t walk Q that does not contain a vertex in U holds χ(P ) ∩ χ(Q) = ∅.576

Proof. For the convenience let us denote s by u0 and v by u|U |+1. We will show that for577

every i ∈ {0, . . . , |U |}, every k-valid v-t walk can intersect at most (8k2 + 8k + 2) · b paths in578

a vertex on the path between ui and ui+1. For a path P ∈ Q′ let P i denote the subpath579

between ui and ui+1 and let Qi = {P i | P ∈ Q′}. Clearly, the paths in Qi are color-disjoint580

ui-ui+1 each containing at most ` ≤ k colors and no b paths in Qi intersect in the same581

vertex beside ui and ui+1. Now let Hi be the subgraph of G induced by the edges on paths582

in Qi. Since G is color contracted, ui is an empty vertex, and the paths in Qi are colored583

disjoint, each neighbor of ui appears on a unique path in Qi. Let w1, w2, . . . , w|Qi| be the584

neighbors of ui in Hi in counterclockwise order and let P ij be the path in Qi that contains585

wj . Clearly, t is in the interior of some face f of Hi and there is at least one path that586

contains an edge incident on f in Hi. Without loss of generality let P i1 be such path (note587

that we can always choose a counterclockwise order around ui for which this is true).588

B Claim 3.20. Let j ∈ [|Qi|]. If (2k + 1)(2k + 1) · b < j < |Qi| − (2k + 1)(2k + 1) · b, k-valid593

v-t walk Q that does not contain ui nor ui+1 in the interior holds χ(P ij ) ∩ χ(Q) = ∅.594

Proof of Claim. Consider the following set of paths: P i1, P i2k+2, P
i
4k+3, . . . , P4k2+4k+1, P

i
j ,595

P ij+2k+1, P ij+4k+2, . . . , P ij+4k2+4k. By Lemma 3.18, these paths are pairwise non-intersecting.596

Hence, we are in the situation as depicted in Figure 5. Since the paths in Qi are pairwise color-597

disjoint, the colors of P ij are only on vertices of G inside the region bounded by P2k2+k+1 and598

P ij+2k+1. Therefore, if χ(Q)∩P ij 6= ∅ for some v-t walk Q, then Q contains a vertex w inside599

the region bounded by P2k2+k+1 and P ij+2k+1. Moreover, Q does not contain ui nor ui+1 as600
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ui ui+1

t

Figure 5 Any path that starts in a face incident on the red path and finish in a face incident
on the green path that does not contain ui nor ui+1 has appear in at least 4 different faces. Since
the paths are color-disjoint, only the consecutive faces can share colors and hence any such path
contains at least 2 colors.

589

590

591

592

an inner vertex then it either crosses all the paths in P1 = {P i2k+2, P
i
4k+3, . . . , P4k2+4k+1} or601

all the paths in P2 = {P ij+2k+1, P
i
j+4k+2, . . . , P

i
j+4k2+2k}. Without loss of generality, let us as-602

sume that Q crosses all the paths in P1. The other case is symmetric. As G is color contracted,603

no two consecutive vertices of P are empty. Hence, Q either crosses a path in P1 in a colored604

vertex or there is a colored vertex on Q between two consecutive paths in P1 (resp. P2). Let605

us partition the paths in P1 ∪ {P1, Pj} into k + 1 group of two consecutive pairs. that is we606

partition P1 into groups {P1, P2k+2}, {P4k+3, P6k+4},. . .,{P4k2−1, P4k2+2k},{P4k2+4k+1, Pj}.607

If the walk Q crosses all paths in P1, it has to contains a colored vertex in each of the k + 1608

groups. However, each two groups are separated by color-disjoint paths. Therefore, two609

colored vertices in two different groups have to be color-disjoint. But then χ(Q) contains at610

least k + 1 colors, this is however not possible, because Q is k-valid. �611

The lemma then straightforwardly follows from the above claim by marking for each of |U |+1612

consecutive pairs 2(2k + 1)2 · b paths that can share a color with some Q and outputting any613

non-marked path. J614

Since χ(P ) ∩ χ(Q) = ∅, χ(P ) can be replaced by any other color set of |χ(P )| colors615

and we can safely remove it from P. Since we chose Q′ such that no |Q|
(|U |+1)!·(8k2+8k+3) =616

|Q′|
(|U |+1)·(8k2+8k+3) paths intersect in Q′, we get the following main result of this subsection.617

I Lemma 3.21. Let (G,C, χ, s, t, k) be an instance of Colored Path? such that G is618

irreducible w.r.t. color contraction. Given a family P of pairwise color-disjoint s-reachable619

color sets of set of size ` ≤ k and a vertex v ∈ V (G), if |P| > 2O(k2 log(k)), then we can in620

time polynomial in |P|+ |V (G)|find a set p ∈ P such that P \ {p} k-represents P w.r.t. v.621

Proof. We start by finding for each pi ∈ P an s-v path Pi in the graph induced on the622

vertices w with χ(w) ⊆ pi. This step can be implemented on a planar graph in O(|V (G)|)623

time. If χ(Pi) ( pi, it follows from Observation 3 that P \ pi k-represents P. Hence, for all624

pi ∈ P it holds χ(Pi) = pi. Now we invoke Algorithm 2 to find a subset of these paths Q625

and a set of vertices U such that |U | ≤ 2k (Lemma 3.14) and |Q| > |P|
((|U |+1)!·(8k2+8k+3))|U| ,626

and each vertex in V (G) \ (U ∩ {s, v}) appears on at most |Q|
(|U |+1)!(8k2+8k+3) . Each of at627

most 2k loops of Algorithm 2 can be implemented in time |P| · |V (G)|. Afterwards, we select628
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a subset Q′ of Q of paths that visits vertices in U in the same order of the maximum size.629

This is done by going through each path in Q once and assigning it to the subset with the630

same order of vertices in U and then selecting the largest subset. Clearly, Q′ ≥ |Q|
|U |! and631

therefore each vertex V (G) \ (U ∩ {s, v}) appears on at most b = |Q′|
(|U |+1)(8k2+8k+3) paths in632

Q′. Therefore |Q′| > (8k2 + 8k + 2) · (|U |+ 1) · b and we can, by Lemma 3.19, in polynomial633

time find a path Pi ∈ Q′ such that for every k-valid v-t walk that does not contain a vertex634

in U holds χ(Pi) ∩ χ(Q) = ∅. Since vertices in U are on Pi, for every v-t walk Q such that635

|χ(Pi) ∪ χ(Q)| ≤ k and v is the only vertex on Q reachable form s by χ(Pi) it holds that636

χ(Pi) ∩ χ(Q) = ∅. Since all sets in P have the same size, it holds for every p′ ∈ P \ {χ(Pi)}637

that |p′∪χ(Q)| ≤ k and p′∩χ(Q) ⊇ χ(Pi)∩χ(Q). Therefore P \{χ(Pi)} k-represents P . J638

3.2.3 Finishing the Proof639

Given Lemma 3.21, we are ready to proof Lemma 3.2.640

I Lemma 3.22. Let (G,C, χ, s, t, k) be an instance of Colored Path?. Given a family P of641

s-opening color sets of set of size ` ≤ k and a vertex v ∈ V (G), if |P| > f(k), f(k) = kO(k3),642

then we can in time polynomial in |P|+ |V (G)| find a set p ∈ P such that P \{p} k-represents643

P w.r.t. v.644

Proof. Since each set in P has precisely ` ≤ k colors, if |P| > `! · (g(k))`+1, g(k) = kO(k2)
645

then, by Lemma 2.1 we can, in time polynomial in |P|, find a set Q of g(k) + 1 sets in P such646

that there is a color set c ⊆ C and for any two distinct sets p1, p2 in Q it holds p1 ∩ p2 = c.647

Now let (G,C ′, χ′, s, t, k − |c|) be the instance of Colored Path? such that C ′ = C \ c and648

for every v ∈ V (G), χ′(v) = χ(v) \ c and let Q′ = {p \ c | p ∈ Q}.649

B Claim 3.23. For all p ∈ Q, Q′\{p\c} (k−|c|)-represents Q′ w.r.t. v in (G,C ′, χ′, s, t, k−|c|)650

if and only if Qv \ {p} k-represents Qv w.r.t. v in (G,C, χ, s, t, k).651

Proof of Claim. Let Q be a v-t walk. Note that for any color set p′ a vertex u is reachable652

from s by p′ in (G,C, χ, s, t, k) if and only if it is reachable from s by p′\c in (G,C ′, χ′, s, t, k−653

|c|). Moreover, since c ⊆ p′′ for every p′′ ∈ Q it holds |p′′ ∪ χ(Q)| ≤ k if and only if654

|(p′′ \ c) ∪ χ′(Q)| ≤ k − |c| and p′′ ∩ χ(Q) = (p′′ \ c) ∩ χ′(Q) ∪ (c ∩ χ′(Q)). The proof then655

follows straightforwardly from the definition of k-representation w.r.t. v. �656

Removing the colors in c from G can result in an instance that is not irreducible w.r.t.657

color contraction. However, in our algorithm for color-disjoint case, we crucially rely on658

the fact that G is irreducible w.r.t. color contraction. Now let G0 = G, χ0 = χ′, s0 = s,659

t0 = t, v0 = v and for i ≥ 1 let (Gi, C, χi, si, ti, k − |c|) be an instance we obtain from660

(Gi−1, C, χi−1, si−1, ti−1, k − |c|) by a single color contraction of vertices xi and yi into a661

vertex zi and let vi = zi if vi−1 ∈ {xi, yi} and vi = vi−1 otherwise.662

B Claim 3.24. For all p ∈ P, if the set P \ p (k − |c|)-represents P w.r.t. vi in (Gi, C,663

χi, si, ti, k−|c|), then P \p (k−|c|)-represents P w.r.t. v in (Gi+1, C, χi+1, si+1, ti+1, k−|c|).664

Proof of Claim. Let Q = (u1, . . . , u|Q|) be a v-t walk in Gi−1 such that |p ∪ χi−1(Q)| ≤ k665

and vi−1 is the only vertex on Q reachable by p from si−1. Also assume that there is666

no si−1-vi−1 path P ′ with χi−1(P ′) ( p. Let Q′ = (u′1, . . . , u′|Q|) be a walk in Gi such667

that if uj /∈ {xi, yi}, then u′j = uj and u′j = zi otherwise. Since χi−1(uj) = χi(u′j) for668

all j ∈ [|Q|], it follows that χi−1(Q) = χi(Q′), therefore |p ∪ χi(Q′)| ≤ k. Moreover,669

from Observation 1 follows that there is no s-v path P ′ in Gi with χi(P ′) ( p and that670
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vi is the only vertex on Q′ that is reachable from si by p. Therefore, because P \ {p}671

(k − |c|)-represents P w.r.t. vi in (Gi, C, χi, si, ti, k − |c|), there exists p′ ∈ P \ {p} such that672

|p′ ∪ χi(Q′)| ≤ k, p′ ∩ χi(Q′) ⊇ p ∩ χi(Q′) and there is an s-v path P ′ with χ(P ′) = p′. But673

then |p′ ∪ χi−i(Q)| ≤ k, p′ ∩ χi−1(Q) ⊇ p ∩ χi−1(Q) and we can obtain an s-v path P ′′ with674

χ(P ′′) = p′ by taking P ′ and replacing each vertex w on P ′ either by itself, if w ∈ V (Gi−1)675

or by one of the four subpaths ((xi), (yi), (xi, yi), or (yi, xi)) depending on which of xi, yi is676

adjacent to the predecessor and the successor of zi on P ′. �677

Let (Gi, C, χi, si, ti, k−|c|) be the instance obtained from (G,C ′, χ′, s, t, k−|c|) by repeating678

color contraction operation until Gi is irreducible w.r.t. color contraction and let vi be679

the image of v. Since Gi is irreducible w.r.t. color contraction, the sets in Q′ are pairwise680

color-disjoint, and |Q′| = g(k) + 1 > g(k − |c|), we can use Lemma 3.21 to find in time681

polynomial in |Q′|+ |V (G)| a set p ∈ Q′ such that Q′ \ {p} (k−|c|)-represents Q′ w.r.t. vi in682

(Gi, C, χi, si, ti, k − |c|). By Claim 3.24, it follows that Q′ \ {p} (k − |c|)-represents Q′ w.r.t.683

v in (G,C ′, χ′, s, t, k − |c|) and by Claim 3.23 Q \ {p ∪ c} k-represents Q in (G,C, χ, s, t, k).684

Finally, since for all p′ ∈ P \ Q is p′ ∈ P \ {p ∪ c} it follows that P \ {p ∪ c} k-represents P.685

Note that finding a large sunflower, removing colors in c from all vertices in G and686

performing color contraction operation are all polynomial time procedures and we cannot687

repeat the color contraction operation more than |V (G)| many times, as each time the688

number of vertices in graph is reduced by one. Hence the above described algorithm runs in689

time polynomial in |P|+ |V (G)|. J690
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