Feedback Vertex Set in Mixed Graphs

Paul Bonsma Daniel Lokshtano¥

Abstract. A mixed graph is a graph with both directed and undirectecesedg
We present an algorithm for deciding whether a given mixeglgronn vertices
contains a feedback vertex set (FVS) of size at mogt time47.5" - k! - O(n?).
This is the first fixed parameter tractable algorithm for F¥&ttapplies to both
directed and undirected graphs.

1 Introduction

For many algorithmic graph problems, the variant of the fmbfor directed graphs
(digraphg is strictly harder than the one for undirected graphs. Irti@aar, replac-
ing each edge of an undirected graph by two arcs going in dgpdisections yields
a reduction from undirected to directed graphs for most agtwlesign, routing, dom-
ination and independence problems includingo®TESTPATH, LONGESTPATH and
DOMINATING SET.

The Feedback Vertex Sptoblem is an exception to this patternféedback vertex
set (FVS)of a (di)graphG is a vertex setS C V(G) such thatG — S contains no
cycles. In theFeedback Vertex SE€EVS) problem we are given a (di)graghand an
integerk and asked whether has a feedback vertex set of size at masindeed, if
one replaces the edges of an undirected g@jity arcs in both directions, then every
feedback vertex set of the resulting graph issetex coveof GG and vice versa. Hence,
this transformation can not be used to redueEBBACK VERTEX SET in undirected
graphs to the same problem in directed graphs, and othelesimgmsformations do
not seem possible either. Thus FVS problems on undirectddiaiacted graphs are
different problems; one is not a generalization of the othéis is reflected by the
fact that the algorithms for the two problems differ sigrafitly across algorithmic
paradigms, be it approximation [2,1,11], exact exponétitize algorithms [14,15,
24] or parameterized algorithms [3, 8, 6, [f{ this paper we bridge the gap between the
parameterized algorithms fdfFEEDBACK VERTEX SET by giving one algorithm that
works for both More generally, we give the first algorithm for FVSimixed graphs
which are graphs that may contain both edges and arcs. Cyclasxed graphs are
defined as expected: these may contain both edges and dral @sas should be in the
same direction (see Section 2 for precise definitions).

For a mixed graplts onn vertices and an integét, our algorithm decides in time
20K k1 O(n*) whetherG contains a FVS with |S| < k, and if so, returns one. Algo-
rithms of this type are calleBixed Parameter Tractable (FPT) algorithims general,
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the input for aparameterized probleroonsists of an instanc& and integer parame-
ter k. An algorithm for such a problem is an FPT algorithm if its éimmomplexity is
bounded byf (k) - O (] X|°), where| X | denotes the input size &f, f (k) is an arbitrary
computable function ok, andc is a constant independent bf The functionf (k) is
also called thparameter functiof the complexity, or of the algorithm. Since the first
systematic studies on FPT algorithms in the '90s (see €]gtf@s has become a very
active area in algorithms. See [13, 21] for recent introdunst to the area.

FEEDBACK VERTEX SET is one of the classical graph problems and it was one of
the first problems to be identified as NP-hard [19]. The prolias found applications
in many areas, see e.g. [12, 7] for references, with one ahtiia applications inlead-
lock recoveryin databases and operating systems. Hence the problem éragkten-
sively studied in algorithms [1,2,11,14, 15, 24, 26]. Theapaeterized complexity of
FEEDBACK VERTEX SET on undirected graphs was settled already in 1984 in a mono-
graph by Melhorn [20]. Over the last two decades we have sestring of improved
algorithms [3,9, 10, 22, 18, 23, 16, 8, 6] (in order of imprayparameter function), and
the current fastest FPT algorithm for the problem has runtime O (3.83"kn?) [5],
wheren denotes the number of vertices of the input graph. On ther dtaed, the
parameterized complexity ofFEDBACK VERTEX SET ondirectedgraphs was consid-
ered one of the most important open problems in Paramete@aenplexity for nearly
twenty years, until an FPT algorithm with running tinie(n*4*k3k!) was given by
Chen etal [7]in 2007. Interestingly, in [17], the permardgddlock resolution problem
as it appears in the development of distributed databasersgsis reduced to feedback
vertex set in mixed graphs. However, to the best of our kndgde no algorithm for
FVS on mixed graphs has previously been described.

We now give an overview of the paper. We start by giving pedifinitions in Sec-
tion 2. In Section 3 we give a sketch of the algorithm, andinetsome the obstacles
one needs to overcome in order to design an FPT algorithm\&riR mixed graphs.
Our algorithm has three main components: The frame of therigthgn is a standard it-
erative compression approach described in Section 3. Tieeotour algorithm consists
of two parts: the first is a reduction from a variant of FVS to altircut problem called
SKEW SEPARATOR This reduction, described in Section 4 is a non-trivial ffiodtion
of the reduction employed for FVS in directed graphs by Cheal f]. Our reduction
only works on pre-conditioned instances, we describe hopetdorm the necessary
pre-conditioning in Section 5.

2 Preliminaries

We consider edge/arc labeled multi-graphs: formally, miigeaphs consist of a tuple
G = (V,E, A1), whereV is the vertex setF is the edge set, and is the arc set.
The incidence functiogr maps edges € E to sets{u, v} with u,v € V, also denoted
asuv = vu. Arcsa € A are mapped by) to tuples(u, v) with u,v € V. In the
remainder, we will often denote mixed graphs simply by th@ed: = (V, E, A), and
denotee = wv for edgese € E with ¢(e) = {u,v}, anda = (u,v) for arcsa € A
with ¥(a) = (u,v). Mixed graphs withA = () will also denoted by? = (V, F). V(G),
E(G) and A(G) denote the vertex, edge and arc set respectively of the rgpegrhG.



The operation otontractingan edge: = wwv into a new vertexv consists of the
following operations: introduce a new vertexfor every edge or arc with or v as end
vertex, replace this end vertex lyy and delete: andv. Note that edge identities are
preservedy(e) may for instance change frof, u} to {z, w}, bute is still considered
the same edge. Note also that contractions may introgacalel edges or arcgpairs
of edges or arcs and f with ¢)(e) = ¢(f)), andloops(edges with ¢ (e) = {w, w}
or arcsa with ¢ (a) = (w, w)).

ForG = (V,E,A) andS C VorS C EU A, by G[S] we denote the subgraph
induced bysS. In particular,G[E] is obtained by deleting all arcs and resulting isolated
vertices. Deletion of is denoted by — S. Theout-degreei™ (v) (in-degreed ™~ (v))
of a vertexv € V' is the number of arcs € A with ¢(e) = (v, w) (¢(e) = (w,v)) for
somew. If an arc(v, w) ((w, v)) exists,w is called arput-neighbor(in-neighbo) of v.
Similarly, theedge degreé(v) is the number of incident edges, andif € E thenw
is anedge neighboof v.

A walk of lengthl in a mixed graphG = (V, E, A) is a sequencey, e1, vy,
€, .. e, vpsuchthatforall <i <l,e; € EUAande; = v;_1v; Ore; = (v;-1,0;).

This is also called &vy, v;)-walk vy, v; are itsend verticesvy, ..., v, its internal
vertices A walk is apathif all of its vertices are distinct. A walky, e1,v1, . .., v; Of
length at least 1 is eycleif the verticesu, . .., v;_1 are distinctpg = v;, and alle; are

distinct. (Note that this last condition is only relevant fealks of length 2. Note also
that if e is a loop on vertex, thenu, e, u is also considered a cycle.) We will usually
denote walks, paths and cycles just by their vertex sequeyce. , v;. In addition, we
will sometimes encode paths and cycles by their edge/a€set {e1,...,¢e;}.

3 Outlineof the algorithm

In this section we give an informal overview of our algoriththe details are given
in the following sections. Similar to many previous FVS aitfons [5-8, 16], we will
employ theiterative compressiotechnique introduced by Reed, Smith and Vetta [25].
Essentially, this means that we start with a trivial subgrapG and increase it one
vertex at a time untiz is obtained, maintaining a FVS of size at mbst 1 throughout
the computation. Every time we add a vertex to the graph wipera compression
step. That is, given a graghl with a FVSS of sizek + 1, the algorithm has to decide
whetherG’ has a FVSS’ of sizek. If the algorithm concludes th&t’ has no FVS of
sizek, we can conclude that does not either, sinc€” is a subgraph of. In each
compression step the algorithm loops over4it* possibilities forS N S’. For each
choice ofS’ N S we need to solve the following problem.

S-DISJOINTFVS:

INSTANCE: A mixed graphG = (V, E, A) with a FVSS.

TAsK: Find a FVSS’ of G with |S’| < |S] andS’ N S = 0, or report that this does not
exist.

A FVS S" with |S'| < |S]andS’ NS = ( is called asmall S-disjoint FVS The
application of iterative compression implies the follogriemma.



Lemmal (x).2 Supposes-DisIOINTFVScan be solved in im@ ((k + 1)!f(k)n°),
withn = |V, k = |S| — 1 and f (k) non-decreasing. Then FVS can be solved in time
O (k(k + 1) f(k)nct1).

Chen et al [7] gave an algorithm fai-Disjoint FVS restricted to digraphs, which we
will call S-Disjoint Directed FVSIn Section 4 we show that their algorithm can be ex-
tended in a non-trivial way to solve the following generatian of the problem to mixed
graphs. LetG be an undirected graph withh C V(G). A vertex setS” C V(G)\S is

a multiway cutfor S (in G) if there is no(u, v)-path inG — S’ for any two distinct
u,v € S.

FEEDBACK VERTEX SET/ UNDIRECTED MULTIWAY CuUT (FVS/UMC):

INSTANCE: A mixed graphG = (V, E, A) with a FVSS, and integek.

TAsK: Find a FVSS’ of G with |S’| < kandS’ N S = 0, that is also a multiway cut
for S'in G[E], or report that this does not exist.

A multiway cutS’ for G[E], S is also called anindirected multiway cut (UMCpr
G, S. The remaining question is: how can the FPT algorithm for FIABC be used to
solve S-Disjoint FVS? LetG, S be anS-Disjoint FVS instance. Suppose there exists a
small S-Disjoint FVS S’ for the graph. If we know whichundirectedpaths between
S-vertices do not contain any -vertices, then these can be contracted, $néétmains
a FVS for the resulting grapfi*. In addition, this gives a new vertex s&t consisting
of the old S-vertices and the vertices introduced by the contractidhgs then yields
an instanc&:*, S* of FVS/UMC, for whichS” is a solution. In Section 5 we prove this
more formally. However, since we do not kn@#; it remains to find which undirected
paths betweer$-vertices do not contai$’-vertices. One approach would be to try
all possible combinations, but the problem is that the nurobsuch paths may not be
bounded by any function é&f = |S|—1, see the example in Figure 1 (a). (More complex
examples with many paths exist, where the solufibis not immediately obvious.) The
example in Figure 1 (a) contains many vertices of degree &hwdre simply reduced
in nearly all fast undirected FVS algorithms [8, 26, 16, Sgviver in our case we can
easily add arcs to the example to prevent the use of (knovaujctmn rules, see e.g.
Figure 1 (b). Because there may be many such paths, and tfeer® @&asy ways to
reduce these, we will guess which paths do not cont&aivertices in two stages: this
way we only have to considef(*) possibilities, which is shown in Section 5.

Fig. 1. Graphs with a FVS and smallS-disjoint FVSS’, with many undirected-paths.

% The (full) proofs of claims marked witk can be found in the appendix.



4 Analgorithm for FVS/IUMC: reduction to Skew Separ ator

Let G be adigraph and = sy,...,s,and7T = tq,...,t, be mutually disjoint vertex
sequences such that all € V(G) have in-degree 0 and al] € V(G) have out-
degreed. A subsetC C V(G) disjoint from{s1,...,ss,t1,...,t;} is called askew
separatorif for all ¢ > j, there is nd(s;, t;)-path inG — C. The vertices inS will be
calledout-terminalsand the vertices ifi” in-terminals An FPT algorithm to solve the
SKEW SEPARATORproblem defined below is given as a subroutine in the algorftr
DIRECTED FEEDBACK VERTEX SET by Chen et al [7].

SKEW SEPARATOR(SS):

INSTANCE: A digraphG, vertex sequenceS = si,...,s, and7T = t1,...,t, where
all s; € V(G) have in-degree 0 and &ll € V(G) have out-degree 0, and an integer
TAsSK: Find a skew separatdr of size at most:, or report that this does not exist.

Theorem 1 (Chen et al [7]). The Skew Separator problem on instanGes, 7, k with
n = |V(G)| can be solved in timé¢*k - O(n?).

o(1) o(1)
o(1) o(2)
3
3 4 o<2)[ } } o(2)
L4 Z
o5 O terminals O :terminals
@ : FVS+UMC S’ @ : skew separator @ : skew separator
(a) FVS/UMC instancér, S (b) correct transformation (c) incorrect transformation

Fig. 2. Correct and incorrect transformations from FVS/UMC to SKeeparator. In- and out-
terminals are ordered from top to bottom, so ‘allowed pagjosfrom top left to bottom right.

We will use this to give an algorithm for FVS/UMC, using a nwivial extension
of the way SS is used in [7] to give an algorithm fexDisjoint Directed FVS. We will
transform a FVS/UMC instana@, S to a SS instancé'ss, S, 7, in such a way thas’
is a FVS and UMC forGG, S if and only if it is a skew separator fdkss, S, 7. Since
every cycle inG contains at least one vertex frofinthis can be done by replacing every
S-vertex by a set of in- and out-terminals@h.. The following proposition shows how
the order of these terminals should be chosen. A bijectivetiono : {1,...,¢} —

S is called anumberingof S. It is anarc-compatible numbering there are no arcs
(o(i),0(j)) in G with i > j.

Proposition 1 (x). LetC C V\S be a FVS and UMC for the graphl = (V, E, A) and
vertex setS C V. Then a numbering of S exists such that forall < j < i < |9],
there is no path frona (i) to o (j) in G — C.



Since in our case edges are present, we cannot achieve treddesrespondence
by introducing just one terminal pair for evefiyvertex, as was done by Chen et al [7].
Instead, for every vertex € S, we introduce a single terminal pair for all arcs incident
with v in G, and in addition, for every edge incident withwe introduce a terminal
pair specifically for this edge. The transformation is ithased in Figure 2 (a) and (b).
Numbers and colors for edges show how edge& inorrespond to arcs ifirss. For
everyv € S, the red terminal pair is used for all incident arcs. Obséha in this
example, a seb’ is a FVS and UMC inG, S if and only if it is a skew separator
in Gss, S, 7. However, this correspondence does not hold for arbitradgrings of
the edges incident with a vertex € S, as is shown by the different order used in
Figure 2 (c). The indicated skew separator of size 2 doesarotgpond to a FVS and
UMCIin G, S.

Construction: We now define the transformation in detail. L&t S, k& be an in-
stance of FVS/UMC, withS| = ¢. We define the relatior on V(G)\S as follows:

u < v if and only if there is v, u)-path inG — S but no(u, v)-path (andu # v). Ob-
serve that is transitive and antisymmetric, and therefore a partideoonV (G)\S.

For any numbering of S, the graphGss(G, o) is obtained frontG as follows: For
everyi € {1,...,¢}, we do the following: denote = o (7). let vwy, ..., vw,y be the
edges incident Wlth) ordered such that i, < w, thenz < y. Since< is a partial
order, such an ordering exists and is given by an arbitrapali extension ok. Apply
the following operations{1) Add the verticess}, ..., s andt},... t¢™1. (2) For
every arc(v, u) with u ¢ S, add an ar¢s?™*, u). (3) For every ardu, v) with u ¢ S,
add an ardu, t!). (4) For every edgew;, add arcgs’, w;) and(w;, t?™"). (5) Delete
V.

After this is done for every € S, replace all remaining edgag with two arcs
(, y) and(y, z). ThIS yields the dlgraplﬁ}ss(G o) and vertex sequences= si, ...,
shtl gl sl csetlandT = ¢, . et e et (e
whered; = d( (7)) is the edge degree @f(i). The integerk remains unchanged.
Gss(G,0),8, T, kis an instance for SS.

Lemma?2 (x). Let S be a FVS for a mixed grapty = (V, E, A), such thatG[S]
contains no edges an@ contains no cycles of length at most 2. Thier V(G)\ S is
a FVS and UMC folG and S if and only if there exists an arc-compatible numbering
of S such thatC' is a skew separator fof (G, o), S, T, as constructed above.

Proof sketch: Let C' be a FVS and UMC fot7, S. By Proposition 1, we can define a
numberings of S such that for all > j, there is no path from (i) to o(j) in G — C.
Thereforeg is arc-compatible.

We now show that for this, C is a skew separator fdrss(G, ), S, T. LetGss =
Gss(G, o). Suppos€’ is not a skew separator, 64— C contains a pat® = s7, vy, .. .,
vg, t§ with i > j, or withi = j andz > y. ThenP’ = o(i), v, ..., v, 0(j) is (the
vertex sequence of) a walk (# — C; note that arcs o may correspond to edges it
but that the vertex sequence still constitutes a walk>fj, then all vertices of the walk
P’ are differentand hence itis(a(i), o(j))-path inG — C, contradicting the choice of
o.If i = j, thenP’is a closed walk irG — C of which all internal vertices are distinct.
In all cases, it can be shown thatis a cycle inG — C, which gives a contradiction (see



appendix). In the case wher¥ has length 2 it follows from: > y and the construction
of G that distincte and f can be chosen to ensure thlt = o (i), e, v1, f,0(i) is a
cycle. Thus( is a skew separator f@Fs.

LetC be a skew separator f6t;s = Gss(G, o), for some arc-compatible numbering
o of S. We prove that” is a FVS and UMC foiG, S. Suppos&~[E] — C contains
a(u,v)-pathP = w,vy,...,vs,v With uw,v € S, and no internal vertices . Let
u = o(i) andv = o(j). Since we assumed th&{S] contains no edges; has length
at least 2. Since all edges not incident witfare replaced with arcs in both directions
during the construction afss, for somez, y this yields both a patk?, vy, . . ., vy,
in Ges— C and a path;?, Voyoo s vl,tf“ in Gss — C. One of these paths contradicts
thatC' is a skew separator. This shows tidats a multiway cut forG[E] andS.

Next, suppose&s — C contains a cyclé(. SinceS is a FVS forG, K contains
at least one vertex of. If K contains at least two vertices 6f then K contains a
path P from o (i) to o(j) for somei > j, with no internal vertices irb. Let P =
o(i),v1,...,ve,0(3). P has length at least two, sineeis arc-compatible, and there
are no edges iz[S]. ThenP’ = s¥ vy,.. .,w,t? is a path inGss — C for some
x,y, contradicting thaC' is a skew separator. So now we may supposeihabntains
exactly one vertex of, w.l.o.g.K = o (i), v1, ..., v, 0(i). Every cycle inG has length
at least 3, san # wvp. Using the relation< that was used to constru€lss, it can
be shown that in every cad€ yields a pathP = s7,vy,... ,W,tﬁ.’“ in Gss — C
for somex > y, or that K consists only of edges (see appendix). In the latter case,
P = s v, v0-1,. .. 01, tf“ with y > z is the path inGss — C that contradicts that
C'is a skew separator. This concludes the proof (hét a FVS and UMC folG, S. O

Lemma 2 yields a way to reduce FVS/UMC to the SS problem indise that the in-
put graphG does not contain any short cycles. To solve such an instdieé/UMC,
we try all possible arc-compatible ordering®f S (at most/!) and solve the instances
of SS using Theorem 1. The FVS/UMC instance is a yes-insténaed only if at
least one of the produced SS instances is. Using simple tieduales one can reduce
general instances of FVS/UMC to instances which do not @orgtaort cycles. This
reduction, together with Theorem 1 gives an FPT algorithnéS/UMC.

Theorem 2 (x). FVS/UMC on instance§, S, k withn = |V (G)|, k > 1 and/ = | S|
can be solved in tim@(n?) - ¢! 4Kk,

5 Analgorithm for S-Digoint FVS: contracting paths

In this section we give an FPT algorithm f6¢Disjoint FVS, by reducing it to FVS/UMC.
Throughout this section, l&¥ = (V, E, A) be a mixed graph, anfl be a FVS forG.
The main idea of our algorithm is to try out different guesees set of edges’ C E
that is not hit by a possibl&-disjoint FVSS’, and contracF'. If a solutionS’ exists and
the appropriate sdt that corresponds t§ is considered, thef’ remains a FVS, but
in addition becomes a UMC. So in the resulting graph, we haagorithm for finding
S’. We now make this precise with the following definition andositions. Letz* be
the graph obtained fror@ by contracting a set of edgés C FE. Let the setS* consist
of all vertices inG* resulting from a contraction, and all remainiSgvertices (those



that were not incident with an edge frof). Then we say thatz*, S* is the result of
contractingF' in G, S. The short proof of Proposition 2 can be found in the appendix
while Proposition 3 follows easily from the definitions.

Proposition 2 (x). Let.S be a FVS in a mixed grapi = (V, E, A). LetG*, S* be the
result of contractinga sef’ C Fin G, S, whereG|[F|is aforest. Thenas&t’ C V(G)
is an S-disjoint FVS forG that is not incident with edges froii if and only if it is an
S*-disjoint FVS inG*.

Proposition 3. Let S be a FVS in a mixed grap¥ = (V, E, A), and letS’ be anS-
disjoint FVS forG. Let ' C F be the set of all edges that lie on a path between two
S-vertices inG[E] — S’. LetG*, S* be the result of contracting’ in G, S. ThenS’ is

a UMC for G*, 5*.

The previous two propositions show that it is safe to contsats of edges that
contain no cycles (no solutions are introduced), and whasidering the appropriate
set, a possible solutiaff’ indeed becomes a FVS and UMC in the resulting graph. The
remaining task is to find a way to consider only a limited nun{p@(*)) of possibilities
for F', while ensuring that a correct choice is among them. To thdsvee introduce the
following definitions and bounds. The definitions are illagtd in Figure 3.

A branching vertextor GG, S is a vertexv such that there are at least three internally
vertex disjoint paths from to S in G[E]. By B = B(G, S) we denote the set of
branching vertices fof, S. A connection patlis a path inG[E] with both end vertices
in S andB, and no internal vertices il andB.

(a) DFVS instancé&, S, solutionS”: (b) The S-shaved subgraph @f:

=

Delete arcs,
: Beys shave

@ DeleteBrvs

©) G =G — Bus: (d) FVS/UMC instance7*, S*:

@e(®o
s
@e(®o

o:S o .5
@:S” @:S”

— :E(P.) / :>

L E(P\P:) p ContractE(P.)

Fig. 3. The graphs and sets defined in Section 5.

Before we give a bound on the number of branching verticecandection paths,
we introduce a different viewpoint on these notions. Giverixed graptG = (V, E, A)
and a FVSS, we construct theS-shaved subgraph @¥ by starting withG[E], and it-
eratively deleting nort-vertices that have degree 1, as long as possible. Hence the



Algorithm 1 An algorithm forS-Disjoint FVS

INPUT: A mixed graph = (V, E, A) with FVS S, and integek = |S| — 1.
OUTPUT: a smallS-disjoint FVSS’ for G, S, or ‘NO’ if this does not exist.
1. Compute the séf of branching vertices of7, S.

2. if |B] > 3k thenreturn ‘NO’
3 for all BFVS - B with |B|:vs| < k:
4, K i=k-— | Brvs|.
5. G, = G — prs.
6 Compute the sé® of connection paths af’, S.
7 if [P| > 3k + k' then continue
8 for all P. C P with |P| — |P.| < k"
9 LetF = E(P.).

Let F'* C F be the edges of components@f[F'] containing anS-vertex.
10. if G'[F*] contains a cycléhen continue
11. Constructs*, S* by contractingf™ in G/, S.
12. if G* contains no loops incident withi*-vertices and

there is a FVS and UMG” for G*, S* with |S”| < £/, then

13. return S’ := 8" U Brvs
14. return ‘NO’

S-shaved subgrapfi's of G is an undirected graph in which every nShvertex has
degree at least 2. Considering the three internally verigridt paths from a branch-
ing vertexv € B to S, and using the fact th&f-vertices are never deleted, we see that
this process does not delete vertices frBmand neither does it delete vertices from
connection paths. Furthermore vertice®istill have degree at least 3 (is. In fact, it
turns out that this is another way to characterize the biiagarertices and connection
paths ofG, S:

Proposition 4 (x). Let B be the set of branching vertices of a mixed graph=
(V,E, A) with FVS S, and letGg be its S-shaved graph. TheB is exactly the set
of non-S-vertices inG s that have degree at least 3.

The graphzs can be thought of as a forest whose all leaves af but where a vertex
in S can be simultaneously used as a leaf for multiple paths,ranthes”, of the forest.
With this viewpoint in mind one can use counting argumeras tblate the number of
leaves and vertices of degree at |least forests to prove the following lemma.

Lemma3 (x). LetS be a FVS of a mixed grapi = (V, E, A) with k. = |S| — 1, and
let S’ be a smallS-disjoint FVS forG, S. ThenG has at mos8k branching vertices
with respect toS, andG has at mos8k connection paths with no vertices .

We now present Algorithm 1, the algorithm fér-Disjoint FVS. Recall that the
‘continue’ statement continues with the next iterationref smallest enclosing for- (or
while-) loop, so it skips the remainder of the current itenat Note that in Line 6, the
set’P of connection paths af’ = G — B:s is considered, not the connection paths of
G. For a set of path®. C P, we denote byZ(P,) the set of all edges that occur in a
path inP.. The following two lemmas prove the correctness of Algarith.



Lemmad4. Let S be a FVS of a mixed grapy = (V, E, A) with & = |S| — 1. If
Algorithm 1 returns a se$’ = S” U B, thenS’ is a smallS-disjoint FVS forG.

Proof. Suppose a solutiof” = S” U B is returned in Line 13. Thes” is a FVS
and UMC forG* and S*, which are obtained frond’, S by contracting the edge set
F* C E(G'). SinceG'[F*] contains no cycles (otherwise the condition in Line 10
is satisfied),S” is an S-disjoint FVS inG’ (Proposition 2). Becaus®’ = G — Bz,

S U Beys is then anS-disjoint FVS inG, of size at mosk’ + |Bes| = k. O

Lemmab. LetS be a FVS of a mixed grapfi = (V, E, A) with k = |S| — 1. If there
exists a smalb-disjoint FVSS’ for GG, then a solution is returned by Algorithm 1.

Proof. LetS” be a smallS-disjoint FVS, and leB = B(G, S). By Lemma 38| < 3k,
so the algorithm does not terminate in Line 2. Now consideitgration of the for-loop
in Line 3 that consider8,s := BNS’, and thus the grap?’ = G — Be,s and parameter
k' =k — |Beys|. Let S” = S'\Bes, which is anS-disjoint FVS forG’ of size at most
k’. So we may apply the propositions and lemmas from this setié:’, S andS”.

Observe that after deleting a subsgt; of branching vertices aff, some other ver-
tices may lose their branching vertex status, but no bragchértices are introduced.
In other wordsB(G’, S) C B(G, S)\Bes. ThereforeS” NB(G’, S) = (). From Propo-
sition 4 and the fact that all connection pathg8fare part of the5-shaved subgraph of
G’, it follows that connection paths @’ share no internal vertices. Combining these
two facts shows that at mog$”’| < &’ connection paths af’ are incident with a ver-
tex fromS”. Lemma 3 shows that’ contains at mostk connection paths not incident
with S”, so there are at mo8k + &’ connection paths in total. Therefore, in Line 7, the
algorithm does not continue to the next iteration.

Now let P be the set of connection paths@f, S, and letP. C P be those connec-
tion paths that are not incident with &-vertex. Since we observed tH&\ P.| < &/,
we may consider the iteration of the for-loop in Line 8 thahsidersP.. Note that the
set F'* constructed in Line 9 contains all edges(dfthat lie on some undirected path
P between twoS-vertices inG’ — S”, since every such path consists of a sequence
of connection paths. Sinc®’ is a FVS forG’, every component af’[F*] is a tree, so
in Line 10 the algorithm does not continue to the next iteratLetG*, S* be obtained
by contractingF* in G’, S. By Proposition 2,5” is an S*-disjoint FVS inG*. By
Proposition 3,5” is a UMC forG*, S*. Hence in Line 13, a solution will be returned.

O

. k
Proposition 5 (x). For all constants: > 2, >-F (%) € 0 (((c_iﬁ) >

Theorem 3 (). On an instances = (V,E, A), S withn = |[V|andk = |S| — 1,
Algorithm 1 correctly solve$-Disjoint FVS in timeO (k(k + 1)! 47.5% n3).

Lemmas 4 and 5 show that Algorithm 1 returns the correct ansseeit only re-
mains to prove the complexity bound. A detailed analysisivergin the appendix,
but here we argue that the complexity is bounded2B§*) k! - n©(1): By Line 2,
|B| < 3k, so the number of iterations of the first for-loop is at mdst_, (*)



0(6.75%) (Proposition 5). For every such iteration, gt = k — |Bqs|. By Line 7,
|P| < 3k + k' < 4k holds whenever the second for-loop is entered, so this Ibop i

erates at mosEf;O (*) € 0(9.49%) times (Proposition 5). At most once for every
iteration, a FVS/UMC problem on the instan@é, S*, k’ is solved, which can be done
with parameter functiopS*|! - 4¥' ' (Theorem 2). By construction, every component
of G'[F*] contains anS-vertex, so|S*| < |S|, and therefore this contributes at most
(k + 1)!4%k to the parameter function. Hence the total parameter fonési bounded
by O(6.75% 9.49% 4% k (k + 1)!) C O(256.5% k!). The running time dependence on

is dominated by solving the FVS/UMC problem in tifign3) (Theorem 2), and the
construction ofG*, S* which can also be shown to requif§n?) time. Combining
Theorem 3 with Lemma 1 yields the main theorem of this paper.

Theorem 4. IntimeO ((k + 1)!k?47.5% n*), it can be decided whether a mixed graph
G = (V, E, A) with |V| = n contains a FVS with |S| < k.

6 Discussion

Our research showed that for some problems, perhaps sogbyicombining the undi-
rected case with the directed case may provide a signifidaaltenge. We therefore
think that mixed graphs deserve more attention in the argaaph algorithms.

We remark that our algorithms can be used to decide whethaxedngraphG
contains a sef of edges and arcs witff| < k such thatG — S is acylic Feedback
Edge/Arc Set (FE/A$)For undirected graphs, this is a trivial problem. For clieel
graphs this can easily be reduced to directed FVS, by subidiyall arcs with a vertex
and replacing all original vertices with+ 1 copies (to ensure that they are not selected
in a FVS of size at most). For mixed graphs, this last transformation does not work.
However we can extend our algorithms for a certain vertexhteid variant, which can
then be used to solve FE/AS (See appendix D).

Our first question is whether the complexity of our algoritbam be improved, in
particular whether thé! factor can be removed. Not only does this factor asymptoti-
cally dominate the running time, but it also seems to becatiitin practice: thet7.5*
factor is based on combining a number of upper bounds andilikely that the worst
case complexity bound actually applies to arbitrary inctsn

Secondly, one may ask whether FVS in mixed graphs admitsyepuiial kernel-
ization (see e.qg. [4, 26]). Both questions seem to be vejestging, in fact they remain
unresolved even when restricted to planar digraphs (s¢e [4]

Acknowledgement The authors would like to thank Daniel Marx for suggestihgtt
the FVS algorithm might be extended to solve Feedback Edg&At in mixed graphs.
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A Proofsomitted from Section 3

Proof of Lemma 1: Supposg&-DiSJOINTFVS can be solved intim@ ((k + 1)! f(k)n°).
We give an algorithm for EEDBACK VERTEX SET. For a given mixed graply let
V(G) = {v1,...,v,}. ForeveryiletV; = {vq,...,v;} andG; be the subgraph af
induced byV;. Clearly, for any FVSS of G, S NV, is a FVS ofG;. Thus, ifG; has
no FVS of size at most for somei < n then neither doe&'. The algorithm proceeds
as follows. It starts with = k£ andS* = V}, and maintains the invariant th&t is a
FVS of G; of size at mosk. Now S = S* U {v;11} is a FVS ofG;41 of size at most
k + 1. Suppose that there is a F\& of G;;1 of size at mosk. Let Syeer = S NS,
Sper = S\S” = S\ Skeer aNd Syew = S’\S. ThenSyey is a smallSye -disjoint FVS of
Gi+1 — Skeer- FOr €ach possible choice 8f:c» we run the algorithm fof,c -DISIOINT
FVS. If this procedure produces a smélL, -disjoint FVS Sye,, for G; 11 — Skees, fOr
some choice 0byeep, thenSyew U Sieer IS @ FVS of size at most for G;11. Then we
proceed to the next iteration (Withley U Sieer in the role ofS*). If no FVS is found for
any Skeer, thenG,; 11 and hencé has no FVS of size at most

Now we consider the complexity. We have to consider all fokises for Syeer, and
defineSpe. = S\ Skeee- If |Seer| = J + 1, then by assumption, deciding whether there
exists a smalbyg, -disjoint FVS of G 1 — Skeer takes timeO ((5 + 1)!f(j)nc). There
arey " (i) =k+1+ iy (511) possibilities forSie to consider. This yields
a complexity in the order of

k )
Z <fii) G+ fG)n = (k+1)! ncz (kffj;,)! < (k+ 1)kf(k)ne.

We have to repeat this procedure for evéty, which gives another factas, which
proves the stated complexity. a

B Proofsomitted from Section 4

For proving Proposition 1 and Lemma 2 in detail, we need tHeviing proposition.

Proposition 6. LetG be an acyclic mixed graph. & contains a(u, v)-path P,,, and
a (v, u)-path P,,, thenP,,, is an undirected path.

Proof. Suppose thak,, contains at least one arc. LB{, = vy, e1,v1, €2, ..., €11, 0,
withallv; € V and alle; € EU A.

By induction one can show that if for someey, . .., e;_1 are also part of the path
P,., then these are all edges, afg, ends with the sub path_1,¢;_1,...,v1,e1,vg.

Therefore, sincé’,,, contains at least one arc, we can define be the smallest index
such thag; is not part of the pati®,,,. Let j be the smallest index > i such thatP,,,
contains the vertey; (clearly such g exists). Since?,, is a path, and?,,, ends with
the the sub path;_1,e;_1,...,v1, €1, vy, it follows thatv; appears before;_, in the
sequencé’,,,. So we can consider the sub pathfgf, fromv;_ tov;, and the sub path
of P,, fromv; to v;_;. These paths only share the vertiegs; andv;, so if one of



them has length at least 2, combining them would yield a apalé If both have length
1, then combining them yields the walk 1, e;, v;, f,v;_1, for somef € E U A. By
choice ofe;, we havee; # f, so this is again a cycle i@, a contradiction. |

Proof of Proposition 1: Suppose that for some pajv € S, G — C contains both a
(u,v)-pathP,, and a(v, u)-pathP,,,. Then Proposition 6 shows th&},, is undirected,
which contradicts thaf’ is a UMC for G. So we can define the following relatiohz
onS: (u,v) € Ag ifand only if a(u, v)-walk exists inG — C'. By the above argument,
the digraph(S, Ar) is acyclic (it is in fact a partial order), so a numberiagf S
exists with the desired properties: This is given by a togigial ordering of the acyclic
digraph(S, Ar) / a linear extension of the partial ordef, Ag). |

Detailed proof of Lemma 2:et C' be a FVS and UMC fot, S. By Proposition 1,
we can define a numberingof S such that for all > j, there is no path from (i) to
o(j) in G — C. Thereforeg is arc-compatible.

We now show that for this, C' is a skew separator f@rss(G, o), S, T. Let Gss =
Gss(G, o). Suppos€’ is not a skew separator, 6bs—C contains a pat = s7, v1, . .., vg, 4
with i > j, or withi = j anda > y. ThenP’ = (i), v1,...,ve,0(j) is (the vertex
sequence of) a walk it — C; note that arcs of” may correspond to edges i?f but
that the vertex sequence still constitutes a walk. ¥ j, then all vertices of the walk
P’ are differentand hence itis(a(i), o(j))-path inG — C, contradicting the choice of
o.If i = j, thenP’is a closed walk irG — C of which all internal vertices are distinct.
If P’ has length at least 3, then all edges/arc#béare distinct, so it is a cycle, again
a contradiction. IfP’ has length 1, there is a loop incident witki), contradicting the
assumption that there are no cycles of length at most 2.IFis@bpose the wall’ has
length 2, soP = s¥,vq,t! (here we denoté by its vertex sequence). Sinae> y,
by the construction ofis, it follows that distinct arcs/edgesand f can be chosen in
G such thatP’ = o(i), e, vy, f,o(i) is a cycle of length 2 iz, again a contradiction.
Therefore(C' is a skew separator f@Fss.

LetC be a skew separator f6t;s = Gss(G, o), for some arc-compatible numbering
o of S. We prove thaC' is a FVS and UMC foiG, S. Suppose&~[E] — C contains a
(u,v)-pathP = u, vy, ..., ve,vwith distinctu, v € S, and no internal vertices ifi. Let
u = o(i) andv = o(j). Since we assumed th&{S] contains no edges; has length
at least 2. Since all edges not incident wittare replaced with arcs in both directions
during the construction afss, for somez, y this yields both a patk?, vy, . . ., vy, t?“
in Ges— C and a path;?, Voyoo s vl,tf“ in Gss — C. One of these paths contradicts
thatC' is a skew separator (depending on whetherj or j < ). This shows tha€’ is
a multiway cut forG[E] andS.

Next, suppose&s — C contains a cyclé(. SinceS is a FVS forG, K contains
at least one vertex of. If K contains at least two vertices 6f then K contains a
path P from o (i) to o(j) for somei > j, with no internal vertices irb. Let P =
o(i),v1,...,ve,0(7). P has length at least two, sineeis arc-compatible, and there
are no edges iG/[S]. ThenP’ = s¥ vy,..., vy, t? is a path inGss — C for somez, y,
contradicting that” is a skew separator.

So now we may suppose that contains exactly one vertex ¢f, w.l.o.g. K =
o(i),v1,...,vs,0(i). Every cycle inG has length at least 3, s # wv,. In the case



that (o(i),v1) € A, K yields a pathP = s%™! vy,..., v, Y in Gss — C for some
y < d+ 1, a contradiction (herd = d(o (7)) is the edge degree of(i)). On the other
hand, if (ve, o(i)) € A, thenK yields a pathP = s?,vy,..., vt} in Gss — C for
somex > 1, a contradiction. So finally suppose thet)v; € E ando(i)v, € E are
both edges. Thek gives a paths?, vq, ..., v, tﬁ’“ in Gss — C for somexz, y. Since
C'is a skew separator, < y. Sincev; # vy, z < y. Thereforev, £ v;. The cycle
K shows that there is @1, v¢)-path P in G — S. Then, by the definition ok, there
must also be &vy, v1)-path inG — S. But this can only happen P is an undirected
path (Proposition 6). This shows that by reversing the c¥cleve again obtain a cycle

o(i),ve,v0-1,...,v1,0(i) in G — C, and therefore a patf, vy, vo_1, ..., v1,t7 T in
Gss — C, a contradiction (since < y). This concludes all cases, 6bis a FVS forG.
This concludes the proof thatis a FVS and UMC fo5, S. m]

Proof of Theorem 2: We may return ‘NO’ immediately @[S] contains edges, or if
G|S] contains cycles. The latter holds in particulaiGfcontains loops. So suppose
none of this holds. Then if7 contains a cycle€” of length 2,C must contain one-
vertex and one no-vertexv. Every FVS/UMC solution contains so we may reduce
the instance by deleting and decreasing by one, to obtain an equivalent instance.
Furthermore, if any vertex ¢ S has an edge to at least two distinct vertice$'ithen
any undirected multiway cut fo§ must contain:. Hence we may reduce the instance
by deletingu and decreasing by one. So we may now assume w.l.o.g. thatontains
no cycles of length at most 2 and no two verticesSilmave edges to the same vertex
in V(G) \ S. To find a FVS and UMC, we try all arc-compatible numberiagsf S,
and test whethefiss(G, o) has a skew separator of size at mbsThere are at most
such numberings. Return such a skew separ@tibit is found for any arc-compatible
numberings, or ‘NO’ otherwise. By Lemma 2, this correctly solves FVS/AMNote
thatGss(G, o) can be constructed in tin@(n?). Since no two vertices i have edges
to the same vertex iV (G) \ S, Gss(G, o) has at mosBn vertices. Thus, for every
choice ofc, the complexity is bounded b9 (n?) - 4*k (Theorem 1). m]

C Proofsomitted from Section 5

Proof of Proposition 2: LetS” be anS-disjoint FVS forG that is not incident with
edges fromF. ThenS’” C V(G*)\S*, andG — S’ is acyclic. Contracting aedge
cannot introduce cycles, €8 — S’ is acyclic. (Note that this property does not hold
for contracting arcs.)

Now suppose that a sét C V(G) that is not incident withF" is notan S-disjoint
FVSinG, soG — S’ contains a cycl€’. When contracting an edge 6f, the remaining
edges and arcs @f still form a cycle. Therefore, sino€ does not consist entirely of
edges that are contracted|{’] contains no cycles), a cycle remaingifi — S’, so.S’
is not anS*-disjoint FVS inG*. ]

Proof of Proposition 4: It is sufficient to prove that for every ety € V(Gg)\S
with degree at least 3, is a branching vertex. We can grow a pathdg starting at
v by starting at an incident edge, and adding edges until (Bréex of S is reached,



or (ii) a vertex previously added to the path is reached. Thisbe done since na$t-
vertices have degree at least 2. However case (ii) will notigsince this would yield
a cycle that does not contain &nvertex, contradicting that is a FVS forGg. So this
yields a path fronv to S. We can grow three pathg;, P, and P; leavingwv this way,
using three different incident edges. These paths canrmoe shternal vertices, since
this would again yield a cycle i — S. These paths are also part@f sov is a
branching vertex of5. ]

Proof of Lemma 3 LetB = B(G,S), and letGg be theS-shaved subgraph af.
Let L be the set of norb-vertices of degree 2 it¥s. By Proposition 4V (Gg) is the
disjoint union of the set§, 5 and L. SinceS is also a FVS in the undirected subgraph
Ggs, Gs — S is a forest. Therefore, it is possible to orient all edges-gfsuch that
every non$-vertex has exactly one in-neighbdior every tree in the foregts — S,
choose a root vertex adjacent taS, and orient all edges away from the root. Orient a
single edge fron$ to r, and orient all other edges towarflsvertices. In the rest of the
proof, out-degrees, denoted Wy (v), will refer to such an orientation af 5. Denote
S, =LnNS, Sy =8BnS,andS,. = S; USg. (In the construction o7 s, somesS’
vertices may have been deleted so it may be#ha: S’.) LetG'y = Gs — S/, which

is an (oriented) forest. Denotgy = (Vg, EY). SinceGY is a forest, we have

|Eg| < |VE|—1=|S|+|B|+ |L| — |S7| — 1. 1)

Note that the number of edges 6% is at least), ., 5 d" (v). Since every nors-
vertex has in-degree exactly 1, deleting such a vestesmoves at mosi™(v) + 1
edges. Therefore, after deletifg from G s the number of edges remaining is at least:

Bsl> Y df(w) = ) dT()—Ispl= Y dT(w) -7 >

vEBUL veES vE(BUL)\ S/

[L\SL] + 2IB\S5| — |S7| = |L| + 2|B| - 2|SL| = 3|S5- )

Combining the upper bound (1) foE's| with the lower bound (2) yields:
B = Sz1 — 2|85 < [S] - 1. 3)

From Inequality (3) we immediately obtaj3| < 2|5%.| + |S| — 1 < 3k, proving the
first statement. Secondly, from Inequality 3 we obtain tlfat- |Sis| < |S} | + |Sk| +
|S] — 1 < 2k. A connection path of7, S that is not incident with a vertex frorf’,
is a path inG’y with end vertices inS U (B\Sj), and no internal vertices in this set
(Proposition 4). Sincé' is a forest, there can be at most + |5\ Sz| — 1 < 3k of
those. This proves the second statement. ]

Proposition 5 follows directly from the following two simgand often used bounds;
proofs are included for completeness.

Proposition 7. Forall ¢ > 2, 3¢ () < <=L (M.




Proof. For alli < k,

(z'c—kl)/<cf) T i f;fffk_% Dl ck —iz'+ 1= o 1i)z'+ 1° ci 1’

So we may write

k k k—i
ck ck 1 1 ck c—1/[/ck
(1<) < (G)-=0)

O
.. " . k
Proposition 8. For all constants: > 1, (Ck) cO0 ((7(65)“) )
Proof. By Stirling’s approximatiom! € © (n"e~"/n),
(ck) co (ck)k ek \/ck .
k ((c _ 1>k)(571)ke,(671)k lc — Dk kke—*VE
k
ck c
© (Ck><c—1)k =0 67671
((c— 1)k) ™ g (c—1)
O

Proof of Theorem 3: Lemmas 4 and 5 show that Algorithm 1 returns éieect answer,
so it only remains to prove the complexity bound. First, edesthe parameter function.
By Line 2,|B| < 3k, so the number of iterations of the first for-loop is at most

> (%)

Herei = |Bes|. Letk’ = k — i. By Line 7, there are at mo8& + &’ connection paths
in G’ whenever the second for-loop is entered, so there are at most

50095940

=0 =0

choices ofP. (Proposition 7). So we may bound the total number of iteratiof the

second for-loop by
k .
3 3k\ [4k — i
2 (7))

At most once for every iteration, a FVS/UMC problem on theganseG*, S*, k¥’ is
solved, which can be done with parameter functish|! - 4 k' (Theorem 2). In this
case, by construction, every component@{F*] contains at least oné-vertex, so



for every vertex added t6* at least one is removed, and thds| < |S| = k + 1.
Therefore the parameter function of Algorithm 1 is boundgea lconstant times

Zk: (3;?) (4:_:) (k+ 1) max{1,k — i} <

k .
BE) (k- .
k(“l)!;i!(gkq)! oy Y

k(k+1)! zk: (lj) (4kk_ i)4’”’ <

=0

k(k + 1)!<4:) zk: (f) 4h—i ¢

O (k(k+ 1)1 9.5 (1 +4)%) = O (k(k + 1)1 47.5%) .

For the last line, we used Proposition 8, é%d: % < 9.5.

Now we prove that the polynomial part of the complexity (tlenplexity for fixed
k) can be bounded b§(n?), wheren = |V|. Letm = |E| + |A|. Although we allow
multi-graphs, w.l.0.g. we may assumec O(n?). Graphs are encoded with adjacency
lists in such a way that edges can be deleted in constantyenégesy can be deleted
in time O(d” (v)), and edgeswv can be contracted in tim@(d” (u) + d* (v)), where
dT(v) = d(v) + d*(v) + d~(v) denotes the total number of arcs and edges incident
with v. For most steps in the algorithm (that we did not alreadylaite to the param-
eter function) it can now be verified that they can be done imstant time or linear
time O(n +m) C O(n?). (Lines 1, 5, 6, 9 and 10 require linear time.) In particular,
using the alternative characterization of branching gegtifrom Proposition 4, and the
observation that thé&-shaved graph ofs can be computed in linear time, it can be
verified that the sets of branching vertices and connectashgpcan be computed in
linear time in Lines 1 and 6. Only Line 12 and the contractitepsn Line 11 need
further consideration. If Line 11 is reached, th&f{F*] contains no cycles (Line 10),
so|F*| < n — 1. Therefore, at most edge contractions are done. Contracting a sin-
gle edge (and updating*) requires at most timé&(m), which gives a complexity of
O(nm) C O(n?) for Line 11. Evaluating in Line 12 whether a FVS and UMC exists
takes timeO(n?) as well for fixedk (Theorem 2). This proves that the total complexity
isO (k(k +1)! 47.5% n?). a

D Feedback Edge/Arc Set

We show that our algorithms can be extended to solv&¢eelback Edge/Arc Sptob-
lem in mixed graphs. In this problem we need to decide whethere exists a set
S C EU A foramixed graplG = (V, E, A) such thatlG — S is acylic, with|S| < k.
Note that for undirected graphs, this problem can triviysolved by counting the



number of edges for each connected component:ab make a component anver-
tices withm edges acyclic, deletingr — n + 1 edges is necessary and sufficient. For
directed graphsg-, the problem is easily transformed to directed FVS as faitofor
every arc(u,v), introduce a new vertex and replac€u, v) by the arcs(u, w) and
(w,v). Next, for every original vertex (not introduced in the previous step), introduce
k additional copies of. That is,k vertices with the same set of in- and out-neighbors
asw. It is easily seen that the resulting digraphhas a FVS of size at mostif and
only if G has a feedback arc set of size at mastontinuing a familiar pattern, it again
seems that for mixed graphs there is no similar trivial wagdtve the problem: when
edges are present, one cannot simply replace a single \srfex 1 vertices this way,
without introducing new cycles.

We will remedy this by doing a similar replacement step intarlatage, where it
is safe since no edges are present: when solving the skewasaparoblem. In fact,
this will result in an FPT algorithm for the following more igeral problem. Ifw is
a positive integer weight function on the vertices, edges amts of a mixed graph
G = (V,E,A),thenforS CV UEU A, letw(S) denote) s w(x).

WEIGHTED FEEDBACK VERTEX/EDGE/ARC SET (WFVEAS):

INSTANCE: A mixed graphG = (V, E, A), with positive integer vertex, edge and arc
weightsw, and integek:.

TASK: Find asetS C V U E U A with w(S) < k such thati — S is acyclic, or report
that this does not exist.

Note that the above problem generalizes Feedback EdgeéArsiBee all vertex weights
can be set t& + 1. We also generalize the Skew Separator problem introduc8da-
tion 4 to a weighted variant.

WEIGHTED SKEW SEPARATOR (WSS):

INSTANCE: A digraph G with positive integer vertex weights, vertex sequences
S = s1,...,spandT = t1,...,t where alls; € V(G) have in-degree 0 and all
t; € V(G) have out-degree 0, and an integer

TASK: Find a skew separatd¥ with w(C') < k, or report that this does not exist.

Proposition 9. The Weighted Skew Separator problem on instagtes, S, 7, k with
n = |V(G)| can be solved in timé* - O(k*) - O(n?).

Proof. Below, we will treat the sequencésand7 as vertex sets. We transform the
problem as follows. Without loss of generality, we may assuat there are no vertex
weights higher tha + 1. For every vertex € V(G)\(S U T), introduce a sev,, of
w(v) vertices. For a vertex € S U T, setV, = {v}. For every arqu, v), introduce
arcs(x,y) for everyz € V,, andy € V,,. Finally, delete all vertices iV (G)\(S U T).
Denote the resulting graph lty'. It is easily seen that’ C V(G) is a skew separator
for G if and only if S” = U,es/V, is a skew separator f@¥’, and that.S”| = w(S").
Furthermore, every minimum skew separatof6fs of this form. This shows how WSS
can be reduced to SS.|F(G)| = n, then|V(G")| < (k + 1)n. So when applying the
algorithm from Theorem 1 fo€’, this yields an algorithm for solving WSS in time
48k - O((kn)?) = 4% - O(k*) - O(n®). O



We remark that a closer study of the proofs by Chen et al [Ajvsitbat their skew
separator algorithm can be modified for the weighted versiahe problem as well,
which would give a better complexity. This is however beytimelscope of the current
paper.

Theorem 5. IntimeO ((k + 1)!k547.5% n*), it can be decided whether a mixed graph
G = (V,E, A) with || = n and integer vertex/edge/arc weightsadmits a setS C
V' U E U A such thatz — S is acyclic andw(S) < k.

Proof. As a first step, we reduce the problem to Weighted FVS, wheresegech for

a FVS S with w(S) < k. This is done by subdividing all edges and arcs: for every
arc (u,v), introduce a new vertex with weightw(z) := w((u,v)), arcs(u,x) and
(z,v), and delete ar€u, v). Similarly, replace all edgesv by a vertexz with weight
w(z) = w(uv) and two edgeswr and zv. Clearly, solving Weighted FVS on the
resulting graph is equivalent to solving WFVEAS on the araigraph.

For solving Weighted FVS, we can use the algorithms and fibamstions from
Sections 4 and 5: note that since all weights are positiegers, for a set C V(G)
with w(S) < k, it holds that|S| < k. Thus in particular the bounds from Lemma 3
again apply. Hence the entire algorithm and analysis campplea as previously, with
the only modification that only sefswith w(S) < k are considered, instead|sf|] < k.

For solving the Weighted Skew Separator problem in the emdapply Proposi-
tion 9. This adds at most a factox(k?) to the complexity, compared with Theoreni4.



