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Parameterized Algorithms
Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi

Abstract

Parameterized algorithmics analyzes running time in finer detail than classical com-

plexity theory: instead of expressing the running time of an algorithm as a function

of the input size only, dependence on one or more parameters of the input instance

is taken into account. In this chapter we sketch some techniques and tools from this

rapidly developing area.

1.1 Introduction

Worst-case running time analysis has been at the center of nearly all developments

in theoretical computer science since the inception of the field. Nevertheless, this

approach to measuring algorithm efficiency has its own drawbacks. It is almost

never the case that the input size is the only feature of the input instance that

affects the running time of an algorithm. Further, it is rarely the case that the

input instances we actually want to solve look like the instances on which the

algorithm performs the worst. For this reason, the running time estimates from a

worst-case analysis can be overly pessimistic, and algorithms with optimized worst-

case behavior often perform poorly on instances arising in applications. Real-world

instances are not worst-case instances; they exhibit additional structure that can

often be exploited algorithmically. Almost all areas of applications of algorithms are

full of parameters. Example parameters include size, topology, shape, depth of the

formula, and so on. Parameterized complexity systematically seeks to understand

the contribution of such parameters to the overall complexity of the problem. That

is, the goal of parameterized complexity is to find ways of solving NP-hard problems

more efficiently than brute force: our aim is to restrict the combinatorial explosion

to a parameter that is hopefully much smaller than the input size.
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1.1.1 Warm-Up: Vertex Cover

Without doubt, Vertex Cover is the most popular problem in parameterized

complexity and this is why many people call it the drosophila melanogaster of pa-

rameterized algorithmics. This is because Vertex Cover is the “simplest” among

all parameterized problems. By simplest we mean the following empirical fact: When

designing some new algorithmic technique for a parameterized problem it is always

useful to check how this technique could be applied on Vertex Cover.

Recall that a vertex cover S of a graph G is a set of vertices “covering” every edge

of G. In other words, the graph G − S obtained from G by removing the vertices

of S has no edges. In the Vertex Cover problem, we are given a graph G and

an integer k. The question is to decide whether G contains a vertex cover of size

k. Moreover, most of the known algorithms, if the pair (G, k) is a yes-instance, can

actually construct the corresponding vertex cover.

Vertex Cover is an NP-complete problem, so it is very unlikely that it will

admit a polynomial time algorithm. On the other hand, deciding whether a graph

has a vertex cover of size at most 2 can be clearly done in time O(n2 ·m), which is

polynomial in the input size.1 We just try all pairs of vertices and for every pair we

check whether there is an edge not covered by this pair. This running time can be

easily improved to O(n2 ·n) by making use of the following observation: A pair u, v

is a vertex cover if and only if for every vertex w /∈ {u, v} its adjacency list contains

no vertices but u and v. Thus if we have a vertex w whose adjacency list is longer

than 2, we know that {u, v} is not a vertex cover. Otherwise, going through all the

lists takes time O(n2 · n). This is clearly a polynomial time algorithm.

In general, an algorithm where we enumerate all vertex subsets of size at most

k and check whether any of them forms a vertex cover solves the problem in time

O(nk · k · n), which is polynomial for every constant k. We also know that unless

P 6= NP, when k is unbounded, Vertex Cover cannot be solved in polynomial

time. This sounds like the end of the story.

A bit surprisingly, this is not the end. We can show that Vertex Cover can be

solved in linear time for every fixed k. Moreover, Vertex Cover can be solved

in polynomial time even when k = O(log n). We do it by introducing a bounded

depth search tree (recursive) algorithm for the problem.

One of the simplest parameterized algorithms solving Vertex Cover is a re-

cursive algorithm often called the bounded search tree or branching algorithm. The

algorithm is based on the following two observations.

• For a vertex v, any vertex cover must contain either v or all of its neighbors N(v).

• Vertex Cover becomes trivial (in particular, can be solved in polynomial time)

when the maximum degree of a graph is at most 1.

1 In what follows, we will always use n and m to denote the number of vertices and the number of
edges in the graph, respectively.
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The algorithm now proceeds recursively, where G and k will be modified before

passing to a recursive call. If in some recursive branch graph G has at least one

edge and parameter k ≤ 0, this instance has no vertex cover of size k and we halt

in this branch. Otherwise, we find a vertex v ∈ V (G) of maximum degree in G.

If v is of degree 0, then G has no edges and we found a solution. Otherwise, we

recursively branch on two cases by considering either v or N(v) in the vertex cover.

In the branch where v is in the vertex cover, we can delete v and decrease the

parameter k by 1. In the second branch, we add N(v) to the vertex cover, delete

N(v) ∪ {v} from the graph and decrease k by |N(v)|. Since |N(v)| ≥ 1, in each of

the branches we decrease k by at least 1.

To analyze the running time of the algorithm, it is convenient to view this re-

cursive algorithm as a search tree T . The root of this tree corresponds to the

initial instance (G, k) and for every node of the tree its children correspond to in-

stances in the recursive calls. Then the running time of the algorithm is bounded

by (the number of nodes in the search tree)× (time taken at each node). It is easy

to implement the algorithm so the time taken at each node is bounded by O(k ·n),

where n is the number of vertices in G. Thus, if τ(k) is the number of nodes in the

search tree, then the total time used by the algorithm is at most O(τ(k) · k · n).

Observe that in each recursive call we reduce the parameter k by at least 1. Hence

the height of the tree does not exceed k, and hence τ(k) ≤ 2k+1 − 1.

The above discussions bring us to the following theorem.

Theorem 1.1 Vertex Cover is solvable in time O(2k · k · n).

Since for every constant k, we have that O(2k · k · n) = O(n), the running

time of Theorem 1.1 is linear for every fixed k. Also, for k = c log n, we have

O(2k · k · n) = O(2c logn · log n · n) = O(nc+1 · log n), which is polynomial in n.

Let us remark that O(2k · k · n) is not the best running time bound for Ver-

tex Cover and the algorithm can be improved easily. For example, the following

observation can be helpful. If all the vertices of a graph are of degree at most 2,

then the graph is the disjoint union of cycles and paths. In this case, the minimum

vertex cover can be easily found in polynomial time (how?). On the other hand,

if the graph has a vertex of degree at least 3, then branching on this vertex pro-

vides us with a better recurrence and it is possible to show that in this case the

branching tree has O(1.4656k) vertices. We leave the formal proof of this claim as

an exercise (Exercise 1.1). The best known algorithm solves the problem in time

O(1.2738k+kn); it is based on a combination of kernelization (see Section 1.4) and

clever branching techniques [Chen et al. (2010)].
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Algorithms with running time f(k) ·nc, for a constant c independent of both n and

k, are called fixed-parameter algorithms, or FPT algorithms. Typically the goal in

parameterized algorithmics is to design FPT algorithms, trying to make both the

f(k) factor and the constant c in the bound on the running time as small as possible.

FPT algorithms can be contrasted with less efficient XP algorithms (for slice-wise

polynomial), where the running time is of the form f(k) · ng(k), for some functions

f, g. There is a tremendous difference in running times of the form f(k) · ng(k) and

f(k) · nc.

Inspired by the success we had with Vertex Cover, it is natural to ask whether

a similar improvement over brute-force is possible for every NP-hard problem, for

every choice of parameter. Of course, this is not true. As an example, consider

Vertex Coloring. Here we are given as input a graph G and an integer k, and

we need to decide whether G has a proper k-coloring—that is, a coloring where

no two adjacent vertices obtain the same color. It is well known that Vertex

Coloring is NP-complete already for k = 3, so we do not hope for a polynomial-

time algorithm for fixed k. Observe that even an XP algorithm with running time

f(k) · ng(k) for any functions f and g would imply that P= NP.

The example of Vertex Coloring illustrates that parameterized algorithms

may not be all-powerful: there are parameterized problems that do not seem to

admit FPT algorithms. However, in this specific example, we could explain very

precisely why we are not able to design efficient algorithms, even when the number

of colors is small. From the perspective of algorithm designers such an insight is very

useful; they can now stop wasting their time trying to design efficient algorithms

based only on the fact that the number of colors is small, and start searching for

other ways to attack the problem instances. If we are trying to design a polynomial-

time algorithm for a problem and failing, it is quite likely that this is because the

problem is NP-hard. Is the theory of NP-hardness the right tool also for giving

negative evidence for fixed-parameter tractability? In particular, if we are trying

to design an f(k) · nc-time algorithm and fail to do so, is it because the problem is

NP-hard for some fixed constant value of k, say k = 100? Let us look at another

example, the Clique problem.

In the Clique problem we are given as input graph G and integer k, and the

task is to decide whether G contains a clique on k vertices, that is, a set of k vertices

with an edge between every pair of them. Similar to Vertex Cover, there is a

simple brute-force nO(k)-time algorithm to check whether there is a clique on at

least k vertices. Can we design an FPT algorithm for this problem? After some

reflection one can see that the NP-hardness of Clique cannot be used to rule out

an FPT algorithm for it.

Since NP-hardness is insufficient to differentiate between problems with f(k) ·
ng(k)-time algorithms and problems with f(k) · nc-time algorithms, we have to
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resort to stronger complexity-theoretic assumptions. The theory of W[1]-hardness

allows us to prove (under certain complexity assumptions) that even though a prob-

lem is polynomial-time solvable for every fixed k, the parameter k has to appear

in the exponent of n in the running time, that is, the problem is not FPT. This

theory has been quite successful for identifying which parameterized problems are

FPT and which are unlikely to be. Besides this qualitative classification of FPT ver-

sus W [1]-hard, more recent developments give us also (an often surprisingly tight)

quantitative understanding of the time needed to solve a parameterized problem.

Under reasonable assumptions about the hardness of the CNF-SAT problem, it is

possible to show that there is no f(k) · nc, or even f(k) · no(k)-time algorithm for

finding a clique on k vertices. Thus, up to constant factors in the exponent, the

naive O(nk)-time algorithm is optimal!

Any algorithmic theory is incomplete without an accompanying complexity the-

ory that establishes intractability of certain problems. There is such a complexity

theory providing lower bounds on the running time required to solve parameterized

problems.

So the common belief is that there is no algorithm for solving Clique with

running time f(k) · no(k). But what if we seek a k-clique in a graph of maximum

degree ∆ where the parameter is ∆? Notice that the existence of a k-clique implies

that ∆ ≥ k − 1; thus, ∆ is a weaker parameter than k, which gives hope for

membership in FPT. In fact, it turns out that this can be done quite easily and

efficiently when ∆ is small: if we guess one vertex v in the clique, then the remaining

vertices in the clique must be among the ∆ neighbors of v; yhus we can try all of the

2∆ subsets of the neighbors of v, and return the largest clique that we found. The

total running time of this algorithm isO(2∆·∆2·n), which is feasible for ∆ = 20 even

if n is quite large. Again it is possible to use complexity theoretic assumptions on

the hardness of CNF-SAT to show that this algorithm is asymptotically optimal,

up to multiplicative constants in the exponent.

What the algorithm above shows is that the Clique problem is FPT when the

parameter is the maximum degree ∆ of the input graph. At the same time Clique is

probably not FPT when the parameter is the solution size k. Thus, the classification

of the problem into “tractable” or “intractable” crucially depends on the choice of

parameter. This makes a lot of sense; the more we know about our input instances,

the more we can exploit algorithmically! For the same problem there can be multiple

choices of parameters. Selecting the right parameter(s) for a particular problem is

an art. We summarize the complexities of the above problems in Fig. 1.1.

1.1.2 Formal Definitions

Definition 1.2 A parameterized problem L ⊆ Σ∗ × N (for alphabet Σ) is called

fixed-parameter tractable (FPT) if there exists an algorithm A (called a fixed-

parameter algorithm), a computable function f : N→ N, and a constant c with the
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Problem/Parameter Good news Bad news

Vertex Cover/k O(2k · k · n)-time algorithm NP-hard

(probably not in P)

Clique/∆ O(2∆ ·∆2 · n)-time algorithm NP-hard

(probably not in P)

Clique /k nO(k)-time algorithm W [1]-hard

(probably not FPT)

Vertex Coloring/k NP-hard for k = 3

(probably not XP)

Figure 1.1 Overview of the discussed problems.

following property. Given any (x, k) ∈ Σ∗ × N, the algorithm A correctly decides

whether (x, k) ∈ L in time bounded by f(k) · |x|c where |x| denotes the length of the

input x. The complexity class containing all fixed-parameter tractable problems is

called FPT.

1.2 Randomization

Randomness is a powerful resource in designing algorithms and often leads to el-

egant algorithms, and parameterized algorithms are no exception. Consider for

example the classic Longest Path problem. A path is a sequence v1, v2, . . . , v` of

distinct vertices of a graph, such that for every i there is an edge in the graph from

vi to vi+1. The number ` of the vertices in the path is its length. In the Longest

Path problem the input is a (directed and undirected) graph G together with an

integer k, and the goal is to determine whether G contains a path P of length k. For

simplicity we shall restrict our attention to undirected graphs, even though most

of the discussion applies also to directed graphs.

When k = n the Longest Path problem is precisely the well-known Hamilto-

nian Path problem, and therefore it is NP-complete. On the other hand, there is

a simple nk+O(1) time algorithm that tries all sequences of k vertices and checks

whether any of them forms a k-path. Papadimitriou and Yannakakis [Papadimitriou

and Yannakakis (1996)] posed as an open problem whether there exists a polyno-

mial time algorithm that determines whether a graph G on n vertices contains a

path of length at least log n. To achieve this it suffices to devise an algorithm with

running time cknO(1) for some constant c. In 1995, Alon, Yuster and Zwick [Alon

et al. (1995)] invented the color coding technique and gave a (2e)knO(1) time ran-

domized algorithm for Longest Path (where e ≈ 2.718), resolving the question of

Papadimitriou and Yannakakis in the affirmative.
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The algorithm is based on two key steps, a random coloring step, followed by a

procedure that finds a multi-colored path P , if such a path exists. To describe both

steps we need a few definitions: a k-coloring ofG is a function c : V (G)→ {1, . . . , k}.
Notice that a coloring simply assigns a number (color) to every vertex, and we do not

demand that this is a proper coloring in the terminology of graph theory, where edge

endpoints need to receive different colors. We will say that a path P = v1, v2, . . . , v`
is multi-colored by a coloring c if all vertices in P receive distinct colors by c.

Formally we require that for every i 6= j we have c(i) 6= c(j).

The first key building block of the algorithm is the insight that, for every path P

of length k, a random coloring c : V (G)→ {1, . . . , k} with k colors will multi-color

P with “not so small” probability. In particular, there are kk ways to color V (P )

with k colors, and k! of these colorings assign distinct colors to all vertices of P .

Hence, the probability that P is multicolored is

k!

kk
≥
√

2πk

ek
≥ e−k. (1.1)

Here the first inequality follows from Stirling’s approximation for the factorial func-

tion.

The second building block is an efficient algorithm that determines whether G

contains a path P of length k that is multicolored by a given coloring c. The

algorithm uses dynamic programming. We define a function

f : 2{1,...,k} × V (G)→ {true, false}

that takes as input a set S ⊆ {1, . . . , k} together with a vertex v ∈ V (G) and

outputs true if there exists a path in G[S] (the subgraph of G induced by S, that is,

we retain only the vertices in S and all edges between them) that uses each color of

S precisely once and ends at v. Note that such a path necessarily has length |S|. It

can be easily verified that the function f satisfies the following recurrence relation:

f(S, v) =


false if c(v) /∈ S or

true if {c(v)} = S∨
u∈N(v) f(S \ {c(v)}, u) otherwise.

(1.2)

The recurrence (1.2) immediately yields an algorithm for determining whether a

multi-colored path exists: iterate through every set S ⊆ {1, . . . , k} from small to

large and every vertex v ∈ V (G). In each iteration compute f(S, v) using Equa-

tion (1.2) and store the result in a table. Thus, when the algorithm computes f(S, v)

it can look up the value of f(S \ {c(v)}, u) (which was computed in a previous it-

eration) in the table.

In each of the iterations the value of f(S, v) is computed in at most d(v) table

lookups, which we assume take constant time. Thus the total time of the algorithm
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for determining whether a multi-colored path exists is upper bounded by

O

 ∑
S⊆{1,...,k}

∑
v∈V (G)

d(v)

 = O
(
2k(n+m)

)
.

The final algorithm for Longest Path is as follows: iterate through ek random

k-colorings ci (here i goes from 1 to ek). For each i check in time O
(
2k(n+m)

)
whether there exists a path that is multi-colored by ci using the dynamic program-

ming algorithm above. If the algorithm finds a multi-colored path, then this path

has length k. On the other hand, if a path of length k exists, then the probability

that none of the ci’s multi-colors it is at most

(1− 1

ek
)e

k

≤ 1

e
.

Thus, the algorithm runs in time O((2e)k(n + m)), always correctly returns “no”

on no-instances, and returns “yes” on yes-instances with probability at least 1− 1
e .

Theorem 1.3 (Alon et al. (1995)) There exists a randomized algorithm with

one-sided error for Longest Path with running time O((2e)k(n+m)).

1.2.1 Random Separation: Set Splitting

Color coding is far from being the only way to use randomness to design parameter-

ized algorithms. A different example is the “random separation” techique. We will

see how to apply random separation to design an algorithm for the Set Splitting

problem. Here the input is a universe U , a family F = {S1, S2, . . . , Sm} of subsets

of U , and an integer k ≤ m. The goal is to find an assignment φ : U → {0, 1} that

splits at least k sets in F . Here a set Si ∈ F is split by φ if it contains at least one

element u such that φ(u) = 0 and at least one element v such that φ(v) = 1. The

Set Splitting problem is also known as Hypergraph Max Cut, because when

all sets Si have cardinality 2 this is preciesly the classic Max Cut problem.

It turns out that a remarkably simple strategy yields an FPT algorithm for Set

Splitting. In particular, we shall prove that if there exists an assignment φ that

splits at least k sets in F , then a random assignment ψ splits at least k sets with

probability at least 1
4k . Indeed, suppose the sets {S1, S2, . . . , Sk} are split by φ. For

every i ≤ k let ui be an element of Si such that φ(ui) = 0 and vi ∈ Si be such

that φ(vi) = 1. We remark that ui and uj (or vi and vj) can be the same element

even though i 6= j. Let X =
⋃
i≤k{ui, vi}, and observe that X has the following two

properties. First, |X| ≤ 2k. Second, for every assignment ψ that agrees with φ on X

(that is, ψ(x) = φ(x) for every x ∈ X) ψ splits the sets S1, . . . , Sk (since ψ(ui) = 0

and ψ(vi) = 1). The probability that ψ agrees with φ on X is 2−|X| ≥ 2−2k = 4−k,

as claimed.

This gives the following simple algorithm that runs in time O(4knm): try 4k
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random assignments ψ1, . . . , ψ4k . If some ψi splits at least k sets, return that as-

signment. If none of the ψi’s split at least k sets report that no assignment does.

Just as for the Longest Path problem, if there is an assignment that splits at

least k sets, then the probability that the algorithm fails to find one is at most

(1− 1
4k )4k ≤ 1/e. This proves the following theorem.

Theorem 1.4 There exists a randomized algorithm with one-sided error for Set

Splitting with running time O(4knm).

We remark that a random assignment ψ will actually split k sets with probability

at least 1
2k . The proof of this claim is (slightly) more complicated, so we leave it as

Exercise 1.4 (see also [Chen and Lu (2009)]).

1.2.2 Derandomization

It would appear that the algorithms of Theorems 1.3 and 1.4 are inherently ran-

domized. It turns out that the randomized step can be replaced by appropriate

pseudo-random constructions without compromising (much) on the worst case run-

ning time guarantees.

Let us first consider the algorithm for Longest Path. Here we tried ek random

colorings and used the fact that if there exists a path, then with probability at

least 1 − 1/e at least one of the colorings multi-colors it. Quite remarkably one

can deterministically construct a family of colorings such that this property always

holds, instead of holding with constant probability.

Theorem 1.5 (Naor et al. (1995)) There exists an algorithm that given a uni-

verse U of size n and an integer k runs in time eknO(1) and produces k-colorings

c1, c2, . . . c` with ` = O(ek+o(k) log n) such that for every set S ⊆ U of size at most

k there exists an i such that ci multi-colors S.

Replacing the ek random k-colorings with the ek+o(k)nO(1) k-colorings of Theo-

rem 1.5 in the algorithm for Longest Path yields a deterministic algorithm with

running time (2e)k+o(k)nO(1).

A similar situation happens for Set Splitting. What we need is a family of

assignments ψ1, ψ2, . . . ψ` such that for some unknown set X of size at most 2k, at

least one of the assignments ψi agrees with an unknown assignment φ on X. Since

X and φ are un-known, what we really need is that for every set X of size at most

2k and every assignment φX : X → {0, 1} at least one ψi agrees with φX on X.

Again, this can be achieved!

Theorem 1.6 (Naor et al. (1995)) There exists an algorithm that given a universe

U of size n and an integer k runs in time 2k+o(k)nO(1) and produces assignments

ψ1, ψ2, . . . ψ` with ` ≤ 2k+o(k) log n such that for every set X ⊆ U of size at most k

and every assignment φX : X → {0, 1} at least one ψi agrees with φX .
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Replacing the 4k random assignments with the 4k+o(k)nO(1) assigments produced

by Theorem 1.6 (applied with |X| ≤ 2k) yields a deterministic algorithm for Set

Splitting with running time 4k+o(k)nO(1)m. We remark that the constructions of

Theorems 1.5 and 1.6 are optimal in the sense that ` can not be reduced below

Ω(ek log n) and Ω(2k log n) respectively.

Theorem 1.7 There exists a deterministic algorithm for Longest Path with

running time (2e)k+o(k)nO(1). There exists a deterministic algorithm for Set Split-

ting with running time 4k+o(k)nO(1)m.

1.3 Structural Parameterizations

We have mostly concerned ourselves with the parameter k being the value of the

objective function, or just the size of the solution. This does not mean that this

is the only reasonable choice of parameter! For example, recall that the Graph

Coloring problem is NP-complete for k = 3 where k is the number of colors, so

an FPT algorithm parameterized by k is out of the question. This does not rule

out the potential for other interesting parameterized algorithms for the problem.

Suppose we want to solve Graph Coloring, but now we know that the input

instances have a relatively small vertex cover, say of size at most t. Can we use this

to get an efficient algorithm?

Here is an algorithm that is FPT when parameterized by the vertex cover number

t. First, compute a vertex cover X of size at most t in time 2t(n + m) using the

algorithm of Theorem 1.1. If k > t we can find a coloring with at most t + 1 ≤ k

colors in time O(m+ n): just use one color of {1, . . . , |X|} per vertex of X and use

color |X|+ 1 for all of the remaining vertices. Because X is a vertex cover, this is

a proper coloring.

Suppose now that k ≤ t. The algorithm tries all kt possible colorings of X. For

each such choice cX : X → {1, . . . , k} it checks whether cX can be extended to

a proper coloring of G. A necessary condition for this to be possible is that every

vertex y /∈ X has an available color. Formally, for every y /∈ X there should exist

an 1 ≤ i ≤ k so that no neighbor of y has color i. Since no pair of vertices outside

of X are adjacent this necessary condition is also sufficient—to each y /∈ X we

can simply assign any of its available colors. This leads to an algorithm for Graph

Coloring with running time O(kt(n+m)) ≤ O(tt(n+m)).

Theorem 1.8 There exists an algorithm for Graph Coloring with running

time O(tt(n+m)) where t is the size of the smallest vertex cover of G.

This algorithm appears quite naive, however, quite surprisingly, one can show

that it can not be substantially improved (under appropriate complexity-theoretic

assumptions). Indeed, an algorithm with running time 2o(t log t)nO(1) would con-
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tradict the Exponential Time Hypothesis [Lokshtanov et al. (2018)] (see Section

1.5.2).

1.4 Kernelization

Preprocessing is a widely used technique to help cope with computationally hard

problems. A natural question in this regard is how to measure the quality of prepro-

cessing rules proposed for a specific problem, yet for a long time the mathematical

analysis of polynomial time preprocessing algorithms was neglected. One central

reason for this anomaly can be found in the following observation: showing that

in polynomial time an instance I of an NP-hard problem can be replaced by an

equivalent instance whose size is smaller than the size of I implies that P=NP.

The situation has changed drastically with the advent of Parameterized Complex-

ity. Roughly speaking, the objective of preprocessing rules within this framework

is to reduce the input size to depend only on the parameter, where the smaller the

dependency is, the better the rules are.

1.4.1 Warm-Up: the Buss Rule

Before we delve into the formal definitions, let us see a simple example. For an

instance (G, k) of the Vertex Cover problem, consider the following rule.

Rule I. If G contains an isolated vertex v, then remove v from G. The resulting

instance is (G− v, k).

This rule takes an instance of the problem, and, if its condition is satisfied, returns

an instance of the same problem of smaller size. Such a rule is called a reduction

rule. Most importantly, this rule is safe in the following sense: The instance that

it takes as input is a yes-instance if and only if the instance that it outputs is a

yes-instance. Indeed, it is immediate to see that the removal of isolated vertices has

no effect on the answer of the given instance.

Now, consider yet another reduction rule, known as the Buss rule.

Rule II. If G contains a vertex v of degree at least k+1, then remove v (along with

incident edges) fromG, and decrement k by 1. The resulting instance is (G−v, k−1).

The safeness of this rule follows from the observation that any vertex cover of size

at most k in G must contain v—indeed, any vertex cover in G that excludes v must

contain all of its neighbors, and their number is strictly larger than k.

Lastly, suppose that Rules I and II have been applied exhaustively, thus neither

of their conditions is satisfied, and consider the following rule.
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Rule III. If G contains more than k2 edges, then return no.

Here, safeness also follows from a simple observation: As the maximum degree of a

vertex in G is k (due to the exhaustive application of Rule II), any set of at most k

vertices can cover at most k2 edges. Thus, if G contains more than k2 edges, it does

not admit a vertex cover of size at most k. To strictly comply with the definition of

a reduction rule, the output should be an instance of Vertex Cover rather than

yes or no. However, it is acceptable to use yes or no as abbreviations for trivial

yes- or no-instances, respectively. For Vertex Cover, concrete trivial yes- and

no-instances can be, for example, the graph on an empty vertex set with k = 0,

and the graph on two vertices connected by an edge with k = 0, respectively.

After the consideration of the last rule, we know that the number of edges in G is

at most k2. Furthermore, the number of vertices in G is at most 2k2 because G does

not contain any isolated vertex (due to the exhaustive application of Rule I). We

also observe that the entire process is implementable in polynomial time—each of

our three rules can be applied only polynomially many times and each application

runs in polynomial time. Thus, in polynomial time, we managed to reduce the size

of the input instance (without even trying to solve it!) to be quadratic in k.

1.4.2 Formal Definition and Relation to Membership in FPT

The main definition in Kernelization is that of a kernel, which is derived from a

more general notion called compression.

Definition 1.9 A compression of a parameterized language Q ⊆ Σ∗ × N into a

language R ⊆ Σ∗ is an algorithm that takes as input an instance (x, k) ∈ Σ∗ × N,

runs in time polynomial in |x|+ k, and returns a string y such that:

1 |y| ≤ f(k) for some function f(·), and

2 y ∈ R if and only if (x, k) ∈ Q.

If |Σ| = 2, the function f(·) is called the bitsize of the compression.

Kernelization is the special case of compression where the projection of Q onto Σ∗

equals R, that is, the source and target languages are essentially the same. Then, the

algorithm is referred to as a kernelization algorithm or a kernel. Particular attention

is given to the case where the function f is polynomial. In this case, we say that

the problem admits polynomial compression or kernelization. While a polynomial

kernel is obviously better than an arbitrary kernel, we have particular interest in

polynomial kernels due the following characterization, which uses arbitrary (not

necessarily polynomial) kernels.

In one direction, it is easy to see that if a decidable (parameterized) problem ad-

mits a kernel for some function f , then it is FPT: for any instance of the problem,
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we call a (polynomial-time) kernelization algorithm, and then use a decision algo-

rithm to determine the answer to the resulting instance. Since the size of the kernel

is bounded by some function f of the parameter, the running time of the decision

algorithm depends only on the parameter. More surprising is the converse direction:

Theorem 1.10 If a parameterized problem L is FPT, then it admits a kernel.

Proof Suppose that there is an algorithm deciding if (x, k) ∈ L in time f(k)|x|c
for some computable function f and constant c. We consider two cases. In the first,

|x| ≥ f(k), and we run the FPT algorithm on the instance in time f(k)|x|c ≤
|x|c+1. If the FPT algorithm outputs yes, then the kernelization algorithm outputs

a constant size yes-instance, and if the decision algorithm outputs no, then the

kernelization algorithm outputs a constant size no-instance. In the second case,

|x| < f(k), and the kernelization algorithm outputs x. This yields a kernel of size

f(k) for the problem.

Theorem 1.10 shows that kernelization gives rise to an alternative definition of

membership in FPT. So, to decide if a parameterized problem has a kernel, we can

employ many known tools already given by Parameterized Complexity. But what

if we are interested in kernels that are as small as possible? The size of a kernel

obtained using Theorem 1.10 equals the dependence on k in the running time of

the best known parameterized algorithm for the problem, which is often quite large

(exponential or worse). Can we find better kernels? The answer is yes, we can,

but not always. For many problems we can obtain polynomial kernels, but under

reasonable complexity-theoretic assumptions, there exist problems in FPT that do

not admit kernels of polynomial size (see Section 1.5).

In Section 1.4.1, we have already seen a polynomial (in fact, quadratic) kernel for

Vertex Cover, based on three very simple rules, where the central one is known

as the Buss rule. Specifically, we proved the following theorem.

Theorem 1.11 Vertex Cover admits a kernel of size O(k2).

In fact, a general scheme to develop kernelization algorithms is to provide a list

of reduction rules, where always the first rule in the list whose condition is satisfied

is the one to be executed next; eventually, when no rule is applicable, the size of

the instance should be bounded. Next, we adapt the Buss rule to a less expected

context. We remark that nowadays, there is a rich tool-kit to design kernels (see

Notes). Moreover, extensions of kernelization are explored (see Section 1.6.1).

1.4.3 Generalization of the Buss Rule to Matrix Rank

We will now discuss a more sophisticated example of a polynomial kernel. The

rigidity of a matrix A for a target rank r over a field F is the minimum Hamming
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distance between A and a matrix of rank at most r. Naturally, given a parameter

k, the Matrix Rigidity problem asks whether the rigidity of A is at most k.

Theorem 1.12 There exists a polynomial-time algorithm that, given an instance

(A, k, r) of Matrix Rigidity, returns an equivalent instance (A′, k, r) where A′

has O((rk)2) entries.

Proof sketch. Given an instance (A, r, k) of Matrix Rigidity, the algorithm

works as follows. For k + 1 steps, it repeatedly selects a set of maximum size con-

sisting of rows that are linearly independent, where if the size of this set exceeds

r + 1, a subset of it of size r + 1 is used instead. Each such set of rows is removed

from the input matrix, and then it is inserted into the output matrix. At the end

of this greedy process, rows that remain in the input matrix are simply discarded.

Afterwards, the symmetric process is executed on columns.

Clearly, the output matrix A′ has at most (r + 1)k rows and (r + 1)k columns,

and therefore O((rk)2) entries. Moreover, in the forward direction, because A′ is

obtained by deleting rows, and then further deleting columns, of A, it is clear that

if (A, k, r) is a yes-instance, then so is (A′, k, r).

For the reverse direction, we only prove that the operation on rows is safe, as the

safeness for columns follows similarly. To this end, let Â be the matrix obtained

after the operation on rows, and suppose that (Â, k, r) is a yes-instance. Let B̂ be

a matrix of rank at most r and Hamming distance at most k from Â. Because the

rows of Â were taken from A, the matrix B that consists of B̂ and the rows of A

outside Â is at Hamming distance at most k from A. To prove that (A, k, r) is a

yes-instance as well (which will be witnessed by B), we will prove that each row

in A that was not inserted into Â belongs to the span of the rows of Â that also

belong to B̂.

Notice that in each set of r+1 rows inserted (in the same iteration) into Â, there

must be a difference between Â and B̂ as this set in itself is linearly independent.

Since k+ 1 iterations are performed, and the Hamming distance between Â and B̂

is k, there must be at least one set that is the same in both, and thus this set must

have size at most r. In particular, when this set was inserted into Â, it was a set

of maximum size of linearly independent rows (that was not replaced by a smaller

set). Thus, every row in A that was not inserted into Â belongs to the span of this

set. Because this set is the same in Â and B̂, we conclude that B and B̂ have the

same rank, and thus (A, k, r) is a yes-instance.

Let us point out two similarities. While in the Buss rule, we relied on the obser-

vation that in a set of k+ 1 edges incident to the same vertex, that vertex must be

picked, here we relied on the observation that in a set of r+ 1 linearly independent

rows, at least one change must be made. Further, both when arguing the correct-

ness of Rule III, and when arguing for the existence of an “untouched” set in the

reverse direction, we used an argument based on the pigeonhole principle.
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When F = R, Theorem 1.12 does not yield a kernel for Matrix Rigidity pa-

rameterized by k + r because the bitsize to encode each entry may be unbounded

in k + r. However, for finite fields, we have the following consequence.

Corollary 1.13 Matrix Rigidity over finite fields admits a kernel of size

O((kr)2f) where f is the field size.

We remark that parameterization by multiple parameters (among k, r and f) is

likely to be essential here, because it can be shown that parameterized by k alone,

r alone, or f alone, Matrix Rigidity is W[1]-hard (see Section 1.5.1).

1.5 Hardness and Optimality

1.5.1 W[1]-Hardness

In addition to a rich tool-kit to design parameterized algorithms, research in Pa-

rameterized Complexity has also provided complementary methods to show that

a problem is unlikely to be FPT. The main technique is the one of parameterized

reductions analogous to those employed in the theory of NP-hardness. Here, the

concept of W[1]-hardness replaces the one of NP-hardness, and for reductions we

need not only construct an equivalent instance in FPT time, but also ensure that

the size of the parameter in the new instance depends only on the size of the pa-

rameter in the original one. If there exists such a reduction transforming a problem

known to be W[1]-hard to another problem Π, then the problem Π is W[1]-hard as

well. Central W[1]-hard problems include, for example, deciding whether a nonde-

terministic single-tape Turing machine accepts within k steps, Clique (determine

whether a given graph has a clique of size k) parameterized by solution size k, and

Independent Set parameterized by solution size k (determine whether a given

graph has an independent set of size k). To show that a problem Π is not XP unless

P=NP, it is sufficient to show that there exists a fixed k such Π is NP-hard. Then,

the problem is said to be para-NP-hard.

More formally, a central notion in this context is of a parameterized reduction,

defined as follows.

Definition 1.14 Let A,B ⊆ Σ∗ × N be two parameterized problems. A parame-

terized reduction from A to B is an algorithm that, given an instance (x, k) of A,

outputs an instance (x′, k′) of B such that: (i) (x, k) is a yes-instance of A if and

only if (x′, k′) is a yes-instance of B; (ii) k′ ≤ g(k) for some computable function g;

(iii) the running time is upper bounded by f(k) · |x|c for some computable function

f and constant c.

As an example of a very simple parameterized reduction, let A be Clique and

B be Independent Set, and consider the following algorithm. Given an instance
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(G, k) of Clique, the algorithm outputs the instance (G, k) of Independent Set,

where G is the complement of G (i.e. {u, v} ∈ E(G) if and only if {u, v} /∈ E(G)).

Then, it is trivial to verify that the three properties in Definition 1.14 are satisfied.

Generally, the design of parameterized reductions can often be quite technical as

we need to avoid blowing up the parameter. In many cases, it is useful to consider

the “colorful version” of a W[1]-hard problem as the source of the reduction. In

particular, in Colorful Clique we are given a graph G, and a (not necessarily

proper) coloring of the vertices of G in k colors, and the goal is to determine

whether G has a clique on k vertices where each vertex has a distinct color. Roughly

speaking, the main reason why colors help is that they enable the reduction to

consist, for each color, of a gadget for the selection of a vertex of that color, rather

than k gadgets for the selection of k vertices from the entire graph. In particular,

each gadget “works” on a different set of vertices. This generally simplifies the

design of the gadgets that need to verify that the selected vertices form a clique.

We remark that for some choices of A and B, even when both problems are

NP-hard, we do not expect to have a parameterized reduction. For example, let A

be Clique and B be Vertex Cover. As already noted in Section 1.1.1, Ver-

tex Cover is FPT while Clique is W[1]-hard. Then, although there exists a

polynomial-time reduction from Clique to Vertex Cover (because both prob-

lems are NP-complete), a parameterized one would imply that Clique is FPT,

which is considered unlikely. We remark that known reductions from Clique to

Vertex Cover blow-up the parameter in the output instance, so it no longer de-

pends only on the parameter in the input instance but on the entire input instance

size. Interestingly, while we know of a parameterized reduction from Independent

Set to Dominating Set (through Colorful Independent Set, see Notes), we

do not know of a parameterized reduction from Dominating Set to Independent

Set. In fact, we do not expect that such a reduction exists, since Independent Set

and Dominating Set lie in different levels of the W-hierarchy. Specifically, Inde-

pendent Set is complete for the first level of this squirearchy, while Dominating

Set is complete for the second one. For more details, we refer to the Notes.

1.5.2 ETH and SETH

To obtain (essentially) tight conditional lower bounds for the running times of algo-

rithms, we can rely (among other hypotheses) on the Exponential-Time Hypothesis

(ETH) and Strong Exponential-Time Hypothesis (SETH). To formalize the state-

ments of ETH and SETH, first recall that given a formula ϕ in conjuctive normal

form (CNF) with n Boolean variables and m clauses, the task of CNF-SAT is to

decide whether there is a truth assignment to the variables that satisfies ϕ. In the

p-CNF-SAT problem, each clause is restricted to have at most p literals. First,

ETH asserts that 3-CNF-SAT cannot be solved in time O(2o(n)). Second, SETH

asserts that for every fixed ε < 1, there exists a (large) integer p = p(ε) such that
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p-CNF-SAT cannot be solved in time O((2− ε)n). We remark that for every fixed

integer p, we know that p-CNF-SAT is solvable in time O(cn) for c < 2 that

depends on p (notice that this does not contradict SETH).

Parameterized reductions (as in Definition 1.14) can be used in conjunction with

ETH or SETH to provide more fine-grained lower bounds. For an example, consider

the classic reduction from 3-CNF-SAT to Vertex Cover described by e.g. Sipser

(1996). This reduction has the following properties: Given a 3-CNF-SAT instance

φ with n variables and m clauses, the reduction outputs in polynomial time a graph

G on 3m vertices, such that G has a vertex cover of size at most m if and only if φ

is satisfiable.

This reduction, together with the ETH, rules out the possibility of a 2o(|V (G)|1/3)

time algorithm for Vertex Cover: if such an algorithm were to exist, we could

feed the output of the reduction into the algorithm and solve 3-CNF-SAT in time

2o(|V (G)|1/3) ≤ 2o((3m)1/3) ≤ 2o(n).

This would contradict the ETH. In the last transition we used that the number of

clauses m in a 3-SAT instance is at most O(n3).

Some key points to take away from this reduction. First, good old NP-hardness

reductions are by themselves sufficient to provide running time lower bounds as-

suming the ETH, we just had to carefully keep track how the parameters of the

instance produced by the reduction depend on the parameters of the input instance.

Second, the running time lower bound of 2o(|V (G)|1/3) is very far off from the 2Θ(n)

running times of the currently best known algorithms for Vertex Cover. Luck-

ily, Impagliazzo et al. (2001) provide a handy tool to bridge this gap.

Theorem 1.15 Assuming the ETH, 3-CNF-SAT has no algorithm with running

time 2o(n+m)

Theorem 1.15, combined with the reduction above shows that Vertex Cover

can not have an algorithm with running time 2o(n), since this would yield an algo-

rithm for 3-CNF-SAT with running time 2o(m), contradicting ETH. Thus, assum-

ing the ETH, up to constants in the exponent the existing algorithms for Vertex

Cover (in fact even the naive 2n time algorithm) are the best one can do!

Notice also that this gives a lower bound on the running time of FPT algo-

rithms for Vertex Cover when parameterized by solution size k. Indeed, since

k ≤ |V (G)|, a 2o(k)|V (G)|O(1) time algorithm for Vertex Cover would contradict

the ETH. From this starting point one can get numerous lower bounds that mirac-

ulously match the running times of the best known algorithms, just by tracing the

existing reductions. Of course in many cases clever new reductions have to be de-

signed to get tight bounds (see the survey Lokshtanov et al. (2011)). For example,

assuming the ETH, all of the following algorithms are already best possible, up

to constants in the exponent: The naive nk+O(1) time algorithms for Clique and

Dominating Set, the 2O(k)nO(1) time algorithms for Longest Path and Set
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Splitting from Theorems 1.3 and 1.4, and the O(tt(n + m)) time algorithm for

Graph Coloring from Theorem 1.8.

All of the so-called ‘tight’ lower bounds assuming the ETH come with the fine

print “up to constants in the exponent”. This is of course unsatisfactory - there is

a huge difference between a 2n time algorithm and a 1.00001n time algorithm and,

so far, no one has been able to use the ETH to rule out an algorithm with running

time 1.00001n for a problem that does have an algorithm with running time 100n.

If one is willing to assume the much stronger hypothesis that is SETH, then one

can pin down the precise dependence on k for some problems [Lokshtanov et al.

(2011)]. However, so far we are lacking a result akin to Theorem 1.15 for SETH,

quite severly limiting its applicability.

1.5.3 Hardness and Optimality of Kernelization

We showed that Longest Path can be solved in time 2O(k)nO(1), where n is the

number of vertices in the input graph G (Theorem 1.7). Thus by Theorem 1.10, we

deduce that Longest Path admits a kernel of size 2O(k). But what about a kernel

of polynomial size?

We argue that intuitively this should not be possible. Assume that Longest

Path admits a polynomial kernel of size kc, where c is some fixed constant. We

take many instances,

(G1, k), (G2, k), . . . , (Gt, k),

of the Longest Path problem, where in each instance |V (Gi)| = n, 1 ≤ i ≤ t, and

k ≤ n. If we make a new graph G by just taking the disjoint union of the graphs

G1, . . . , Gt, we see that G contains a path of length k if and only if Gi contains a

path of length k for some i ≤ t. Now run the kernelization algorithm on G. Then

kernelization algorithm would in polynomial time return a new instance (G′, k′) such

that |V (G′)| ≤ kc ≤ nc, a number potentially much smaller than t, for example set

t = n1000c. This means that in some sense, the kernelization algorithm considers the

instances (G1, k), (G2, k), . . . , (Gt, k) and in polynomial time figures out which of the

instances are the most likely to contain a path of length k. More precisely, if we have

to preserve the value of the OR of our instances while being forced to forget at least

one of the inputs entirely, then we have to make sure that the input being forgotten

was not the only one whose answer is yes (otherwise we turn a yes-instanceinto a

no-instance). However, at least intuitively, this seems almost as difficult as solving

the instances themselves, and since the Longest Path problem is NP-complete,

this seems unlikely. In 2009, a methodology to rule out polynomial kernels has

been developed in [Bodlaender et al. (2009); Fortnow and Santhanam (2008)]. The

existence of polynomial kernels are ruled out, in this framework, by linking the

availability of a polynomial kernel to an unlikely collapse in classical complexity.

These developments deepen the connection between classical and parameterized
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complexity. Using this methodology one can show that Longest Path does not

admit a polynomial kernel unless coNP ⊆ NP
poly . In fact, in Dell and van Melkebeek

(2010), the kernel lower bound methodology established in [Bodlaender et al. (2009);

Fortnow and Santhanam (2008)] was generalized further to provide lower bounds

based on different polynomial functions for the kernel size. For an example we can

show that the O(k2) kernel for Vertex Cover given by 1.11 is optimal. That is,

Vertex Cover does not have kernels of size O(k2−ε) unless coNP ⊆ NP
poly . We

refer to Notes for more details.

1.6 Outlook: New Paradigms and Application Domains

The main idea of parameterized algorithms is very general: to measure the running

time in terms of both input size as well as a parameter that captures structural

properties of the input instance. This idea of a multivariate algorithm analysis holds

the potential to address the need for a framework for refined algorithm analysis for

all kinds of problems across all domains and subfields of computer science. Indeed,

parameterized complexity has permeated other algorithmic paradigms as well as to

other application domains. In this section we look at some of these.

1.6.1 FPT-approximation and lossy kernels

Until now we have only seen decision problems in the realm of fixed parameter

tractability. However, to define the notion of FPT-approximation we need to move

away from decision problems and define the notion of optimization problems. How-

ever, this chapter is not the right place to do so. We will work with some ad-hoc def-

initions and use them to show glimpses of the budding field of FPT-approximation.

For the purpose of this section, we will call an approximaiton algorithm, an FPT-

approximation algorithm, if its running time is f(k) · nO(1), for a parameter k (k

need not be the solution size).

We will exemplify this paradigm via the Partial Vertex Cover problem.

In this problem, we are given an undirected graph G and a positive integer k,

and the task is to find a subset X of k vertices that covers as many edges as

possible. This problem can easily be shown to be W[1]-hard via a reduction from

the Independent Set problem. In what follows, we give an algorithm that for

every ε > 0, runs in time f(ε, k) ·nO(1), and produces a (1+ε)-approximate solution

for the problem.

A natural greedy heuristic for the problem is to output a set X containing k

vertices of the highest degree. The case in which X could cover far fewer edges than

an optimal solution is when the number of edges with both end-points in X is

proportional to the total number of edges that X covers. We will show that this

case can be addressed with an FPT algorithm. Let us fix C = 2
(
k
2

)
/ε and and let
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v1, . . . , vn be the vertices of the graph ordered by non-increasing degree. In the first

case we assume that d(v1) ≥ C. Here, d(vi) denotes the degree of vi. In this case

the greedy heuristic outputs our desired solution. Indeed, X = {v1, . . . , vk} covers

at least
∑k
i=1 d(vi) −

(
k
2

)
edges. The last inequality follows from the fact that any

simple graph on k vertices has at most
(
k
2

)
edges. Observe that optimal the solution

is always upper bounded by
∑k
i=1 d(vi). Thus, the quality of the desired solution is

∑k
i=1 d(vi)−

(
k
2

)∑k
i=1 d(vi)

≥ 1−
(
k
2

)
C
≥ 1− ε

2
≥ 1

1 + ε
,

at most (1 + ε) times the optimum.

We can therefore assume that d(v1) < C = 2
(
k
2

)
/ε. Hence, the optimal solution is

upper bounded by
∑k
i=1 d(vi) < Ck. That is, in this case the maximum number of

edges, say t, that any set of size k can cover becomes a function of k and ε. What if

we parameterize Partial Vertex Cover by the maximum number of edges, say

t, that are covered by a set of size k? Indeed, one can show that Partial Vertex

Cover is solvable in time 2O(t)nO(1) using the method of color coding explained in

Section 1.2. We leave this as an exercise (Exercise 1.5). With this exercise in hand

we can prove the following theorem.

Theorem 1.16 For every ε > 0, there exists an algorithm for Partial Vertex

Cover that runs in time f(ε, k) ·nO(1), and produces a (1+ε)-approximate solution

for the problem.

Partial Vertex Cover is not the only problem for which FPT-approximation

algorithm exists. There are several other problem but arguably the most notable

one is s-Way Cut, parameterized by s (delete minimum number of edges such that

the resulting graph has at least s connected components). The problem admits a

factor 2-approximation algorithm in polynomial time. On the other hand assuming

some well known complexity theory assumption it is not possible to improve this

approximation algorithm. Furthermore, the problem is known to be W[1]-hard, pa-

rameterized by s [Downey et al. (2003)]. Gupta et al. (2018) obtained 2− ε-factor

approximation algorithm, a fixed constant ε > 0, running in time f(s) ·nO(1). After

couple of improvements, Kawarabayashi and Lin (2020) have recently obtained a

nearly 5/3 factor FPT-approximation algorithm. On the other hand the area of

FPT-inapproximability has also flourished. In particular, assuming FPT6= W [1],

Dominating Set does not admit an FPT-approximation algorithm with factor

o(k) [Karthik C. S. et al. (2019)]. On the other hand, assuming a gap version of

ETH, one can show that Clique does not admit any FPT-approximation algo-

rithm [Chalermsook et al. (2017)].

Can we combine the theory of kernelization (Section 1.4) with FPT approxima-

tion? Unfortunately, the answer is no. Despite the success of kernelization, the basic

definition has an important drawback: it does not combine well with approximation
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algorithms. This is a serious problem since after all the ultimate goal of parame-

terized algorithms, or for that matter of any algorithmic paradigm, is to eventually

solve the given input instance. Thus, the application of a pre-processing algorithm

is always followed by an algorithm that finds a solution to the reduced instance. In

practice, even after applying a pre-processing procedure, the reduced instance may

not be small enough to be solved to optimality within a reasonable time bound.

In these cases one gives up on optimality and resorts to approximation algorithms

(or heuristics) instead. Thus it is crucial that the solution obtained by an approx-

imation algorithm when run on the reduced instance provides a good solution to

the original instance, or at least some meaningful information about the original

instance.

The main reason that the existing notion of kernelization does not combine well

with approximation algorithms is that the definition of a kernel is deeply rooted in

decision problems, while approximation algorithms are optimization problems. This

led to the new definition of lossy kernels, coined by Lokshtanov et al. (2017) which

extends the notion of kernelization to optimization problems. The main object

here is a definition of α-approximate kernels. We do not give the formal definition

here, but, loosely speaking, an α-approximate kernel of size g(k) is a polynomial

time algorithm that given an instance (I, k) outputs an instance (I ′, k′) such that

|I ′| + k′ ≤ g(k) and any c-approximate solution s′ to the instance (I ′, k′) can be

turned in polynomial time into a (c · α)-approximate solution s to the original

instance (I, k).

We again exemplify the idea of α-approximate kernels by giving a suitable algo-

rithm for Partial Vertex Cover. Here, we will rely on the observation that the

first case in the proof of Theorem 1.16) is handled in polynomial time. We formally

show this in the next theorem.

Theorem 1.17 Partial Vertex Cover admits α-approximate kernels for every

α > 1.

Proof We give an α-approximate kernelization algorithm for the problem for every

α > 1. Let ε = 1− 1
α and β = 1

ε . Let (G, k) be the input instance. Let v1, v2, . . . , vn
be the vertices of G in the non-increasing order of degree, i.e dG(vi) ≥ dG(vj) for

all 1 ≥ i > j ≥ n. The kernelization algorithm has two cases based on the degree

of v1.

Case 1: dG(v1) ≥ β
(
k
2

)
. In this case S = {v1, . . . , vk} is a α-approximate solution.

The number of edges incident to S is at least (
∑k
i=1 dG(vi)) −

(
k
2

)
, because at

most
(
k
2

)
edges have both end points in S and they are counted twice in the sum

(
∑k
i=1 dG(vi)). The value of the optimum solution is at most

∑k
i=1 dG(vi). As in

Theorem 1.16, we can show that

(
∑k
i=1 dG(vi))−

(
k
2

)∑k
i=1 dG(vi)

≥ 1−
(
k
2

)
dG(v1)

≥ 1− 1

β
=

1

α
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The above inequality implies that S is an α-approximate solution. So the kernel-

ization algorithm outputs a trivial instance (∅, 0) in this case.

Case 2: dG(v1) < β
(
k
2

)
. Let V ′ = {v1, v2, . . . , vkdβ(k

2)e+1}. In this case the algorithm

outputs (G′, k), where G′ = G[NG[V ′]] (the subgraph of G induced by the vertices

of V ′ and all of their neighbors). Let OPT (G, k) denote the optimum value of the

instance. We first clam that OPT (G′, k) = OPT (G, k). Since G′ is a subgraph

of G, OPT (G′, k) ≤ OPT (G, k). Now it is enough to show that OPT (G′, k) ≥
OPT (G, k). Towards that, we prove that there is an optimum solution that contains

only vertices from the set V ′. Suppose not, then consider the solution S which is

lexicographically smallest in the ordered list v1, . . . vn. The set S contains at most

k− 1 vertices from V ′ and at least one from V \V ′. Since the degree of each vertex

in G is at most dβ
(
k
2

)
e − 1 and |S| ≤ k, we have that |NG[S]| ≤ kdβ

(
k
2

)
e. This

implies that there exists a vertex v ∈ V ′ such that v /∈ NG[S]. Hence by including

the vertex v and removing a vertex from S \ V ′, we can cover at least as many

edges as S can cover. This contradicts our assumption that S is lexicographically

smallest. Since G′ is a subgraph of G any solution of G′ is also a solution of G.

Thus we have shown that OPT (G′, k) = OPT (G, k). So the algorithm returns the

instance (G′, k) as the reduced instance. Since G′ is a subgraph of G, in this case,

the solution lifting algorithm takes a solution S′ of (G′, k) as input and outputs S′

as a solution of (G, k). Since OPT (G′, k) = OPT (G, k), it follows that

The number of vertices in the reduced instance is O(k · d 1
ε

(
k
2

)
e2) = O(k5). The

running time of the algorithm is polynomial in the size of G.

It is also important to note here that as for classical kernelization (Section 1.5.3),

there are tools to rule out lossy kernelization (refer to Lokshtanov et al. (2017) for

further details).

1.6.2 FPT in P

While initially the main focus of parameterized complexity was on NP-complete

problems, the idea of going beyond the worst case analysis by exploiting the struc-

tural properties of the input instance is applicable to problems in P too.

Several such algorithms can be found in the literature. For example, by the result

of Fomin et al. (2018a), a maximum matching in a graph of treewidth at most k can

be constructed in time O(k4 · n log2 n), while the best known worst-case running

time on general graphs is O(nω), which is due to Mucha and Sankowski (2004).

Abboud et al. (2016) proved that the Diameter problem can be solved in time

2O(k log k) ·n1+o(1) on graphs of treewidth k, but achieving running time of the form

2o(k) · n2−ε for any ε > 0 would already contradict the Strong Exponential Time

Hypothesis (SETH).
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1.6.3 Streaming Algorithms

The ideas used in parameterized algorithms have reached areas beyond classical al-

gorithmic settings including streaming, distributed and dynamic algorithms. In this

section we restrict our discussions to graph streaming algorithms. In the streaming

model, a graph is presented as a sequence of edges. In the simplest version of this

model, we have a stream of edge arrivals (where each edge is added to the graph

seen so far), or a mixture of arrivals and departures of edges. In either case, the

basic objective is to quickly answer some basic questions over the current state of

the graph, such as finding a (maximal) matching over the current graph edges, or

finding a (minimum) vertex cover, while storing only a small amount of informa-

tion. There is a vast literature on streaming algorithms and this survey is not the

right place to cover it. Thus, we directly jump to a scenario that is handled using

ideas from parameterized algorithms.

In parameterized streaming algorithms we seek algorithms whose space and time

complexities are bounded with respect to k. Notice that this implies that for certain

ranges of k, the space and time usage of the algorithm will be sublinear in the size of

the input. Two basic problems that have been studied with respect to parameterized

streaming algorithms are Vertex Cover and Maximum Matching.

There are several ways to formalize our objective with respect to Vertex Cover

and Maximum Matching when placed in the streaming model, and in the liter-

ature several natural models have been considered. The basic case is when the

input consists of a sequence of edge arrivals only, for which one seeks a parameter-

ized streaming algorithm (PSA). More challenging problems arise when the input

stream is dynamic, and contains both deletions and insertions of edges. In this

case one seeks a dynamic parameterized streaming algorithm (DPSA). Notice that

when an edge in the current matching is deleted, we sometimes need substantial

work to repair the solution, and have to ensure that the algorithm has enough in-

formation to do so, while keeping only a bounded amount of working space. If we

are promised that at every timestamp there is a solution of cost k, then we seek a

promise dynamic parameterized streaming algorithm (PDPSA). These notions were

formalized in Chitnis et al. (2015, 2016), and several results for Vertex Cover

and Maximum Matching were presented there.

It is an interesting exercise to adapt the O(k2) kernel for Vertex Cover into

a PSA with space complexity O(k2) and time complexity 2kkO(1) (at any point in

the stream, check if the vertex cover is at most k or not). However, other results

require a different set of tools and use randomization crucially. There is also a way

to show lower bounds on the space used by these algorithms via reduction from

some hard problems in communication complexity. For all these we refer to Chitnis

et al. (2015, 2016) and Fafianie and Kratsch (2014).
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1.6.4 Application Domains

Parameterized complexity focused largely on problems on graphs in the first two

decades of its existence. However, in the last decade, problems arising in differ-

ent domains such as computational geometry, bioinformatics, machine learning and

computational social choice theory have been considered through the lens of pa-

rameterized complexity. A plethora of parameters such as the dimension of the

input, solution size, the number of input strings, patterns in people’s preferences,

number of candidates, and number of voters have been used as parameters in these

domains. These led to numerous results in these areas and several parametrized

algorithms or non-existence of such algorithms have been proved. We refer to the

following surveys for these [Faliszewski and Niedermeier (2016); Bredereck et al.

(2014); Panolan et al. (2019); Giannopoulos et al. (2008)].

1.7 The Big Picture

Parameterized algorithms and complexity has been a spectacular success from a

theoretical perspective. From the more applied perspective, only very recently, the

PACE challenge kickstarted research into practical implementations for basic FPT

problems like Vertex Cover, Treewidth, or Steiner Tree. (See Dell et al.

(2017, 2018).) These experimental contests have shown the following:

• Parameterized Complexity seems particularly useful/efficient for problems arising

in graph theory and networks.

• PACE implementation challenge has shown that to improve the practical perfor-

mance of parameterized algorithm one needs to fine-tune parameters and apply

“time saving optimization” tricks on top of it. Also, the algorithm that has the

“best running time” (this is not unique as the running time is governed by two pa-

rameters and thus we can only talk about Pareto-optimality) may not be the best

performing algorithm in practice. Thus, in practice we should use parameterized

algorithms as a skeleton and optimize other parameters for performance.

• There is huge discrepancy between the running time predictions derived from

theoretical analysis of parameterized algorithms (which is worst case and hence

overly pessimistic) and the performance of algorithms in practice.

Every success is accompanied with its own list of failures. Unfortunately, there is

lack of study of weighted discrete optimization problems, or problems over continu-

ous domains. For example problems arising in the field of computational geometry

or mathematical programming. One reason for this is that with respect to solution

size, which has become go to parametrization in the field, the problem generally

turns out to be intractable. Similarly, for problems where input consists of vec-

tors in Rd, most problems turn out to be W-hard with respect to dimension d.
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Thus, for such problems a user should either not use parameterized complexity as

a tool to design an algorithm or should avoid using so called classical parameters.

Finally, choice of a parameter is an art. One should not restrict oneself with just

one parameter for the same problem. It is possible that different parameters are

“small” for different families of instances of the same problem and hence together

they represent wider tractability of the problem. One thing that the field must do

is to interact with other fields and develop tools based on this synergy. For exam-

ple, combining approximation algorithms and parameterized complexity has yielded

several positive results (of course, as well as some exciting negative results).

1.8 Notes

The history of parameterized algorithms can be traced back to 1970s and 80s,

including the algorithm of Dreyfus and Wagner (1971) for Steiner Tree, the

algorithm of Farber et al. (1986) for Achromatic number and the celebrated

result of Robertson and Seymour (1995) on Disjoint Paths. The foundations

of parameterized complexity, the toolkit for analyzing parameterized algorithms,

were laid in 1990s in the series of papers Abrahamson et al. (1995); Downey and

Fellows (1992, 1995a,b). The classic reference on parameterized complexity is the

book of Downey and Fellows (1999). The new edition of this book Downey and

Fellows (2013) is a comprehensive overview of the state of the art in many areas

of parameterized complexity. The book of Flum and Grohe (2006) is an extensive

introduction to the area with a strong emphasis on the complexity viewpoint. An

introduction to basic algorithmic techniques in parameterized complexity up to

2006 is given in the book of Niedermeier (2006). The recent textbook of Cygan

et al. (2015) provides a coherent account of the most recent tools and techniques in

the area. The book of Fomin et al. (2019) gives a detailed overview of algorithmic

and complexity techniques used in kernelization.

The reference point for branching algorithms is the work of Davis and Putnam

(1960) (see also Davis et al. (1962)) on the design and analysis of algorithms to solve

some satisfiability problems. Branching algorithms and techniques for their analysis

are discussed in detail in the book of Fomin and Kratsch (2010). A branching

algorithm with running time O(2k(n+m)) for Vertex Cover appears in the book

of Mehlhorn (1984). After a long sequence of improvements, the current champion

algorithm runs in time O(1.2738k + kn) and is due to Chen et al. (2010). The

method of color coding was introduced in the seminal paper of Alon et al. (1995).

ETH and SETH were first introduced in the work of Impagliazzo and Paturi

(2001), which built upon earlier work of Impagliazzo et al. (2001).

Theorem 1.10 on equivalence of kernelization and fixed-parameter tractability

is due to Cai et al. (1997). The reduction rules for Vertex Cover discussed in

this chapter are attributed to Buss in Buss and Goldsmith (1993) and are often
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referred to as Buss kernelization in the literature. A more refined set of reduction

rules for Vertex Cover was introduced in Balasubramanian et al. (1998). The

kernelization algorithm for matrix rigidity is from Fomin et al. (2018b). We refer

to the following books an [Downey and Fellows (1999, 2013); Flum and Grohe

(2006); Niedermeier (2006); Cygan et al. (2015); Fomin et al. (2019); Fomin and

Kratsch (2010)] for detailed overview of all the techniques presented in this survey

and more. We also refer the readers to the book of van Rooij et al. (2019) for

an application to questions of intractability, with respect to both classical and

parameterized complexity analysis, in cognitive science.
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Exercises

1.1 Give an algorithm for Vertex Cover that runs in time 1.4656k · nO(1).

1.2 In the Cluster Editing problem, we are given a graph G and an integer

k, and the objective is to check whether we can turn G into a cluster graph

(a disjoint union of cliques) by making at most k edge editions, where each

edition is adding or deleting one edge. Obtain a 3knO(1)-time algorithm for

Cluster Editing.

1.3 Let F be a set of graphs. We say that a graph G is F-free if G does not

contain any induced subgraph isomorphic to a graph in F ; in this context the

elements of F are sometimes called forbidden induced subgraphs. For a fixed

set F , consider a problem where, given a graph G and an integer k, we ask to

turn G into a F-free graph by:
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(vertex deletion) deleting at most k vertices;

(edge deletion) deleting at most k edges;

(completion) adding at most k edges;

(edition) performing at most k editions, where every edition is adding or

deleting one edge.

Prove that, if F is finite, then for each of the four aforementioned problems

there exists a 2O(k)nO(1)-time FPT algorithm. (Note that the constants hid-

den in the O()-notation may depend on the set F .)

1.4 Prove that a random assignment ψ splits k sets with probability at least 1
2k

(see Section 1.2.1).

1.5 Show that Partial Vertex Cover is solvable in time 2O(t)nO(1), where t

is the number of covered edges.


