
Noname manuscript No.
(will be inserted by the editor)

Quick but Odd Growth of Cacti

Sudeshna Kolay · Daniel Lokshtanov ·
Fahad Panolan · Saket Saurabh ·

Received: date / Accepted: date

Abstract Let F be a family of graphs. Given an n-vertex input graph G and
a positive integer k, testing whether G has a vertex subset S of size at most k,
such that G− S belongs to F , is a prototype vertex deletion problem. These
type of problems have attracted a lot of attention in recent times in the domain
of parameterized complexity. In this paper, we study two such problems; when
F is either the family of forests of cacti or the family of forests of odd-cacti. A
graph H is called a forest of cacti if every pair of cycles in H intersect on at
most one vertex. Furthermore, a forest of cacti H is called a forest of odd cacti,
if every cycle of H is of odd length. Let us denote by C and Codd, the families
of forests of cacti and forests of odd cacti, respectively. The vertex deletion
problems corresponding to C and Codd are called Diamond Hitting Set and
Even Cycle Transversal, respectively. In this paper we design randomized
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algorithms with worst case run time 12knO(1) for both these problems. Our
algorithms considerably improve the running time for Diamond Hitting Set
and Even Cycle Transversal, compared to what is known about them.

Keywords Even Cycle Transversal · Diamond Hitting Set · Fixed Parameter
Tractability · Randomized Algorithms

1 Introduction

In the field of parameterized graph algorithms, vertex (edge) deletion (addi-
tion, editing) problems constitute a considerable fraction. In particular, let F
be a family of graphs. Given an input graph G and a positive integer k, test-
ing whether G has a subset of at most k vertices (edges) S, such that G − S
belongs to F , is a prototype vertex (edge) deletion problem. Many well known
problems in parameterized complexity can be phrased in this language. For ex-
ample, if F is the family of edgeless graphs, or forests, or bipartite graphs, then
the vertex deletion problems to convert the input graph into a graph in F are
Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal,
respectively. Most of these problems are NP-complete due to a classic result
by Lewis and Yannakakis [19], and naturally a candidate for parameterized
study (with respect to solution size). Vertex Cover, Feedback Vertex
Set and Odd Cycle Transversal are some of the most well studied prob-
lems in the domain of parameterized complexity. These problems have led to
identification of several new techniques and ideas in the field.

Recent years have seen a plethora of results around vertex and edge deletion
problems, in the domain of parameterized complexity [4,5,11–13,15,16]. In this
paper, we continue this line of research and study two vertex deletion problems.
In particular we study the problem of deleting vertices to get a cactus or an
odd cactus graph. A graph H is called a cactus graph if H is connected and
every pair of cycles in H intersect on at most one vertex. Furthermore, a cactus
graph H is called an odd cactus graph, if every cycle of H is of odd length.
A graph is called a forest of cacti if every component of the graph is a cacti.
Let us denote by C and Codd, the families of forests of cacti and forests of
odd cacti, respectively. The vertex deletion problems corresponding to C and
Codd are called Diamond Hitting Set and Even Cycle Transversal,
respectively. It is important to note here that the name of deleting vertices to
get into Codd is called Even Cycle Transversal, because it is equivalent to
deleting a vertex subset S of size at most k such that G−S does not have any
cycle of even length. The problem of deleting vertices to get into C is called
Diamond Hitting Set, because, it is equivalent to deleting a vertex subset
S of size at most k such that G− S does not contain diamond as a subgraph
(See Definition 3 for the definition of diamond). More precisely, we study the
following problems in the realm of parameterized complexity.



Quick but Odd Growth of Cacti 3

Even Cycle Transversal Parameter: k
Input: An n-vertex undirected graph G and a positive integer k.
Question: Does there exist a vertex subset S of size at most k such that
G− S ∈ Codd, where Codd is the family of forests of odd cacti?

Diamond Hitting Set Parameter: k
Input: An n-vertex undirected graph G and a positive integer k.
Question: Does there exist a vertex subset S of size at most k such that
G− S ∈ C, where C is the family of forests of cacti?

Parameterized complexity has two major subareas – fixed parameter tractabil-
ity (FPT) and kernelization. A parameterized problem Π is a subset of Σ∗×N,
where Σ is a finite alphabet and N is the set of natural numbers. We say that
a parameterized problem Π is fixed parameter tractable, if there is an algo-
rithm solving the problem Π, which on input (x, k) runs in time f(k)|x|O(1),
where f is an arbitrary function and |x| is the length of x. A kernelization al-
gorithm for a parameterized problem Π is a polynomial time algorithm (com-
putable function) A : Σ∗ × N → Σ∗ × N such that (x, k) ∈ Π if and only
if (x′, k′) = A((x, k)) ∈ Π and |x′| + k′ ≤ g(k) where g is a computable
function. For a broader overview about parameterized complexity we refer to
monographs [6, 8].

It needs to be mentioned that, in this paper, we refer to multigraphs (which
may have parallel edges) as graphs. While Odd Cycle Transversal is one of
the most well studied problem in the realm of parameterized complexity, there
is only one article about Even Cycle Transversal in the literature. The
structure of a graph without even cycles, or without cycles of length 0 modulo
p for some positive integer p, is simple. Thomassen showed that such graphs
have treewidth at most f(p) [21]. Misra et al. [20] used the structural properties
of odd cactus graphs to design an algorithm for Even Cycle Transversal
with running time 50knO(1). They also give an O(k2) kernel for the problem.
On the other hand the family C of forests of cacti can be characterised by a
single excluded minor. In particular, let Θ be a graph on two vertices that have
three parallel edges, then a graph H ∈ C if and only if H does not contain
Θ as a minor. Since Θ is a connected planar graph we obtain a cknO(1) time
algorithm as a corollary to the main results in [11,15,16]. However, the exact
value of c is not given in any of these algorithms as all of them use a protrusion
subroutine [3]. The problem also has a O(k2 log3/2 k) kernel [10]. It should
also be noted that Diamond Hitting Set and Even Cycle Transversal
admit approximation algorithms with factor 9 and 10, respectively [9, 20].

Our main theorems are the following.

Theorem 1 There is a randomized algorithm for Even Cycle Transver-
sal with worst case run time O(12knm(n+m)), where n and m are the number
of vertices and edges in the input graph, respectively. The algorithm outputs
No if the input is a No instance and for a Yes instance, with probability at
least 1− 1

e , returns a solution.
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Theorem 2 There is a randomized algorithm for Diamond Hitting Set
with worst case run time 12knO(1), where n is the number of vertices in the
input graph. The algorithm outputs No if the input is a No instance and for
a Yes instance, with probability at least 1− 1

e , returns a solution.

Two other related problems studied in the literature are Treewidth-
2-Vertex Deletion and Outerplanar Vertex Deletion. In both the
problems, the input is an n-vertex graph G and a positive integer k, and the
objective is to delete at most k vertices to get a graph of treewidth 2 (in other
words a K4-minor free graph) in case of Treewidth-2-Vertex Deletion
and an outerplanar graph (in other words a graph without K4 and K2,3 as
minors) in case of Outerplanar Vertex Deletion. Recall that in Dia-
mond Hitting Set we are looking for a vertex subset of size at most k which
hits all Θ-minors of the input graph. In Treewidth-2-Vertex Deletion
and Outerplanar Vertex Deletion, we are looking for a vertex subset of
size at most k, which hits all K4-minors and {K4,K2,3}-minors of the input
graph, respectively. Kim et al. [17] showed that there exists an algorithm for
Treewidth-2-Vertex Deletion running in time 2O(k)nO(1). Again, this
algorithm uses a protrusion subroutine similar to that in [3], but adapted
according to the need of the problem, and therefore the exact value in the
exponent of the running time is not known. It follows from the later work
of Fomin et al. [11] that both the problems have algorithms running in time
2O(k)nO(1), because they are special cases of Planar F-Deletion.

Our Methods. Our algorithms use the same methodology that is used for
the 4knO(1) time algorithm for Feedback Vertex Set [2], and its gener-
alization to Planar F Deletion [11]. In both our algorithms, we start by
applying some reduction rules to the given instance. After this, we show that
the number of edges incident with any solution S of our problems, is a con-
stant fraction to the total number of edges in the graph. This counting lemma
is our main technical contribution. We also observe that the analysis for the
counting lemma is tight for an infinite family of graphs and thus the analysis
of our randomized algorithms cannot be improved. It is in the same spirit as
finding an infinite family of instances for which an approximation algorithm
achieves its approximation ratio.

To apply our reduction rules in a way that the ratio between the number
of edges incident with a solution S of the problem and the total number of
edges in the input graph is as small as possible, we study a more general prob-
lem than Even Cycle Transversal, which we call Parity Even Cycle
Transversal. In this problem we are given a graph G and a weight function
w : E(G) → {0, 1} and the objective is to delete a subset S of vertices of
size at most k such that in G− S there is no cycle whose weight sum is even.
Observe that if w assigns one to every edge then it is same as Even Cycle
Transversal.
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2 Preliminaries

For a function f : D → R and y ∈ R, we use f−1(y) to denote the set {x ∈
D | f(x) = y}. For a set U that is the disjoint union of subsets U1, U2, . . . , Ut,
we write U =

⊎
1≤i≤t Ui.

Fact 1 For any n ∈ N, (1− 1
n )n ≤ 1

e .

We denote a graph as G, and its vertex set and edge set as V (G) and E(G),
respectively. It is possible that there are parallel edges between two vertices of
a graph. The degree of a vertex v ∈ V (G), denoted by dG(v), is the number of
edges incident with v. The neighbourhood of v, denoted by NG(v), is the set
of vertices that have at least one edge incident with v. For a subset of vertices
S, we use G[S] and G − S to denote the subgraphs of G induced by S and
V (G)\S, respectively. An edge between two vertices u, v ∈ V (G) is denoted by
(u, v), while a path between u, v is denoted by [u, v]. If a sequence of vertices
v1, . . . , vt or edges e1, . . . , et form a path, then we also denote this path by
[v1, . . . , vt] and [e1, . . . et], respectively. For a path/cycle Q, we use E(Q) to
denote the set of edges in the path/cycle Q. Given two subsets V1, V2 ⊆ V (G),
E(V1, V2) denotes the set of edges in E(G) that have one end point in V1
and the other in V2. For a vertex v ∈ V (G) and subset V ′ ⊆ V (G) \ {v} we
use E(v, V ′) to denote the edge set E({v}, V ′). The subdivision of an edge
e = (u, v) of a graph G results in a graph G′, which contains a new vertex w,
and where the edge e is replaced by two new edges (u,w) and (w, v). A graph Ĝ
is a subdivision of a graph G if there is a sequence of graphs (G1, G2, . . . , Gt),
with G1 = G and Gt = Ĝ, where for each 1 < i ≤ t, Gi is obtained by the
subdivision of an edge of Gi−1.

For a graph G, we say a vertex v ∈ V (G) is a cut vertex if G − {v} has
more components than G. A connected graph G′ is called a biconnected graph
if the graph G′ does not contain any cut vertex. A block of a graph G is a
maximal biconnected subgraph of G.

Definition 1 (Block-Cut Vertex Tree) Let G be a connected graph, C be
the set of cut vertices of G and B be the set of blocks of G. The block-cut vertex
tree H of G has vertex set C∪B and E(H) = {(c,B) | c ∈ C,B ∈ B, c ∈ V (B)}.

In fact it is known that block-cut vertex tree of a graph is indeed a tree [7].
Now we explain how to construct a block decomposition tree of a connected
graph. Let H be a block-cut vertex tree of a connected graph G. Let C be
the set of cut vertices of G and B be the set of blocks of G. We arbitrarily
root the tree H at a root Br, where Br ∈ B. Now a block decomposition
tree T of G has vertex set B and (B1, B2) ∈ E(T ) if V (B1) ∩ V (B2) 6= ∅ (in
other words B1 and B2 share a cut vertex of G) and B1 is an ancestor of B2

in H. In other words, T is obtained from H by contracting the set of edges
{(c,B) | c ∈ C,B ∈ B, B is the parent of c in H}. Thus T is indeed a tree.
See Figure 1 for an illustration of block decomposition tree of a graph. A block
decomposition tree of a graph can be built in linear time [14].
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Fig. 1 The leftmost figure is a graph G with blocks B1, B2, B3, B4 and B5. The cut
vertices in G are c1, c2, c3 and c4. The middle figure is the block-cut vertex tree H of G. The
rightmost figure is a block decomposition tree T of G constructed from H rooted at B1.

Lemma 1 Let T be a tree. Let V1 = {v ∈ V (T ) | dT (v) = 1}, V2 = {v ∈
V (T ) | dT (v) = 2} and V3 = {v ∈ V (T ) | dT (v) ≥ 3}. Then

∑
v∈V3

dT (v) ≤
3|V1|.

Proof We know that |V (T )| = |V1|+|V2|+|V3|. Also,Σv∈V (T )dT (v) = 2|E(T )| =
2(|V (T )|−1). Now,Σv∈V (T )dT (v) = Σv∈V1

dT (v)+Σv∈V2
dT (v)+Σv∈V3

dT (v) ≥
|V1|+ 2|V2|+ 3|V3|. Using the two equations we get that |V3| ≤ |V1|− 2 ≤ |V1|.
This also means Σv∈V3dT (v) = 2(|V1| + |V2| + |V3| − 1) − (|V1| + 2|V2|) ≤
|V1|+ 2|V3|. Using the bound of |V3|, Σv∈V3

dT (v) ≤ 3|V1|. ut

Definition 2 A cactus graph is a connected graph where any two cycles have
at most one vertex in common. Equivalently, every edge of the graph belongs
to at most one cycle. Another equivalent definition is that any block of a cactus
graph can be either a cycle or an edge. A graph where every component is a
cactus graph is called a forest of cacti.

Definition 3 Let Θ be a graph on a pair of vertices {u, v} that have 3 parallel
edges between them. A graph is called a diamond graph if it is obtained by a
number of subdivisions of Θ.

The following proposition characterizes the class of forests of cacti.

Proposition 1 (Fiorini et. al. [9]) A graph is a forest of cacti if and only
if it does not have a diamond as a subgraph.

The definition of diamond graphs and the characterisation of forests of cacti
have been taken from [9]. Please refer to [7] for further details on notations
and definitions in graph theory.



Quick but Odd Growth of Cacti 7

3 Counting Lemma

In this section, we consider a graph G which has a set S, the deletion of which
results in a cactus graph. Moreover, we assume that each vertex of the cactus
graph G − S has at least three distinct neighbors in G or shares at least two
edges with S. Then, it is possible to bound the number of edges in E(G−S) by
the number of edges in E(S, V (G) \ S). In fact, we exhibit a family of graphs
where this bound is tight, up to a constant difference.

Lemma 2 Let G be a graph and S ⊆ V (G) such that G−S is a cactus graph
and for all v ∈ V (G) \ S one of the following two conditions holds:

1. v has at least 3 distinct neighbors in G, or
2. there are at least two edges in E(v, S)

Then |E(G− S)| ≤ 5|E(S, V (G) \ S)|.

Proof Let G′ = G−S. We know that G′ is a cactus graph. Let T be the block
decomposition tree of G′ rooted at a vertex of degree one. Throughout the
proof, for a block X of G′, we represent the corresponding vertex in T as tX .
Let B = E(G′) and C = E(S, V (G) \ S). We need to show that |B| ≤ 5|C|.

Since G′ is a cactus graph, by Proposition 1, there cannot be three parallel
edges between two vertices of G′. Towards the proof, we first define some
notations. Let X be a block that is an edge or a cycle of length 2 in G′, and
such that tX has only one child tY , which is a leaf node in T . Then we say
that the blocks X and Y of G′ together form a super block. If blocks X and
Y form a super block Z, where tY is a leaf node, then by parent of the super
block Z, we mean the parent of tX in T . All other blocks, which are not
part of any super block, are called normal blocks. By size of a (super/normal)
block Z, denoted by size(Z), we mean the number of edges in the block Z.
To bound the number of edges in G′ it is enough to bound the total number
of edges in super blocks and normal blocks. Let B` be the set containing all
super blocks and normal blocks which correspond to leaves in T . Let Bn be
the set of normal blocks which are not part of B`. Now we define B` as the set
of edges in the (normal/super) blocks which are part of B`, and Bn as the set
of edges in the normal blocks which are part of Bn. To bound the cardinality
of B, it is enough to bound the cardinality of B` and Bn, individually. We
partition the edges in C as follows. We say an edge e ∈ C is incident with a
(super/normal) block Z if it is incident with a vertex u in Z, which is not the
cut vertex shared with the parent of Z. We use EZ to denote the set of edges
in C, which are incident with the (super/normal) block Z. Let C` be the set
of edges in C which are incident with (super/normal) blocks in B`. Similarly,
let Cn be the set of edges in C which are incident with blocks in Bn. Let ri be

the number of blocks of size i in B`. Let B
(i)
` be the set of edges in blocks of

size i in B`. Let C
(i)
` be the set of edges in C` which are incident with blocks

of size i in B`. Notice that B` =
⊎

1≤i≤nB
(i)
` and C` =

⊎
1≤i≤n C

(i)
` .

Claim 1 ri ≤
|C(i)

` |
2 for i ≤ 4 and ri ≤

|C(i)
` |

i−3 for i ≥ 5.
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Proof Bound on r1. Let X be a block of size one in B`. That is, the block
X is a single edge (x, y) and there is a vertex in {x, y} which has degree one
in G′. Let x be the degree one vertex. By our assumption at least 2 edges

in C
(1)
` are incident with x. This implies that |EX | ≥ 2. Thus we have that

|C(1)
` | =

∑
{X:size(X)=1} |EX | ≥ 2r1. Hence r1 ≤

|C(1)
` |
2 .

Bound on r2. Let X be a block of size two in B`. If X is a normal block,
then the block X is a cycle y, x, y of length 2. Since X is a leaf block, there
is a vertex in X which is not a cut vertex in G′. Let x be the vertex in X
such that x is not a cut vertex. This implies that NG′(x) = {y}. Thus, by our
assumption, either |E(x, S)| ≥ 2 or x has two neighbors in S. In either case,
|E(x, S)| ≥ 2. That is, |EX | ≥ 2. If X is a super block, then X consists of two
blocks Y and Z of size 1 each, such that tY has only one child tZ and tZ is a
leaf node in T . Let Z = (x, y) be such that x has degree one in G′. Thus, by
our assumption, we can conclude that |E(x, S)| ≥ 2. That is, |EX | ≥ 2. Thus,

we have that |C(2)
` | =

∑
{X:size(X)=2} |EX | ≥ 2r2. Hence, r2 ≤

|C(2)
` |
2 .

Bound on r3. Let X be a (super/normal) block of size three in B`. That
is, either the block X is a cycle x, y, z, x of length 3, or it is a super block
consisting of two blocks, where one of them is a cycle of length 2 and the other
is an edge. If X is a cycle x, y, z, x, then tX is a leaf in T . Let z be the only
cut vertex in {x, y, z}. This implies that the degrees of x and y are exactly 2
in G′. Thus, by our assumption, |E(x, S)| ≥ 1 and |E(y, S)| ≥ 1. This implies
that |EX | ≥ 2.

Suppose X is a super block. Then X consists of a cycle x, y, x and an edge
(y, z). In this case, only one vertex, either x or z, will be shared with the parent
of X and all other vertices will not have a neighbor in V (G′) \ X. Suppose
x is the shared vertex with the parent of the block X. Then, the number of
distinct neighbors of y and z in G′ is exactly 2 and 1, respectively. This implies
that |E(y, S)| ≥ 1 and |E(z, S)| ≥ 2. Consequently, |EX | ≥ 3. By a similar
argument, we can show that if z is the shared vertex of the super block X with

its parent, then |EX | ≥ 3. Thus, we have that |C(3)
` | =

∑
{X:size(X)=3} |EX | ≥

2r3. Hence, r3 ≤
|C(3)

` |
2 .

Bound on r4. Let X be a (super/normal) block of size four in B`. That is,
either the block X is a cycle of length 4 or it is a super block consisting of two
blocks. If X is a cycle of length 4, then tX is a leaf in T . This implies that
the degree of every vertex in X, except the cut vertex shared with the parent
block, is exactly 2 in G′. This implies that |EX | ≥ 3.

Suppose X is a super block consisting of two blocks Y and Z, where the
size of Y is at most 2 and tZ is a leaf node in T . If size(Y ) = 1, then Z is a cycle
of length 3. This implies that at least two vertices in Z have degree exactly 2
in G′. Thus, by our assumption, |EZ | ≥ 2 and this implies that |EX | ≥ 2.

If size(Y ) = 2, then both Y and Z are cycles of length 2. Let x, y, x be the
block Y and y, z, y be the block Z. Thus, the number of distinct neighbors of
y and z in G′ is 2 and 1, respectively. By our assumption, this implies that
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|E(y, S)| ≥ 1 and |E(z, S)| ≥ 2. Thus, we have that |EX | ≥ 3. Hence, we

conclude that |C(4)
` | =

∑
{X:size(X)=4} |EX | ≥ 2r4. This means, r4 ≤

|C(4)
` |
2 .

Bound on ri for i ≥ 5. Let X be a (super/normal) block of size at least
five in B`. That is, either the block X is a cycle of length i, or it is a super
block consisting of two blocks Y and Z such that Z is a cycle of length at
least i − 2 and tZ is a leaf in T . In either case, X contains at least i − 3
vertices (excluding the cut vertex shared with the parent block) having exactly
2 distinct neighbors in G′. This implies that |EX | ≥ i−3. Hence, we have that

|C(i)
` | =

∑
{X:size(X)=i} |EX | ≥ (i− 3)ri. Thus, ri ≤

|C(i)
` |

i−3 . ut

Now we can bound the cardinality of B`. Let C(≤4)

` =
⋃

i≤4 C
(i)
` and C(≥5)

` =⋃
i≥5 C

(i)
` .

|B`| =
∑
i

|B(i)
` | =

∑
i

i · ri (1)

≤ 2|C(≤4)

` |+
∑
i≥5

i

i− 3
|C(i)

` | (By Claim 1)

≤ 2|C(≤4)

` |+ 5

2
|C(≥5)

` | (2)

What remains is to bound the cardinality of Bn. Let B(≥3)
n be the set of

blocks in Bn such that the corresponding nodes in T have degree at least 3.
That is,

B(≥3)

n = {X ∈ Bn | dT (tX) ≥ 3}.
Let B(≥3)

n be the set of edges present in the blocks in B(≥3)
n . We first bound the

cardinality of B(≥3)
n and then the cardinality of Bn\B(≥3)

n . For a set X ⊆ V (G′)
let numcutX and numnoncutX denote the number of cut vertices and non-cut
vertices in X, respectively.

|B(≥3)

n | ≤
∑

X∈B(≥3)
n

|X|

=
∑

X∈B(≥3)
n

numcutX + numnoncutX (3)

The first inequality follows from the fact that the number of edges in a block
of a cactus graph is at most the number of vertices in the block. The quantity∑

X∈B(≥3)
n

numcutX , is at most
∑

X∈B(≥3)
n

dT (tX). This is bounded by three

times the number of leaves in T (by Lemma 1). Thus by Claim 1, we have the
following equation. ∑

X∈B(≥3)
n

numcutX ≤
3

2
|C(≤4)

` |+ 3

2
|C(≥5)

` | (4)

Let C≥3
n be the set of edges in Cn which are incident with blocks in B(≥3)

n , and
C≤2

n be the set of edges in Cn which are incident with blocks in Bn \B(≥3)
n . For
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Fig. 2 A schematic diagram, when a block X of size at most 2 has only one child which
is a super block composed of Y1 and Y2. Here the red colored dotted edges belongs to
E(S, V (G) \ S).
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Fig. 3 A schematic diagram, when a block X of size at most 2 has only one child Y such that
size(Y ) ≤ 2 and dT (tY ) = 2. Here the red colored dotted edges belongs to E(S, V (G) \ S).

each non-cut vertex x in the block X ∈ B(≥3)
n , there is at least one edge from

C(≥3)
n which is incident with x. This implies the following.∑

X∈B(≥3)
n

numnoncutX ≤ |C(≥3)

n | (5)

Applying Equations 4 and 5 in Equation 3, we get the following equation.

|B(≥3)

n | ≤ 3

2
|C(≤4)

` |+ 3

2
|C(≥5)

` |+ |C(≥3)

n | (6)

Now we bound the cardinality of Bn \ B(≥3)
n . First, we bound the number

of edges in the blocks in Bn \B(≥3)
n which are not incident with any edge in Cn.

Let X be a block in Bn \ B(≥3)
n , such that there is no edge from Cn incident

with it. Since tX has degree 2 in T , the number of cut vertices in X is 2. Now,
we claim that size(X) ≤ 2. Suppose not. Then there is a vertex x in X such
that the degree of x in G′ is two. Thus, by our assumption, x is incident with
an edge from Cn. This contradicts the fact that no edge from Cn is incident
with X. Since X is a block in Bn \ B(≥3)

n , we have that tX has only one child.
Let the child of tX be tY . Now we have the following claim.

Claim 2 Either dT (tY ) ≥ 3 or Y ∈ Bn \B(≤3)
n such that there is an edge from

C(≤2)
n incident with Y .
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Proof Towards the claim, we first show that Y /∈ B`. Suppose not. If Y is a
normal block in B`, then X and Y together will form a super block and it
contradicts the fact that X ∈ Bn \ B(≥3)

n . Suppose Y is a super block in B`.
Let Y1 and Y2 be two blocks such that they together form the super block Y .
By the definition of super block either tY1

or tY2
is a leaf in T . Without loss of

generality assume that tY2 is a leaf in T (See Figure 2). Consider the vertex x
shared by the blocks X and Y1. The number of neighbors of x in G′ is 2. Thus,
by our assumption, x is incident with a vertex in Cn. This contradicts the fact
that X is a block in Bn \ B(≥3)

n which is not incident with any edge in Cn.
Now to prove the claim the only case remaining is Y ∈ Bn \ B(≥3)

n and there is
no edge from C(≤2)

n incident with Y (See Figure 3). Then, the size of Y is at
most 2. Consider the vertex x shared by the blocks X and Y . The number of
neighbors of x in G′ is 2. Thus by our assumption x is incident with a vertex
in Cn. This contradicts the fact that X be a block in Bn \ B(≥3)

n which is not
incident with any edge in Cn. This proves the claim. ut

Using Claim 2 we can show that the total number of edges in the blocks in
Bn \ B(≥3)

n which are not incident with any edge in Cn is bounded by

2

|C(≤2)

n |+
∑

{t∈V (T ):
dT (t)≥3}

1

 ≤ 2|C(≤2)

n |+ 2
∑
i

ri

≤ 2|C(≤2)

n |+ |C(≤4)

` |+ |C(≥5)

` | (By Claim 1). (7)

Now, we bound the number of edges in the blocks in Bn \ B(≥3)
n which are

incident with some edges in Cn. Let X be a such a block. If the size of X is at
most two, then there is at least one edge from C(≤2)

n which is incident with X.
If the size of X is at least i ≥ 3, then there are i − 2 vertices in X such that
each of these vertices will have only two neighbors in G′. By our assumption,
this implies that there are at least i − 2 edges from C(≤2)

n which are incident
with X. Thus, the total number of edges, in the blocks in Bn \ B(≥3)

n , which
are incident with some edges in Cn, is bounded by 3|C(≤2)

n |. Hence,

|Bn \B(≥3)

n | ≤ 5|C(≤2)

n |+ |C(≤4)

` |+ |C(≥5)

` |. (8)

Hence,

|B| = |B`|+ |B(≥3)

n |+ |Bn \B(≥3)

n |

≤ 9

2
|C(≤4)

` |+ 5|C(≥5)

` |+ 5|C(≤2)

n |+ |C(≥3)

n | (By Equations 2, 6 and 8)

≤ 5|C|.

This completes the proof of the Lemma. ut

The bound given in Lemma 2 is in fact tight. Given a graph G and a set
S ⊆ V (G) such that the assumptions of Lemma 2 hold, consider the edge sets
B = E(G− S) and C = E(S, V (G) \ S). Fig. 4 represents a family where for
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Fig. 4 A tight example of Lemma 2. Here S = {s}.

every pair of consecutively occurring triangle and double parallel edges in the
cactus, there is an edge in C. On the other hand, except for the three edges
e1, e2 and e3 in C, each other edge is incident to a distinct triangle. Thus,
|B| = 5(|C| − 3). Hence, this is a family of tight instances.

4 Algorithm for Even Cycle Transversal

In this section, we give a randomized FPT algorithm for Even Cycle Transver-
sal. In other words, the algorithm runs in FPT time and if there is a solution
of size at most k, then with high probability the algorithm will return a solu-
tion of size at most k for Even Cycle Transversal. The following problem
is a generalization of Even Cycle Transversal.

Parity Even Cycle Transversal Parameter: k
Input: An n-vertex graph G, a weight function w : E(G) → {0, 1} and
a positive integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that G−S does
not contain any cycle C with Σe∈E(C)w(e) = 0 mod 2?

We call a cycle C an even-parity (odd-parity) cycle if Σe∈E(C)w(e) = 0 mod 2
(Σe∈E(Cw(e) = 1 mod 2), respectively. For compactness of notation, we de-

fine the function parity : 2E(G) → {0, 1}, where for an edge set E′ ⊆ E(G),
parity(E′) = Σe∈E′w(e) mod 2. In other words, for an even-parity (odd-
parity) cycle C, parity(E(C)) = 0 (parity(E(C)) = 1), respectively. This should
not be confused with cycles of even or odd length, since we will refer to these
cycles simply as even and odd cycles.

In what follows, we give a randomized FPT algorithm for Parity Even
Cycle Transversal, that runs in O(12km + nm(n + m)) worst case time,
where m is the number of edges in the input graph. Our algorithm will compute
a vertex subset X of size at most k and returns it as a solution if it is indeed
a solution and otherwise returns No. First, we apply some reduction rules on
the input graph. A reduction rule reduces an instance (I1, k) of a problem Π to
another instance (I2, k

′) of Π. The reduction rule is safe when (I1, k) is a Yes
instance if and only if (I2, k

′) is a Yes instance. Applying a reduction rule on
an input graph is also termed as reducing the graph, and the resultant graph
is termed as the reduced graph. Let G be the input graph. Our algorithm will
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set X := ∅ initially. After the reduction rules have been exhaustively applied
on the input graph G, we show that for every solution at least 1

6 fraction of
edges is incident with the vertices of the solution. Let G′ be the reduced graph.
Then our algorithm picks an edge and its endpoint (say v) at random, puts the
vertex into X. Then again we apply reduction rules exhaustively on G′ − {v}
such that in the reduced graph for every solution at least 1

6 fraction of edges
is incident with the vertices of the solution. Again our algorithm picks an edge
and its endpoint at random, puts the vertex into X. The algorithm continues
the above process (i.e, applying reduction rules on the graph, randomly picking
an edge and choosing one of its end points) k times or until the reduced graph
is empty. If there is a solution of size at most k in G, then this procedure
outputs a solution (that is, X is indeed a solution) with probability at least
12−k. Then by repeating this procedure 12k times, we obtain constant success
probability.

Now, we describe the reduction rules for Parity Even Cycle Transver-
sal and prove their safeness.

Reduction Rule 1 If there is a vertex v in G which is not part of any even-
parity cycle, then delete v from G.

Lemma 3 Reduction Rule 1 is safe.

Proof Suppose we delete v from G. If C is an even-parity cycle of G, it is still
an even-parity cycle of G − {v}. Similarly, if there is an even-parity cycle C ′

in G− {v}, then C ′ is also an even-parity cycle in G. Now, Suppose (G, k) is
a Yes instance of Parity Even Cycle Transversal. Let S be a solution
of size at most k for G. Since G− {v} is a subgraph of G and S is a solution
for G, we have that S \ {v} is a solution for the reduced graph G − {v} as
well. Therefore, (G − {v}, k) is also a Yes instance of Parity Even Cycle
Transversal.

Conversely, suppose the reduced instance is a Yes instance. Suppose S′ is
a solution of size at most k for G−{v}. Then, S′ hits all even-parity cycles of
G−{v}. This means, that S′ also hits all even-parity cycles of G, and therefore
S′ is a solution in G. Thus, (G, k) is a Yes instance of Parity Even Cycle
Transversal. ut

Lemma 4 There is an algorithm which, given a graph G and w : E(G) →
{0, 1}, runs in time O(|E(G)|(|V (G)|+ |E(G)|)) and outputs all vertices in G
that are not part of any even-parity cycle.

Proof It is known that there is an algorithm A, which takes as input a graph
H, and two vertices s, t ∈ V (H), and checks whether there is an odd length
path from s to t in time O(|V (H)| + |E(H)|) [1, 18]. We use algorithm A to
design an algorithm A′ mentioned in the lemma. We construct, from the given
graph G and edge-weight function w, a graph Ĝ without edge weights. This
is done by subdividing every edge of weight 0. Notice that V (G) ⊆ V (Ĝ). By
this reduction, any vertex in V (G) belongs to an even-parity cycle in G if and
only if it belongs to an even cycle in Ĝ. Now, for each edge (u, v) ∈ E(Ĝ), run
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x y z x z

Fig. 5 Reduction Rule 2. Here the weight of new edge (x, z) is w((x, z)) = (w((x, y)) +
w((y, z)) mod 2.

algorithm A, and check whether there is an odd length path from v to u in
the graph Ĝ−{(v, u)} and marks both u and v if there is an odd length path.
Then algorithm A′ return all the unmarked vertices from V (G). The running
time of the algorithm A′ is O(|E(G)|(|V (G)|+ |E(G)|)). ut

Reduction Rule 2 Let [x, y, z] be a path in G and the degree of y be exactly
2. Then delete y from G and add a new edge e1 = (x, z) with weight w(e1) =
w((x, y)) + w((y, z)) mod 2 (see Fig. 5).

Lemma 5 Reduction Rule 2 is safe.

Proof Suppose C is a cycle of parity p in G, which contains the vertex y. Then,
since dG(y) = 2, C must contain the path [x, y, z]. In the reduced graph G′,
C is reduced to a cycle C ′ which contains the edge e1 = (x, z). By definition
of w(e1), the parity of the reduced cycle is still p. On the other hand, if C ′

is a cycle of parity p in the reduced graph G′, and C ′ does not contain the
new edge e1, then C ′ is a cycle of the original graph G. Otherwise, there is
a corresponding cycle C in G, which contains the path [x, y, z] instead of the
newly added edge e1. Again, by definition of w(e1), the parities of C ′ and C
are the same.

Now, suppose (G, k) is a Yes instance for Parity Even Cycle Transver-
sal. Let S be a solution set in G. Then S hits all even-parity cycles of G. We
have argued that any cycle in G that contains y also contains x and z. Thus,
if y was contained in S, then S ∪{x} \ {y} is also a solution that hits all even-
parity cycles of G. Since the parities of cycles are preserved by this reduction,
it implies that S ∪{x} \ {y} is a solution that hits all even-parity cycles of the
reduced graph, and that the reduced instance is also a Yes instance.

Conversely, suppose the reduced instance is a Yes instance. let S′ be a
solution set of G′. We will show that S′ is also a solution for G. Suppose there
is an even-parity cycle C in G, that is not hit by S′, then this cycle must
have the vertex y. This implies that the cycle must have the path [x, y, z]. Let
P = C − {y}. Look at the cycle C ′ formed by the set of edges E(P ) ∪ {e1} in
G′. This is also an even-parity cycle which is not hit by S′. This contradicts
the fact that S′ is a solution set of G′. Thus, (G, k) must be a Yes instance
of Parity Even Cycle Transversal. ut

Reduction Rule 3 Let x, y be two vertices with two parallel edges e1 and
e2. Let w(e1) = 1, w(e2) = 0. Further, e3 = (y, z) is an edge in G, with
z 6= x, and dG(y) = 3. Then delete y from the graph G and add two new edges
f1, f0 = (x, z). Define w(f1) = 1 and w(f0) = 0 (See Fig. 6).
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Fig. 6 Reduction Rule 3

Lemma 6 Reduction Rule 3 is safe.

Proof Suppose (G, k) is a Yes instance. Let S be a solution for (G, k). If S
contains y, then the set S ∪ {x} \ {y} is also a solution for (G, k), because
any even-parity cycle that passes through y also passes through x. So, we
assume that the solution set S does not contain y. Now we claim that S is
also a solution for (G′, k). Let C ′ be an even-parity cycle in G′. If C ′ does
not contain f1 or f0, then C ′ is also an even-parity cycle in G and hence
V (C ′)∩ S 6= ∅. Now, suppose E(C ′)∩ {f0, f1} 6= ∅. Since C ′ is an even-parity
cycle, {f0, f1} * E(C ′). Let fi ∈ E(C ′), where i ∈ {0, 1}. Let j ∈ {1, 2}
such that w(ej) + w(e3) = w(fi) mod 2. We define C to be the cycle in G
formed by the edges (E(C ′)∪{ej , e3}) \ {fi}. Since C ′ is an even-parity cycle,
E(C) = (E(C ′)∪ {ej , e3}) \ {fi}, and w(ej) +w(e3) = w(fi) mod 2, we have
that C is an even-parity cycle in G and V (C) \ {y} = V (C ′). Since S is a
solution for (G, k) not containing y, V (C ′) ∩ S = V (C) ∩ S 6= ∅. Hence S is a
solution for (G′, k).

Suppose (G′, k) is a Yes instance. Let S′ be a solution for (G′, k). We will
show that S′ is also a solution for (G, k). Let C be an even-parity cycle of G.
If V (C) does not contain y, then C is also an even-parity cycle in G′. This
implies that V (C)∩S′ 6= ∅. Now, suppose y ∈ V (C). Since C is an even-parity
cycle and y ∈ V (C), there exists i ∈ {1, 2}, such that {ei, e3} ⊆ E(C) and
ej /∈ E(C), where j ∈ {1, 2} \ {i}. Let r = w(ei) + w(e3) mod 2. We define
C ′ to be the cycle in G′ formed by the edges (E(C) ∪ {fr}) \ {ei, e3}. Since
C is an even-parity cycle, C ′ is also an even-parity cycle. This implies that
V (C) ∩ S′ = V (C ′) ∩ S 6= ∅. This completes the proof of the lemma. ut

Reduction Rule 4 Let {x1, y} be a pair of vertices that have two parallel
edges e1 and e2, with w(e1) = 1, w(e2) = 0. Let there be another vertex x2 6= x1
such that {x2, y} have two parallel edges e3 and e4. It also holds that w(e3) =
1, w(e4) = 0. Let dG(y) = 4. Then delete y from G and add two new parallel
edges f1, f0 between x1 and x2. We define w(f1) = 1 and w(f0) = 0 (see
Fig. 7).

Lemma 7 Reduction Rule 4 is safe.

Proof Suppose (G, k) is a Yes instance. Let S be a solution for (G, k). If S
contains y, then the set S ∪{x} \ {y} is also a solution for (G, k), because any
even-parity cycle that passes through y also passes through x. So, we assume
that the solution set S does not contain y. Now we claim that S is also a
solution for (G′, k). Let C ′ be an even-parity cycle in G′. If C ′ does not contain
f1 or f0, then C ′ is also an even-parity cycle in G and hence V (C ′) ∩ S 6= ∅.
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Fig. 7 Reduction Rule 4

Now, suppose E(C ′)∩{f0, f1} 6= ∅. Since C ′ is an even-parity cycle, {f0, f1} *
E(C ′). So there is exactly one i ∈ {0, 1} such that fi ∈ E(C ′). Let j ∈ {1, 2}
and j′ ∈ {3, 4} such that w(ej) + w(ej′) = w(fi) mod 2. We define C to be
the cycle in G formed by the edges (E(C ′) ∪ {ej , ej′}) \ {fi}. Since C ′ is an
even-parity cycle, E(C) = (E(C ′)∪{ej , ej′})\{fi}, and w(ej)+w(ej′) = w(fi)
mod 2, we have that C is an even-parity cycle in G and V (C) \ {y} = V (C ′).
Since S is a solution for (G, k) not containing y, V (C ′) ∩ S = V (C) ∩ S 6= ∅.
Hence S is a solution for (G′, k).

Suppose (G′, k) is a Yes instance. Let S′ be a solution for (G′, k). We will
show that S′ is also a solution for (G, k). Let C be an even-parity cycle of G.
If V (C) does not contain y, then C is also an even-parity cycle in G′. This
implies that V (C) ∩ S′ 6= ∅. Now, suppose y ∈ V (C). Since C is an even-
parity cycle and y ∈ V (C), there exist i ∈ {1, 2} and j ∈ {3, 4}, such that
{ei, ej} ⊆ E(C) and ei′ , ej′ /∈ E(C), where i′ ∈ {1, 2}\{i} and j′ ∈ {3, 4}\{j}.
Let r = w(ei) + w(ej) mod 2. We define C ′ to be the cycle in G′ formed by
the edges (E(C) ∪ {fr}) \ {ei, ej}. Since C is an even-parity cycle, C ′ is also
an even-parity cycle. This implies that V (C) ∩ S′ = V (C ′) ∩ S 6= ∅. This
completes the proof of the lemma. ut

In our algorithm, in all steps we apply Reduction Rules 1, 2, 3 and 4
exhaustively as long as they are applicable. The resultant graph is called a
reduced graph.

Observation 1 Let (G, k) be an instance of Parity Even Cycle Transver-
sal and (G′, k) be the instance obtained after applying Reduction Rules 1, 2,
3 and 4. Then if S is a solution for (G′, k), then S is a solution for (G, k).

The proof of Observation 1 follows from the Lemmata 3, 5, 6 and 7.
We give the definition of an odd-parity (even-parity) cactus graph and

relate it to Parity Even Cycle Transversal, respectively.

Definition 4 A cactus graph, where the edges have weights from {0, 1}, is an
odd-parity (even-parity) cactus graph when every block of the graph is either
an odd-parity (even-parity) cycle, or an edge, respectively.

Lemma 8 Let G be a connected graph and w : E(G) → {0, 1} be a weight
function on the edges. The graph G does not contain any cycle C with parity(C) =
0 if and only if G is an odd-parity cactus graph.

Proof Suppose G does not contain any even-parity cycle. Then every cycle in
G must be of odd-parity. Thus, if G was a cactus graph then it must be an odd-
parity cactus graph. Suppose G is not a cactus graph. Then, by Proposition 1,
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there is a diamond D in G. Let the diamond be defined at the vertex pair
{u, v} by the three disjoint paths P1, P2, P3. Let parity(P1) = p1, parity(P2) =
p2, parity(P3) = p3. By Pigeonhole Principle, at least two among P1, P2 and P3

must have the same parity. Without loss of generality, let P1 and P2 have the
same parity. Then the cycle [P1uP2v] is of even parity, which is a contradiction
to the assumption on G. Hence, G must be an odd-parity cactus graph.

Conversely, suppose G is an odd-parity cactus graph. Then there is a block
decomposition of G where every block is either an odd-parity cycle or an edge.
By definition of a block, any cycle C of G must be contained completely inside
a block. This implies that there are no even-parity cycles in G. ut

Let G be a graph and let S be a set of vertices that hits all even-parity
cycles in G. Then each component of G − S does not contain an even-parity
cycle. By Lemma 8, it follows that G− S is a forest of odd-parity cacti.

Observation 2 Let G be a reduced graph for Parity Even Cycle Transver-
sal and S be a solution for Parity Even Cycle Transversal in G. Then,
for each connected component C of G−S, G[V (C)∪S] and S satisfy the con-
ditions of Lemma 2.

Proof Let v ∈ C be a vertex that does not have at least three distinct neigh-
bours in G. Suppose there is at most one edge in E(v, S). Also note that v
cannot have one neighbour in V (C) with at least two parallel edges of the
same parity: this would mean that two parallel edges of the same parity form
an even-parity cycle. Also, notice that if v has one neighbour with at least
three parallel edges, then by pigeonhole principle, at least two of the parallel
edges are of the same parity. Since Reduction Rule 1 does not apply any more,
v must have exactly two distinct neighbours. Since Reduction Rules 2, 3 and
4 are no longer applicable, a vertex with exactly two distinct neighbours does
not exist in the reduced graph. This is a contradiction. Thus, in the reduced
instance, every vertex in C satisfies the conditions of Lemma 2. ut

Now, we are ready to describe the algorithm for Parity Even Cycle
Transversal. Informally, the algorithm runs for 12k rounds. In each round,
a vertex subset of size at most k is obtained. We show that, given a Yes in-
stance, with high probability there is at least one round where the constructed
vertex subset is a solution set for Parity Even Cycle Transversal. A No
instance is always detected correctly by the algorithm.

Theorem 3 Parity Even Cycle Transversal has a randomized algo-
rithm with worst case run time O(12knm(n + m)), where n and m are the
number of vertices and edges in the input graph, respectively. The algorithm
outputs No if the input is a No instance and for a Yes instance, with prob-
ability 1− 1

e , returns a solution.

Proof Let (G, k) be the input instance. Our algorithm runs a procedure (call
it procedure Q) 12k times. The procedure Q has at most k iterative steps and
is as follows: We set S := ∅ and G′ := G to start with. We apply Reduction
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Rules 1, 2, 3 and 4 to the graph G′ as long as we can. If the reduced graph G′′

is non-empty, we pick an edge e = (u, v) ∈ E(G′′) uniformly at random and
then, with equal probability, we pick one of the two endpoints (say the vertex
picked is v). In other words, we pick a vertex with probability proportional to
its degree. Now we set S := S∪{v} andG′ := G′′−{v}. We do this for at most k
steps, stopping whenever the graph becomes empty. Notice that the algorithm
could stop if the graph becomes empty after applying the reduction rules
exhaustively. Then we check if the constructed set S is a solution set of Parity
Even Cycle Transversal for the input graph G. Note that recognizing a
forest of odd-parity cacti is equivalent to building a block-decomposition and
checking if each block is an odd-parity cycle or an edge – this step can be
performed in linear time [14]. If all the 12k executions of procedure Q fail to
find out a solution, then the algorithm will output No.

Now we analyse the success probability of the algorithm. For any i ∈
{0, . . . , k}, let Si be the set of vertices obtained at the end of step i. Con-
sider the step i + 1, where i ∈ {0, . . . , k − 1}. Let Gi+1 be the reduced
graph in step i + 1. By Observation 1, if D is solution of cardinality at
most k − i for (Gi+1, k − i), then Si ∪ D is a solution for (G, k). Suppose
there is a solution S∗k−i of size at most k − i in Gi+1. By Observation 2,
for each component C of Gi+1 − S∗k−i, Gi+1[V (C) ∪ S∗k−i] and S∗k−i satisfy
the conditions of Lemma 2. By the conditions of Lemma 2, for each com-
ponent C of Gi+1 − S∗k−i, |E(C)| ≤ 5

6 |E(Gi+1[V (C) ∪ S∗k−i])|. This implies

that |E(Gi+1 − S∗k−i)| ≤ 5
6 |E(Gi+1)|. The algorithm chooses a vertex in step

i + 1 using a random process. We say that the vertex chosen by the algo-
rithm in step i+ 1 is good if the algorithm chooses a vertex from S∗k−i. Since

|E(Gi+1 − S∗k−i)| ≤ 5
6 |E(Gi+1)|, the probability that an edge incident with a

vertex from S∗k−i, is picked uniformly at random in step i + 1, is at least 1
6 .

Once we have picked this edge, the probability that we choose an end point
of the edge that belongs to S∗k−i is at least 1

2 . Therefore, the probability that

a good vertex is chosen in step i + 1 is at least 1
2 ·

1
6 = 1

12 . We succeed in
finding a solution set S for Parity Even Cycle Transversal if every step
picks a good vertex in that step. Thus, the probability of failure in the k-step
procedure is at most 1 − ( 1

12 )k. We repeat the procedure Q 12k times. The
probability of failure of this many-round procedure is the probability that pro-

cedure Q fails in all the 12k executions, which is at most (1 − ( 1
12 )k)12

k ≤ 1
e

(by Fact 1).

Now we prove the claimed running time. By Lemma 4 we can identify and
apply Reduction Rule 1 in time O(m(n + m)). Notice that checking whether
any of Reduction Rules 2, 3 and 4, is applicable, takes O(m) time and these
reduction rules can be applied in constant time. Since each application of
a reduction rule reduces the number of vertices by at least one, the total
number of times these reduction rules are applicable in the procedure Q is
at most n. Thus, the total time spent for applying Reduction Rules in the
procedure Q is O(nm(n + m)). Moreover, in each iteration of procedure Q,
we pick an edge and one of its endpoints in O(m) time. Therefore, over k
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iterations, we spend O(km) time picking edges and a corresponding endpoint.
This means that one execution of procedure Q takes time O(nm(n + m) +
km) = O(nm(n+m)). There are 12k executions which makes the total running
time to be O(12knm(n+m)). ut

Corollary 1 Even Cycle Transversal has a randomized algorithm with
worst case run time O(12knm(n + m)), where n and m are the number of
vertices and edges in the input graph, respectively. The algorithm outputs No
if the input is a No instance and for a Yes instance, with probability 1 − 1

e ,
returns a solution.

5 Algorithm for Diamond Hitting Set

In this section, we give a randomized FPT algorithm for Diamond Hitting
Set. It was shown in [9] that there is a set of safe reduction rules that can be
applied to reduce the input graph to a graph with certain properties.

Proposition 2 (Fiorini et. al. [9]) There is a polynomial time algorithm
which takes a graph H as input and outputs a graph H ′ such that (i) the
cardinalities of minimum diamond hitting sets of H and H ′ are the same, (ii)
every vertex of H ′ either has at least three distinct neighbours or is incident
with three parallel edges, (iii) V (H ′) ⊆ V (H), and (iv) if S′ is a diamond
hitting set of H ′, then S′ is a diamond hitting set of H as well.

Proposition 2 follows from the work of Fiorini et. al. [9]. In Section 3 of [9],
two reduction rules are defined to get the graph H ′, where H ′ is a minor of H
(i.e, H ′ is obtained from a subgraph of H, by a series of edge contractions) and
property (ii) of Proosition 2 is mentioned. The property (iv) of Proposition 2
is mentioned in Section 4 of [9]. We call the output of the algorithm mentioned
in Proposition 2 as reduced graph of Diamond Hitting Set.

Observation 3 Let G be a reduced graph for Diamond Hitting Set and S
be a solution in G. Then, for each connected component C in G−S, G[V (C)∪
S] and S satisfy the conditions of Lemma 2.

Proof Let G be the reduced instance. Given a diamond-hitting set S, Propo-
sition 1 shows that G−S must be a forest of cacti. Thus, for each component
C of G− S, C is a cactus graph. Let v ∈ C be a vertex that does not have at
least three distinct neighbours. Then, v must have at least three parallel edges
with a neighbour u. Since there are no diamonds in C, it must be the case
that u ∈ S and therefore, there are at least two edges in E(v, S). Thus, in the
reduced instance, every vertex in C satisfies the conditions of Lemma 2. ut

Now, we can design an algorithm for Diamond Hitting Set, that is
very similar to the algorithm for Parity Even Cycle Transversal. The
algorithm runs for 12k rounds. In each round, a set of size at most k is obtained.
We show that, for a Yes instance, with high probability there is at least one
round where the constructed set is a solution set for Diamond Hitting Set.
The algorithm detects No instances correctly.
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Theorem 4 Diamond Hitting Set has a randomized algorithm with worst
case running time 12knO(1), where n is the number of vertices in the input
graph. The algorithm outputs No if the input is a No instance and for a Yes
instance, with probability 1− 1

e , returns a solution.

Proof (proof sketch) The algorithm is similar in description to the algorithm
mentioned in the proof of Theorem 3. In this algorithm, instead of applying
Reduction Rules 1, 2, 3 and 4, we exhaustively apply the reduction algorithm
mentioned in Proposition 2 and check whether the constructed set is a diamond
hitting set of G. The correctness of the algorithm follows from arguments
similar to those given in the proof of Theorem 3; in the arguments we replace
Observation 1 with property (iv) of Proposition 2 and Observation 2 with
Observation 3. The claimed bound on the running time can be proved by
using arguments similar to that used in the proof of Theorem 3. ut

6 Conclusion

In this work we designed randomized algorithms for Even Cycle Transver-
sal and Diamond Hitting Set with worst case run time 12knO(1). It is natu-
ral to ask whether we can get fast deterministic algorithms for these problems.
Another question is to find Strong Exponential Time Hypothesis based lower
bounds on the base of the exponent in the running time for Even Cycle
Transversal and Diamond Hitting Set.
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15. Gwenaël Joret, Christophe Paul, Ignasi Sau, Saket Saurabh, and Stéphan Thomassé.
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