
39

Representative Families of Product Families

FEDOR V. FOMIN and DANIEL LOKSHTANOV, University of Bergen, Norway
FAHAD PANOLAN, �e Institute of Mathematical Sciences, HBNI, India
SAKET SAURABH, �e Institute of Mathematical Sciences, HBNI, India and University of Bergen, Norway

A subfamily F ′ of a set family F is said to q-represent F if for every A ∈ F and B of size q such that
A ∩ B = ∅ there exists a set A′ ∈ F ′ such that A′ ∩ B = ∅. Recently, we provided an algorithm that for a
given family F of sets of size p together with an integer q, e�ciently computes a q-representative family F ′
of F of size approximately

(p+q
p

)
. In this paper, we consider the e�cient computation of q-representative

families for product families F . A family F is a product family if there exist families A and B such that
F = {A ∪ B : A ∈ A,B ∈ B,A ∩ B = ∅}. Our main technical contribution is an algorithm which given A,
B and q computes a q-representative family F ′ of F . �e running time of our algorithm is sublinear in |F |
for many choices of A, B and q which occur naturally in several dynamic programming algorithms. We
also give an algorithm for the computation of q-representative families for product families F in the more
general se�ing where q-representation also involves independence in a matroid in addition to disjointness.
�is algorithm considerably outperforms the naive approach where one �rst computes F from A and B, and
then computes the q-representative family F ′ from F .

We give two applications of our new algorithms for computing q-representative families for product families.
�e �rst is a 3.8408knO (1) deterministic algorithm for the Multilinear Monomial Detection (k-MlD)
problem. �e second is a signi�cant improvement of deterministic dynamic programming algorithms for
“connectivity problems” on graphs of bounded treewidth.

CCS Concepts: •�eory of computation →Fixed parameter tractability;

Additional Key Words and Phrases: matroids, representative families, parameterized algorithms, multi-linear
monomial detection, tree-width bounded graphs

ACM Reference format:
Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2010. Representative Families of
Product Families. ACM Trans. Web 9, 4, Article 39 (March 2010), 29 pages.
DOI: 0000001.0000001

1 INTRODUCTION
Let M = (E,I) be a matroid and let S = {S1, . . . , St } be a family of subsets of E of size p. A
subfamily Ŝ ⊆ S is q-representative for S if for every set Y ⊆ E of size at most q, if there is a set
X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I.

Preliminary version of this paper appeared in the proceedings of ESA 2014. �is work is supported by Rigorous �eory of
Preprocessing, ERC Advanced Investigator Grant 267959 and Parameterized Approximation, ERC Starting Grant 306992.
Author’s addresses: Fedor V. Fomin, Daniel Lokshtanov, and Fahad Panolan, Department of Informatics, University of
Bergen, 5020 Bergen, Norway; Saket Saurabh, �eoretical Computer Science, �e Institute of Mathematical Sciences, HBNI,
Chennai, 600113, India.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2009 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1559-1131/2010/3-ART39 $15.00
DOI: 0000001.0000001

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:2 Fomin et al.

In other words, if a set Y of size at most q can be extended to an independent set by adding a subset
from S, then it also can be extended to an independent set by adding a subset from Ŝ as well. �us
for certain applications the family Ŝ contains the “essential” information about the whole family S
and independent sets of M .

�e crucial property of representative families used in combinatorics and algorithms, see e.g.
[15, Section 9.2.2] and [28, 29], is that for certain matroids the size of a q-representative family
can be signi�cantly smaller that the size of S and that such a family can be computed e�ciently.
By the classic result of Lovász [22], for linear matroids, i.e. matroids representable over a �nite
�eld, there exists a representative family Ŝ ⊆qrep S with at most

(
p+q
p

)
sets. However, it is a

very non-trivial task of constructing such a representative family e�ciently. Monien in [25]
provided an algorithm computing a q-representative family of size at most ∑q

i=0 p
i in time O (pq ·∑q

i=0 p
i · t) for set families, or equivalently for uniform matroids. Marx [23] gave an algorithm,

also for uniform matroids, for �nding a q-representative family of size at most
(
p+q
p

)
in time

O (pq · t2). For linear matroids, Marx in [24] has shown how Lovász’s proof can be transformed
into an algorithm computing a q-representative family of size at most

(
p+q
p

)
with running time

2O (p log(p+q)) ·
(
p+q
p

)O (1)
(| |AM | |t)

O (1) , where | |AM | | is the size of the input representation matrix of
the matroid. Recently, we have shown in [10] how to compute a q-representative family with at
most

(
p+q
p

)
sets in O

((
p+q
p

)
tpω + t

(
p+q
q

)ω−1)
operations over the �eld representing the matroid.

Here, ω < 2.373 is the matrix multiplication exponent [13, 31]. For the special case of uniform
matroids on n elements, we gave a faster algorithm computing a representative family in time
O ((

p+q
q)q · 2o (p+q) · t · logn). �e e�cient computations of representative families led to fast

deterministic parameterized algorithms for k-Path, k-Tree, and more generally, for k-Subgraph
Isomorphism, where the k-vertex pa�ern graph is of constant treewidth in [10].

All currently known algorithms that use fast computation of representative families as a sub-
routine are based on dynamic programming. It is therefore very tempting to ask whether the
computation of representative families can be faster for families that arise naturally in dynamic pro-
grams rather than for general families. A class of families which o�en arises in dynamic programs
is the class of product families; a family F is the product ofA and B if F = A ◦B = {A∪ B : A ∈
A,B ∈ B∧A∩B = ∅}. Product families naturally appear in dynamic programs where sets represent
partial solutions and two partial solutions can be combined if they are disjoint. For an example, in
the k-Path problem partial solutions are vertex sets of paths starting at a particular root vertex v ,
and two such paths may be combined to a longer path if and only if they are disjoint (except for
overlapping at v). Many other examples exist—essentially product families can be thought of as
a subset convolution [2, 3], and the wide applicability of the fast subset convolution technique of
Bjorklund et al [4] is largely due to the frequent demand to compute product families in dynamic
programs.

Our results. Our main technical contributions are two algorithms for the computation of rep-
resentative families for product families, one for uniform matroids, and one for linear matroids.
For uniform matroids we give an algorithm which given an integer q and families A, B of sets
of sizes p1 and p2 over the ground set of size n, computes a q-representative family F ′ of F . �e
running time of our algorithm is sublinear in |F | for many choices of A, B and q which occur
naturally in several dynamic programming algorithms. For example, let q, p1, p2 be integers. Let
k = q + p1 + p2 and suppose that we have families A and B, which are (k − p1) and (k − p2)-
representative families. �en the sizes of these families are roughly |A| =

(
k
p1

)
and |B| =

(
k
p2

)
.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:3

In particular, when p1 = p2 = dk/2e both families are of size roughly 2k , and thus the cardinal-
ity of F is approximately 4k . On the other hand, for any choice of p1, p2, and k , our algorithm
outputs a (k − p1 − p2)-representative family of F of size roughly

(
k

p1+p2

)
in time 3.8408knO (1) .

For many choices of p1, p2 and q our algorithm runs signi�cantly faster than 3.8408knO (1) . �e
expression capturing the running time dependence on p1, p2 and q can be found in �eorem 3.3
and Corollary 3.4.

Our second algorithm is for computing representative families of product families, when the
universe is also enriched with a linear matroid. More formally, let M = (E,I) be a matroid and
let A,B ⊆ I. �en let F = A • B = {A ∪ B : A ∪ B ∈ I,A ∈ A,B ∈ B and A ∩ B = ∅}. Just as
for uniform matroids, a naive approach for computing a representative familiy of F would be to
compute the productA•B �rst and then compute a representative family of the product. �e fastest
currently known algorithm for computing a representative family is by Fomin et al. [10] and has
running time approximately

(
p+q
p

)ω−1
|F |. We give an algorithm that signi�cantly outperforms the

naive approach. An appealing feature of our algorithm is that it works by reducing the computation
of a representative family for F to the computation of represesentative families for many smaller
families. �us an improved algorithm for the computation of representative families for general
families will automatically accelerate our algorithm for product families as well. �e expression of
the running time of our algorithm can be found in �eorem 4.2.

Applications. Our �rst application is a deterministic algorithm for the following parameterized
version of multilinear monomial testing.

Multilinear Monomial Detection (k-MlD) Parameter: k
Input: An arithmetic circuit C over Z+ representing a polynomial P (X) over Z+.
�estion: Does P (X) construed as a sum of monomials contain a multilinear monomial of
degree k?
�is is the central problem in the algebraic approach of Koutis and Williams for designing fast

parameterized algorithms [17–19, 30]. �e idea behind the approach is to translate a given problem
into the language of algebra by reducing it to the problem of deciding whether a constructed
polynomial has a multilinear monomial of degree k . As it is mentioned implicitly by Koutis in
[17], k-MlD can be solved in time (2e)knO (1) , where n is the input length, by making use of color
coding. �e color coding technique of Alon, Yuster and Zwick [1] is a fundamental and widely
used technique in the design of parameterized algorithms. It appeared that most of the problems
solvable by making use of color coding can be reduced to a multilinear monomial testing. Williams
[30] gave a randomized algorithm solving k-MlD in time 2knO (1) . �e algorithms based on the
algebraic method of Koutis-Williams provide a dramatic improvement for a number of fundamental
problems [5, 6, 11, 14, 17–19, 30]. See also the recent survey [20].

�e advantage of the algebraic approach over color coding is that for a number of parameterized
problems, the algorithms based on this approach have much be�er exponential dependence on the
parameter. On the other hand color coding based algorithms admit direct derandomization [1] and
are able to handle integer weights with running time overhead poly-logarithmic in the weights.
Obtaining deterministic algorithms matching the running times of the algebraic methods, but
sharing these nice features of color coding remain a challenging open problem. Our deterministic
algorithm for k-MlD is the �rst non-trivial step towards resolving this problem. In fact, our
algorithm solves a weighted version of k-MlD, where the elements of X are assigned weights and
the task is to �nd a k-multilinear term with minimum weight. �e running time of our deterministic

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:4 Fomin et al.

algorithm is O (3.8408k2o (k)s (C)n logW log2 n), where s (C) is the size of the circuit andW is the
maximum weight of an element from X .

We also provide an algorithm for a more general version of multilinear monomial testing, where
variables of a monomial should form an independent set of a linear matroid. �e new algorithm
can be used as the basic step in solving general optimization problems of �nding a subgraph
with additional constraints provided in the form of independent sets of some matroids. See, for
example, [27].

�e second application of our fast computation of representative families is for dynamic pro-
gramming algorithms on graph of bounded treewidth. It is well known that many intractable
problems can be solved e�ciently when the input graph has bounded treewidth. Moreover, many
fundamental problems like Maximum Independent Set or Minimum Dominating Set can be
solved in time 2O (t)n [8]. On the other hand, it was believed until very recently that for some
“connectivity” problems such as Hamiltonian Cycle or Steiner Tree no such algorithm exists.
In their breakthrough paper, Cygan et al. [9] introduced a new algorithmic framework called
Cut&Count and used it to obtain 2O (t)nO (1) time Monte Carlo algorithms for a number of connec-
tivity problems. Recently, Bodlaender et al. [7] obtained the �rst deterministic single-exponential
algorithms for these problems using two novel approaches. One of the approaches of Bodlaender et
al. is based on rank estimations in speci�c matrices and the second based on matrix-tree theorem
and computation of determinants. In [10], Fomin et al. used e�cient algorithms for computing
representative families of linear matroids to provide yet another approach for single-exponential
algorithms on graphs of bounded treewdith.

It is interesting to note that for a number of connectivity problems such as Steiner Tree or
Feedback Vertex Set the “bo�leneck” of treewidth based dynamic programming algorithms is the
join operation. For example, as it was shown by Bodlaender et al. in [7], Feedback Vertex Set and
Steiner Tree can be solved in time O

(
(1 + 2ω)pwpwO (1)n

)
and O

(
(1 + 2ω+1)twtwO (1)n

)
, where

pw and tw are the pathwidth and the treewidth of the input graph. �e reason for the di�erence in
the exponents of these two algorithms is due to the cost of the join operation, which is required
for treewidth and does not occur for pathwidth. For many computational problems on graphs of
bounded treewidth in the join nodes of the decomposition, the family of partial solutions is the
product of the families of its children, and we wish to store a representative family (for a graphic
matroid) for this product family. Here our second algorithm comes into play. By making use of
this algorithm one can obtain faster deterministic algorithms for many connectivity problems.
We exemplify this by providing algorithms with running time O

(
(1 + 2ω−1 · 3)twtwO (1)n

)
for

Feedback Vertex Set and Steiner Tree.
Our methods. Consider a pair of disjoint sets A and B, with |A| = p and |B | = q. A random
coloring which colors each element in U red with probability p

p+q and blue with probability q
p+q

will color A red and B blue with probability roughly 1
(p+qp)

. �us a family of slightly more than(
p+q
p

)
such random colorings will contain, with high probability, for each pair of disjoint sets A

and B, with |A| = p and |B | = q a function which colors A red and B blue. �e fast computation of
representative families of Fomin et al. [10] deterministically constructs a collection of colorings
which mimics this property of random coloring families. �e colorings in the family are used to
witness disjointedness, since a coloring which colors A red and B blue certi�es that A and B are
disjoint. In our se�ing we can use such coloring families both for witnessing disjointedness in
the computation of representive sets, and in the computation of F = A ◦ B. A�er all, each set in
F is the disjoint union of a set in A and a set in B. In order to make this idea work we use the
deterministic construction of coloring familes given in [10].

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:5

For linear matroids, our algorithm computes a representative family F ′ of F = A•B as follows.
First the family F is broken up into many smaller families F1, . . . ,Ft , and then a representative
family F ′i is computed for each Fi . Finally F ′ is obtained by computing a representative family of⋃

i F
′
i using the algorithm of Fomin et al. [10] for computing representative families. �e speedup

over the naive method is due to the fact that (a) ⋃
i F

′
i is much smaller than F and (b) each Fi

has a certain structure which ensures be�er upper bounds on the size of F ′i , and allows F ′i to be
computed faster.

2 PRELIMINARIES
In this section we give various de�nitions which we make use of in the paper.
Graphs. Let G be a graph with vertex set V (G) and edge set E (G). A graph G ′ is a subgraph
of G if V (G ′) ⊆ V (G) and E (G ′) ⊆ E (G). �e subgraph G ′ is called an induced subgraph of G
if E (G ′) = {uv ∈ E (G) | u,v ∈ V (G ′)}. In this case, G ′ is also called the subgraph induced by V (G ′)
and denoted byG[V (G ′)]. For a vertex set S , byG \S we denoteG[V (G) \S], and by E (S) we denote
the edge set E (G[S]). For an edge set E ′, we use G \ E ′ to represent the graph with vertex set V (G)
and edge set E (G) \ E ′.

Sets, Functions and Constants. Let [n] = {0, . . . ,n − 1}. LetU be a set. We use 2U ,
(
U
i

)
and

(
U
≤i

)
to denote the family of all subsets of U , the family of all subsets of size i of U and the family of all
subsets of size at most i of U , respectively. A family F of subsets U is called a p-family if for all
X ∈ F , |X | = p.

We call a function f : 2U → N additive if for any subsets X and Y of U we have that
f (X) + f (Y) = f (X ∪ Y) − f (X ∩ Y).

A monomial Z = xs1
1 · · · x

sn
n of a polynomial P (x1, . . . ,xn) is called multilinear if si ∈ {0, 1} for

all i ∈ {1, . . . ,n}. We say a monomial Z = xs1
1 · · · x

sn
n is k-multilinear term if Z is multilinear and∑n

i=1 si = k . �roughout the paper we use ω to denote the matrix multiplication exponent. �e
current best known bound on ω < 2.373 [31].

2.1 Matroids and Representative Families
In this subsection we give de�nitions related to matroids and representative family. For a broader
overview on matroids we refer to [26].

De�nition 2.1. A pair M = (E,I), where E is a ground set and I is a family of subsets (called
independent sets) of E, is a matroid if it satis�es the following conditions:

(I1) ∅ ∈ I.
(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.
(I3) If A,B ∈ I and |A| < |B |, then there exists e ∈ (B \A) such that A ∪ {e} ∈ I.

�e axiom (I2) is also called the hereditary property and a pair (E,I) satisfying only (I2) is called
hereditary family. An inclusion wise maximal set of I is called a basis of the matroid. Using axiom
(I3) it is easy to show that all the bases of a matroid have the same size. �is size is called the rank of
the matroid M , and is denoted by rank(M). �e uniform matroids are among the simplest examples
of matroids. A pair M = (E,I) over an n-element ground set E, is called a uniform matroid if the
family of independent sets is given by I = {A ⊆ E | |A| ≤ k }, where k is some constant. �is
matroid is also denoted as Un,k .

2.1.1 Linear Matroids and Representable Matroids. LetA be a matrix over an arbitrary �eld F and
let E be the set of columns of A. Given A we de�ne the matroid M = (E,I) as follows. A set X ⊆ E
is independent (that is X ∈ I) if the corresponding columns are linearly independent over F. �e

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:6 Fomin et al.

matroids that can be de�ned by such a construction are called linear matroids, and if a matroid can
be de�ned by a matrix A over a �eld F, then we say that the matroid is representable over F. �at is,
a matroid M = (E,I) of rank d is representable over a �eld F if there exist vectors in Fd correspond
to the elements such that linearly independent sets of vectors correspond to independent sets of
the matroid. A matroid M = (E,I) is called representable or linear if it is representable over some
�eld F.

2.1.2 Graphic Matroids. Given a graph G, a graphic matroid M = (E,I) is de�ned by taking
elements as edges of G (that is E = E (G)) and F ⊆ E (G) is in I if it forms a spanning forest in
the graph G. Consider the matrix AM with a row for each vertex i ∈ V (G) and a column for each
edge e = ij ∈ E (G). In the column corresponding to e = ij, all entries are 0, except for a 1 in i or j
(arbitrarily) and a −1 in the other. �is is a representation over reals. To obtain a representation
over a �eld F, one needs to take the representation given above over reals and simply replace all
−1 by the additive inverse of 1

Proposition 2.2 ([26]). Graphic matroids are representable over any �eld of size at least 2.

2.1.3 Representative Family. Now we de�ne q-representative family of a given family and state
�eorems [10] regarding its compuation.

De�nition 2.3 (q-Representative Family [10]). Given a matroid M = (E,I) and a family S of
subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative for S if the following holds: for
every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then
there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is q-representative for S we write
Ŝ ⊆

q
rep S.

In other words, if some independent set in S can be extended to a larger independent set by q

new elements, then there is a set in Ŝ that can be extended by the same q elements. A weighted
variant of q-representative families is de�ned as follows. It is useful for solving problems where we
are looking for objects of maximum or minimum weight.

De�nition 2.4 (Min/Max q-Representative Family [10]). Given a matroid M = (E,I), a family
S of subsets of E and a non-negative weight function w : S → N, we say that a subfamily Ŝ ⊆ S
is min q-representative (max q-representative) for S if the following holds: for every set Y ⊆ E of
size at most q, if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ
disjoint from Y with

(1) X̂ ∪ Y ∈ I, and
(2) w (X̂) ≤ w (X) (w (X̂) ≥ w (X)).

We use Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) to denote a min q-representative (max q-representative) family
for S.

De�nition 2.5. Given two families of independent sets L1 and L2 of a matroid M = (E,I), we
de�ne

L1 • L2 = {X ∪ Y | X ∈ L1 ∧ Y ∈ L2 ∧ X ∩ Y = ∅ ∧ X ∪ Y ∈ I}.

For normal set families A and B (in uniform matroid of rank at least maxA∈A,B∈B (|A| + |B |)),
note that A ◦ B = A • B = {X ∪ Y | X ∈ A ∧ Y ∈ B ∧ X ∩ Y = ∅}.

We say that a family S = {S1, . . . , St } of independent sets is a p-family if each set in S is of size
p. We state three lemmata providing basic results about representative families. �ese lemmata
work for the weighted variant of representative families.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:7

Lemma 2.6 ([10]). Let M = (E,I) be a matroid and S be a family of subsets of E. If S′ ⊆qrep S

and Ŝ ⊆qrep S′, then Ŝ ⊆qrep S.

Lemma 2.7 ([10]). LetM = (E,I) be a matroid andS be a family of subsets of E. IfS = S1∪· · ·∪S`
and Ŝi ⊆

q
rep Si , then ∪`i=1Ŝi ⊆

q
rep S.

Lemma 2.8 ([10]). Let M = (E,I) be a matroid of rank k , S1 be a p1-family of independent
sets, and S2 be a p2-family of independent sets such that Ŝ1 ⊆

k−p1
r ep S1 and Ŝ2 ⊆

k−p2
r ep S2. �en

Ŝ1 • Ŝ2 ⊆
k−p1−p2
r ep S1 • S2.

Theorem 2.9 ([10]). Let M = (E,I) be a linear matroid of rank p + q = k , S = {S1, . . . , St } be a
p-family of independent sets and w : S → N be a non-negative weight function. �en there exists
Ŝ ⊆

q
minrep S (Ŝ ⊆qmaxrep S) of size

(
p+q
p

)
. Moreover, given a representation AM of M over a �eld

F, we can �nd Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) of size at most
(
p+q
p

)
in O

((
p+q
p

)
tpω + t

(
p+q
q

)ω−1)
operations over F.

It is shown in [21] that a theorem similar to �eorem 2.9 can be obtained even when the rank
of the input matroid is not bounded, through a deterministic truncation of linear matroids. For
uniform matroids faster algorithms are known.

Theorem 2.10 ([10]). �ere is an algorithm that given a p-family A of sets over a universe U of
size n, an integer q, and a non-negative weight function w : A → N with maximum value at mostW ,
computes in time O (|A| · log |A| · logW + |A| ·

(p+q
q

)q
· 2o (p+q) · logn) a subfamily Â ⊆ A such

that |Â | ≤
(
p+q
p

)
· 2o (p+q) and Â ⊆qminrep A (Â ⊆qmaxrep A).

3 REPRESENTATIVE FAMILY COMPUTATION FOR PRODUCT FAMILIES
In this section we design a faster algorithm to �nd q-representative family for product families.
Our algorithm for q-representative family for product families relies on the construction of n-
p-q-separating collection de�ned in [10]. We start with the formal de�nition of n-p-q-separating
collection.

De�nition 3.1. An n-p-q-separating collection C is a tuple (F , χ , χ ′), where F is a family of sets
over a universe U of size n, χ is a function from

(
U
≤p

)
to 2F and χ ′ is a function from

(
U
≤q

)
to 2F

such that the following properties are satis�ed
(1) for every A ∈

(
U
≤p

)
and F ∈ χ (A), A ⊆ F ;

(2) for every B ∈
(
U
≤q

)
and F ∈ χ ′(B), F ∩ B = ∅;

(3) for every pairwise disjoint sets A1 ∈
(
U
p1

)
,A2 ∈

(
U
p2

)
, · · · ,Ar ∈

(
U
pr

)
and B ∈

(
U
q

)
such that

p1 + · · · + pr = p, ∃F ∈ χ (A1) ∩ χ (A2) . . . χ (Ar) ∩ χ
′(B).

�e size of (F , χ , χ ′) is |F |, the (χ ,p ′)-degree of (F , χ , χ ′) for p ′ ≤ p is
max
A∈(Up′)

|χ (A) |,

and the (χ ′,q′)-degree of (F , χ , χ ′) for q′ ≤ q is
max
B∈(Uq′)

|χ ′(B) |.

A construction of separating collections is a data structure, that given n, p and q initializes and
outputs a family F of sets over the universe U of size n. A�er the initialization one can query the

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:8 Fomin et al.

data structure by giving it a set A ∈
(
U
≤p

)
or B ∈

(
U
≤q

)
, and the data structure then outputs a family

χ (A) ⊆ 2F or χ ′(B) ⊆ 2F , respectively. Together the tuple C = (F , χ , χ ′) computed by the data
structure should form an n-p-q-separating collection.

Lemma 3.2 ([10]). Given 0 < x < 1, there is a construction of an n-p-q- separating collection with
the following parameters

• size, ζ (n,p,q) ≤ 2O (
p+q

log log(p+q)) · 1
xp (1−x)q · (p + q)

O (1) · logn
• initialization time, τI (n,p,q) ≤ 2O (

p+q
log log(p+q)) · 1

xp (1−x)q · (p + q)
O (1) · n logn

• (χ ,p ′)-degree, ∆(χ,p′) (n,p,q) ≤ 2O (
p+q

log log(p+q)) · 1
xp−p′ (1−x)q · (p + q)

O (1) · logn
• (χ ,p ′)-query time, Q (χ,p′) (n,p,q) ≤ 2O (

p+q
log log(p+q)) · 1

xp−p′ (1−x)q · (p + q)
O (1) · logn

• (χ ′,q′)-degree, ∆(χ ′,q′) (n,p,q) ≤ 2O (
p+q

log log(p+q)) · 1
xp (1−x)q−q′ · (p + q)

O (1) · logn
• (χ ′,q′)-query time, Q (χ ′,q′) (n,p,q) ≤ 2O (

p+q
log log(p+q)) · 1

xp (1−x)q−q′ · (p + q)
O (1) · logn

Let us provide �rst some intuition behind the algorithm computing a q-representative family
for the product families. Let L1 and L2 be two families of sets over a universe U of size n, where
L1 is a p1-family and L2 is a p2-family. Any set in L1 ◦ L2 is of the form A ∪ B where A ∈ L1,
B ∈ L2, and A ∩ B = ∅. Let p = p1 + p2 and q = k − p. We want to �nd a small subfamily L̂ of
L1 ◦ L2 satisfying the following property: For every set C of size at most q, if (A ∪ B) ∩C = ∅,
where A∪B ∈ L1 ◦ L2, then there are sets A′ ∈ L1 and B′ ∈ L2 such that A′ ∪B′ ∈ L̂, A′ ∩B′ = ∅,
and (A′ ∪ B′) ∩C = ∅. To construct such a subfamily, we build two separating collections. �e
�rst n-p-q-separating collection (F , χF , χ

′
F
) is used to take care of the disjointness between A∪ B

and C . �e second n-p1-p2-separating collection (H , χH , χ
′
H
) is for taking care of the disjointness

between the sets in L1 and L2 (i.e, between A and B). For any tuple (A,B,C) of sets, where A ∈ L1,
B ∈ L2, A ∩ B = ∅, and C is a set of size at most q such that (A ∪ B) ∩C = ∅, there is a pair of of
sets F ∈ F and H ∈ H with the following property: A ⊆ H , B ∩ H = ∅, A ∪ B ⊆ F , and C ∩ F = ∅.
Hence to keep the q-representative family, it is su�cient to keep for every pair of sets F and H

only one set A′ ∪ B′ ∈ L̂, where A′ ⊆ H , B′ ∩ H = ∅, and A′ ∪ B′ ⊆ F .
We are ready to give the main theorem about product families using the constructions of n-p-q-

separating collections.

Theorem 3.3. Let L1 be a p1-family of sets and L2 be a p2-family of sets over a universe U of
size n. Let w : 2U → N be an additive weight function. Let L = L1 ◦ L2 and p = p1 + p2. For any
0 < x1,x2 < 1, there exist L̂ ⊆k−p1−p2

minrep L of size x−p1 (1−x1)
−(k−p) · 2o (k) · logn and it can be computed

in time

O *
,

z (n,k,W)

x
p
1 (1 − x1)q

+
z (n,k,W)

x
p1
2 (1 − x2)p2

+
|L1 | · z (n,k,W)

x
p2
1 (1 − x1)q (1 − x2)p2

+
|L2 | · z (n,k,W)

x
p1
1 (1 − x1)qx

p1
2

+
-
,

where z (n,k,W) = 2o (k)n logn · logW andW is the maximum weight de�ned by w .

Proof. We set p = p1 + p2 and q = k − p. To obtain the desired construction we �rst de�ne an
auxiliary graph and then use it to obtain the q-representative for the product family L. We �rst
obtain two families of separating collections.

• Apply Lemma 3.2 for 0 < x1 < 1 and construct an n-p-q-separating collection (F , χF , χ
′
F
)

of size 2O (
p+q

log log(p+q)) · 1
xp1 (1−x1)q

· (p + q)O (1) logn in time linear in the size of F .

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:9

F F1 · · · Fr · · ·

L1

A1 · · · Ai · · ·

L2

B1 · · · Bj · · ·

HH1 · · · H` · · ·

F r
∈
χ F
(A

i)

Fr ∈
χ
F (B

j)

H
` ∈

χ
H (A

i)

H `
∈
χ
′
H

(B
j)

Fig. 1. Graph constructed from L1,L2,F andH

• Apply Lemma 3.2 for 0 < x2 < 1 and construct ann-p1-p2-separating collection (H , χH , χ
′
H
)

of size 2O (
p1+p2

log log(p1+p2)
)
· 1
xp1

2 (1−x2)p2
· (p1 + p2)

O (1) logn in time linear in the size ofH .

Now we construct a graph G = (V ,E) where the vertex set V contains a vertex each for sets in
F] H] L1] L2. For clarity of presentation we name the vertices by the corresponding set.
�us, the vertex set V = F]H] L1] L2. �e edge set E = E1] E2] E3] E4, where each Ei for
i ∈ {1, 2, 3, 4} is de�ned as follows (see Figure 1).

E1 =

{
(A, F)

���� A ∈ L1, F ∈ χF (A)
}

E2 =

{
(B, F)

���� B ∈ L2, F ∈ χF (B)
}

E3 =

{
(A,H)

���� A ∈ L1, H ∈ χH (A)
}

E4 =

{
(B, F)

���� B ∈ L2, F ∈ χ
′
H
(B)

}
�us G is essentially a 4-partite graph.

Algorithm. �e construction of L̂ is as follows. For a set F ∈ F , we call a pair of sets (A,B)
cyclic, if A ∈ L1, B ∈ L2 and there exists H ∈ H such that FAHB forms a cycle of length four in G .
Let J (F) denote the family of cyclic pairs for a set F ∈ F and

wF = min
(A,B)∈J (F)

w (A) +w (B).

We obtain the family L̂ by adding A ∪ B for every set F ∈ F such that (A,B) ∈ J (F) and w (A) +

w (B) = wF . Indeed, if the family J (F) is empty then we do not add any set to L̂ corresponding to
F . �e procedure to �nd the smallest weight A∪B for any F is as follows. We �rst mark the vertices

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:10 Fomin et al.

of NG (F) (the neighbors of F). Now we mark the neighbors of P = (NG (F) ∩ L1) inH . For every
marked vertex H ∈ H , we associate a set A of minimum weight such that A ∈ (P ∩ NG (H)). �is
can be done sequentially as follows. Let P = {S1, . . . , S` }. Now iteratively visit the neighbors of
Si in H , i ∈ [`], and for each vertex of H store the smallest weight vertex S ∈ P it has seen so
far. A�er this we have a marked set of vertices inH such that with each marked vertex H inH
we stored a smallest weight marked vertex in L1 which is a neighbor of H . Now for each marked
vertex B in L2, we go through the neighbors of B in the marked set of vertices inH and associate
(if possible) a second vertex (which is a minimum weighted marked neighbor from L2) with each
marked vertex inH . We obtain a pair of sets (A,B) ∈ J (F) such that w (A) +w (B) = wF . �is can
be easily done by keeping a variable that stores a minimum weighted A∪ B seen a�er every step of
marking procedure. Since for each F ∈ F we add at most one set to L̂, the size of L̂ follows.

Correctness. We �rst show that L̂ ⊆ L. Towards this we only need to show that for every
A ∪ B ∈ L̂ we have that A ∩ B = ∅. Observe that if A ∪ B ∈ L̂ then there exist F ∈ F and H ∈ H
such that FAHB forms a cycle of length four in the graph G. So H ∈ χH (A) and H ∈ χ ′

H
(B). �is

means A ⊆ H and B ∩ H = ∅. So we conclude A and B are disjoint and hence L̂ ⊆ L. We also
need to show that if there exist pairwise disjoint sets A ∈ L1,B ∈ L2,C ∈

(
U
q

)
, then there exist

Â ∈ L1, B̂ ∈ L2 such that Â∪ B̂ ∈ L̂, Â, B̂,C are pairwise disjoint and w (Â) +w (B̂) ≤ w (A) +w (B).
By the property of separating collections (F , χF , χ ′F) and (H , χH , χ

′
H
), we know that there exists

F ∈ χF (A) ∩ χF (B) ∩ χ ′
F
(C), H ∈ χH (A) ∩ χ ′H (B). �is implies that FAHB forms a cycle of

length four in the graph G. Hence in the construction of L̂, we should have chosen Â ∈ L1 and
B̂ ∈ L2 corresponding to F such that w (Â) +w (B̂) ≤ w (A) +w (B) and added to L̂. So we know
that F ∈ χF (Â) ∩ χF (B̂). Now we claim that Â, B̂ and C are pairwise disjoint. Since Â ∪ B̂ ∈ L̂,
Â∩ B̂ = ∅. Finally, since F ∈ χF (Â) ∩ χF (B̂) and F ∈ χ ′

F
(C), we get Â, B̂ ⊆ F and F ∩C = ∅ which

implies C is disjoint from Â and B̂. �is completes the correctness proof.

Running Time Analysis. We �rst consider the timeTG to construct the graphG . We can construct
F in time 2O (

k
log logk) · 1

xp1 (1−x1)q
· (p + q)O (1) · n logn. We can construct H in time 2O (

p
log logp) ·

1
xp1

2 (1−x2)p2
· (p1 + p2)

O (1) · n logn. Now to add edges in the graph we do as follows. For each vertex
in L1 ∪ L2, we query the data structure created, spending the query time mentioned in Lemma 3.2,
and add edges to the vertices in F ∪H from it. So the running time to construct G is

TG ≤ 2O (
k

log log(k))kO (1)n logn
(1
x
p
1 (1 − x1)q

+
1

x
p1
2 (1 − x2)p2

+
|L1 |

x
p2
1 (1 − x1)q

+
|L2 |

x
p1
1 (1 − x1)q

+
|L1 |

(1 − x2)p2
+
|L2 |

x
p1
2

)
.

Now we bound the timeTC taken to construct L̂ from G . To do the analysis we see how may times
a vertex A in L1 ∪ L2 is visited. It is exactly equal to the product of the degree of A to F (denoted
by degreeF (A)) and the degree of A toH (denoted by degreeH (A)). Also note that two weights

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:11

can be compared in O (logW) time. �en

TC ≤ logW *.
,

∑
A∈L1

degreeF (A) · degreeH (A) +
∑
A∈L2

degreeF (A) · degreeH (A)+/
-

≤ logW
(∑
A∈L1

∆(χF ,p1) (n,p,q) · ∆(χH ,p1) (n,p1,p2) +∑
A∈L2

∆(χF ,p2) (n,p,q) · ∆(χ ′
H
,p2) (n,p1,p2)

)
≤ 2O (

k
log log(k))kO (1) log2 n logW *

,

|L1 |

x
p2
1 (1 − x1)q (1 − x2)p2

+
|L2 |

x
p1
1 (1 − x1)qx

p1
2

+
-
.

So the total running time T is,
T = TG +TC

≤ 2O (
k

log log(k))kO (1)n logn · logW
(1
x
p
1 (1 − x1)q

+
1

x
p1
2 (1 − x2)p2

+
|L1 |

x
p2
1 (1 − x1)q (1 − x2)p2

+
|L2 |

x
p1
1 (1 − x1)qx

p1
2

)
.

�is completes the proof of the theorem. �

Now we give a ready to use corollary for �eorem 3.3.

Corollary 3.4. Let L1 be a p1-family of sets and L2 be a p2-family of sets over a universeU of size
n. Furthermore, letw : 2U → N be an additive weight function, |L1 | =

(
k
p1

)
· 2o (k) , |L2 | =

(
k
p2

)
· 2o (k) ,

L = L1 ◦ L2, p = p1 + p2 and q = k − p. �ere exists L̂ ⊆qminrep L of size
(
k
p

)
· 2o (k) and it can be

computed in time

min
0<x1,x2<1

O

(z (n,k,W)

x
p1
2 (1 − x2)p2

+

(
k
p1

)
· z (n,k,W)

x
p2
1 (1 − x1)q (1 − x2)p2

+

(
k
p2

)
· z (n,k,W)

x
p1
1 (1 − x1)qx

p1
2
+

(kq)
q · z (n,k,W)

x
p
1 (1 − x1)q

)
.

Here z (n,k,W) = 2o (k)n logn · logW andW is the maximum weight de�ned by w .

Proof. We apply �eorem 3.3 for 0 < x1,x2 < 1 and �ndL ′ ⊆qminrep L of sizex−p1 (1 − x1)
−q2o (k) ·

logn in timeT1 = O (
z (n,k,W)

xp1 (1−x1)q
+

z (n,k,W)

xp1
2 (1−x2)p2

+
z (n,k,W) · |L1 |

xp2
1 (1−x1)q (1−x2)p2

+
z (n,k,W) · |L2 |

xp1
1 (1−x1)qx

p1
2
). Now we apply �eo-

rem 2.10 and get L̂ ⊆qminrep L
′ of size

(
k
p

)
·2o (k) in timeT2 = O

(
x
−p
1 (1 − x1)

−q
(
k
q

)q
2o (k) · log2 n · logW

)
.

Due to Lemma 2.6, L̂ ⊆qminrep L. Now we choose x1,x2 such thatT1 +T2 is minimized. So the total
running time T to construct L̂ is

T = min
x1,x2

(T1 +T2)

= min
x1,x2
O

(z (n,k,W)

x
p1
2 (1 − x2)p2

+
z (n,k,W) · |

(
k
p1

)
|

x
p2
1 (1 − x1)q (1 − x2)p2

+

z (n,k,W) · |
(
k
p2

)
|

x
p1
1 (1 − x1)qx

p1
2
+
z (n,k,W) · (kq)

q

x
p
1 (1 − x1)q

)
.

�is completes the proof. �

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:12 Fomin et al.

4 REPRESENTATIVE FAMILY COMPUTATION FOR PRODUCT FAMILIES OF A
LINEAR MATROID

In this section we give an algorithm to compute q-representative family for product families of a
linear matroid. �at is, given a matroid M = (E,I), families of independent setsA and B of sets of
sizes p1 and p2, respectively, and a positive integer q, we compute F̂ ⊆qrep F , where F = A • B,
of size

(
p1+p2+q
p1+p2

)
e�ciently. We compute a q-representative family for F in two steps. In the �rst

step we compute an intermediate q-representative family and then apply �eorem 2.9 to compute
q-representative family of the desired size. �e intermediate q-representative family is obtained
by computing q-representative families of slices, A • {B} for all B ∈ B, and then taking its union.
We start with the following lemma that will be central to our faster algorithm for computing the
desired q-representative family for a product family of a linear matroid.

Lemma 4.1 (Slice Computation Lemma). Let M = (E,I) be a linear matroid of rank k , L be
a p1-family of independent sets of M and S ∈ I of size p2. Furthermore, let w : L • {S } → N
be a non-negative weight function. �en given a representation AM of M over a �eld F, we can �nd
GL • {S } ⊆k−p1−p2

minrep L • {S } of size at most
(
k−p2
p1

)
in O

((
k−p2
p1

)
|L|pω1 + |L|

(
k−p2
p1

)ω−1)
operations over

F.

Proof. Observe that L • {S } is a p1 + p2-family of independent sets of M and all sets in L • {S }
contain S as a subset. Let AM the matrix representing the matroid M over a �eld F. Without
loss of generality we can assume that the �rst p2 columns of AM correspond to the elements in S .
Furthermore, we can also assume that the �rst p2 columns and p2 rows form an identity matrix
Ip2×p2 . �at is, if S denotes the �rst p2 columns and Z denotes the �rst p2 rows then the submatrix
AM [Z , S] is Ip2×p2 . �e reason for the last assertion is that if the matrix is not in the required form
then we can apply elementary row operations and obtain the matrix in the desired form. �is also
allows us to assume that the number of rows in AM is k . So AM have the following form.

(
Ip2×p2 A

0 B

)

Let AM/S be the matrix obtained a�er deleting �rst p2 rows and �rst p2 columns from AM . �at
is, AM/S= B. Let M/S = (Es ,Is) be the matriod represented by the matrix AM/S on the underlying
ground set Es = E \ S . Observe that rank(M/S)=rank(B)= k − p2, else rank(AM) would become
strictly smaller than k . Let e1, e2, . . . , ep2 be the �rst p2 column vectors of AM , i.e., they are columns
corresponding to the elements of S . For a column vector v in AM , v̄ is used to denote the column
vector restricted to the matrix AM/S (i.e., v̄ contains the last k − p2 entries of v).

Now consider the set L (S) = {X | X ∪ S ∈ L • {S }}. We also de�ne a new non-negative weight
function w ′ : L (S) → N as follows: w ′(X) = w (X ∪ S). We would like to compute k − p2
representative for L (S). Towards that goal we �rst show that L (S) is a p1-family of independent
sets of M/S . Let X ∈ L (S). We know that X ∪ S ∈ I. Let v1,v2, . . . ,vp1 be the column vectors in
AM corresponding to the elements in X . Suppose X < Is . �en there exist coe�cients λ1, . . . , λp1

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:13

such that λ1v̄1 + λ2v̄2 + · · · + λp1v̄p1 = ~0 and at least one of them is non-zero. �en

λ1v1 + λ2v2 + · · · + λp1vp1 =

*...........
,

a1
...

ap2
0
...
0

+///////////
-

�is implies that −a1e1 − a2e2 − · · · − ap2ep2 + λ1v1 + λ2v2 + · · · + λp1vp1 = ~0, which contradicts the
fact that S ∪ X ∈ I. Hence X ∈ Is and L (S) is a p1-family of independent sets of M/S .

Now we apply �eorem 2.9 and �nd EL (S) ⊆k−p1−p2
minrep L (S) of size

(
k−p2
p1

)
, by considering L (S) as

a p1-family of independent sets of the matroid M/S . We claim that EL (S) • {S } ⊆k−p1−p2
minrep L • {S }. Let

X ∪ S ∈ L • {S } and Y ⊆ E \ (X ∪ S) such that |Y | = k − p1 − p2 and X ∪ S ∪ Y ∈ I. We need to
show that there exists a X̂ ∈ EL (S) such that X̂ ∪ S ∪ Y ∈ I and w (X̂ ∪ S) ≤ w (X ∪ S). We start by
showing that that X ∪ Y ∈ Is . Let v1,v2, . . . ,vk−p2 be the column vectors in AM corresponding to
the elements of X ∪ Y . Suppose X ∪ Y < Is . �en there exist coe�cients λ1, . . . , λk−p2 such that
λ1v̄1 +λ2v̄2 + · · ·+λk−p2v̄k−p2 =

~0 and at least one of them is non-zero. �en we have the following.

λ1v1 + λ2v2 + · · · + λk−p2vk−p2 =

*...........
,

b1
...

bp2
0
...
0

+///////////
-

However, this implies that −b1e1 − b2e2 − · · · − bp2ep2 + λ1v1 + λ2v2 + · · · + λk−p2vk−p2 =
~0, which

contradicts the fact that S ∪ X ∪ Y ∈ I. Hence X ∪ Y ∈ Is . Since EL (S) ⊆k−p1−p2
minrep L (S), there

exists a set X̂ ∈ L (S), with w ′(X̂) ≤ w ′(X) (i.e w (X̂ ∪ S) ≤ w (X ∪ S)) and X̂ ∪ Y ∈ Is . We
claim that X̂ ∪ S ∪ Y ∈ I. Let u1,u2, . . . ,uk−p2 be the column vectors in AM corresponding to
the elements of X̂ ∪ Y . Suppose X̂ ∪ S ∪ Y < I. �en there exist coe�cients α1, . . . ,αk such that
α1e1+α2e2+ · · ·+αp2ep2 +αp2+1u1+ · · ·+αkuk−p2 =

~0 and at least one of the coe�cients is non-zero.
We claim that at least one of the coe�cients among {αp2+1, . . . ,αk } is non-zero. Suppose not, then
α1e1 + · · · + αp2ep2 = 0 and at least one of the coe�cients among {α1, . . . ,αp2 } is non-zero. �is
contradicts the fact that S ∈ I. Since α1e1 + · · ·+αp2ep2 +αp2+1u1 + · · ·+αkuk−p2 =

~0, we have that
αp2+1ū1 + · · · + αkūk−p2 =

~0, where ūj are restrictions of uj to the last k − p2 entries. Also note that
at least one of the coe�cients among {αp2+1, . . . ,αk } is non-zero. �is contradicts our assumption
that X̂ ∪ Y ∈ Is . �us we have shown that X̂ ∪ Y ∪ S ∈ I. �e size of EL (S) • {S } is

(
k−p2
p1

)
and it

can be found in O
((

k−p2
p1

)
|L|pω1 + |L|

(
k−p2
p1

)ω−1)
operations over F. �

Now we are ready to prove the main theorem of this section by using Lemma 4.1.

Theorem 4.2. Let M = (E,I) be a linear matroid of rank k , L1 be a p1-family of independent sets
of M and L2 be a p2-family of independent sets of M . Given a representation AM of M over a �eld F,

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:14 Fomin et al.

we can �nd GL1 • L2 ⊆
k−p1−p2
minrep L1 • L2 of size at most

(
k

p1+p2

)
in

O *
,
|L2 | |L1 |

(
k − p2
p1

)ω−1
pω1 + |L2 |

(
k − p2
p1

) (
k

p1 + p2

)ω−1
(p1 + p2)

ω+
-

operations over F.

Proof. Let L2 = {S1, S2, . . . , S` }. �en we have

L1 • L2 =
⋃̀
i=1
L1 • {Si }.

By Lemma 2.7,

L =
⋃̀
i=1

GL1 • {Si } ⊆
k−p1−p2
minrep L1 • L2.

Using Lemma 4.1, for all 1 ≤ i ≤ `, we �nd GL1 • {Si } ⊆
k−p1−p2
minrep L1 • {Si } of size

(
k−p2
p1

)
in

O

((
k−p2
p1

)
|L1 |p

ω
1 + |L1 |

(
k−p2
p1

)ω−1)
= O

(
|L1 |

(
k−p2
p1

)ω−1
pω1

)
operations over F. Now we have that

|L| = |
⋃`

i=1
GL1 • {Si }| ≤ |L2 |

(
k−p2
p1

)
. Now we apply �eorem 2.9 and �nd L̂ ⊆k−p1−p2

minrep L of size(
k

p1+p2

)
. �e number of operations, denoted by T1, over F to �nd L̂ from L is

T1 = O *
,

(
k

p1 + p1

)
|L2 |

(
k − p2
p1

)
(p1 + p2)

ω + |L2 |

(
k − p2
p1

) (
k

p1 + p2

)ω−1
+
-

= O *
,
|L2 |

(
k − p2
p1

) (
k

p1 + p2

)ω−1
(p1 + p2)

ω+
-
.

By Lemma 2.6, L̂ ⊆k−p1−p2
minrep L1 • L2. �e number of operations, denoted by T , over F to �nd L̂

from L1 and L2 is

T = |L2 | · O *
,
|L1 |

(
k − p2
p1

)ω−1
pω1

+
-
+T1

= O *
,
|L2 | |L1 |

(
k − p2
p1

)ω−1
pω1 + |L2 |

(
k − p2
p1

) (
k

p1 + p2

)ω−1
(p1 + p2)

ω+
-
.

�is completes the proof of the theorem. �

�e following form of �eorem 4.2 will be directly useful in some applications as we prune the
size of the partial solutions in every step of the dynamic programming algorithm.

Corollary 4.3. Let M = (E,I) be a linear matroid of rank k , L1 and L2 be two families of
independent sets of M and the number of sets of size p in L1 and L2 be at most

(
k+c
p

)
. Here, c is

a �xed constant. Let Lr,i be the set of independent sets of size exactly i in Lr for r ∈ {1, 2}. �en
for all the pairs i, j ∈ [k], we can �nd GL1,i • L2, j ⊆

k−i−j
minrep L1,i • L2, j of size

(
k
i+j

)
, in total of

O
(
kω (2ω + 2)k + kω2k (ω−1)3k

)
operations over F.

Proof. By using �eorem 4.2 we can �nd GL1,i • L2, j ⊆
k−i−j
minrep L1,i • L2, j of size

(
k
i+j

)
for

any i, j ∈ [k] in O
((

k+c
j

) (
k+c
i

) (
k−j
i

)ω−1
iω +

(
k+c
j

) (
k−j
i

) (
k
i+j

)ω−1
(i + j)ω

)
operations over F. Let

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:15

k ′ = k + c . So the total number of operations, denoted by T , over F to �nd GL1,i • L2, j for all
i, j ∈ [k] is,

T = O*
,

*.
,

k∑
i=0

k∑
j=0

(
k ′

j

) (
k ′

i

) (
k − j

i

)ω−1
iω+/

-
+

*.
,

k∑
i=0

k∑
j=0

(
k ′

j

) (
k − j

i

) (
k

i + j

)ω−1
(i + j)ω+/

-
+
-

= O*
,

*.
,
kω

k∑
i=0

(
k ′

i

) k∑
j=0

(
k ′

j

)
2(k−j) (w−1)+/

-
+

*.
,
kω

k∑
j=0

(
k ′

j

) k−j∑
i=0

(
k − j

i

) (
k

i + j

)ω−1+/
-

+
-

= O*
,

*
,
kω2k (ω−1)

k∑
i=0

(
k ′

i

) (
1 + 1

2(ω−1)

)k ′
+
-
+

*.
,
kω2k (w−1)

k∑
j=0

(
k ′

j

) k−j∑
i=0

(
k − j

i

)
+/
-

+
-

= O
*.
,

(
kω2k ′

(
2(ω−1) + 1

)k)
+

*.
,
kω2k (w−1)

k∑
j=0

(
k ′

j

)
2k−j+/

-

+/
-

= O

(
kω2k

(
2(ω−1) + 1

)k
+ kω2k (ω−1)3k

)
= O

(
kω (2ω + 2)k + kω2k (ω−1)3k

)
.

�e above simpli�cation completes the proof. �

5 APPLICATION I: MULTILINEAR MONOMIAL TESTING
In this section we �rst design a faster algorithm for a weighted version of k-MlD and then give
an algorithm for an extension of this to a matroidal version. In the weighted version of k-MlD in
addition to an arithmetic circuit C over variables X = {x1,x2, . . . ,xn } representing a polynomial
P (X) over Z+, we are given an additive weight function w : 2X → N. �e task is that if there
exists a k-multilinear term then �nd one with minimum weight. We call the weighted variant by
k-wMlD. We start with the de�nition of an arithmetic circuit.

De�nition 5.1. An arithmetic circuit C over a commutative ring R is a simple labelled directed
acyclic graph with its internal nodes labeled by + or × and leaves (in-degree zero nodes) labeled
from X ∪ R, where X = {x1,x2, . . . ,xn } is a set of variables. �ere is a node of out-degree zero,
called the root node or the output gate. �e size of C , s (C), is the number of vertices in the graph.

It is well known that we can replace any arithmetic circuit C with an equivalent circuit with
fan-in two for all the internal nodes with quadratic blow up in the size. For an example, by replacing
each node of in-degree greater than 2, with at most s (C) many nodes of the same label and in-degree
2, we can convert a circuit C to a circuit C ′ of size s (C ′) = s (C)2. So from now onwards we always
assume that we are given a circuit of this form. We assumeW is the maximum weight de�ned by
w .

Theorem 5.2. k-wMlD can be solved in time O (3.8408k2o (k)s (C)n logn · logW).

Proof. An arithmetic circuit C over Z+ with all leaves labelled from X ∪ Z+ will represent sum
of monomials with positive integer coe�cients. With each multilinear term Π`

j=1xi j we associate
a set {xi1 , . . . ,xil } ⊆ X . With any polynomial we can associate a family of subsets of X which
corresponds to the set of multilinear terms in it. Since C is a directed acyclic graph, there exists
a topological ordering π = v1, . . . ,vn , such that all the nodes corresponding to variables appear
before any other gate and for every directed arc uv we have that u <π v . For a node vi of the
circuit let Pi (X) be the multivariate polynomial represented by the subcircuit containing all the

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:16 Fomin et al.

nodes w such that w ≤π vi . At every node we keep a family F j
vi of j-multilinear term, where

j ∈ {1, . . . ,k }. Let Fvi =
⋃k

x=1 F
x
vi . Given a circuit C , if we compute associated family of subsets of

X for each node we can answer the question of having a k-multilinear term of minimum weight
in the polynomial computed by C . But the size of the family of subsets could be exponential in n,
the number of variables. �at is, the size of F j

vi could be
(
n
j

)
. So instead of storing all subsets, we

store a representative family for the associated family of subsets of each node. �at is, we store
F̂

j
vi ⊆

k−j
minrep F

j
vi . �e correctness of this step follows from the de�nition of k − j-representative

family.
We make a dynamic programming algorithm to detect a multilinear monomial of order k as

follows. Our algorithm goes from le� to right following the ordering given by π and computes
Fvi from the families previously computed. �e algorithm computes an appropriate representative
family corresponding to each node of C . We show that we can compute a representative family Fv
associated with any node v , where the number of subsets with p elements in Fv is at most

(
k
p

)
2o (k) .

When v is an input node then the associated family contains only one set. �at is, if v is labelled
with xi then Fv = {{xi }} and if v is labelled from Z+ then Fv = {∅}. When v is not an input node,
then we have two cases.

AdditionGate: v = v1+v2. Due to the le� to right computation in the topological order, we have
representative families Fv1 and Fv2 for v1 and v2, respectively, where the number of subsets with p

elements in Fv1 as well as in Fv2 will be at most
(
k
p

)
2o (k) . �e representative family corresponding

to v will be the representative family of Fv1 ∪ Fv2 . We partition Fv1 ∪ Fv2 based on the size of
subsets in it. Let Fv1 ∪ Fv2 =

⊎
p≤k Hp , whereHp contains all subsets of size p in Fv1 ∪ Fv2 . Note

that |Hp | ≤ 2
(
k
p

)
2o (k) . Now using �eorem 2.10, we can compute all Ĥp ⊆

k−p
minrep Hp in time

O
*.
,
2o (k) logn · logW ·

∑
p<k




2
(
k

p

)
·

(
k

k − p

)k−p


+/
-

whereW is the maximum weight de�ned by weight function w . �e above running time is upper
bounded by O (2.851k2o (k) logn logW), by the similar analysis done for the k-Path problem in [12].
We output ⋃

p≤k Ĥp as the representative family corresponding to the node v . By �eorem 2.10,
|Ĥp | ≤

(
k
p

)
2o (k) and hence the number of subsets with p elements in the representative family

corresponding to v is at most
(
k
p

)
2o (k) . �e computation corresponding to addition gate can be

sped-up by using ideas given in [10].

Multiplication Gate: v = v1×v2. Similar to the previous case we have a representative families
Fv1 and Fv2 for v1 and v2 respectively, where the number of subsets with p elements in Fv1 as
well as in Fv2 , is at most

(
k
p

)
2o (k) . Here, the representative family corresponding to v will be the

representative family of Fv1 ◦ Fv2 . �e idea is to get representative families using Corollary 3.4 for
di�erent values of p1 and p2. We have that

Fv1 ◦ Fv2 =
⋃
p1,p2

F
p1
v1 ◦ F

p2
v2 ,

where F pi
vi contains all the subsets of size pi in Fvi . We know that |F pi

vi | ≤
(
k
pi

)
2o (k) . Now by using

Corollary 3.4, we compute G
F

p1
v1 ◦ F

p2
v2 ⊆

k−p1−p2
minrep F

p1
v1 ◦ F

p2
v2 of size

(
k

p1+p2

)
· 2o (k) for all p1,p2 such

that p1 + p2 ≤ k . Let q = k − p1 − p2, then all these computation can be done in time

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:17

∑
p1,p2

min
x1,x2
O*

,

z (n,k,W)

x
p1
2 (1 − x2)p2

+
z (n,k,W) · |

(
k
p1

)
|

x
p2
1 (1 − x1)q (1 − x2)p2

+
z (n,k,W) · |

(
k
p2

)
|

x
p1
1 (1 − x1)qx

p1
2

+
z (n,k,W) · (kq)

q

x
p
1 (1 − x1)q

+
-
.

Here, z (n,k,W) = 2o (k)n logn·logW . �e above running time is upper bounded byO (3.8408k2o (k) ·
n logn · logW). We output ⋃p1,p2

G
F

p1
v1 ◦ F

p2
v2 as the representative family corresponding to the node

v . Note that the number of sets of size p in ⋃
p1,p2

G
F

p1
v1 ◦ F

p2
v2 is bounded by k ·

(
k
p

)
2o (k) ≤

(
k
p

)
2o (k) .

Now we output a minimum weight set of size k (if exists) among the representative family
corresponding to the root node, otherwise we output No. Since there are s (C) nodes in C , the total
running time is bounded by O (3.8408k2o (k)s (C)n logn · logW). �is completes the proof. �

5.1 Matroidal Multilinear Monomial Detection
In this section we extend the k-wMlD problem to a matroidal version and design an algorithm
for this. �e problem Matroidal Multilinear Monomial Detection (k-wMMlD) is de�ned as
follows.
Matroidal Multilinear Monomial Detection Parameter: k
Input: An arithmetic circuit C over variables X = {x1,x2, . . . ,xn } representing a polynomial
P (X) over Z, a linear matroid M = (E,I) where the ground set E = X with its representation
matrix AM and an additive weight function w : 2X → N.
�estion: Does P (X) construed as a sum of monomials contain a multilinear monomial Z of
degree k such that Z ∈ I? If yes �nd a minimum weighted such Z .
Our main theorem of this section is as follows. �e proof of this theorem is along the lines of

�eorem 5.2. �e only di�erence is that we compute representative family with respect to the given
matroid.

Theorem 5.3. k-wMMlD can be solved in time O (7.7703kkωs (C)).

Proof. Let π = v1, . . . ,vn be a topological ordering of C such that all the nodes corresponding
to variables appear before any other gate and for every directed arc uv we have that u <π v . As in
�eorem 5.2, at every node we keep a family F j

vi of j-multilinear terms that are also members of I,
where j ∈ {1, . . . ,k }. Let Fvi =

⋃k
x=1 F

x
vi . So Fv ⊆ I. We process the nodes from le� to right and

keep F̂ j
vi ⊆

k−j
minrep F

j
vi of size

(
k
p

)
.

When v is an input node then the associated family contains only one set. �at is, if v is labelled
with xi and {xi } ∈ I then Fv = {{xi }}, otherwise Fv = {∅}. If v is labelled from Z+ then Fv = {∅}.
When v is not an input node, then we have two cases.

AdditionGate: v = v1+v2. Due to the le� to right computation in the topological order, we have
representative families Fv1 and Fv2 for v1 and v2 respectively, where the number of subsets with p

elements in Fv1 as well as in Fv2 will be at most
(
k
p

)
. So the representative family corresponding to

v will be the representative family of Fv1 ∪ Fv2 . We partition Fv1 ∪ Fv2 based on the size of subsets
in it. Let Fv1 ∪ Fv2 =

⊎
p≤k Hp , where Hp contains all subsets of size p in Fv1 ∪ Fv2 . Note that

|Hp | ≤ 2
(
k
p

)
. Now using �eorem 2.9 we can compute all Ĥp ⊆

k−p
minrep Hp in time

O
*.
,
2
∑
p≤k




(
k

p

) (
k

p

)
pω +

(
k

p

) (
k

p

)ω−1


+/
-
.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:18 Fomin et al.

�e above running time is upper bounded by O (4kpωk + 2ωkk). We output ⋃
p≤k Ĥp as the

representative family corresponding to the node v . By �eorem 2.9, |Ĥp | ≤
(
k
p

)
and thus the

number of subsets with p elements in ⋃
p≤k Ĥp is at most

(
k
p

)
.

Multiplication Gate: v = v1×v2. Similar to the previous case we have a representative families
Fv1 and Fv2 forv1 andv2 respectively, where the number of subsets withp elements in Fv1 as well as
in Fv2 , is at most

(
k
p

)
. Here, the representative family corresponding to v will be the representative

family of Fv1 • Fv2 . We have that

Fv1 • Fv2 =
⋃
p1,p2

F
p1
v1 • F

p2
v2 ,

where F pi
vi contains all the subsets of size pi in Fvi . We know that |F pi

vi | ≤
(
k
pi

)
. Now by using

Corollary 4.3, we can compute G
F

p1
v1 • F

p2
v2 ⊆

k−p1−p2
minrep F

p1
v1 • F

p2
v2 of size

(
k

p1+p2

)
for all p1,p2 together

in time O
(
kω (2ω + 2)k + kω2k (ω−1)3k

)
.

Now let F = ⋃
p1,p2

G
F

p1
v1 • F

p2
v2 =]pHp , where]pHp is the partition of F based on the size of

subsets. It is easy to see that |Hp | ≤ k
(
k
p

)
. Now using �eorem 2.9 we can compute Ĥp ⊆

k−p
minrep Hp

for all p ≤ k together in time

O
*.
,
k

∑
p≤k




(
k

p

) (
k

p

)
pω +

(
k

p

) (
k

p

)ω−1


+/
-

�e above running time is upper bounded by O (4kkω+1 + 2ωkk2). We output ⋃
p≤k Ĥp as the

representative family corresponding to the node v .
Now we output a minimum weight set of size k (if exists) among the representative family

corresponding to the root node, otherwise we output No. Since there are s (C) nodes in C , the total
running time is O

(
kω (2ω + 2)k s (C) + kω2k (ω−1)3ks (C)

)
. �is completes the proof. �

6 APPLICATION II: DYNAMIC PROGRAMMING OVER GRAPHS OF BOUNDED
TREEWIDTH

In this section we discuss deterministic algorithms for “connectivity problems” such as Steiner
Tree, Feedback Vertex Set parameterized by the treewidth of the input graph. �e algorithms
are based on �eorem 2.9 and Corollary 4.3. �e idea of designing deterministic algorithms for
connectivity problems parameterized by the treewidth of the input graph based on fast computation
of representative families was outlined in [10]. Here, we show how we can speed the method
described in [10] using the fast computation of representative families for product families coming
from a graphic matroid. �e method described in this section gives the fastest known deterministic
algorithms for most the connectivity problems parameterized by the treewidth. We exemplify the
methods on Steiner Tree and Feedback Vertex Set.

6.1 Treewidth
Let G be a graph. A tree decomposition of a graph G is a pair (T,X = {Xt }t ∈V (T)) such that

• ∪t ∈V (T)Xt = V (G),
• for every edge xy ∈ E (G) there is a t ∈ V (T) such that {x ,y} ⊆ Xt , and
• for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt } is connected.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:19

�e width of a tree decomposition is maxt ∈V (T) |Xt | − 1 and the treewidth of G is the minimum
width over all tree decompositions of G and is denoted by tw(G).

A tree decomposition (T,X) is called a nice tree decomposition if T is a tree rooted at some node
r where Xr = ∅, each node of T has at most two children, and each node is of one of the following
kinds:

(1) Introduce node: a node t that has only one child t ′ where Xt ⊃ Xt ′ and |Xt | = |Xt ′ | + 1.
(2) Forget node: a node t that has only one child t ′ where Xt ⊂ Xt ′ and |Xt | = |Xt ′ | − 1.
(3) Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .
(4) Base node: a node t that is a leaf of T, is di�erent than the root, and Xt = ∅.

Notice that, according to the above de�nition, the root r of T is either a forget node or a join node. It
is well known that any tree decomposition of G can be transformed into a nice tree decomposition
maintaining the same width in linear time [16]. We use Gt to denote the graph induced by the
vertex set ⋃

t ′ Xt ′ , where t ′ ranges over all descendants of t , including t . By E (Xt) we denote
the edges present in G[Xt]. We use Ht to denote the graph on vertex set V (Gt) and the edge set
E (Gt) \ E (Xt). For clarity of presentation we use the term nodes to refer to the vertices of the tree
T.

6.2 Steiner Tree Parameterized By Treewidth
�e problem we study in this subsection is de�ned below.

Steiner Tree
Input: An undirected graph G with a set of terminals T ⊆ V (G), and a non-negative weight
function w : E (G) → N.
Task: Find a subtree in G of minimum weight spanning all vertices of T .

Let G be an input graph of the Steiner Tree problem. �roughout this section, we say that
E ′ ⊆ E (G) is a solution if the subgraph induced on this edge set is connected and it contains all the
terminal vertices. We call E ′ ⊆ E (G) an optimal solution if E ′ is a solution of the minimum weight.
Let S be a family of edge subsets such that every edge subset corresponds to an optimal solution.
�at is,

S = {E ′ ⊆ E (G) | E ′ is an optimal solution}.
Observe that any edge set in S induces a forest. We start with a few de�nitions that will be useful
in explaining the algorithm. Let (T,X) be a tree decomposition of G of width tw. Let t be a node of
V (T). By St we denote the family of edge subsets of E (Ht), {E ′ ⊆ E (Ht) | G[E ′] is a forest}, that
satis�es one of the following properties.

• E ′ is a solution tree (that is, the subgraph induced on this edge set is connected and it
contains all the terminal vertices).

• Every vertex of (T ∩V (Gt)) \ Xt is incident with some edge from E ′, and every connected
component of the graph induced by E ′ contains a vertex from Xt .

We call St a family of partial solutions for t . We denote by K t a complete graph on the vertex set
Xt . For an edge subset E∗ ⊆ E (G) and bag Xt corresponding to a node t , we de�ne the following.

(1) Set ∂t (E∗) = Xt ∩V (E∗), the set of endpoints of E∗ in Xt .
(2) Let G∗ be the subgraph of G on the vertex set V (G) and the edge set E∗. Let C ′1, . . . ,C ′` be

the connected components of G∗ such that for all i ∈ [`], C ′i ∩ Xt , ∅. Let Ci = C ′i ∩ Xt .
Observe that C1, . . . ,C` is a partition of ∂t (E∗). By Ft (E

∗) we denote a forest {Q1, . . . ,Q` }

where each Qi is an arbitrary spanning tree of K t [Ci]. For an example, since K t [Ci] is a

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:20 Fomin et al.

complete graph we could take Qi as a star. �e purpose of Ft (E∗) is to keep track for the
vertices in Ci whether they were in the same connected component of G∗.

(3) We de�ne w (Ft (E
∗)) = w (E∗).

Let A and B be two families of edge subsets of E (G), then we de�ne
A �B = {E1 ∪ E2 | E1 ∈ A ∧ E2 ∈ B ∧ E1 ∩ E2 = ∅ ∧G[E1 ∪ E2] is a forest}.

With every node t of T, we associate a subgraph of G . In our case it will be Ht . For every node t ,
we keep a family of partial solutions for the graph Ht . �at is, for every optimal solution L ∈ S
and its intersection Lt = E (Ht) ∩ L with the graph Ht , we have some partial solution in the family
that is “as good as Lt ”. More precisely, we have some partial solution, say L̂t in our family such
that L̂t ∪ LR is also an optimum solution for the whole graph, where LR = L \ Lt . As we move
from one node t in the decomposition tree to the next node t ′ the graph Ht changes to Ht ′ , and
so does the set of partial solutions. �e algorithm updates its set of partial solutions accordingly.
Here matroids come into play: in order to bound the size of the family of partial solutions that
the algorithm stores at each node we employ �eorem 2.9 and Corollary 4.3 for graphic matroids.
More details are given in the proof of the following theorem, which is one of the main results in
this section.

Theorem 6.1. Let G be an n-vertex graph given together with its tree decomposition of width tw.
�en Steiner Tree on G can be solved in time
O

((
1 + 2ω−1 · 3

) tw
twO (1)n

)
.

Proof. For every node t of T and subset Z ⊆ Xt , we store a family of edge subsets Ŝt [Z] ⊆ St
of Ht satisfying the following correctness invariant.

Correctness Invariant: For every L ∈ S we have the following. Let Lt =
E (Ht) ∩ L, LR = L \ Lt , and Z = ∂t (L). �en there exists L̂t ∈ Ŝt [Z] such that
w (L̂t) ≤ w (Lt), L̂ = L̂t ∪ LR is a solution, and ∂t (L̂) = Z . Observe that since
w (L̂t) ≤ w (Lt) and L ∈ S , we have that L̂ ∈ S .

We process the nodes of the tree T from base nodes to the root node while doing the dynamic
programming. �roughout the process we maintain the correctness invariant, which will prove
the correctness of the algorithm. However, our main idea is to use representative families to
obtain Ŝt [Z] of small size. �at is, given the set Ŝt [Z] (as a product of two families A and B, i.e
Ŝt [Z] = A � B) that satis�es the correctness invariant, we use Corollary 4.3 to obtain a subset
Ŝ′t [Z] of Ŝt [Z] that also satis�es the correctness invariant and has size upper bounded by 2 |Z | in
total. More precisely, the number of partial solutions with i connected components in Ŝ′t [Z] is
upper bounded by

(
|Z |
|Z |−i

)
=

(
|Z |
i

)
. �us, we maintain the following size invariant.

Size Invariant: A�er node t of T is processed by the algorithm, for every Z ⊆

Xt we have that |Ŝt [Z , i]| ≤
(
|Z |
i

)
, where Ŝt [Z , i] is the partial solutions with i

connected components in Ŝt [Z].
�e main ingredient of the dynamic programming algorithm for Steiner Tree is the use of

�eorem 2.9 and Corollary 4.3 to compute Ŝt [Z], maintaining the size invariant. �e next lemma
shows how to implement it.

Lemma 6.2 (Product Shrinking Lemma). Let t be a node of T, and let Z ⊆ Xt be a set of size
k . Let P and Q be two families of edge sets of Ht . Furthermore, let Ŝt [Z] = P � Q be the family of
edge subsets of Ht satisfying the correctness invariant. If the number of edge sets with i connected

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:21

components in P as well as in Q is bounded by
(
k+c
i

)
where c is some �xed constant, then in time

O
(
kω (2ω + 2)k n + kω2k (ω−1)3kn

)
we can compute Ŝ′t [Z] ⊆ Ŝt [Z] satisfying correctness and size

invariants.

Proof. We start by associating a matroid with the node t and the set Z ⊆ Xt as follows. We
consider a graphic matroid M = (E,I) on K t [Z]. Here, the element set E of the matroid is the
edge set E (K t [Z]) and the family of independent sets I consists of forests of K t [Z]. Let P =
{A1, . . . ,A` } and Q = {B1, . . . ,B`′ }. Let L1 = {Ft (A1), . . . , Ft (A`)} and L2 = {Ft (B1), . . . , Ft (B`′)}
be the set of forests in K t [Z] corresponding to the edge subsets in P and Q, respectively. For
r ∈ {1, 2} and i ∈ {1, . . . ,k − 1}, let Lr,i be the family of forests of Lr with i edges. Now we
apply Corollary 4.3 and �nd GL1,i • L2, j ⊆

k−1−i−j
minrep L1,i • L2, j of size

(
k−1
i+j

)
for all i, j ∈ [k] such that

i + j < k . Let Ŝ′t [Z ,k − d] ⊆ Ŝt [Z ,k − d] be such that for every D ∈ Ŝ′t [Z ,k − d] we have that
Ft (D) ∈

⋃
i+j=d

GL1,i • L2, j . Note that Ft (D) has d edges if and only if G[D] have k − d connected
components. Let Ŝ′t [Z] = ⋃k

j=1 Ŝ
′
t [Z , j]. By Corollary 4.3, |Ŝ′t [Z ,k − d]| ≤ k

(
k−1
d

)
≤

(
k

k−d

)
, and

hence Ŝ′t [Z] maintains the size invariant.
Now we show that the Ŝ′t [Z] maintains the correctness invariant. Let L ∈ S . Let Lt = E (Ht)∩L,

LR = L \ Lt and Z = ∂t (L). Since Ŝt [Z] satis�es correctness invariant, there exists L′t ∈ Ŝt [Z]
such that w (L′t) ≤ w (Lt), L̂ = L′t ∪ LR is an optimal solution and ∂t (L̂) = Z . Since Ŝt [Z] = P � Q,
there exist A ∈ P and B ∈ Q such that L′t = A ∪ B. Observe that G[L′t],G[A] and G[B] form
forests. Consider the forests Ft (A) and Ft (B). Suppose Ft (A) has i edges and Ft (B) has j edges,
then Ft (L

′
t) ∈ L1,i • L2, j . �is is because if Ft (L′t) contain a cycle, then corresponding to that cycle

we can get a cycle in G[L′t], which is a contradiction. Now let Ft (LR) be the forest corresponding
to LR . Since L̂ is a solution, we have that Ft (L′t) ∪ Ft (LR) is a spanning tree in K t [Z]. Since

GL1, j • L2, j ⊆
k−1−i−j
minrep L1,i • L2, j , we have that there exists a forest Ft (L̂′t) ∈ GL1,i • L2, j such that

w (Ft (L̂
′
t)) ≤ w (Ft (L

′
t)) and F (L̂′t) ∪ F (LR) is a spanning tree in K t [Z]. �us, we have that L̂′t ∪ LR

is an optimum solution and L̂′t ∈ Ŝ
′
t [Z]. �is proves that Ŝ′t [Z] maintains the correctness invariant.

For a given edge set D, we need to compute the forest Ft (D) and that can take O (n) time. �e
running time to compute Ŝ′t [Z] is,

O
(
kω (2ω + 2)k n + kω2k (ω−1)3kn

)
.

�is completes the proof of the lemma. �

We now return to the dynamic programming algorithm over the tree decomposition (T,X)
of G and prove that it maintains the correctness invariant. We assume that (T,X) is a nice tree
decomposition of G. By Ŝt we denote ⋃

Z ⊆Xt Ŝt [Z] (also called a representative family of partial
solutions). We show how Ŝt is obtained by doing dynamic programming from base node to the
root node.

Base node t . Here the graph Ht is empty and thus we take Ŝt = {∅}.

Introduce node t with child t ′. Here, we know that Xt ⊃ Xt ′ and |Xt | = |Xt ′ | + 1. Let v be the
vertex in Xt \ Xt ′ . Furthermore, observe that E (Ht) = E (Ht ′) and v is a degree zero vertex in Ht .
�us the graph Ht only di�ers from Ht ′ at an isolated vertex v . Since we have not added any edge
to the new graph, the family of solutions, which contains edge-subsets, does not change. �us, we
take Ŝt = Ŝt ′ . Formally, we take Ŝt [Z] = Ŝt ′[Z \ {v}]. Since Ht and Ht ′ have same set of edges the
invariant is vacuously maintained.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:22 Fomin et al.

Forget node t with child t ′. Here we know Xt ⊂ Xt ′ and |Xt | = |Xt ′ | − 1. Let v be the vertex in
Xt ′ \ Xt . Let Ev [Z] denote the set of edges between v and the vertices in Z ⊆ Xt . Observe that
E (Ht) = E (Ht ′) ∪ Ev [Xt]. Before we de�ne things formally, observe that in this step the graphs Ht
and Ht ′ di�er by at most tw edges - the edges with one endpoint in v and the other in Xt . We go
through every possible way an optimal solution can intersect with these newly added edges. Let
Pv [Z] = {Y | ∅ , Y ⊆ Ev [Z]}. �en the new set of partial solutions is de�ned as follows.

Ŝt [Z] =



(
Ŝt ′[Z ∪ {v}] � Pv [Z]

)
∪

{
A ∈ Ŝt ′[Z ∪ {v}] : A ∈ St

}
if v ∈ T(

Ŝt ′[Z ∪ {v}] � Pv [Z]
)
∪

{
A ∈ Ŝt ′[Z ∪ {v}] : A ∈ St

}
∪ Ŝt ′[Z] if v < T

Now we claim that Ŝt [Z] ⊆ St . Towards the proof we �rst show that Ŝt ′[Z ∪ {v}] � Pv [Z] ⊆ St .
Let E ′ ∈ Ŝt ′[Z ∪ {v}] � Pv [Z]. Note that E ′ ∩ Ev [Z] , ∅. If E ′ is a solution tree then E ′ ∈ St
and we are done. Since E ′ \ Ev [Z] ∈ Ŝt ′[Z ∪ {v}] ⊆ St ′ , every vertex of (T ∩V (Gt)) \ (Xt ∪ {v})
is incident with some edge from E ′. Since E ′ ∩ Ev [Z] , ∅, there exists an edge in E ′ which is
incident to v . �is implies that every vertex of (T ∩V (Gt)) \ Xt is incident with some edge from
E ′. Now consider any connected component C in G[E ′]. If v < V (C), then C contains a vertex
from Xt ′ \ {v} = Xt , because E ′ \ Ev [Z] ∈ Ŝt ′[Z ∪ {v}] ⊆ St ′ . If v ∈ V (C), then C contains
a vertex from Xt because E ′ ∩ Ev [Z] , ∅. �us we have shown that E ′ ∈ St . It is easy to see
that {A ∈ Ŝt ′[Z ∪ {v}] : A ∈ St } ⊆ St . If v < T then Ŝt ′[Z] ⊆ St , because Ŝt ′[Z] ⊆ St ′ and
Xt = Xt ′ \ {v}.

Now we show that Ŝt maintains the invariant of the algorithm. Let L ∈ S .
(1) Let Lt = E (Ht) ∩ L and LR = L \ Lt . Furthermore, edges of Lt can be partitioned into

Lt ′ = E (Ht ′) ∩ L and Lv = Lt \ Lt ′ . �at is, Lt = Lt ′] Lv .
(2) Let Z = ∂t (L) and Z ′ = ∂t

′

(L).
By the property of Ŝt ′ , there exists a L̂t ′ ∈ Ŝt ′[Z ′] such that

L ∈ S ⇐⇒ Lt ′] Lv] LR ∈ S

⇐⇒ L̂t ′] Lv] LR ∈ S (1)

and ∂t ′ (L) = ∂t ′ (L̂t ′] Lv] LR) = Z ′.

We put L̂t = L̂t ′ ∪ Lv and L̂ = L̂t ∪ LR . We now show that L̂t ∈ Ŝt [Z]. If v < Z ′, then v < T ,
L̂t = L̂t ′ and Z = Z ′. �is implies that L̂t ∈ Ŝt [Z]. If v ∈ Z ′ and Lv , ∅ then Z ′ = Z ∪ {v}. �is
implies that L̂t ∈ Ŝt ′[Z ′] � {Lv } ⊆ Ŝt [Z]. If v ∈ Z ′ and Lv = ∅ then Z ′ = Z ∪ {v} and L̂t = L̂t ′ .
�is implies that L̂t ∈ {A ∈ Ŝt ′[Z ′] : A ∈ St } ⊆ Ŝt [Z]. By (1), L̂ ∈ S . Finally, we need to show
that ∂t (L̂) = Z . Towards this just note that ∂t (L̂) = Z ′ \ {v} = Z . �is concludes the proof for the
fact that Ŝt maintains the correctness invariant.

Join node t with two children t1 and t2. Here, we know that Xt = Xt1 = Xt2 . Also we know that
the edges of Ht is obtained by the union of edges of Ht1 and Ht2 which are disjoint. Of course they
are separated by the vertices in Xt . A natural way to obtain a family of partial solutions for Ht is
that we take the union of edge subsets of the families stored at nodes t1 and t2. �is is exactly what
we do. Let

Ŝt [Z] = Ŝt1 [Z] � Ŝt2 [Z].
Now we show that Ŝt maintains the invariant. Let L ∈ S .

(1) Let Lt = E (Ht) ∩ L and LR = L \ Lt . Furthermore, edges of Lt can be partitioned into those
belonging to Ht1 and those belonging to Ht2 . Let Lt1 = E (Ht1) ∩ L and Lt2 = E (Ht2) ∩ L.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:23

Observe that since E (Ht1) ∩ E (Ht2) = ∅, we have that Lt1 ∩ Lt2 = ∅. Also observe that
Lt = Lt1] Lt2 and G[Lt1],G[Lt1] form forests.

(2) Let Z = ∂t (L). Since Xt = Xt1 = Xt2 this implies that Z = ∂t (L) = ∂t1 (L) = ∂t2 (L).
Now observe that

L ∈ S ⇐⇒ Lt1] Lt2] LR ∈ S

⇐⇒ L̂t1] Lt2] LR ∈ S (by the property of Ŝt1 we have that L̂t1 ∈ Ŝt1 [Z])
⇐⇒ L̂t1] L̂t2] LR ∈ S (by the property of Ŝt2 we have that L̂t2 ∈ Ŝt2 [Z])

We put L̂t = L̂t1 ∪ L̂t2 . By the de�nition of Ŝt [Z], we have that L̂t1 ∪ L̂t2 ∈ Ŝt [Z]. �e above
inequalities also show that L̂ = L̂t∪LR ∈ S . It remains to show that ∂t (L̂) = Z . Since ∂t1 (L) = Z , we
have that ∂t1 (L̂t1]Lt2]LR) = Z . Now sinceXt1 = Xt2 we have that ∂t2 (L̂t1]Lt2]LR) = Z and thus
∂t2 (L̂t1] L̂t2]LR) = Z . Finally, because Xt2 = Xt , we conclude that ∂t (L̂t1] L̂t2]LR) = ∂

t (L̂) = Z .
�is concludes the proof of correctness invariant.

Root node r . Here, Xr = ∅. We go through all the solution in Ŝr [∅] and output the one with the
minimum weight. �is concludes the description of the dynamic programming algorithm.

Computation of Ŝt . Now we show how to implement the algorithm described above in the
desired running time by making use of Lemma 6.2. For our discussion let us �x a node t and Z ⊆ Xt
of size k . While doing dynamic programming algorithm from the base nodes to the root node we
always maintain the size invariant.

Base node t . Trivially, in this case we have maintained the size invariant.

Introduce node t with child t ′. Here, we have that Ŝt [Z] = Ŝt ′[Z \ {v}] and thus the number of
partial solutions with i connected components in Ŝt [Z] is bounded

(
k
i

)
.

Forget node t with child t ′. In this case,

Ŝt [Z] =



(
Ŝt ′[Z ∪ {v}] � Pv [Z]

)
∪

{
A ∈ Ŝt ′[Z ∪ {v}] : A ∈ St

}
if v ∈ T(

Ŝt ′[Z ∪ {v}] � Pv [Z]
)
∪

{
A ∈ Ŝt ′[Z ∪ {v}] : A ∈ St

}
∪ Ŝt ′[Z] if v < T

Since Ŝt ′[Z ∪ {v}] maintains size invariant, the number of edge subsets with i connected compo-
nents in Ŝt ′[Z ∪ {v}] is upper bounded by

(
k+1
i

)
. It is easy to see that the number of edge subsets

with i connected components in Pv [Z] is upper bounded by
(
k
i

)
. So �rst we apply Lemma 6.2 and

obtain R ⊆ Ŝt ′[Z ∪ {v}] � Pv [Z] that maintains the correctness and size invariants. Now let

Ŝ′t [Z] =



R ∪
{
A ∈ Ŝt ′[Z ∪ {v}] : A ∈ St

}
if v ∈ T

R ∪
{
A ∈ Ŝt ′[Z ∪ {v}] : A ∈ St

}
∪ Ŝt ′[Z] if v < T

Note that Ŝ′t [Z] maintains correctness invariant. Since the number of edge subsets with i connected
components in {A ∈ Ŝt ′[Z ∪ {v}] : A ∈ St } and Ŝt ′[Z] is bounded by

(
k+1
i

)
, the the number of edge

subsets with i connected components in Ŝ′t [Z] is at most
(
k+4
i

)
. Also note that Ŝ′t [Z] = Ŝ′t [Z]� {∅}.

�us we can apply Lemma 6.2 and obtain Ŝ′′t [Z] ⊆ Ŝ′t [Z] that maintains the correctness and size
invariants. We update Ŝt [Z] = Ŝ′′t [Z].

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:24 Fomin et al.

�e running time to compute {A ∈ Ŝt ′[Z ∪ {v}] : A ∈ St } is O (2 |Z |n). �us the running time T
to compute Ŝt (that is, across all subsets of Xt) is

T = O *
,

tw+1∑
i=1

(
tw + 1

i

) (
iω (2ω + 2)i n + iω2i (ω−1)3in

)
+

tw+1∑
i=1

(
tw + 1

i

)
2in+

-
= O

(
twωn (2ω + 3)tw + twωn

(
1 + 2ω−1 · 3

) tw)
Join node t with two children t1 and t2. Here we de�ned

Ŝt [Z] = Ŝt1 [Z] � Ŝt2 [Z].

�e number of edge subsets with i connected components in Ŝt1 [Z] and Ŝt2 [Z] are bounded by(
k
i

)
. Now, we apply Lemma 6.2 and obtain Ŝ′t [Z] that maintains the correctness invariant and has

size at most 2k . We put Ŝt [Z] = Ŝ′t [Z]. �e running time to compute Ŝt is

O

(
twωn (2ω + 3)tw + twωn

(
1 + 2ω−1 · 3

) tw)
.

�us the whole algorithm takes O
(
twωn2 (2ω + 3)tw + twωn2

(
1 + 2ω−1 · 3

) tw)
= O (8.7703twn2)

as the number of nodes in a nice tree-decomposition is upper bounded by O (n). However, observe
that we do not need to compute the forests and the associated weight at every step of the algorithm.
�e size of the forest is at most tw + 1 and we can maintain these forests across the bags during
dynamic programming in time twO (1) . Also, these forests can be used to compute the set {A ∈
Ŝt ′[Z ∪ {v}] : A ∈ St } during the computation in the forget node t . �is will lead to an algorithm
with the claimed running time. �is completes the proof. �

6.3 Feedback Vertex Set Parameterized By Treewidth
In this subsection we study the Feedback Vertex Set problem which is de�ned as follows.

Feedback Vertex Set
Input: An undirected graph G and a non negative weight function w : V (G) → N.
Task: Find a minimum weight set Y ⊆ V (G) such that G[V (G) \ Y] is a forest.

Let G be an input graph of the Feedback Vertex Set problem. In this subsection instead of
saying feedback vertex set Y ⊆ V (G) is a solution, we say that V (G) \ Y is a solution, i.e, our
objective is to �nd a maximum weight setV ′ ⊆ V (G) such thatG[V ′] is a forest. We callV ′ ⊆ V (G)
is an optimal solution ifV ′ is a solution with maximum weight. Let S be a family of vertex subsets
such that every vertex subset corresponds to an optimal solution. �at is,

S = {V ′ ⊆ V (G) | V ′ is an optimal solution}.

Let (T,X) be a tree decomposition of G of width tw. For each tree node t and Z ⊆ Xt , we de�ne
St [Z], family of partial solutions as follows.

St [Z] = {U ⊆ V (Ht) | U ∩ Xt = Z and Ht [U] is a forest }

We denote by K t a complete graph on the vertex set Xt . Let G∗ be subgraph of G . Let C ′1, . . . ,C ′`
be the connected components of G∗ that have nonempty intersection with Xt . LetCi = C

′
i ∩Xt . By

Ft (G
∗) we denote the a forest {Q1, . . . ,Q` } where each Qi is an arbitrary spanning tree of K t [Ci].

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:25

For two family of vertex subsets P and Q of the subgraph Ht , we denote
P ⊗t Q = {U1 ∪U2 | U1 ∈ P,U2 ∈ Q and Ht [U1 ∪U2] is a forest }.

With every node t of T, we associate the subgraph Ht ofG . For every node t , we keep a family of
partial solutions for the graph Ht which is su�cient to guarantee the correctness of the algorithm.
�at is for every optimal solution L ∈ S with L ∩Xt = Z and its intersection Lt = V (Ht) ∩ L with
the graph Ht , we have some partial solution L̂t in our subset such that L̂t ∩ Xt = Z and L̂t ∪ LR is
an optimal solution, i.e G[L̂t ∪ LR] is a forest, where LR = L \ Lt and w (L̂t ∪ LR) ≥ w (L). Now we
are ready to state the main theorem.

Theorem 6.3. Let G be an n-vertex graph given together with its tree decomposition of width tw.

�en Feedback Vertex Set on G can be solved in time O
((

1 + 2ω−1 · 3
) tw

twO (1)n
)
.

Proof. For every node t of T and Z ⊆ Xt , we store a family of vertex subsets Ŝt [Z] of V (Ht)
satisfying the following correctness invariant.

Correctness Invariant: For every L ∈ S we have the following. Let Lt =
V (Ht) ∩ L, LR = L \ Lt and L ∩ Xt = Z . �en there exists L̂t ∈ Ŝt [Z] such that
L̂ = L̂t ∪ LR is an optimal solution, i.e G[L̂t ∪ LR] is a forest with w (L̂t) ≥ w (Lt).
�us we have that L̂ ∈ S .

We process the nodes of the tree T from base nodes to the root node while doing the dynamic
programming. �roughout the process we maintain the correctness invariant, which will prove
the correctness of the algorithm. However, our main idea is to use representative families to
obtain Ŝt [Z] of small size. �at is, given the set Ŝt [Z] that satis�es the correctness invariant, we
use representative family tool to obtain a subset Ŝ′t [Z] of Ŝt [Z] that also satis�es the correctness
invariant and has size upper bounded by 2 |Z | in total. More precisely, the number of partial solutions
in Ŝ′t [Z] that have i connected components with nonempty intersection with Xt is upper bounded
by

(
|Z |
i

)
. �us, we maintain the following size invariant.
Size Invariant: A�er node t of T is processed by the algorithm, we have that
|Ŝt [Z , i]| ≤

(
|Z |
i

)
, where Ŝt [Z , i] is the set of partial solutions that have i connected

components with nonempty intersection with Xt .

Lemma 6.4 (Product Shrinking Lemma). Let t be a node of T and let Z ⊆ Xt be a set of size k .
Let P and Q be two families of vertex subsets of V (Ht) (partial solutions) such that for any A ∈ P

and B ∈ Q, E (Ht [A]) ∩ E (Ht [B]) = ∅. Furthermore, let Ŝt [Z] = P ⊗t Q be the family of vertex
subsets ofV (Ht) satisfying the correctness invariant. If the number of partial solutions with i connected
components having nonempty intersection with Z in P as well as in Q is bounded by

(
k+c
i

)
where c is

some �xed constant, then in time O
(
kω (2ω + 2)k n + kω2k (ω−1)3kn

)
we can compute Ŝ′t [Z] ⊆ Ŝt [Z]

satisfying correctness and size invariants.

Proof. We start by associating a matroid with node t and the set Z ⊆ Xt as follows. We
consider a graphic matroid M = (E,I) on K t [Z]. Here, the element set E of the matroid is the
edge set E (K t [Z]) and the family of independent sets I consists of spanning forests of K t [Z].
Here our objective is to �nd a small subfamily of Ŝt [Z] = P ⊗t Q satisfying correctness and size
invariants using e�cient computation of representative family in the graphic matroid M . �e main
idea to prune the size of partial solutions is as follows: for each independent set U ∈ Ŝt [Z] we
associate Ft (Ht [U]) as the corresponding independent set in the graphic matroid M and compute
representative family in the graphic matroid M .

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:26 Fomin et al.

Let P = {A1, . . . ,A` } and Q = {B1, . . . ,B`′ }. Let L1 = {Ft (Ht [A1]), . . . , Ft (Ht [A`])} and L2 =
{Ft (Ht [B1]), . . . , Ft (Ht [B`′])} be the set of forests inK t [Z] corresponding to the vertex subsets in P
andQ respectively. Now we de�ne a non negative weight functionw ′ : L1•L2 → N as follows. For
each Ft (Ht [Ai])∪ Ft (Ht [Bj]) ∈ L1 •L2 we setw ′

(
Ft (Ht [Ai]) ∪ Ft (Ht [Bj])

)
= w (Ai ∪Bj). For i ∈

[k] and r ∈ {1, 2}, letLr,i be the family of forests ofLr with i edges. Now we apply Corollary 4.3 and
�nd GL1,i • L2, j ⊆

k−1−i−j
maxrep L1,i •L2, j of size

(
k−1
i+j

)
for all i, j ∈ [k]. Let Ŝ′t [Z ,k −d] ⊆ Ŝt [Z ,k −d] be

such that for everyU1∪U2 ∈ Ŝ
′
t [Z ,k−d] we have that Ft (Ht [U1])∪Ft (Ht [U2]) ∈ ⋃

i+j=d
GL1,i • L2, j .

Let Ŝ′t [Z] = ⋃k
j=0 Ŝ

′
t [Z , j]. By Corollary 4.3, |Ŝ′t [Z ,k − d]| ≤ k

(
k−1
d

)
≤

(
k

k−d

)
, and hence Ŝ′t [Z]

maintains the size invariant.
Now we show that the Ŝ′t [Z] maintains the correctness invariant. Let L ∈ S and let Lt =

V (Ht) ∩ L, LR = L \ Lt and Z = L ∩ Xt . Since Ŝt [Z] satisfy correctness invariant, there exists
L̂t ∈ Ŝt [Z] such that w (L̂t) ≥ w (Lt), L̂ = L̂t ∪ LR is an optimal solution and L̂ ∩ Xt = Z . Since
Ŝt [Z] = P ⊗t Q, there existsU1 ∈ P andU2 ∈ Q such that L̂t = U1 ∪U2. Observe that Ht [U1 ∪U2]
form a forest. Consider the forests Ft (Ht [U1]) and Ft (Ht [U2]). Suppose |Ft (Ht [U1]) | = i1 and
|Ft (Ht [U2]) | = i2, then Ft (Ht [U1]) ∪ Ft (Ht [U2]) ∈ L1,i1 • L1,i2 . �is is because if Ft (Ht [U1]) ∪
Ft (Ht [U2]) contains a cycle, then corresponding to that cycle we can get a cycle in Ht [U1 ∪U2],
which is a contradiction. Now let E ′ = Ft (G[LR ∪ Z]) be the forest corresponding to LR ∪ Z with
respect to the bag Xt . Since L̂ is a solution, we have that Ft (Ht [U1]) ∪ Ft (Ht [U2]) ∪ E ′ is a forest in
K t [Z]. Since GL1,i1 • L2,i2 ⊆

k−1−i1−i2
maxrep L1,i1 • L2,i2 , there exists a forest Ft (Ht [U ′1]) ∪ Ft (Ht [U ′2]) ∈

GL1,i1 • L2,i2 such thatw ′
(
Ft (Ht [U ′1]) ∪ Ft (Ht [U ′2])

)
≥ w ′ (Ft (Ht [U1] ∪ Ft (Ht [U2]))) = w (U1∪U2)

and Ft (Ht [U ′1]) ∪ Ft (Ht [U ′2]) ∪ E ′ is a forest in K t [Z]. HenceU ′1 ∪U ′2 ∈ Ŝ′t [Z]. Since w (U ′1 ∪U
′
2) =

w ′
(
Ft (Ht [U ′1]) ∪ Ft (Ht [U ′2])

)
, w (U ′1 ∪U

′
2) ≥ w (U1 ∪U2). �us, we can conclude thatU ′1 ∪U ′2 ∪ LR

is an optimal solution. �is proves that Ŝ′t [Z] maintains the correctness invariant.
By Corollary 4.3, the running time to compute Ŝ′t [Z] is upper bounded by,

O
(
kω (2ω + 2)k n + kω2k (ω−1)3kn

)
.

�is completes the proof of the lemma. �

We now explain the dynamic programming algorithm over the tree-decomposition (T,X) of
G and prove that it maintains the correctness invariant. We assume that (T,X) is a nice tree-
decomposition of G. By Ŝt we denote ⋃

Z ⊆Xt Ŝt [Z] (also called a representative family of partial
solutions). We show how Ŝt is obtained by doing dynamic programming from base node to the
root node.

Base node t . Here the graph Ht is empty and thus we take Ŝt = {∅}.

Introduce node t with child t ′. Here, we know that Xt ⊃ Xt ′ and |Xt | = |Xt ′ | + 1. Let v be the
vertex in Xt \ Xt ′ . Furthermore observe that E (Ht) = E (Ht ′) and v is degree zero vertex in Ht .
�us the graph Ht only di�ers from Ht ′ at a isolated vertex v . Since we have not added any edge
to the new graph, the family of solutions does not change. �us, we take Ŝt = Ŝt ′ . Formally, we
take Ŝt [Z] = Ŝt ′[Z \ {v}]. Since, Ht and Ht ′ have same set of edges both the correctness and size
invariant is maintained.

Forget node t with child t ′. Here we know Xt ⊂ Xt ′ , |Xt | = |Xt ′ | − 1 Let v ∈ Xt ′ \ Xt . Observe
that E (Ht) ⊇ E (Ht ′). �us for any U ∈ Ŝt ′ , Ht [U] may or may not be a forest. So in this case we

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Representative Families of Product Families 39:27

collect all the vertex subsets in Ŝt ′ which is a forest as induced subgraph in Ht . Formally,

Ŝt [Z] =
{
A ∈ Ŝt ′[Z] ∪ Ŝt ′[Z ∪v]

���� Ht [A] is a forest
}
.

Let Ŝt =
⋃

Z ⊆Xt Ŝt [Z]. Now we show that Ŝt satis�es correctness invariant. Let L ∈ S . Let
Lt ′ = V (Ht ′) ∩ L and LR = L \ Lt ′ . Let Z ′ = L ∩ Xt ′ Now observe that

L ∈ S ⇐⇒ Lt ′ ∪ LR ∈ S

⇐⇒ L̂t ′ ∪ LR ∈ S (by the property of Ŝt ′ we have that L̂t ′ ∈ Ŝt ′[Z ′])

Since Ht [L̂t ′] is a forest, L̂t ′ ∈ Ŝt [Z ′ \ {v}]. �is concludes the proof of correctness invariant.
Since Ŝt [Z] ⊆ Ŝt ′[Z]∪ Ŝt ′[Z ∪v], the number of partial solutions with i connected components

having nonempty intersection with Z in Ŝt [Z] is bounded by
(
k
i

)
+

(
k+1
i

)
≤

(
k+2
i

)
. Since Ŝt [Z] =

Ŝt [Z] ⊗t {∅}, we apply Lemma 6.4 and �nd Ŝ′t [Z] ⊆ Ŝt [Z] satis�es correctness and size invariant
in time O

(
kω (2ω + 2)k n + kω2k (ω−1)3kn

)
and we set Ŝt [Z] = Ŝ′t [Z].

Join node t with two children t1 and t2. Here, we know that Xt = Xt1 = Xt2 . �e natural way to
get a family of partial solutions for Xt is the union of vertex sets of two families stored at node t1
and t2 which form a forest as an induced subgraph of Ht , i.e.,

Ŝt [Z] = {U1 ∪U2 | U1 ∈ Ŝt1 [Z],U2 ∈ Ŝt2 [Z],Ht [U1 ∪U2] is a forest}
= Ŝt1 [Z] ⊗t Ŝt2 [Z]

Now we show that Ŝt maintains the invariant. Let L ∈ S . Let Lt = V (Gt) ∩ L,Lt1 = V (Gt1) ∩
L,Lt2 = V (Gt2) ∩ L and LR = L \ Lt . Let Z = L ∩ Xt Now observe that

L ∈ S ⇐⇒ Lt1 ∪ Lt2 ∪ LR ∈ S

⇐⇒ L̂t1 ∪ Lt2 ∪ LR ∈ S (by the property of Ŝt1 we have that L̂t1 ∈ Ŝt1 [Z])
⇐⇒ L̂t1 ∪ L̂t2 ∪ LR ∈ S (by the property of Ŝt2 we have that L̂t2 ∈ Ŝt2 [Z])

We put L̂t = L̂t1 ∪ L̂t2 . By the de�nition of Ŝt [Z], we have that L̂t1 ∪ L̂t2 ∈ Ŝt [Z]. �e above
inequalities also show that L̂ = L̂t ∪ LR ∈ S . Note that (L̂t ∪ LR) ∩ Xt = Z �is concludes the
proof of correctness invariant.

We apply Lemma 6.4 and �nd Ŝ′t [Z] ⊆ Ŝt [Z] satis�es correctness and size invariant in time
O

(
kω (2ω + 2)k n + kω2k (ω−1)3kn

)
and we set Ŝt [Z] = Ŝ′t [Z].

Root node r . Here, Xr = ∅. We go through all the solution in Ŝr [∅] and output the one with the
maximum weight.

In worst case, in every tree node t , for all subset Z ⊆ Xt , we apply Lemma 6.4. So by doing the
same run time analysis as in the case of Steiner Tree, the total running time will be upper bounded
by O

((
(2ω + 3)tw +

(
1 + 2ω−1 · 3

) tw)
twO (1)n

)
. �

7 CONCLUSION
In this paper we gave algorithms for �nding representative families for product families that are
faster than the naive computation for these families. We showed their applicability by designing
the best known deterministic algorithms for k-wMlD, k-wMMlD and for “connectivity problems”
parameterized by treewidth. We believe that our algorithms for computing representative families of
product families will be useful to accelerate other algorithms. We conclude with several interesting
problems.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

39:28 Fomin et al.

(1) What are the other natural set families for which we can �nd representative families faster
than by directly applying the results of Fomin et al. [10]?

(2) Can we �nd representative families for a uniform matroid in time linear in the input size?
(3) Does there exist a deterministic algorithm for k-wMlD running in time 2knO (1) logW ?

REFERENCES
[1] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. J. Assoc. Comput. Mach. 42, 4 (1995), 844–856.
[2] Richard Bellman and William Karush. 1962a. Mathematical programming and the maximum transform. J. Soc. Indust.

Appl. Math. 10 (1962), 550–567.
[3] Richard Bellman and William Karush. 1962b. On the maximum transform and semigroup of transformations. Bull.

Amer. Math. Soc. 68 (1962), 516–518.
[4] Andreas Björklund, �ore Husfeldt, Pe�eri Kaski, and Mikko Koivisto. 2007. Fourier meets Möbious: Fast subset

convolution. In Proceedings of the 39th annual ACM Symposium on �eory of Computing (STOC 2007). ACM Press, New
York, to appear.

[5] Andreas Björklund, �ore Husfeldt, Pe�eri Kaski, and Mikko Koivisto. 2010. Narrow sieves for parameterized paths
and packings. CoRR abs/1007.1161 (2010).

[6] Andreas Björklund, Pe�eri Kaski, and Lukasz Kowalik. 2013. Probably Optimal Graph Motifs. In STACS (LIPIcs), Vol. 20.
20–31.

[7] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. 2013. Solving weighted and counting variants
of connectivity problems parameterized by treewidth deterministically in single exponential time, In ICALP. CoRR
(2013), 196–207.

[8] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,
and Saket Saurabh. 2015. Parameterized Algorithms. Springer. DOI:h�p://dx.doi.org/10.1007/978-3-319-21275-3

[9] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Woj-
taszczyk. 2011. Solving connectivity problems parameterized by treewidth in single exponential time. In Proceedings
of the 52nd Annual Symposium on Foundations of Computer Science (FOCS 2011). IEEE.

[10] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. 2016. E�cient Computation of Representative
Families with Applications in Parameterized and Exact Algorithms. J. ACM 63, 4 (2016), 29:1–29:60. DOI:h�p:
//dx.doi.org/10.1145/2886094

[11] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghavendra Rao. 2012. Faster
algorithms for �nding and counting subgraphs. J. Comput. System Sci. 78, 3 (2012), 698–706. DOI:h�p://dx.doi.org/10.
1016/j.jcss.2011.10.001

[12] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2014. E�cient Computation of Representative Sets with
Applications in Parameterized and Exact Algorithms. In SODA. 142–151.

[13] François Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication. CoRR abs/1401.7714 (2014). h�p://arxiv.org/
abs/1401.7714

[14] Sylvain Guillemot and Florian Sikora. 2013. Finding and Counting Vertex-Colored Subtrees. Algorithmica 65, 4 (2013),
828–844.

[15] Stasys Jukna. 2011. Extremal combinatorics. Springer Verlag Berlin Heidelberg.
[16] Ton Kloks. 1994. Treewidth, Computations and Approximations. Lecture Notes in Computer Science, Vol. 842. Springer.
[17] Ioannis Koutis. 2008. Faster Algebraic Algorithms for Path and Packing Problems. In Proceedings of the 35th International

Colloquium on Automata, Languages and Programming (ICALP 2008) (Lecture Notes in Computer Science), Vol. 5125.
575–586.

[18] Ioannis Koutis. 2012. Constrained multilinear detection for faster functional motif discovery. Inf. Process. Le�. 112, 22
(2012), 889–892.

[19] Ioannis Koutis and Ryan Williams. 2009. Limits and Applications of Group Algebras for Parameterized Problems. In
Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP 2009) (Lecture Notes
in Computer Sci.), Vol. 5555. Springer, 653–664.

[20] Ioannis Koutis and Ryan Williams. 2016. Algebraic �ngerprints for faster algorithms. Commun. ACM 59, 1 (2016),
98–105. DOI:h�p://dx.doi.org/10.1145/2742544

[21] Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. 2015. Deterministic Truncation of Linear
Matroids. In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July
6-10, 2015, Proceedings, Part I. 922–934. DOI:h�p://dx.doi.org/10.1007/978-3-662-47672-7 75

[22] László Lovász. 1977. Flats in matroids and geometric graphs.. In In Combinatorial surveys (Proc. Sixth British Combina-
torial Conf., Royal Holloway Coll., Egham). Academic Press, London, 45–86.

[23] Dániel Marx. 2006. Parameterized coloring problems on chordal graphs. �eor. Comput. Sci. 351, 3 (2006), 407–424.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1145/2886094
http://dx.doi.org/10.1145/2886094
http://dx.doi.org/10.1016/j.jcss.2011.10.001
http://dx.doi.org/10.1016/j.jcss.2011.10.001
http://arxiv.org/abs/1401.7714
http://arxiv.org/abs/1401.7714
http://dx.doi.org/10.1145/2742544
http://dx.doi.org/10.1007/978-3-662-47672-7_75

Representative Families of Product Families 39:29

[24] Dániel Marx. 2009. A parameterized view on matroid optimization problems. �eor. Comput. Sci. 410, 44 (2009),
4471–4479.

[25] Burkhard Monien. 1985. How to �nd long paths e�ciently. In Analysis and design of algorithms for combinatorial
problems (Udine, 1982). North-Holland Math. Stud., Vol. 109. North-Holland, Amsterdam, 239–254. DOI:h�p://dx.doi.
org/10.1016/S0304-0208(08)73110-4

[26] James G Oxley. 2006. Matroid theory. Vol. 3. Oxford University Press.
[27] Fahad Panolan and Meirav Zehavi. 2016. Parameterized Algorithms for List K-Cycle. In 36th IARCS Annual Conference

on Foundations of So�ware Technology and �eoretical Computer Science, FSTTCS 2016, December 13-15, 2016, Chennai,
India. 22:1–22:15. h�p://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.22

[28] Zsolt Tuza. 1994. Applications of the set-pair method in extremal hypergraph theory. In Extremal problems for �nite
sets (Visegrád, 1991). Bolyai Soc. Math. Stud., Vol. 3. János Bolyai Math. Soc., Budapest, 479–514.

[29] Zsolt Tuza. 1996. Applications of the set-pair method in extremal problems. II. In Combinatorics, Paul Erdős is eighty,
Vol. 2 (Keszthely, 1993). Bolyai Soc. Math. Stud., Vol. 2. János Bolyai Math. Soc., Budapest, 459–490.

[30] Ryan Williams. 2009. Finding Paths of Length k in O∗ (2k) Time. Inf. Process. Le�. 109, 6 (2009), 315–318.
[31] Virginia Vassilevska Williams. 2012. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of the

44th Symposium on �eory of Computing Conference (STOC 2012). ACM, 887–898.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

http://dx.doi.org/10.1016/S0304-0208(08)73110-4
http://dx.doi.org/10.1016/S0304-0208(08)73110-4
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.22

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Matroids and Representative Families

	3 Representative family computation for product families
	4 Representative Family computation for product families of a linear matroid
	5 Application I: Multilinear Monomial Testing
	5.1 Matroidal Multilinear Monomial Detection

	6 Application II: Dynamic Programming over graphs of bounded treewidth
	6.1 Treewidth
	6.2 Steiner Tree Parameterized By Treewidth
	6.3 Feedback Vertex Set Parameterized By Treewidth

	7 Conclusion
	References

