
Planar k-Path in Subexponential Time and
Polynomial Space

Daniel Lokshtanov1, Matthias Mnich2, and Saket Saurabh3

1 University of California, San Diego, USA, daniello@ii.uib.no
2 International Computer Science Institute, Berkeley, USA,

mmnich@icsi.berkeley.edu
3 The Institute of Mathematical Sciences, Chennai, India, saket@imsc.res.in

Abstract. In the k-Path problem we are given an n-vertex graph G to-
gether with an integer k and asked whether G contains a path of length k
as a subgraph. We give the first subexponential time, polynomial space
parameterized algorithm for k-Path on planar graphs, and more gen-
erally, on H-minor-free graphs. The running time of our algorithm is

O(2O(
√

k log2 k)nO(1)).

1 Introduction

In the k-Path problem we are given a n-vertex graph G and integer k and asked
whether G contains a path of length k as a subgraph. The problem is a gen-
eralization of the classical Hamiltonian Path problem, which is known to be
NP-complete [16] even when restricted to planar graphs [15]. On the other hand
k-Path is known to admit a subexponential time parameterized algorithm when
the input is restricted to planar, or more generally H-minor free graphs [4]. For
the case of k-Path a subexponential time parameterized algorithm means an
algorithm with running time 2o(k)nO(1). More generally, in parameterized com-
plexity problem instances come equipped with a parameter k and a problem is
said to be fixed parameter tractable (FPT) if there is an algorithm for the problem
that runs in time f(k)nO(1). The algorithm is said to be a subexponential time
parameterized algorithm if f(k) ≤ 2o(k). For an introduction to parameterized
algorithms and complexity see the textbooks [10, 11, 22].

In this paper we pose the following question. Does k-Path on planar graphs
admit a subexponential time parameterized algorithm which only uses space
polynomial in n? We give a positive answer to this question by presenting a poly-
nomial space, 2O(

√
k log2 k)nO(1) time algorithm for k-Path restricted to planar

graphs. Our algorithm easily generalizes to any family of graphs which exclude
a fixed graph H as a minor.

The fastest parameterized algorithm for k-Path on planar graphs runs in
2O(
√

k)nO(1) time and uses 2O(
√

k) log n + nO(1) space [9]. The algorithm we
present uses polynomial space, but is slower by a factor of O(log2 k) in the
exponent of 2. Is the trade-off worth it? In general, does it make sense to settle
for slightly slower algorithms if used space is reduced drastically? We believe

that such a trade-off is reasonable because algorithms that use exponential time
and space tend to run out of space long before they run out of time. In the survey
paper on exponential time algorithms, Woeginger [24] states that “algorithms
with exponential space complexities are absolutely useless for real life applica-
tions”. This line of reasoning has opened up an interesting research direction;
for which problems can we obtain space-efficient algorithms that are (almost)
as time-efficient as the fastest ones? Some progress has been made – Fomin,
Grandoni and Kratsch [12] gave a 6knO(log k) time, polynomial space algorithm
for the Steiner Tree problem and showed how to use it to obtain a O(1.60n)
time polynomial space algorithm. In a breakthrough paper, Nederlof [21] gave
a 2knO(1) time polynomial space algorithm for Steiner Tree. Subsequently,
Lokshtanov and Nederlof [20] devised general sufficient conditions for turning
exponential space dynamic programming algorithms into polynomial space al-
gorithms based on algebraic transforms.

It is natural to ask which problems admit polynomial space FPT algorithms.
While this might look like a whole new research program, the question has a
surprising answer; any problem for which a polynomial space FPT algorithm is
remotely feasible has one. In particular, a necessary condition for a problem to
have a polynomial space FPT algorithm is to have an FPT algorithm. Another
necessary condition is that the problem is solvable in polynomial space and time
ng(k) for some function g (that is, a polynomial space XP algorithm for the
problem). A well-known trick from parameterized complexity shows that these
two conditions are not only necessary, but also sufficient.

Theorem 1. If a parameterized problem Π has an algorithm A which uses
f(k)nc time and space, and an algorithm B which uses ng(k) time and poly-
nomial space, then Π can be solved in nc+1 + f(k)g(k) time and polynomial
space.

Proof. If n ≥ f(k) then run algorithm A, this takes polynomial time and space.
If n ≤ f(k) then run algorithm B, this takes polynomial space and f(k)g(k)

time. ut

Because of Theorem 1 the right question to ask is not which problems ad-
mit polynomial space FPT algorithms, but rather which problems admit fast
polynomial space FPT algorithms. Obvious candidates for scrutiny are prob-
lems for which the fastest parameterized algorithms require exponential space.
Graph problems restricted to planar and H-minor free graphs have this prop-
erty – the Bidimensionality theory of Demaine et al. [4] gives 2O(

√
k)nO(1) or

2O(
√

k log k)nO(1) time algorithms for a multitude of graph problems on H-minor
free graphs. However, these algorithms crucially depend on exponential space
dynamic programming algorithms on graphs of bounded treewidth. In partic-
ular, the crux of all bidimiensionality based algorithms is to first bound the
treewidth of the input graph by t = O(

√
k), and then solve the problems in

2O(t)n (or tO(t)n) time and 2O(t) log n (or tO(t) log n) space. We refer to follow-
ing surveys for further details on the the Bidimensionality theory and its several
applications [5, 8].

2

Interestingly, using another simple trick we can make most of the algorithms
for bidimensional problems on H-minor free graphs run in polynomial space, at
the cost of a O(log k) factor in the exponent of the running time. The trick has
two components, the first is that (almost) all of the 2O(t)n time and 2O(t log t)n
time dynamic programming algorithms on graphs of treewidth t can be turned
into polynomial space divide and conquer algorithms with running time nO(t)

and nO(t log t). The second component is that most problems for which the Bidi-
mensionality theory of Demaine et al. [4] gives fast algorithms admit linear
kernels on planar and H-minor-free graphs [3, 14]. A linear kernel for a parame-
terized graph problem is a polynomial time pre-processing algorithm that takes
instances (G, k) and transforms them into equivalent instances (G′, k′) of the
same problem such that k′ = O(k) and V (G′) = O(k). Now the subexponential
time algorithms of Demaine et al. [4] can be made to run in polynomial space as
follows. Run the pre-processing algorithm first, to ensure that the number of ver-
tices in the input graph is at most O(k). Bound the treewidth by t = O(

√
k) as

before, but replace the 2O(t)n (or tO(t)n) time algorithms by nO(t) (or nO(t log t))
time polynomial space algorithms. Since n = O(k) this second step uses only
2O(
√

k log k) (or 2O(
√

k log2 k)) time respectively. We remark that for many of these
problems one can even remove the log k overhead in the exponent by using a
Lipton-Tarjan separator approach [18, 19] instead of the polynomial space algo-
rithms for graphs of bounded treewidth after obtaining the linear kernel for the
problem, as done in [1].

In the above argument it was crucial that the problem considered admits a
linear kernel. What about the problems that do not? Notably, the k-Path prob-
lem does have a subexponential time parameterized algorithm on H-minor-free
graphs. At the same time k-Path does not admit a linear (or polynomial size)
kernel unless the polynomial hierarchy collapses to the third level [2], even when
the input is restricted to planar graphs. Thus, with respect to parameterized
polynomial space, subexponential time algorithms for planar graph problems,
k-Path stands out as a blank spot in an almost chartered map. Our polynomial
space, 2O(

√
k log2 k)nO(1) time algorithm for k-Path on H-minor free graphs fills

this gap. Our approach for obtaining polynomial space subexponential time al-
gorithm for k-Path seems applicable to other problems also that do not admit
polynomial kernels or not known to admit a polynomial kernel.

2 Definitions and Notations

In this section we give various definitions which we make use of in the pa-
per. Let G be a graph then we use V (G) and E(G) to denote its vertex set
and the edge set respectively. A graph G′ is a subgraph of G if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). The subgraphG′ is called an induced subgraph ofG if E(G′) =
{uv ∈ E(G) | u, v ∈ V (G′)}, in this case, G′ is also called the subgraph induced
by V ′ and denoted with G[V ′]. By N(u) we denote the (open) neighborhood of
u, that is, the set of all vertices adjacent to u. The closed neighbourhood of u is

3

N [u] = N(u)∪{u}. Similarly, for a subset D ⊆ V , we define N [D] =
⋃

v∈D N [v]
and N(D) = N [D] \D.

Parameterized algorithms and Treewidth. A parameterized problem Π is
a subset of Γ ∗ × N for some finite alphabet Γ . An instance of a parameterized
problem consists of (x, k), where k is called the parameter. A central notion in
parameterized complexity is fixed parameter tractability (FPT) which means, for
a given instance (x, k), solvability in time f(k) · p(|x|), where f is an arbitrary
function of k and p is a polynomial in the input size.

A tree decomposition of a graph G is a pair (T,B) where T is a tree and
B = {Xi | i ∈ V (T)} is a collection of subsets of V (G) such that

1.
⋃

i∈V (T)Xi = V (G),
2. for each edge xy ∈ E, {x, y} ⊆ Xi for some i ∈ V (T);
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of the tree decomposition is maxi∈VT |Xi|−1. The treewidth of a graph
G is the minimum width over all tree decompositions of G. A tree decomposition
(T,B) can be converted in linear time [17] into a nice tree decomposition of the
same width: here, the tree T is rooted and binary, and its nodes are of four types:

– Leaf nodes h are leaves of T and have |Xh| = 1.
– Introduce nodes h have one child i with Xh = Xi ∪ {v} for some vertex
v ∈ V .

– Forget nodes h have one child i with Xh = Xi \ {v} for some vertex v ∈ V .
– Join nodes h have two children i, j with Xh = Xi = Xj .

We denote by tw(G) the treewidth of the graph G.

3 Polynomial Space Algorithm for the k-Path problem

In this section we prove our main result, which is a polynomial space subex-
ponential time algorithm for the k-Path problem. For a set W ⊆ V (G) a set
S ⊆ V (G) is a balanced separator for W if V (G) can be partitioned into L,
S and R such that there is no edge from L to R and |W ∩ L| ≤ 2|W\S|

3 and
|W ∩ R| ≤ 2|W\S|

3 . In other words, W is evenly distributed between L and R.
It is well-known that in any tree T , for every set W ⊆ V (G) there is a balanced
separator S for W with |S| = 1. This result has been generalized to graphs
of bounded treewidth [23][11, Lemma 11.16] - in particular in a graph G of
treewidth at most t, for any set W there is a balanced separator S of size at
most t+ 1. Lemma 1 is a subtle strengthening of this fact and states that given
any tree-decomposition of G of width at most t the separator S can be chosen as
one of the bags of the decomposition. In fact, the proofs given in [23][11, Lemma
11.16] already imply Lemma 1, we include a proof here for completeness.

For a graph G and a nice tree-decomposition (T,B) of G and node v ∈ V (T)
let Xv ∈ B be the corresponding bag. Let Tv be the subtree of T rooted at v
and let A(v) = (

⋃
u∈V (Tv)

Xu) \Xv.

4

Lemma 1. Let G be a graph, let (T,B) be a nice tree-decomposition of G of
width t and let W ⊆ V be a vertex set of size at least 3. Then there exists a
vertex v such that Xv is a balanced separator for W and in the corresponding
partition V (G) = L ∪Xv ∪R, L = A(v).

Proof. Recall that T is a rooted tree with root r, and that each node of T
has at most two children. Observe that |A(r) ∩ W | = |W \ Xr| ≥ |W\Xr|

3 .
Choose a lowermost node v such that |A(v) ∩ W | ≥ |W\Xv|

3 . We prove that
|A(v) ∩W | ≤ 2|W\Xv|

3 . If v is an introduce node or a forget node with child v′

then |A(v′) ∩ W | ≤ |W\Xv′ |
3 and hence |A(v) ∩ W | ≤ 2|W\Xv|

3 . Here we used
that |W | ≥ 3 and that |Xv| = |Xv′ | + 1 if v is an introduce node, and that
|A(v)| = |A(v′)|+ 1 if v is a forget node. If v is a join node with children u and
w then Xv = Xu = Xw and A(v) = A(u) ∪ A(w). Finally |A(u) ∩W | ≤ |W\Xu|

3

and |A(w)∩W | ≤ |W\Xw|
3 and hence |A(v)∩W | ≤ 2|W\Xv|

3 . This concludes the
proof. ut

A key component of our algorithm is a new divide and conquer algorithm for
the k-Path problem on graphs of bounded treewidth.

Lemma 2. There is an (ntt)O(log k) time and polynomial space algorithm for
k-Path if a nice tree-decomposition (T,B) of G of width t is given as input.

Proof. We describe a divide and conquer algorithm for the problem. In order to
handle the instances that are generated in the recursive steps of the algorithm
we will solve a slightly more general problem. In the generalized k-Path problem
(k-GP) we are given a graph G, integer k, vertex set Vp and an edge set Ep such
that every edge in Ep has both endpoints in Vp. The task is to determine whether
there is a path P in G such that Vp ⊆ V (P), Ep ⊆ E(P) and |V (P)\Vp| = k. One
can think of the sets Vp and Ep as vertices and edges which are pre-determined
to be in the path P . We are now ready to give an algorithm for k-GP in graphs
of bounded tree-width with running time O((nk2(t + 1)!3t+2)log k+O(1) · (Vp +
t log k)!). Suppose that there is a path P such that Vp ⊆ V (P), Ep ⊆ E(P) and
|V (P) \ Vp| = k. Let W = V (P) \ Vp, with |W | = k. If k = 0 the algorithm tries
all the |Vp|! possible orderings of Vp and checks whether any of the orderings is a
path that contains all edges of Ep. If k < 3 the algorithm tries all possible ways
to extend Vp by k vertices, and then proceeds to the case when k = 0. We now
handle the case that k ≥ 3.

By Lemma 1 there exists a node v ∈ V (T) such that Xv ∈ B is a balanced
separator for W . The algorithm guesses the correct vertex v by looping over all
the n possible bags in the decomposition. Furthermore, by Lemma 1 there is a
partition of V (G) into L∪Xv ∪R such that L = A(v) and R = V (G)\ (Xv ∪R),
there is no edge from L to R, |W ∩ L| ≤ 2|W\Xv|

3 and |W ∩ R| ≤ 2|W\Xv|
3 . The

algorithm computes L and R from v. Now the algorithm guesses V (P)∩Xv = X
by trying all the 2t+1 possible subsets of Xv.

The path P visits the vertices of X in some order, say x1, x2, . . . xq. The
algorithm guesses this order by trying all the (at most) (t+ 1)! possible permu-
tations of X. Now, for each i < q the subpath of P from xi to xi+1 either uses

5

the edge xixi+1, or has all its inner vertices in L, or has all its inner vertices in
R. By trying each of the three possibilities for each i < q the algorithm correctly
guesses which of the possibilities it is. The algorithm also guesses whether the
subpath of P attached to x1 lies in its entirety in L ∩X or in R ∩X. The same
guess is performed for the subpath of P attached to xq. Finally the algorithm
guesses kL = |(V (P) \ Vp) ∩ L| and kR = |(V (P) \ Vp) ∩R|.

Using all the guesses the algorithm constructs two instances GL, V
L
p , E

L
p , kL

and GR, V
R
p , ER

p , L, kR as follows. We set V L
p = (Vp ∩ L) ∪ X and EL

p = Ep ∩
E(G[L∪X]). To construct GL we start with G[L∪X] and remove all the edges
with both endpoints in X. For every pair xi, xi+1 such that we have guessed
that the subpath of P from xi to xi+1 uses the edge xixi+1 or has all its internal
vertices in R, we add the edge xixi+1 to GL and to EL

p . Finally, if we have
guessed that the subpath of P from the start point until x1 lies entirely in X∪R
we add a vertex pstart to GL and to V L

p , make pstart adjacent to x1 and add
p1pstart to EL

p . Similarly if we have guessed that the subpath of P from xq to
the end point of P lies entirely in X ∪ R we add a vertex pend to GL and to
V L

p , and add the edge xqpend to GL and to EL
p . The graph GR and set V R

p is
constructed symmetrically.

If the two instances GL, V
L
p , E

L
p , kL and GR, V

R
p , ER

p , kR are both “yes” in-
stances one can glue their solution paths together to form a solution path for
G,Vp, Ep, k. In particular every edge xixi+1 in GL will correspond either to an
edge xixi+1 in the solution paths of both GL, V

L
p , E

L
p , kL and GR, V

R
p , ER

p , kR,
or it can be replaced by a subpath of the solution path of GR, V

R
p , ER

p , kR. Edges
xixi+1 in GR are handled symmetrically. In the reverse direction for the correct
set of guesses the path P breaks up into solution paths to GL, V

L
p , E

L
p , kL and

GR, V
R
p , ER

p , kR respectively. On the side that contains pstart we add the edge
pstartx1 to the solution path, and on the side that contains pend we add the edge
xqpend.

Now we bound the running time of the algorithm. Observe that since we only
add edges between vertices in X ⊆ Xv and pendant vertices pstart and pend of
degree 1 attached to X, the treewidth of GL and GR is at most t. Let r = |Vp|,
and let T (k, r, n, t) be a function that upper bounds the running time of the
algorithm. The function T is bounded by the following recurrence.

T (k, r, n, t) ≤ n · (t+ 1)! · 3t · 2t+3 · k2 · 2T (k/2, r + t, n, t) when k ≥ 3

Here the factors in the recurrence reflect the number of possibilities for each
guess, except for the factor 2 in 2T (k/2, n, t) which reflects that GL and GR

are handled independently. Observe that n and t never increase throughout the
recurrence. When k < 3 we have that T (k, r, n, t) ≤ O(n3r!). Hence T (k, r, n, t)
can be bounded from above by

T (k, r, n, t) ≤ (nk2(t+ 1)!6t+3)log k · n3(t log k)! ≤ (ntt)O(log k).

The space requirement of the algorithm is clearly polynomial. This concludes
the proof. ut

6

We are now in position to give the main result of this section.

Theorem 2. For every fixed graph H, there is an algorithm for k-Path on H-
minor-free graphs running in time 2O(

√
k log2 k)nO(1) and using polynomial space.

Proof. We use the fact that for any H there exists a constant h such that in
any H-minor-free graph of treewidth at least hk there is a k-path of length at
least k2 [4]. Set t = h

√
k, then if tw(G) ≥ t then G contains a k-path. We

use the approximation algorithm of Diestel et al [6] to either compute a tree-
decomposition of G of width at most 3t/2, or to conclude that the treewidth
of G is at least t, which implies that G has a k-path. Diestel et al’s algorithm
uses polynomial space and 2O(t)nO(1) time. If we obtain a tree-decomposition
we proceed as follows. If n ≤ 2

√
k apply the algorithm from Lemma 2 to solve

the problem in time 2O(
√

k log2 k)nO(1) and using polynomial space. If, on the
other hand n ≥ 2

√
k the standard dynamic programming algorithm on graphs

of bounded treewidth that uses at most 2O(
√

k)nO(1) time and space [7], runs in
polynomial time and space. This concludes the proof. ut

We remark that the algorithm presented in Theorem 2 for k-Path can be made
to run in time 2O(

√
k log k)nO(1) and space polynomial in n on planar graphs using

sphere cut decompositions introduced by Dorn et al. [9].

4 Conclusion and Discussion

We gave a subexponential time, polynomial space parameterized algorithm for
the k-Path problem on H-minor-free graphs. A key component of our algorithm
is a new (n ·tt)O(log k) time and polynomial space algorithm for k-Path in graphs
of treewidth at most t. In general, it is possible to design similar (n ·2t)O(log k) or
(n·tt)O(log k) time and polynomial space algorithms for many problems where one
is looking for a specific vertex set of size k in a graph of treewidth t. A concrete
example where this is useful is the k-Partial Vertex Cover problem. Here
we are given a graph G, positive integers k and t and we look for a subset
S ⊆ V (G) such that |S| ≤ k and the number of edges incident to S is at least t.
This problem is not known to admit a polynomial kernel, even on planar graphs.
However using the approach described in this paper for k-Path and combining
it with an algorithm of Fomin et al. [13] that in polynomial time either finds
a solution for an instance (G, k, t) or obtains an equivalent instance (G′, k, t)
such that tw(G′) ≤ O(

√
k), one can give a subexponential time, polynomial

space parameterized algorithm for k-Partial Vertex Cover on apex-minor-
free graphs.

We conclude with two open problems. First, is there a polynomial space
parameterized algorithm for the k-Path problem on planar graphs with running
time 2O(

√
k)nO(1)? Second, by combining the well known 2tnO(1) time and space

algorithm for Independent Set in graphs of treewidth t, and the folklore nO(t)

time, polynomial space algorithm, Theorem 1 yields a 2O(t2) + n2 time and

7

polynomial space algorithm for Independent Set. Is there a polynomial space
algorithm for Independent Set on graphs of treewidth t with running time
2t2−εnO(1) for some ε > 0?.

References

1. J. Alber, H. Fernau, and R. Niedermeier. Graph separators: a parameterized view.
J. Comput. System Sci., 67(4):808–832, 2003. Special issue on parameterized com-
putation and complexity.

2. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems
without polynomial kernels. J. Comput. System Sci., 75(8):423–434, 2009.

3. H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and
D. M. Thilikos. (Meta) Kernelization. In Proc. 50th Annual IEEE Symposium on
Foundations of Computer Science, pages 629–638. IEEE Computer Society, 2009.

4. E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J.
ACM, 52(6):866–893 (electronic), 2005.

5. E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic
applications. Comput. J., 51(3):292–302, 2008.

6. R. Diestel, T. R. Jensen, K. Y. Gorbunov, and C. Thomassen. Highly connected
sets and the excluded grid theorem. J. Comb. Theory, Ser. B, 75(1):61–73, 1999.

7. F. Dorn, F. V. Fomin, and D. M. Thilikos. Catalan structures and dynamic pro-
gramming in H-minor-free graphs. In Proc. 19th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 631–640. ACM.

8. F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algo-
rithms. Computer Science Review, 2(1):29–39, 2008.

9. F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algo-
rithms on planar graphs: exploiting sphere cut branch decompositions. In Algo-
rithms, volume 3669 of Lecture Notes in Comput. Sci., pages 95–106. Springer.

10. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer-Verlag.

11. J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag.

12. F. V. Fomin, F. Grandoni, and D. Kratsch. Faster steiner tree computation in
polynomial-space. In ESA, volume 5193 of Lecture Notes in Computer Science,
pages 430–441, 2008.

13. F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Subexponential algo-
rithms for partial cover problems. In IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 4 of Leibniz In-
ternational Proc. Informatics, pages 193–201. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2009.

14. F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality
and kernels. In Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 503–510. Society for Industrial and Applied Mathematics, 2010.

15. M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar hamiltonian circuit
problem is np-complete. SIAM J. Comput., 5(4):704–714, 1976.

16. R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, pages 85–103, 1972.

8

17. T. Kloks. Treewidth. Computations and Approximations., volume 842 of Lecture
Notes in Comput. Sci. Springer, 1994.

18. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J.
Appl. Math., 36(2):177–189, 1979.

19. R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM
J. Comput., 9(3):615–627, 1980.

20. D. Lokshtanov and J. Nederlof. Saving space by algebraization. In STOC, pages
321–330, 2010.

21. J. Nederlof. Fast polynomial-space algorithms using möbius inversion: Improving
on steiner tree and related problems. In ICALP (1), volume 5555 of Lecture Notes
in Computer Science, pages 713–725, 2009.

22. R. Niedermeier. Invitation to Fixed-parameter Algorithms, volume 31 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press, 2006.

23. B. A. Reed. Tree width and tangles: a new connectivity measure and some ap-
plications. In Surveys in Combinatorics, 1997 (London), volume 241 of London
Math. Soc. Lecture Note Ser., pages 87–162. Cambridge Univ. Press, 1997.

24. G. J. Woeginger. Space and time complexity of exact algorithms: Some open
problems. In Parameterized and Exact Computation, volume 3162 of Lecture Notes
in Comput. Sci., pages 281–290. Springer, 2004.

9

