
Feedback Vertex Set in Mixed Graphs
Paul Bonsma1 Daniel Lokshtanov2

Abstract. A mixed graph is a graph with both directed and undirected edges.
We present an algorithm for deciding whether a given mixed graph onn vertices
contains a feedback vertex set (FVS) of size at mostk, in time47.5k ·k! ·O(n4).
This is the first fixed parameter tractable algorithm for FVS that applies to both
directed and undirected graphs.

1 Introduction

For many algorithmic graph problems, the variant of the problem for directed graphs
(digraphs) is strictly harder than the one for undirected graphs. In particular, replac-
ing each edge of an undirected graph by two arcs going in opposite directions yields
a reduction from undirected to directed graphs for most network design, routing, dom-
ination and independence problems including SHORTEST PATH, LONGEST PATH and
DOMINATING SET.

TheFeedback Vertex Setproblem is an exception to this pattern. Afeedback vertex
set (FVS)of a (di)graphG is a vertex setS ⊆ V (G) such thatG − S contains no
cycles. In theFeedback Vertex Set(FVS) problem we are given a (di)graphG and an
integerk and asked whetherG has a feedback vertex set of size at mostk. Indeed, if
one replaces the edges of an undirected graphG by arcs in both directions, then every
feedback vertex set of the resulting graph is avertex coverof G and vice versa. Hence,
this transformation can not be used to reduce FEEDBACK VERTEX SET in undirected
graphs to the same problem in directed graphs, and other simple transformations do
not seem possible either. Thus FVS problems on undirected and directed graphs are
different problems; one is not a generalization of the other. This is reflected by the
fact that the algorithms for the two problems differ significantly across algorithmic
paradigms, be it approximation [2, 1, 11], exact exponential time algorithms [14, 15,
24] or parameterized algorithms [3, 8, 6, 7].In this paper we bridge the gap between the
parameterized algorithms forFEEDBACK VERTEX SET by giving one algorithm that
works for both. More generally, we give the first algorithm for FVS inmixed graphs,
which are graphs that may contain both edges and arcs. Cyclesin mixed graphs are
defined as expected: these may contain both edges and arcs, but all arcs should be in the
same direction (see Section 2 for precise definitions).

For a mixed graphG onn vertices and an integerk, our algorithm decides in time
2O(k)k! O(n4) whetherG contains a FVSS with |S| ≤ k, and if so, returns one. Algo-
rithms of this type are calledFixed Parameter Tractable (FPT) algorithms. In general,

1 Humboldt-Universität zu Berlin, Institut für Informatik,Unter den Linden 6, 10099 Berlin,
Germany, email:bonsma@informatik.hu-berlin.de. Supported by DFG project
“Fast parametrized algorithms for directed graph problems”

2 University of California, San Diego, Department of Computer Science and Engineering, 9500
Gilman Drive, La Jolla, CA 92093-0404, USA, email:dlokshtanov@cs.ucsd.edu.

the input for aparameterized problemconsists of an instanceX and integer parame-
ter k. An algorithm for such a problem is an FPT algorithm if its time complexity is
bounded byf(k) ·O (|X |c), where|X | denotes the input size ofX , f(k) is an arbitrary
computable function ofk, andc is a constant independent ofk. The functionf(k) is
also called theparameter functionof the complexity, or of the algorithm. Since the first
systematic studies on FPT algorithms in the ’90s (see e.g. [9]), this has become a very
active area in algorithms. See [13, 21] for recent introductions to the area.

FEEDBACK VERTEX SET is one of the classical graph problems and it was one of
the first problems to be identified as NP-hard [19]. The problem has found applications
in many areas, see e.g. [12, 7] for references, with one of themain applications indead-
lock recoveryin databases and operating systems. Hence the problem has been exten-
sively studied in algorithms [1, 2, 11, 14, 15, 24, 26]. The parameterized complexity of
FEEDBACK VERTEX SET on undirected graphs was settled already in 1984 in a mono-
graph by Melhorn [20]. Over the last two decades we have seen astring of improved
algorithms [3, 9, 10, 22, 18, 23, 16, 8, 6] (in order of improving parameter function), and
the current fastest FPT algorithm for the problem has running timeO

(

3.83kkn2
)

[5],
wheren denotes the number of vertices of the input graph. On the other hand, the
parameterized complexity of FEEDBACK VERTEX SET ondirectedgraphs was consid-
ered one of the most important open problems in Parameterized Complexity for nearly
twenty years, until an FPT algorithm with running timeO

(

n44kk3k!
)

was given by
Chen et al [7] in 2007. Interestingly, in [17], the permanentdeadlock resolution problem
as it appears in the development of distributed database systems, is reduced to feedback
vertex set in mixed graphs. However, to the best of our knowledge, no algorithm for
FVS on mixed graphs has previously been described.

We now give an overview of the paper. We start by giving precise definitions in Sec-
tion 2. In Section 3 we give a sketch of the algorithm, and outline some the obstacles
one needs to overcome in order to design an FPT algorithm for FVS in mixed graphs.
Our algorithm has three main components: The frame of the algorithm is a standard it-
erative compression approach described in Section 3. The core of our algorithm consists
of two parts: the first is a reduction from a variant of FVS to a multi-cut problem called
SKEW SEPARATOR. This reduction, described in Section 4 is a non-trivial modification
of the reduction employed for FVS in directed graphs by Chen et al [7]. Our reduction
only works on pre-conditioned instances, we describe how toperform the necessary
pre-conditioning in Section 5.

2 Preliminaries

We consider edge/arc labeled multi-graphs: formally, mixed graphs consist of a tuple
G = (V,E,A, ψ), whereV is the vertex set,E is the edge set, andA is the arc set.
The incidence functionψ maps edgese ∈ E to sets{u, v} with u, v ∈ V , also denoted
asuv = vu. Arcs a ∈ A are mapped byψ to tuples(u, v) with u, v ∈ V . In the
remainder, we will often denote mixed graphs simply by the tupleG = (V,E,A), and
denotee = uv for edgese ∈ E with ψ(e) = {u, v}, anda = (u, v) for arcsa ∈ A
with ψ(a) = (u, v). Mixed graphs withA = ∅ will also denoted byG = (V,E). V (G),
E(G) andA(G) denote the vertex, edge and arc set respectively of the mixedgraphG.

The operation ofcontractingan edgee = uv into a new vertexw consists of the
following operations: introduce a new vertexw, for every edge or arc withu or v as end
vertex, replace this end vertex byw, and deleteu andv. Note that edge identities are
preserved:ψ(e) may for instance change from{x, u} to {x,w}, bute is still considered
the same edge. Note also that contractions may introduceparallel edges or arcs(pairs
of edges or arcse andf with ψ(e) = ψ(f)), andloops(edgese with ψ(e) = {w,w}
or arcsa with ψ(a) = (w,w)).

ForG = (V,E,A) andS ⊆ V or S ⊆ E ∪ A, byG[S] we denote the subgraph
induced byS. In particular,G[E] is obtained by deleting all arcs and resulting isolated
vertices. Deletion ofS is denoted byG − S. Theout-degreed+(v) (in-degreed−(v))
of a vertexv ∈ V is the number of arcse ∈ A with ψ(e) = (v, w) (ψ(e) = (w, v)) for
somew. If an arc(v, w) ((w, v)) exists,w is called anout-neighbor(in-neighbor) of v.
Similarly, theedge degreed(v) is the number of incident edges, and ifvw ∈ E thenw
is anedge neighborof v.

A walk of lengthl in a mixed graphG = (V,E,A) is a sequencev0, e1, v1,
e2, . . .,el, vl such that for all1 ≤ i ≤ l, ei ∈ E ∪A andei = vi−1vi or ei = (vi−1, vi).
This is also called a(v0, vl)-walk. v0, vl are itsend vertices, v1, . . . , vl−1 its internal
vertices. A walk is apath if all of its vertices are distinct. A walkv0, e1, v1, . . . , vl of
length at least 1 is acycleif the verticesv0, . . . , vl−1 are distinct,v0 = vl, and allei are
distinct. (Note that this last condition is only relevant for walks of length 2. Note also
that if e is a loop on vertexu, thenu, e, u is also considered a cycle.) We will usually
denote walks, paths and cycles just by their vertex sequencev0, . . . , vl. In addition, we
will sometimes encode paths and cycles by their edge/arc setEP = {e1, . . . , el}.

3 Outline of the algorithm

In this section we give an informal overview of our algorithm, the details are given
in the following sections. Similar to many previous FVS algorithms [5–8, 16], we will
employ theiterative compressiontechnique introduced by Reed, Smith and Vetta [25].
Essentially, this means that we start with a trivial subgraph of G and increase it one
vertex at a time untilG is obtained, maintaining a FVS of size at mostk+1 throughout
the computation. Every time we add a vertex to the graph we perform a compression
step. That is, given a graphG′ with a FVSS of sizek + 1, the algorithm has to decide
whetherG′ has a FVSS′ of sizek. If the algorithm concludes thatG′ has no FVS of
sizek, we can conclude thatG does not either, sinceG′ is a subgraph ofG. In each
compression step the algorithm loops over all2k+1 possibilities forS ∩ S′. For each
choice ofS′ ∩ S we need to solve the following problem.

S-DISJOINT FVS:
INSTANCE: A mixed graphG = (V,E,A) with a FVSS.
TASK: Find a FVSS′ of G with |S′| < |S| andS′ ∩ S = ∅, or report that this does not
exist.

A FVS S′ with |S′| < |S| andS′ ∩ S = ∅ is called asmallS-disjoint FVS. The
application of iterative compression implies the following lemma.

Lemma 1 (⋆). 3 SupposeS-DISJOINT FVS can be solved in timeO ((k + 1)!f(k)nc),
with n = |V |, k = |S| − 1 andf(k) non-decreasing. Then FVS can be solved in time
O
(

k(k + 1)!f(k)nc+1
)

.

Chen et al [7] gave an algorithm forS-Disjoint FVS restricted to digraphs, which we
will call S-Disjoint Directed FVS. In Section 4 we show that their algorithm can be ex-
tended in a non-trivial way to solve the following generalization of the problem to mixed
graphs. LetG be an undirected graph withS ⊆ V (G). A vertex setS′ ⊆ V (G)\S is
a multiway cutfor S (in G) if there is no(u, v)-path inG − S′ for any two distinct
u, v ∈ S.

FEEDBACK VERTEX SET / UNDIRECTED MULTIWAY CUT (FVS/UMC):
INSTANCE: A mixed graphG = (V,E,A) with a FVSS, and integerk.
TASK: Find a FVSS′ of G with |S′| ≤ k andS′ ∩ S = ∅, that is also a multiway cut
for S in G[E], or report that this does not exist.

A multiway cutS′ forG[E], S is also called anundirected multiway cut (UMC)for
G,S. The remaining question is: how can the FPT algorithm for FVS/UMC be used to
solveS-Disjoint FVS? LetG,S be anS-Disjoint FVS instance. Suppose there exists a
smallS-Disjoint FVSS′ for the graphG. If we know whichundirectedpaths between
S-vertices do not contain anyS′-vertices, then these can be contracted, andS′ remains
a FVS for the resulting graphG∗. In addition, this gives a new vertex setS∗ consisting
of the oldS-vertices and the vertices introduced by the contractions.This then yields
an instanceG∗, S∗ of FVS/UMC, for whichS′ is a solution. In Section 5 we prove this
more formally. However, since we do not knowS′, it remains to find which undirected
paths betweenS-vertices do not containS′-vertices. One approach would be to try
all possible combinations, but the problem is that the number of such paths may not be
bounded by any function ofk = |S|−1, see the example in Figure 1 (a). (More complex
examples with many paths exist, where the solutionS′ is not immediately obvious.) The
example in Figure 1 (a) contains many vertices of degree 2, which are simply reduced
in nearly all fast undirected FVS algorithms [8, 26, 16, 5]. However in our case we can
easily add arcs to the example to prevent the use of (known) reduction rules, see e.g.
Figure 1 (b). Because there may be many such paths, and there are no easy ways to
reduce these, we will guess which paths do not containS′-vertices in two stages: this
way we only have to consider2O(k) possibilities, which is shown in Section 5.

(a) (b)

: S′

: S
...

...
...

...

Fig. 1. Graphs with a FVSS and smallS-disjoint FVSS′, with many undirectedS-paths.

3 The (full) proofs of claims marked with⋆ can be found in the appendix.

4 An algorithm for FVS/UMC: reduction to Skew Separator

LetG be a digraph andS = s1, . . . , sℓ andT = t1, . . . , tℓ be mutually disjoint vertex
sequences such that allsi ∈ V (G) have in-degree 0 and allti ∈ V (G) have out-
degree0. A subsetC ⊆ V (G) disjoint from {s1, . . . , sℓ, t1, . . . , tℓ} is called askew
separatorif for all i ≥ j, there is no(si, tj)-path inG − C. The vertices inS will be
calledout-terminalsand the vertices inT in-terminals. An FPT algorithm to solve the
SKEW SEPARATORproblem defined below is given as a subroutine in the algorithm for
DIRECTED FEEDBACK VERTEX SET by Chen et al [7].

SKEW SEPARATOR (SS):
INSTANCE: A digraphG, vertex sequencesS = s1, . . . , sℓ andT = t1, . . . , tℓ where
all si ∈ V (G) have in-degree 0 and allti ∈ V (G) have out-degree 0, and an integerk.
TASK: Find a skew separatorC of size at mostk, or report that this does not exist.

Theorem 1 (Chen et al [7]). The Skew Separator problem on instancesG,S, T , k with
n = |V (G)| can be solved in time4kk ·O(n3).

43

1

1
1

2
2

3

4
4

3

1

2
2

1

3

4

3

4

2

: terminals

: skew separator

: terminals

: skew separator

σ(1) σ(1) σ(1) σ(1)

σ(2) σ(2) σ(2) σ(2)

S: T : S: T :

(c) incorrect transformation

σ(1) σ(2)

: S

: FVS+UMCS′

(a) FVS/UMC instanceG,S (b) correct transformation

Fig. 2. Correct and incorrect transformations from FVS/UMC to SkewSeparator. In- and out-
terminals are ordered from top to bottom, so ‘allowed paths’go from top left to bottom right.

We will use this to give an algorithm for FVS/UMC, using a non-trivial extension
of the way SS is used in [7] to give an algorithm forS-Disjoint Directed FVS. We will
transform a FVS/UMC instanceG, S to a SS instanceGSS, S, T , in such a way thatS′

is a FVS and UMC forG,S if and only if it is a skew separator forGSS,S, T . Since
every cycle inG contains at least one vertex fromS, this can be done by replacing every
S-vertex by a set of in- and out-terminals inGSS. The following proposition shows how
the order of these terminals should be chosen. A bijective functionσ : {1, . . . , ℓ} →
S is called anumberingof S. It is an arc-compatible numberingif there are no arcs
(σ(i), σ(j)) in G with i > j.

Proposition 1 (⋆). LetC ⊆ V \S be a FVS and UMC for the graphG = (V,E,A) and
vertex setS ⊆ V . Then a numberingσ of S exists such that for all1 ≤ j < i ≤ |S|,
there is no path fromσ(i) to σ(j) in G− C.

Since in our case edges are present, we cannot achieve the desired correspondence
by introducing just one terminal pair for everyS-vertex, as was done by Chen et al [7].
Instead, for every vertexv ∈ S, we introduce a single terminal pair for all arcs incident
with v in G, and in addition, for every edge incident withv we introduce a terminal
pair specifically for this edge. The transformation is illustrated in Figure 2 (a) and (b).
Numbers and colors for edges show how edges inG correspond to arcs inGSS. For
everyv ∈ S, the red terminal pair is used for all incident arcs. Observethat in this
example, a setS′ is a FVS and UMC inG,S if and only if it is a skew separator
in GSS,S, T . However, this correspondence does not hold for arbitrary orderings of
the edges incident with a vertexv ∈ S, as is shown by the different order used in
Figure 2 (c). The indicated skew separator of size 2 does not correspond to a FVS and
UMC in G,S.

Construction: We now define the transformation in detail. LetG, S, k be an in-
stance of FVS/UMC, with|S| = ℓ. We define the relation≺ on V (G)\S as follows:
u ≺ v if and only if there is a(v, u)-path inG− S but no(u, v)-path (andu 6= v). Ob-
serve that≺ is transitive and antisymmetric, and therefore a partial order onV (G)\S.

For any numberingσ of S, the graphGSS(G, σ) is obtained fromG as follows: For
everyi ∈ {1, . . . , ℓ}, we do the following: denotev = σ(i). let vw1, . . . , vwd be the
edges incident withv, ordered such that ifwx ≺ wy thenx < y. Since≺ is a partial
order, such an ordering exists and is given by an arbitrary linear extension of≺. Apply
the following operations:(1) Add the verticess1i , . . . , s

d+1
i and t1i , . . . , t

d+1
i . (2) For

every arc(v, u) with u 6∈ S, add an arc(sd+1
i , u). (3) For every arc(u, v) with u 6∈ S,

add an arc(u, t1i). (4) For every edgevwj , add arcs(sji , wj) and(wj , t
j+1
i). (5) Delete

v.
After this is done for everyv ∈ S, replace all remaining edgesxy with two arcs

(x, y) and(y, x). This yields the digraphGSS(G, σ) and vertex sequencesS = s11, . . .,
sd1+1
1 , s12, . . . , s

d2+1
2 , , sdℓ+1

ℓ andT = t11, . . . , t
d1+1
1 , t12, . . . , t

d2+1
2 , , tdℓ+1

ℓ ,
wheredi = d(σ(i)) is the edge degree ofσ(i). The integerk remains unchanged.
GSS(G, σ),S, T , k is an instance for SS.

Lemma 2 (⋆). Let S be a FVS for a mixed graphG = (V,E,A), such thatG[S]
contains no edges andG contains no cycles of length at most 2. ThenC ⊆ V (G)\S is
a FVS and UMC forG andS if and only if there exists an arc-compatible numberingσ
of S such thatC is a skew separator forGSS(G, σ),S, T , as constructed above.

Proof sketch: Let C be a FVS and UMC forG,S. By Proposition 1, we can define a
numberingσ of S such that for alli > j, there is no path fromσ(i) to σ(j) in G − C.
Therefore,σ is arc-compatible.

We now show that for thisσ, C is a skew separator forGSS(G, σ),S, T . LetGSS =
GSS(G, σ). SupposeC is not a skew separator, soGSS−C contains a pathP = sxi , v1, . . .,
vℓ, t

y
j with i > j, or with i = j andx ≥ y. ThenP ′ = σ(i), v1, . . . , vℓ, σ(j) is (the

vertex sequence of) a walk inG−C; note that arcs ofP may correspond to edges inP ′

but that the vertex sequence still constitutes a walk. Ifi > j, then all vertices of the walk
P ′ are different and hence it is a(σ(i), σ(j))-path inG−C, contradicting the choice of
σ. If i = j, thenP ′ is a closed walk inG−C of which all internal vertices are distinct.
In all cases, it can be shown thatP ′ is a cycle inG−C, which gives a contradiction (see

appendix). In the case whereP ′ has length 2 it follows fromx ≥ y and the construction
of GSS that distincte andf can be chosen to ensure thatP ′ = σ(i), e, v1, f, σ(i) is a
cycle. Thus,C is a skew separator forGSS.

LetC be a skew separator forGSS = GSS(G, σ), for some arc-compatible numbering
σ of S. We prove thatC is a FVS and UMC forG,S. SupposeG[E] − C contains
a (u, v)-pathP = u, v1, . . . , vℓ, v with u, v ∈ S, and no internal vertices inS. Let
u = σ(i) andv = σ(j). Since we assumed thatG[S] contains no edges,P has length
at least 2. Since all edges not incident withS are replaced with arcs in both directions
during the construction ofGSS, for somex, y this yields both a pathsxi , v1, . . . , vℓ, t

y+1
j

in GSS − C and a pathsyj , vℓ, . . . , v1, t
x+1
i in GSS − C. One of these paths contradicts

thatC is a skew separator. This shows thatC is a multiway cut forG[E] andS.
Next, supposeG − C contains a cycleK. SinceS is a FVS forG, K contains

at least one vertex ofS. If K contains at least two vertices ofS, thenK contains a
pathP from σ(i) to σ(j) for somei > j, with no internal vertices inS. Let P =
σ(i), v1, . . . , vℓ, σ(j). P has length at least two, sinceσ is arc-compatible, and there
are no edges inG[S]. ThenP ′ = sxi , v1, . . . , vℓ, t

y
j is a path inGSS − C for some

x, y, contradicting thatC is a skew separator. So now we may suppose thatK contains
exactly one vertex ofS, w.l.o.g.K = σ(i), v1, . . . , vℓ, σ(i). Every cycle inG has length
at least 3, sov1 6= vℓ. Using the relation≺ that was used to constructGSS, it can
be shown that in every caseK yields a pathP = sxi , v1, . . . , vℓ, t

y+1
i in GSS − C

for somex > y, or thatK consists only of edges (see appendix). In the latter case,
P ′ = syi , vℓ, vℓ−1, . . . , v1, t

x+1
i with y > x is the path inGSS − C that contradicts that

C is a skew separator. This concludes the proof thatC is a FVS and UMC forG,S. 2

Lemma 2 yields a way to reduce FVS/UMC to the SS problem in the case that the in-
put graphG does not contain any short cycles. To solve such an instance of FVS/UMC,
we try all possible arc-compatible orderingsσ of S (at mostℓ!) and solve the instances
of SS using Theorem 1. The FVS/UMC instance is a yes-instanceif and only if at
least one of the produced SS instances is. Using simple reduction rules one can reduce
general instances of FVS/UMC to instances which do not contain short cycles. This
reduction, together with Theorem 1 gives an FPT algorithm for FVS/UMC.

Theorem 2 (⋆). FVS/UMC on instancesG,S, k with n = |V (G)|, k ≥ 1 andℓ = |S|
can be solved in timeO(n3) · ℓ! 4kk.

5 An algorithm for S-Disjoint FVS: contracting paths

In this section we give an FPT algorithm forS-Disjoint FVS, by reducing it to FVS/UMC.
Throughout this section, letG = (V,E,A) be a mixed graph, andS be a FVS forG.
The main idea of our algorithm is to try out different guessesfor a set of edgesF ⊆ E
that is not hit by a possibleS-disjoint FVSS′, and contractF . If a solutionS′ exists and
the appropriate setF that corresponds toS′ is considered, thenS′ remains a FVS, but
in addition becomes a UMC. So in the resulting graph, we have an algorithm for finding
S′. We now make this precise with the following definition and propositions. LetG∗ be
the graph obtained fromG by contracting a set of edgesF ⊆ E. Let the setS∗ consist
of all vertices inG∗ resulting from a contraction, and all remainingS-vertices (those

that were not incident with an edge fromF). Then we say thatG∗, S∗ is the result of
contractingF in G,S. The short proof of Proposition 2 can be found in the appendix,
while Proposition 3 follows easily from the definitions.

Proposition 2 (⋆). LetS be a FVS in a mixed graphG = (V,E,A). LetG∗, S∗ be the
result of contracting a setF ⊆ E inG,S, whereG[F] is a forest. Then a setS′ ⊆ V (G)
is anS-disjoint FVS forG that is not incident with edges fromF if and only if it is an
S∗-disjoint FVS inG∗.

Proposition 3. LetS be a FVS in a mixed graphG = (V,E,A), and letS′ be anS-
disjoint FVS forG. LetF ⊆ E be the set of all edges that lie on a path between two
S-vertices inG[E] − S′. LetG∗, S∗ be the result of contractingF in G,S. ThenS′ is
a UMC forG∗, S∗.

The previous two propositions show that it is safe to contract sets of edges that
contain no cycles (no solutions are introduced), and when considering the appropriate
set, a possible solutionS′ indeed becomes a FVS and UMC in the resulting graph. The
remaining task is to find a way to consider only a limited number (2O(k)) of possibilities
for F , while ensuring that a correct choice is among them. To this end we introduce the
following definitions and bounds. The definitions are illustrated in Figure 3.

A branching vertexforG,S is a vertexv such that there are at least three internally
vertex disjoint paths fromv to S in G[E]. By B = B(G,S) we denote the set of
branching vertices forG,S. A connection pathis a path inG[E] with both end vertices
in S andB, and no internal vertices inS andB.

: S′′

: S∗

: S′

: S
: S′

: B

: E(Pc)

: S′′

: S

ContractE(Pc): E(P\Pc)

FVS/UMC instanceG∗, S∗:

TheS-shaved subgraph ofG:

Delete arcs,
shave

DeleteBFVS

: S

: BFVS

: B
: BFVS

(d)

(b)(a) DFVS instanceG,S, solutionS′:

(c)G′ = G− BFVS:

Fig. 3. The graphs and sets defined in Section 5.

Before we give a bound on the number of branching vertices andconnection paths,
we introduce a different viewpoint on these notions. Given amixed graphG = (V,E,A)
and a FVSS, we construct theS-shaved subgraph ofG by starting withG[E], and it-
eratively deleting non-S-vertices that have degree 1, as long as possible. Hence the

Algorithm 1 An algorithm forS-Disjoint FVS

INPUT: A mixed graphG = (V,E,A) with FVSS, and integerk = |S| − 1.
OUTPUT: a smallS-disjoint FVSS′ for G,S, or ‘NO’ if this does not exist.
1. Compute the setB of branching vertices ofG, S.
2. if |B| > 3k then return ‘NO’
3. for all BFVS ⊆ B with |BFVS| ≤ k:
4. k′ := k − |BFVS|.
5. G′ := G− BFVS.
6. Compute the setP of connection paths ofG′, S.
7. if |P| > 3k + k′ then continue
8. for all Pc ⊆ P with |P| − |Pc| ≤ k′:
9. LetF = E(Pc).

Let F ∗ ⊆ F be the edges of components ofG′[F] containing anS-vertex.
10. if G′[F ∗] contains a cyclethen continue
11. ConstructG∗, S∗ by contractingF ∗ in G′, S.
12. if G∗ contains no loops incident withS∗-vertices and

there is a FVS and UMCS′′ for G∗, S∗ with |S′′| ≤ k′, then
13. return S′ := S′′ ∪ BFVS

14. return ‘NO’

S-shaved subgraphGS of G is an undirected graph in which every non-S-vertex has
degree at least 2. Considering the three internally vertex disjoint paths from a branch-
ing vertexv ∈ B to S, and using the fact thatS-vertices are never deleted, we see that
this process does not delete vertices fromB, and neither does it delete vertices from
connection paths. Furthermore vertices inB still have degree at least 3 inGS . In fact, it
turns out that this is another way to characterize the branching vertices and connection
paths ofG,S:

Proposition 4 (⋆). Let B be the set of branching vertices of a mixed graphG =
(V,E,A) with FVSS, and letGS be itsS-shaved graph. ThenB is exactly the set
of non-S-vertices inGS that have degree at least 3.

The graphGS can be thought of as a forest whose all leaves are inS, but where a vertex
in S can be simultaneously used as a leaf for multiple paths, or “branches”, of the forest.
With this viewpoint in mind one can use counting arguments that relate the number of
leaves and vertices of degree at least3 in forests to prove the following lemma.

Lemma 3 (⋆). LetS be a FVS of a mixed graphG = (V,E,A) with k = |S| − 1, and
let S′ be a smallS-disjoint FVS forG,S. ThenG has at most3k branching vertices
with respect toS, andG has at most3k connection paths with no vertices inS′.

We now present Algorithm 1, the algorithm forS-Disjoint FVS. Recall that the
‘continue’ statement continues with the next iteration of the smallest enclosing for- (or
while-) loop, so it skips the remainder of the current iteration. Note that in Line 6, the
setP of connection paths ofG′ = G− BFVS is considered, not the connection paths of
G. For a set of pathsPc ⊆ P , we denote byE(Pc) the set of all edges that occur in a
path inPc. The following two lemmas prove the correctness of Algorithm 1.

Lemma 4. Let S be a FVS of a mixed graphG = (V,E,A) with k = |S| − 1. If
Algorithm 1 returns a setS′ = S′′ ∪ BFVS, thenS′ is a smallS-disjoint FVS forG.

Proof. Suppose a solutionS′ = S′′ ∪ BFVS is returned in Line 13. ThenS′′ is a FVS
and UMC forG∗ andS∗, which are obtained fromG′, S by contracting the edge set
F ∗ ⊆ E(G′). SinceG′[F ∗] contains no cycles (otherwise the condition in Line 10
is satisfied),S′′ is anS-disjoint FVS inG′ (Proposition 2). BecauseG′ = G − BFVS,
S′′ ∪ BFVS is then anS-disjoint FVS inG, of size at mostk′ + |BFVS| = k. 2

Lemma 5. LetS be a FVS of a mixed graphG = (V,E,A) with k = |S| − 1. If there
exists a smallS-disjoint FVSS′ for G, then a solution is returned by Algorithm 1.

Proof. LetS′ be a smallS-disjoint FVS, and letB = B(G,S). By Lemma 3,|B| ≤ 3k,
so the algorithm does not terminate in Line 2. Now consider the iteration of the for-loop
in Line 3 that considersBFVS := B∩S′, and thus the graphG′ = G−BFVS and parameter
k′ = k − |BFVS|. Let S′′ = S′\BFVS, which is anS-disjoint FVS forG′ of size at most
k′. So we may apply the propositions and lemmas from this section toG′, S andS′′.

Observe that after deleting a subsetBFVS of branching vertices ofG, some other ver-
tices may lose their branching vertex status, but no branching vertices are introduced.
In other words,B(G′, S) ⊆ B(G,S)\BFVS. Therefore,S′′∩B(G′, S) = ∅. From Propo-
sition 4 and the fact that all connection paths ofG′ are part of theS-shaved subgraph of
G′, it follows that connection paths ofG′ share no internal vertices. Combining these
two facts shows that at most|S′′| ≤ k′ connection paths ofG′ are incident with a ver-
tex fromS′′. Lemma 3 shows thatG′ contains at most3k connection paths not incident
with S′′, so there are at most3k+k′ connection paths in total. Therefore, in Line 7, the
algorithm does not continue to the next iteration.

Now letP be the set of connection paths ofG′, S, and letPc ⊆ P be those connec-
tion paths that are not incident with anS′′-vertex. Since we observed that|P\Pc| ≤ k′,
we may consider the iteration of the for-loop in Line 8 that considersPc. Note that the
setF ∗ constructed in Line 9 contains all edges ofG′ that lie on some undirected path
P between twoS-vertices inG′ − S′′, since every such pathP consists of a sequence
of connection paths. SinceS′′ is a FVS forG′, every component ofG′[F ∗] is a tree, so
in Line 10 the algorithm does not continue to the next iteration. LetG∗, S∗ be obtained
by contractingF ∗ in G′, S. By Proposition 2,S′′ is anS∗-disjoint FVS inG∗. By
Proposition 3,S′′ is a UMC forG∗, S∗. Hence in Line 13, a solution will be returned.

2

Proposition 5 (⋆). For all constantsc > 2,
∑k

i=0

(

ck
i

)

∈ O

(

(

cc

(c−1)c−1

)k
)

.

Theorem 3 (⋆). On an instanceG = (V,E,A), S with n = |V | and k = |S| − 1,
Algorithm 1 correctly solvesS-Disjoint FVS in timeO

(

k(k + 1)! 47.5k n3
)

.

Lemmas 4 and 5 show that Algorithm 1 returns the correct answer, so it only re-
mains to prove the complexity bound. A detailed analysis is given in the appendix,
but here we argue that the complexity is bounded by2O(k)k! · nO(1): By Line 2,
|B| ≤ 3k, so the number of iterations of the first for-loop is at most

∑k

i=0

(

3k
i

)

∈

O(6.75k) (Proposition 5). For every such iteration, letk′ = k − |BFVS|. By Line 7,
|P| ≤ 3k + k′ ≤ 4k holds whenever the second for-loop is entered, so this loop it-

erates at most
∑k′

i=0

(

4k
i

)

∈ O(9.49k) times (Proposition 5). At most once for every
iteration, a FVS/UMC problem on the instanceG∗, S∗, k′ is solved, which can be done
with parameter function|S∗|! · 4k′

k′ (Theorem 2). By construction, every component
of G′[F ∗] contains anS-vertex, so|S∗| ≤ |S|, and therefore this contributes at most
(k + 1)!4kk to the parameter function. Hence the total parameter function is bounded
byO(6.75k 9.49k 4k k (k + 1)!) ⊆ O(256.5k k!). The running time dependence onn
is dominated by solving the FVS/UMC problem in timeO(n3) (Theorem 2), and the
construction ofG∗, S∗ which can also be shown to requireO(n3) time. Combining
Theorem 3 with Lemma 1 yields the main theorem of this paper.

Theorem 4. In timeO
(

(k + 1)!k247.5k n4
)

, it can be decided whether a mixed graph
G = (V,E,A) with |V | = n contains a FVSS with |S| ≤ k.

6 Discussion

Our research showed that for some problems, perhaps surprisingly, combining the undi-
rected case with the directed case may provide a significant challenge. We therefore
think that mixed graphs deserve more attention in the area ofgraph algorithms.

We remark that our algorithms can be used to decide whether a mixed graphG
contains a setS of edges and arcs with|S| ≤ k such thatG − S is acylic (Feedback
Edge/Arc Set (FE/AS)). For undirected graphs, this is a trivial problem. For directed
graphs this can easily be reduced to directed FVS, by subdividing all arcs with a vertex
and replacing all original vertices withk+1 copies (to ensure that they are not selected
in a FVS of size at mostk). For mixed graphs, this last transformation does not work.
However we can extend our algorithms for a certain vertex weighted variant, which can
then be used to solve FE/AS (See appendix D).

Our first question is whether the complexity of our algorithmcan be improved, in
particular whether thek! factor can be removed. Not only does this factor asymptoti-
cally dominate the running time, but it also seems to be critical in practice: the47.5k

factor is based on combining a number of upper bounds and it isunlikely that the worst
case complexity bound actually applies to arbitrary instances.

Secondly, one may ask whether FVS in mixed graphs admits a polynomial kernel-
ization (see e.g. [4, 26]). Both questions seem to be very challenging, in fact they remain
unresolved even when restricted to planar digraphs (see [4]).

Acknowledgement The authors would like to thank Dániel Marx for suggesting that
the FVS algorithm might be extended to solve Feedback Edge/Arc Set in mixed graphs.

References

1. V. BAFNA , P. BERMAN, AND T. FUJITO, A 2-approximation algorithm for the undirected
feedback vertex set problem, SIAM J. Discrete Math., 12 (1999), pp. 289–297.

2. A. BECKER AND D. GEIGER, Optimization of pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem, Artif. Intell., 83 (1996),
pp. 167 – 188.

3. H. BODLAENDER, On disjoint cycles, in WG’92, vol. 570 of LNCS, Springer, 1992,
pp. 230–238.

4. H. L. BODLAENDER, F. V. FOMIN , D. LOKSHTANOV, E. PENNINKX , S. SAURABH , AND

D. M. THILIKOS, (Meta) kernelization, in FOCS’09, IEEE, 2009, pp. 629–638.
5. Y. CAO, J. CHEN, AND Y. L IU, On feedback vertex set new measure and new structures, in

Algorithm Theory - SWAT 2010, vol. 6139 of LNCS, Springer, 2010, pp. 93–104.
6. J. CHEN, F. FOMIN , Y. L IU , S. LU, AND Y. V ILLANGER, Improved algorithms for feedback

vertex set problems, J. Comput. Syst. Sci., 74 (2008), pp. 1188 – 1198.
7. J. CHEN, Y. L IU , S. LU, B. O’SULLIVAN , AND I. RAZGON, A fixed-parameter algorithm

for the directed feedback vertex set problem, J. ACM, 55 (2008), pp. 1–19.
8. F. DEHNE, M. FELLOWS, M. LANGSTON, F. ROSAMOND, AND K. STEVENS, An

O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem, Theor. Comput.
Syst., 41 (2007), pp. 479–492.

9. R. DOWNEY AND M. FELLOWS, Fixed-parameter tractability and completeness I: Basic
results, SIAM J. Comput., 24 (1995), pp. 873–921.

10. R. G. DOWNEY AND M. R. FELLOWS, Parameterized complexity, Springer-Verlag, New
York, 1999.

11. G. EVEN, J. NAOR, B. SCHIEBER, AND M. SUDAN, Approximating minimum feedback sets
and multicuts in directed graphs, Algorithmica, 20 (1998), pp. 151–174.

12. P. FESTA, P. M. PARDALOS, AND M. RESENDE, Feedback set problems, Kluwer Acad.
Publ., Dordrecht, 1999, pp. 209–258.

13. J. FLUM AND M. GROHE,Parameterized Complexity Theory, Springer-Verlag, Berlin, 2006.
14. F. FOMIN , S. GASPERS, AND A. PYATKIN , Finding a minimum feedback vertex set in time

O(1.7548n), in IWPEC’06, vol. 4169 of LNCS, Springer, 2006, pp. 184–191.
15. F. FOMIN AND Y. V ILLANGER, Finding induced subgraphs via minimal triangulations, in

STACS’10, 2010, pp. 383–394.
16. J. GUO, J. GRAMM , F. HÜFFNER, R. NIEDERMEIER, AND S. WERNICKE, Compression-

based fixed-parameter algorithms for feedback vertex set and edge bipartization, J. Comput.
Syst. Sci., 72 (2006), pp. 1386 – 1396.

17. K. JAIN , M. HAJIAGHAYI , AND K. TALWAR , The generalized deadlock resolution problem,
in ICALP’05, vol. 3580 of LNCS, Springer, 2005, pp. 853–865.

18. I. KANJ, M. PELSMAJER, AND M. SCHAEFER,Parameterized algorithms for feedback ver-
tex set, in IWPEC’04, vol. 3162 of LNCS, Springer, 2004, pp. 235–247.

19. R. KARP, Reducibility among combinatorial problems, Plenum Press, New York, 1972,
pp. 85–103.

20. K. MEHLHORN, Data Structures and Algorithms 2: Graph Algorithms and NP-
Completeness, Springer, 1984.

21. R. NIEDERMEIER, Invitation to fixed-parameter algorithms, Oxford University Press, Ox-
ford, 2006.

22. V. RAMAN , S. SAURABH , AND C. R. SUBRAMANIAN , Faster fixed parameter tractable
algorithms for undirected feedback vertex set, in ISAAC’02, vol. 2518 of LNCS, Springer,
2002, pp. 51–68.

23. , Faster fixed parameter tractable algorithms for finding feedback vertex sets, ACM
Trans. Algorithms, 2 (2006), pp. 403–415.

24. I. RAZGON, Computing minimum directed feedback vertex set in O(1.9977n), in ICTCS,
2007, pp. 70–81.

25. B. REED, K. SMITH , AND A. V ETTA, Finding odd cycle transversals, Oper. Res. Lett., 32
(2004), pp. 299–301.

26. S. THOMASSÉ, A quadratic kernel for feedback vertex set, in SODA ’09, SIAM, 2009,
pp. 115–119.

A Proofs omitted from Section 3

Proof of Lemma 1: SupposeS-DISJOINTFVS can be solved in timeO ((k + 1)!f(k)nc).
We give an algorithm for FEEDBACK VERTEX SET. For a given mixed graphG let
V (G) = {v1, . . . , vn}. For everyi let Vi = {v1, . . . , vi} andGi be the subgraph ofG
induced byVi. Clearly, for any FVSS of G, S ∩ Vi is a FVS ofGi. Thus, ifGi has
no FVS of size at mostk for somei ≤ n then neither doesG. The algorithm proceeds
as follows. It starts withi = k andS∗ = Vk and maintains the invariant thatS∗ is a
FVS ofGi of size at mostk. NowS = S∗ ∪ {vi+1} is a FVS ofGi+1 of size at most
k + 1. Suppose that there is a FVSS′ of Gi+1 of size at mostk. Let SKEEP = S ∩ S′,
SDEL = S\S′ = S\SKEEP andSNEW = S′\S. ThenSNEW is a smallSDEL-disjoint FVS of
Gi+1−SKEEP. For each possible choice ofSKEEP we run the algorithm forSDEL-DISJOINT

FVS. If this procedure produces a smallSDEL-disjoint FVSSNEW for Gi+1 − SKEEP, for
some choice ofSKEEP, thenSNEW ∪ SKEEP is a FVS of size at mostk for Gi+1. Then we
proceed to the next iteration (withSNEW ∪SKEEP in the role ofS∗). If no FVS is found for
anySKEEP, thenGi+1 and henceG has no FVS of size at mostk.

Now we consider the complexity. We have to consider all possibilities forSKEEP, and
defineSDEL = S\SKEEP. If |SDEL| = j + 1, then by assumption, deciding whether there
exists a smallSDEL-disjoint FVS ofGi+1 − SKEEP takes timeO ((j + 1)!f(j)nc). There
are
∑k

j=0

(

k+1
j+1

)

= k + 1 +
∑k

j=1

(

k+1
j+1

)

possibilities forSKEEP to consider. This yields
a complexity in the order of

k
∑

j=1

(

k + 1

j + 1

)

(j + 1)! f(j) nc = (k + 1)! nc

k
∑

j=1

f(j)

(k − j)!
< (k + 1)!kf(k) nc.

We have to repeat this procedure for everyGi, which gives another factorn, which
proves the stated complexity. 2

B Proofs omitted from Section 4

For proving Proposition 1 and Lemma 2 in detail, we need the following proposition.

Proposition 6. LetG be an acyclic mixed graph. IfG contains a(u, v)-pathPuv and
a (v, u)-pathPvu, thenPuv is an undirected path.

Proof. Suppose thatPuv contains at least one arc. LetPuv = v0, e1, v1, e2, . . . , el−1, vl,
with all vi ∈ V and allei ∈ E ∪ A.

By induction one can show that if for somei, e1, . . . , ei−1 are also part of the path
Pvu, then these are all edges, andPvu ends with the sub pathvi−1, ei−1, . . . , v1, e1, v0.
Therefore, sincePuv contains at least one arc, we can definei to be the smallest index
such thatei is not part of the pathPvu. Let j be the smallest indexj ≥ i such thatPvu

contains the vertexvj (clearly such aj exists). SincePuv is a path, andPvu ends with
the the sub pathvi−1, ei−1, . . . , v1, e1, v0, it follows thatvj appears beforevi−1 in the
sequencePvu. So we can consider the sub path ofPuv fromvi−1 to vj , and the sub path
of Pvu from vj to vi−1. These paths only share the verticesvi−1 andvj , so if one of

them has length at least 2, combining them would yield a cycleinG. If both have length
1, then combining them yields the walkvi−1, ei, vi, f, vi−1, for somef ∈ E ∪ A. By
choice ofei, we haveei 6= f , so this is again a cycle inG, a contradiction. 2

Proof of Proposition 1: Suppose that for some pairu, v ∈ S, G − C contains both a
(u, v)-pathPuv and a(v, u)-pathPvu. Then Proposition 6 shows thatPuv is undirected,
which contradicts thatC is a UMC forG. So we can define the following relationAR

onS: (u, v) ∈ AR if and only if a(u, v)-walk exists inG−C. By the above argument,
the digraph(S,AR) is acyclic (it is in fact a partial order), so a numberingσ of S
exists with the desired properties: This is given by a topological ordering of the acyclic
digraph(S,AR) / a linear extension of the partial order(S,AR). 2

Detailed proof of Lemma 2:LetC be a FVS and UMC forG,S. By Proposition 1,
we can define a numberingσ of S such that for alli > j, there is no path fromσ(i) to
σ(j) in G− C. Therefore,σ is arc-compatible.

We now show that for thisσ, C is a skew separator forGSS(G, σ),S, T . LetGSS =
GSS(G, σ). SupposeC is not a skew separator, soGSS−C contains a pathP = sxi , v1, . . . , vℓ, t

y
j

with i > j, or with i = j andx ≥ y. ThenP ′ = σ(i), v1, . . . , vℓ, σ(j) is (the vertex
sequence of) a walk inG − C; note that arcs ofP may correspond to edges inP ′ but
that the vertex sequence still constitutes a walk. Ifi > j, then all vertices of the walk
P ′ are different and hence it is a(σ(i), σ(j))-path inG−C, contradicting the choice of
σ. If i = j, thenP ′ is a closed walk inG−C of which all internal vertices are distinct.
If P ′ has length at least 3, then all edges/arcs ofP ′ are distinct, so it is a cycle, again
a contradiction. IfP ′ has length 1, there is a loop incident withσ(i), contradicting the
assumption that there are no cycles of length at most 2. Finally suppose the walkP ′ has
length 2, soP = sxi , v1, t

y
i (here we denoteP by its vertex sequence). Sincex ≥ y,

by the construction ofGSS it follows that distinct arcs/edgese andf can be chosen in
G such thatP ′ = σ(i), e, v1, f, σ(i) is a cycle of length 2 inG, again a contradiction.
Therefore,C is a skew separator forGSS.

LetC be a skew separator forGSS = GSS(G, σ), for some arc-compatible numbering
σ of S. We prove thatC is a FVS and UMC forG,S. SupposeG[E] − C contains a
(u, v)-pathP = u, v1, . . . , vℓ, v with distinctu, v ∈ S, and no internal vertices inS. Let
u = σ(i) andv = σ(j). Since we assumed thatG[S] contains no edges,P has length
at least 2. Since all edges not incident withS are replaced with arcs in both directions
during the construction ofGSS, for somex, y this yields both a pathsxi , v1, . . . , vℓ, t

y+1
j

in GSS − C and a pathsyj , vℓ, . . . , v1, t
x+1
i in GSS − C. One of these paths contradicts

thatC is a skew separator (depending on whetheri < j or j < i). This shows thatC is
a multiway cut forG[E] andS.

Next, supposeG − C contains a cycleK. SinceS is a FVS forG, K contains
at least one vertex ofS. If K contains at least two vertices ofS, thenK contains a
pathP from σ(i) to σ(j) for somei > j, with no internal vertices inS. Let P =
σ(i), v1, . . . , vℓ, σ(j). P has length at least two, sinceσ is arc-compatible, and there
are no edges inG[S]. ThenP ′ = sxi , v1, . . . , vℓ, t

y
j is a path inGSS − C for somex, y,

contradicting thatC is a skew separator.
So now we may suppose thatK contains exactly one vertex ofS, w.l.o.g.K =

σ(i), v1, . . . , vℓ, σ(i). Every cycle inG has length at least 3, sov1 6= vℓ. In the case

that (σ(i), v1) ∈ A, K yields a pathP = sd+1
i , v1, . . . , vℓ, t

y
i in GSS − C for some

y ≤ d + 1, a contradiction (hered = d(σ(i)) is the edge degree ofσ(i)). On the other
hand, if (vℓ, σ(i)) ∈ A, thenK yields a pathP = sxi , v1, . . . , vℓ, t

1
i in GSS − C for

somex ≥ 1, a contradiction. So finally suppose thatσ(i)v1 ∈ E andσ(i)vℓ ∈ E are
both edges. ThenK gives a pathsxi , v1, . . . , vℓ, t

y+1
i in GSS − C for somex, y. Since

C is a skew separator,x ≤ y. Sincev1 6= vℓ, x < y. Thereforevℓ 6≺ v1. The cycle
K shows that there is a(v1, vℓ)-pathP in G − S. Then, by the definition of≺, there
must also be a(vℓ, v1)-path inG − S. But this can only happen ifP is an undirected
path (Proposition 6). This shows that by reversing the cycleK, we again obtain a cycle
σ(i), vℓ, vℓ−1, . . . , v1, σ(i) in G − C, and therefore a pathsyi , vℓ, vℓ−1, . . . , v1, t

x+1
i in

GSS − C, a contradiction (sincex < y). This concludes all cases, soC is a FVS forG.
This concludes the proof thatC is a FVS and UMC forG,S. 2

Proof of Theorem 2: We may return ‘NO’ immediately ifG[S] contains edges, or if
G[S] contains cycles. The latter holds in particular ifG contains loops. So suppose
none of this holds. Then ifG contains a cycleC of length 2,C must contain oneS-
vertex and one non-S-vertexv. Every FVS/UMC solution containsv, so we may reduce
the instance by deletingv and decreasingk by one, to obtain an equivalent instance.
Furthermore, if any vertexu /∈ S has an edge to at least two distinct vertices inS then
any undirected multiway cut forS must containu. Hence we may reduce the instance
by deletingu and decreasingk by one. So we may now assume w.l.o.g. thatG contains
no cycles of length at most 2 and no two vertices inS have edges to the same vertex
in V (G) \ S. To find a FVS and UMC, we try all arc-compatible numberingsσ of S,
and test whetherGSS(G, σ) has a skew separator of size at mostk. There are at mostl!
such numberings. Return such a skew separatorC if it is found for any arc-compatible
numberingσ, or ‘NO’ otherwise. By Lemma 2, this correctly solves FVS/UMC. Note
thatGSS(G, σ) can be constructed in timeO(n3). Since no two vertices inS have edges
to the same vertex inV (G) \ S, GSS(G, σ) has at most3n vertices. Thus, for every
choice ofσ, the complexity is bounded byO(n3) · 4kk (Theorem 1). 2

C Proofs omitted from Section 5

Proof of Proposition 2: LetS′ be anS-disjoint FVS forG that is not incident with
edges fromF . ThenS′ ⊆ V (G∗)\S∗, andG − S′ is acyclic. Contracting anedge
cannot introduce cycles, soG∗ − S′ is acyclic. (Note that this property does not hold
for contracting arcs.)

Now suppose that a setS′ ⊆ V (G) that is not incident withF is not anS-disjoint
FVS inG, soG−S′ contains a cycleC. When contracting an edge ofG, the remaining
edges and arcs ofC still form a cycle. Therefore, sinceC does not consist entirely of
edges that are contracted (G[F] contains no cycles), a cycle remains inG∗ − S′, soS′

is not anS∗-disjoint FVS inG∗. 2

Proof of Proposition 4: It is sufficient to prove that for every vertex v ∈ V (GS)\S
with degree at least 3,v is a branching vertex. We can grow a path inGS starting at
v by starting at an incident edge, and adding edges until (i) a vertex ofS is reached,

or (ii) a vertex previously added to the path is reached. Thiscan be done since non-S-
vertices have degree at least 2. However case (ii) will not occur, since this would yield
a cycle that does not contain anS-vertex, contradicting thatS is a FVS forGS . So this
yields a path fromv to S. We can grow three pathsP1, P2 andP3 leavingv this way,
using three different incident edges. These paths cannot share internal vertices, since
this would again yield a cycle inGS − S. These paths are also part ofG, so v is a
branching vertex ofG. 2

Proof of Lemma 3 LetB = B(G,S), and letGS be theS-shaved subgraph ofG.
Let L be the set of non-S-vertices of degree 2 inGS . By Proposition 4,V (GS) is the
disjoint union of the setsS, B andL. SinceS is also a FVS in the undirected subgraph
GS , GS − S is a forest. Therefore, it is possible to orient all edges ofGS such that
every non-S-vertex has exactly one in-neighbor: For every tree in the forestGS − S,
choose a root vertexr adjacent toS, and orient all edges away from the root. Orient a
single edge fromS to r, and orient all other edges towardsS-vertices. In the rest of the
proof, out-degrees, denoted byd+(v), will refer to such an orientation ofGS . Denote
S′
L = L ∩ S′, S′

B = B ∩ S, andS′
T = S′

L ∪ S′
B. (In the construction ofGS , someS′

vertices may have been deleted so it may be thatS′
T 6= S′.) LetG′

S = GS −S′
T , which

is an (oriented) forest. DenoteG′
S = (V ′

S , E
′
S). SinceG′

S is a forest, we have

|E′
S | ≤ |V ′

S | − 1 = |S|+ |B|+ |L| − |S′
T | − 1. (1)

Note that the number of edges ofGS is at least
∑

v∈L∪B d
+(v). Since every non-S-

vertex has in-degree exactly 1, deleting such a vertexv removes at mostd+(v) + 1
edges. Therefore, after deletingS′

T fromGS the number of edges remaining is at least:

|E′
S | ≥

∑

v∈B∪L

d+(v)−
∑

v∈S′

T

d+(v)− |S′
T | =

∑

v∈(B∪L)\S′

T

d+(v)− |S′
T | ≥

|L\S′
L|+ 2|B\S′

B| − |S′
T | = |L|+ 2|B| − 2|S′

L| − 3|S′
B|. (2)

Combining the upper bound (1) for|E′
S | with the lower bound (2) yields:

|B| − |S′
L| − 2|S′

B| ≤ |S| − 1. (3)

From Inequality (3) we immediately obtain|B| ≤ 2|S′
T | + |S| − 1 ≤ 3k, proving the

first statement. Secondly, from Inequality 3 we obtain that|B| − |S′
B| ≤ |S′

L|+ |S′
B|+

|S| − 1 ≤ 2k. A connection path ofG,S that is not incident with a vertex fromS′,
is a path inG′

S with end vertices inS ∪ (B\S′
B), and no internal vertices in this set

(Proposition 4). SinceG′
S is a forest, there can be at most|S| + |B\S′

B| − 1 ≤ 3k of
those. This proves the second statement. 2

Proposition 5 follows directly from the following two simple and often used bounds;
proofs are included for completeness.

Proposition 7. For all c > 2,
∑k

i=0

(

ck
i

)

< c−1
c−2

(

ck
k

)

.

Proof. For all i ≤ k,
(

ck

i− 1

)

/

(

ck

i

)

=
i!(ck − i)!

(i − 1)!(ck − i+ 1)!
=

i

ck − i+ 1
≤ i

(c− 1)i+ 1
<

1

c− 1
,

So we may write

k
∑

i=0

(

ck

i

)

<

(

ck

k

) k
∑

i=0

(

1

c− 1

)k−i

<
1

1− 1
c−1

(

ck

k

)

=
c− 1

c− 2

(

ck

k

)

.

2

Proposition 8. For all constantsc > 1,
(

ck

k

)

∈ O

(

(

cc

(c−1)c−1

)k
)

.

Proof. By Stirling’s approximationn! ∈ Θ (nne−n
√
n),

(

ck

k

)

∈ O

(

(ck)cke−ck
√
ck

(

(c− 1)k
)(c−1)k

e−(c−1)k
√

(c− 1)k kke−k
√
k

)

⊂

O

(

(ck)ck
(

(c− 1)k
)(c−1)k

kk

)

= O





(

cc

(c− 1)
c−1

)k


 .

2

Proof of Theorem 3: Lemmas 4 and 5 show that Algorithm 1 returns the correct answer,
so it only remains to prove the complexity bound. First, consider the parameter function.
By Line 2, |B| ≤ 3k, so the number of iterations of the first for-loop is at most

k
∑

i=0

(

3k

i

)

.

Herei = |BFVS|. Let k′ = k − i. By Line 7, there are at most3k + k′ connection paths
in G′ whenever the second for-loop is entered, so there are at most

k′

∑

j=0

(

3k + k′

j

)

=
k−i
∑

j=0

(

4k − i

j

)

<
3

2

(

4k − i

k − i

)

choices ofPc (Proposition 7). So we may bound the total number of iterations of the
second for-loop by

3

2

k
∑

i=0

(

3k

i

)(

4k − i

k − i

)

.

At most once for every iteration, a FVS/UMC problem on the instanceG∗, S∗, k′ is
solved, which can be done with parameter function|S∗|! · 4k′

k′ (Theorem 2). In this
case, by construction, every component ofG′[F ∗] contains at least oneS-vertex, so

for every vertex added toS∗ at least one is removed, and thus|S∗| ≤ |S| = k + 1.
Therefore the parameter function of Algorithm 1 is bounded by a constant times

k
∑

i=0

(

3k

i

)(

4k − i

k − i

)

(k + 1)!4k−i max{1, k − i} ≤

k(k + 1)!

k
∑

i=0

(3k)!

i!(3k − i)!
· (4k − i)!

(k − i)!(3k)!
· 4k−i =

k(k + 1)!

k
∑

i=0

(

k

i

)(

4k − i

k

)

4k−i <

k(k + 1)!

(

4k

k

) k
∑

i=0

(

k

i

)

4k−i ∈

O
(

k(k + 1)! 9.5k (1 + 4)k
)

= O
(

k(k + 1)! 47.5k
)

.

For the last line, we used Proposition 8, and44

33 = 256
27 < 9.5.

Now we prove that the polynomial part of the complexity (the complexity for fixed
k) can be bounded byO(n3), wheren = |V |. Letm = |E| + |A|. Although we allow
multi-graphs, w.l.o.g. we may assumem ∈ O(n2). Graphs are encoded with adjacency
lists in such a way that edges can be deleted in constant time,verticesv can be deleted
in timeO(dT (v)), and edgesuv can be contracted in timeO(dT (u) + dT (v)), where
dT (v) = d(v) + d+(v) + d−(v) denotes the total number of arcs and edges incident
with v. For most steps in the algorithm (that we did not already attribute to the param-
eter function) it can now be verified that they can be done in constant time or linear
timeO(n +m) ⊆ O(n2). (Lines 1, 5, 6, 9 and 10 require linear time.) In particular,
using the alternative characterization of branching vertices from Proposition 4, and the
observation that theS-shaved graph ofG can be computed in linear time, it can be
verified that the sets of branching vertices and connection paths can be computed in
linear time in Lines 1 and 6. Only Line 12 and the contraction step in Line 11 need
further consideration. If Line 11 is reached, thenG′[F ∗] contains no cycles (Line 10),
so |F ∗| ≤ n − 1. Therefore, at mostn edge contractions are done. Contracting a sin-
gle edge (and updatingS∗) requires at most timeO(m), which gives a complexity of
O(nm) ⊆ O(n3) for Line 11. Evaluating in Line 12 whether a FVS and UMC exists
takes timeO(n3) as well for fixedk (Theorem 2). This proves that the total complexity
isO

(

k(k + 1)! 47.5k n3
)

. 2

D Feedback Edge/Arc Set

We show that our algorithms can be extended to solve theFeedback Edge/Arc Setprob-
lem in mixed graphs. In this problem we need to decide whetherthere exists a set
S ⊆ E ∪ A for a mixed graphG = (V,E,A) such thatG− S is acylic, with|S| ≤ k.
Note that for undirected graphs, this problem can triviallybe solved by counting the

number of edges for each connected component ofG: to make a component onn ver-
tices withm edges acyclic, deletingm − n + 1 edges is necessary and sufficient. For
directed graphsG, the problem is easily transformed to directed FVS as follows: for
every arc(u, v), introduce a new vertexw and replace(u, v) by the arcs(u,w) and
(w, v). Next, for every original vertexv (not introduced in the previous step), introduce
k additional copies ofv. That is,k vertices with the same set of in- and out-neighbors
asv. It is easily seen that the resulting digraphG′ has a FVS of size at mostk if and
only if G has a feedback arc set of size at mostk. Continuing a familiar pattern, it again
seems that for mixed graphs there is no similar trivial way tosolve the problem: when
edges are present, one cannot simply replace a single vertexby k + 1 vertices this way,
without introducing new cycles.

We will remedy this by doing a similar replacement step in a later stage, where it
is safe since no edges are present: when solving the skew separator problem. In fact,
this will result in an FPT algorithm for the following more general problem. Ifw is
a positive integer weight function on the vertices, edges and arcs of a mixed graph
G = (V,E,A), then forS ⊆ V ∪ E ∪A, letw(S) denote

∑

x∈S w(x).

WEIGHTED FEEDBACK VERTEX/EDGE/ARC SET (WFVEAS):
INSTANCE: A mixed graphG = (V,E,A), with positive integer vertex, edge and arc
weightsw, and integerk.
TASK: Find a setS ⊆ V ∪ E ∪ A with w(S) ≤ k such thatG− S is acyclic, or report
that this does not exist.

Note that the above problem generalizes Feedback Edge/Arc Set, since all vertex weights
can be set tok + 1. We also generalize the Skew Separator problem introduced in Sec-
tion 4 to a weighted variant.

WEIGHTED SKEW SEPARATOR (WSS):
INSTANCE: A digraphG with positive integer vertex weightsw, vertex sequences
S = s1, . . . , sl andT = t1, . . . , tl where allsi ∈ V (G) have in-degree 0 and all
ti ∈ V (G) have out-degree 0, and an integerk.
TASK: Find a skew separatorC with w(C) ≤ k, or report that this does not exist.

Proposition 9. The Weighted Skew Separator problem on instancesG,w,S, T , k with
n = |V (G)| can be solved in time4k ·O(k4) ·O(n3).

Proof. Below, we will treat the sequencesS andT as vertex sets. We transform the
problem as follows. Without loss of generality, we may assume that there are no vertex
weights higher thank + 1. For every vertexv ∈ V (G)\(S ∪ T), introduce a setVv of
w(v) vertices. For a vertexv ∈ S ∪ T , setVv = {v}. For every arc(u, v), introduce
arcs(x, y) for everyx ∈ Vx andy ∈ Vy. Finally, delete all vertices inV (G)\(S ∪ T).
Denote the resulting graph byG′. It is easily seen thatS′ ⊆ V (G) is a skew separator
for G if and only if S′′ = ∪x∈S′Vx is a skew separator forG′, and that|S′′| = w(S′).
Furthermore, every minimum skew separator ofG′ is of this form. This shows how WSS
can be reduced to SS. If|V (G)| = n, then|V (G′)| ≤ (k + 1)n. So when applying the
algorithm from Theorem 1 forG′, this yields an algorithm for solving WSS in time
4kk ·O

(

(kn)3
)

= 4k ·O(k4) · O(n3). 2

We remark that a closer study of the proofs by Chen et al [7] shows that their skew
separator algorithm can be modified for the weighted versionof the problem as well,
which would give a better complexity. This is however beyondthe scope of the current
paper.

Theorem 5. In timeO
(

(k + 1)!k547.5k n4
)

, it can be decided whether a mixed graph
G = (V,E,A) with |V | = n and integer vertex/edge/arc weightsw admits a setS ⊆
V ∪ E ∪A such thatG− S is acyclic andw(S) ≤ k.

Proof. As a first step, we reduce the problem to Weighted FVS, where wesearch for
a FVSS with w(S) ≤ k. This is done by subdividing all edges and arcs: for every
arc (u, v), introduce a new vertexx with weightw(x) := w((u, v)), arcs(u, x) and
(x, v), and delete arc(u, v). Similarly, replace all edgesuv by a vertexx with weight
w(x) := w(uv) and two edgesux andxv. Clearly, solving Weighted FVS on the
resulting graph is equivalent to solving WFVEAS on the original graph.

For solving Weighted FVS, we can use the algorithms and transformations from
Sections 4 and 5: note that since all weights are positive integers, for a setS ⊆ V (G)
with w(S) ≤ k, it holds that|S| ≤ k. Thus in particular the bounds from Lemma 3
again apply. Hence the entire algorithm and analysis can be applied as previously, with
the only modification that only setsS withw(S) ≤ k are considered, instead of|S| ≤ k.

For solving the Weighted Skew Separator problem in the end, we apply Proposi-
tion 9. This adds at most a factorO(k3) to the complexity, compared with Theorem 4.2

