
Reducing CMSO Model Checking to Highly Connected Graphs∗

Daniel Lokshtanov† M. S. Ramanujan‡ Saket Saurabh§ † Meirav Zehavi¶

Abstract

Given a Counting Monadic Second Order (CMSO) sentence ψ, the CMSO[ψ] problem is
defined as follows. The input to CMSO[ψ] is a graph G, and the objective is to determine
whether G |= ψ. Our main theorem states that for every CMSO sentence ψ, if CMSO[ψ]
is solvable in polynomial time on “globally highly connected graphs”, then CMSO[ψ] is
solvable in polynomial time (on general graphs). We demonstrate the utility of our theorem
in the design of parameterized algorithms. Specifically we show that technical problem-
specific ingredients of a powerful method for designing parameterized algorithms, recursive
understanding, can be replaced by a black-box invocation of our main theorem. We also
show that our theorem can be easily deployed to show fixed parameterized tractability of a
wide range of problems, where the input is a graph G and the task is to find a connected
induced subgraph of G such that “few” vertices in this subgraph have neighbors outside the
subgraph, and additionally the subgraph has a CMSO-definable property.

1 Introduction

Algorithmic meta-theorems are general algorithmic results applicable to a whole range of prob-
lems. Many prominent algorithmic meta-theorems are about model checking; such theorems
state that for certain kinds of logic L, and all classes C that have a certain property, there is an
algorithm that takes as input a formula φ ∈ L and a structure S ∈ C and efficiently determines
whether S |= φ. Results in this direction include the seminal theorem of Courcelle [7, 8, 9]
for model checking Monadic Second Order Logic (MSO) on graphs of bounded treewidth (see
also [1, 2, 4, 10, 14]), as well as a large body of work on model checking first-order (FO)
logic [5, 12, 16, 18, 22, 24, 23, 26, 32].

Another kind of algorithmic meta-theorems reduce the task of designing one type of algorithm
for a problem, to one of designing a different kind of algorithm for the same problem. The hope
is, of course, that the second type of algorithms are significantly easier to design than the first.
A prototype example of such results is Bidimensionality [13], which reduces the design of sub-
exponential time parameterized algorithms for a problem on planar (or H-minor free) graphs,
to the design of single exponential time algorithms for the same problem when parameterized
by the treewidth of the input graph.

In this paper we prove a result of the second type for model checking Counting Monadic
Second Order Logic (CMSO), an extension of MSO with atomic sentences for determining the
cardinality of vertex and edge sets modulo any (fixed) integer. For every CMSO sentence ψ

∗A preliminary version of this paper appeared in the proceedings of ICALP 2018 (Track B).
Supported by Pareto-Optimal Parameterized Algorithms, ERC Starting Grant 715744 and Parameterized Ap-
proximation, ERC Starting Grant 306992. M. S. Ramanujan also acknowledges support from BeHard, Bergen
Research Foundation and X-Tract, Austrian Science Fund (FWF, project P26696).
†University of Bergen, Bergen, Norway. daniello@ii.uib.no
‡University of Warwick, UK. R.Maadapuzhi-Sridharan@warwick.ac.uk
§The Institute of Mathematical Sciences, HBNI, Chennai, India. saket@imsc.res.in
¶Ben-Gurion University, Israel. Zehavimeirav@gmail.com

1



define the CMSO[ψ] problem as follows. The input is a graph G on n vertices, and the task is
to determine whether G |= ψ.

Our main result states that for every CMSO sentence ψ, if there is a O(nd) time algorithm
(d > 4) for CMSO[ψ] for the special case when the input graph is required to be “highly
connected everywhere”, then there is a O(nd) time algorithm for CMSO[ψ] without any re-
strictions. In other words, our main theorem reduces CMSO model checking to model checking
the same formula on graphs which are “highly connected everywhere”.

In order to complete the description of our main result we need to define what we mean
by “highly connected everywhere”. For two integers s and c, we say that a graph G is (s, c)-
unbreakable if there does not exist a partition of the vertex set into three sets X, C, and Y such
that

• C is a separator: there are no edges from X to Y ,

• C is small: |C| ≤ c, and

• X and Y are large: |X|, |Y | ≥ s.

For example, the set of (1, c)-unbreakable graphs contains precisely the (c+1)-connected graphs,
i.e. the connected graphs for which removing any set of at most c vertices leaves the graph
connected. We can now state our main result:

Theorem 1. Let ψ be a CMSO sentence. For all c ∈ N, there exists s ∈ N such that if there
exists an algorithm that solves CMSO[ψ] on (s, c)-unbreakable graphs in time O(nd) for some
d > 4, then there exists an algorithm that solves CMSO[ψ] on general graphs in time O(nd).

For Theorem 1 to be useful, there must exist problems that can be formulated in CMSO, for
which it is easier to design algorithms for the special case when the input graphs are unbreakable,
than it is to design algorithms that work on general graphs. Such problems can be found in
abundance in parameterized complexity. Indeed, the recursive understanding technique, which
has been used to solve several problems [6, 25, 27, 28, 31, 30] in parameterized complexity, is
based precisely on the observation that for many graph problems it is much easier to design
algorithms if the input graph can be assumed to be unbreakable.

Designing algorithms using the recursive understanding technique typically involves a techni-
cal and involved argument akin to doing dynamic programming on graphs of bounded treewidth
(see Chitnis et al. [6] for an exposition). These arguments reduce the original problem on general
graphs to a generalized version of the problem on (s, c)-unbreakable graphs, for appropriate val-
ues of s and c. Then an algorithm is designed for this generalized problem on (s, c)-unbreakable
graphs, yielding an algorithm for the original problem.

For all applications of the recursive understanding technique known to the authors [6, 25,
27, 28, 31, 30], the problem in question (in which recursive understanding has been applied)
can be formulated as a CMSO model checking problem, and therefore, the rather cumbersome
application of recursive understanding can be completely replaced by a black box invocation
of Theorem 1. Using Theorem 1 in place of recursive understanding has the additional advan-
tage that it reduces problems on general graphs to the same problem on unbreakable graphs,
facilitating also the last step of designing an algorithm on unbreakable graphs.

As an example of the power of Theorem 1 we use it to give a fixed parameter tractable
(FPT) algorithm for the Vertex Multiway Cut Uncut problem. Here, we are given a
graph G together with a set of terminals T ⊆ V (G), an equivalence relation R on the set T ,
and an integer k, and the objective is to test whether there exists a set S ⊆ V (G) \ T of at
most k vertices such that for any u, v ∈ T , the vertices u and v belong to the same connected
component of G\S if and only if (u, v) ∈ R. Since finding the desired set S satisfying the above
property can be formulated in CMSO, we are able to completely sidestep the necessity to define

2



a technically involved annotated version of our problem, and furthermore, we need only focus
on the base case where the graph is unbreakable. To solve the base case, a simple procedure
that is based on the enumeration of connected sets with small neighborhood is sufficient. For
classification purposes, our approach is significantly simpler than the problem-specific algorithm
in [6]. Finally, we show how Theorem 1 can be effortlessly deployed to show fixed parameterized
tractability of a wide range of problems, where the input is a graph G and the task is to find
a connected induced subgraph of G of bounded treewidth such that “few” vertices outside this
subgraph have neighbors inside the subgraph, and additionally the subgraph has a CMSO-
definable property.

Our techniques. The proof of Theorem 1 is based heavily on the idea of graph replacement,
which dates back to the work of Fellows and Langston [17]. We combine this idea with Courcelle’s
theorem [7, 8, 9], which states that every CMSO-definable property σ has finite state on a
bounded-size separation/boundary. In other words, for any CMSO-definable property σ and
fixed t ∈ N, there is an equivalence relation defined on the set of all t-boundaried graphs (graphs
with a set of at most t distinguished vertices) with a finite number, say ζ (where ζ depends
only on σ and t) of equivalence classes such that if we replace any t-boundaried subgraph H of
the given graph G with another t-boundaried graph, say H ′, from the same equivalence class
to obtain a graph G′, then G has the property σ if and only if G′ has the property σ. In our
case, t = 2c. Let R1, . . . , Rζ denote a set containing one “ minimal” 2c-boundaried graph from
each equivalence class (for the fixed CMSO-definable property σ). Let r denote the size of the
largest among these minimal representatives.

The main technical content of our paper is in the description of an algorithm for a gener-
alization of our question. To be precise, we will describe how one can, given a 2c-boundaried
graph G, locate the precise equivalence class in which G is contained and how one could compute
the corresponding smallest representative from the set {R1, . . . , Rζ}. We refer to this task as
“understanding” G.

In order to achieve our objective, we first give an algorithm A that allows one to understand
2c-boundaried (s−r, c)-unbreakable graphs (for a choice of s which is sufficiently large compared
to r and c). This algorithm is built upon the following observation. The equivalence class of
any 2c-boundaried graph G is determined exactly by the subset of {G⊕R1, G⊕R2, . . . , G⊕Rζ}
on which σ evaluates to true. Here, the graph G ⊕ Ri is the graph obtained by taking the
disjoint union of the graphs G and Ri and then identifying the vertices of the boundaries of
these graphs with the same label. Since s is chosen to be sufficiently large compared to c and
r, it follows that for every i ∈ {1, . . . , ζ}, the graph G⊕Ri is (s, c)-unbreakable and we can use
the assumed algorithm for CMSO[ψ] on (s, c)-unbreakable graphs to design an algorithm that
understands 2c-boundaried (s− r, c)-unbreakable graphs. This constitutes the ‘base case’ of our
main algorithm.

In order to understand a general ((s − r, c)-breakable) 2c-boundaried graph, we use known
algorithms from [6] to compute a partition of the vertex set of G into X,C, and Y such that C
is a separator, |C| ≤ c and |X|, |Y | ≥ s−r

2c . Let G1 = G[X ∪C] and let G = G[Y ∪C]. Without
loss of generality, we may assume that at most half the vertices in the boundary of G lie in
X ∪ C. Consequently, the graph G1 is a 2c-boundaried graphs where the boundary vertices
are the vertices in C along with the boundary vertices of G contained in X ∪ C. We then
recursively understand the strictly smaller 2c-boundaried graph G1 to find its representative
R̂ ∈ {R1, . . . , Rζ}. Since the evaluation of σ on G is the same as the evaluation of σ on G2 ⊕ R̂
(where the gluing happens along C), we only need to understand the 2c-boundaried graph G2⊕R̂
(where the boundary is carefully defined from that of G and R̂) and we do this by recursively
executing the “understand” algorithm on this graph.

At this point we also need to remark on two drawbacks of Theorem 1. The first is that
Theorem 1 is non-constructive. Given an algorithm for CMSO[ψ] on (s, c)-unbreakable graphs,

3



Theorem 1 allows us to infer the existence of an algorithm for CMSO[ψ] on general graphs, but
it does not provide us with the actual algorithm. This is due to the subroutine S requiring a
representative 2c-boundaried subgraph for each equivalence class, to be part of its ‘source code’.
Thus, the parameterized algorithms obtained using Theorem 1 are non-uniform (see Section 4),
as opposed to the algorithms obtained by recursive understanding.

The second drawback is that Theorem 1 incurs a gargantuan constant factor overhead in
the running time, where this factor depends on the formula ψ and the cut size c. We leave
removing these two drawbacks as intriguing open problems.

2 Preliminaries

In this section, we introduce basic terminology related to graphs, structures, CMSO, boundaried
structures and parameterized complexity. In order to present a rigorous proof of our lemmas
in a way that is consistent with existing notation used in related work, we follow the notation
from the paper [3]. We use [t] as a shorthand for {1, 2, . . . , t}. Given a function f : A→ B and
a subset A′ ⊆ A, we denote f(A′) =

⋃
a∈A′ f(a).

2.1 Graphs

Throughout this paper, we use the term “graph” to refer to a multigraph rather than only a
simple graph. Given a graph G, we let V (G) and E(G) denote the vertex and edge sets of G,
respectively. When G is clear from the context, we denote n = |V (G)| and m = |E(G)|. Given
two subsets of V (G), A and B, we let E(A,B) denote the set of edges of G with one endpoint in
A and the other endpoint in B. Given U ⊆ V (G), we let G[U ] denote the subgraph of G induced
by U , and we let N(U) and N [U ] denote the open and closed neighborhoods of U , respectively.
Moreover, we denote G \ U = G[V (G) \ U ]. Given v ∈ V (G), we denote N(v) = N({v}) and
N [v] = N [{v}]. Given E ⊆ E(G), we denote G \E = (V (G), E(G) \E). Moreover, we let V [E]
denote the set of every vertex in V (G) that is incident to at least one edge in E, and we define
G[E] = (V [E], E). A graph G is a cluster graph if there exists a partition (V1, V2, . . . , Vr) of
V (G) for some r ∈ N0 of V (G) such that for all i ∈ [r], G[Vi] is a clique, and for all j ∈ [r] \ {i},
E(Vi, Vj) = ∅.

Treewidth. Treewidth is a structural parameter that indicates how much a given graph re-
sembles a tree. For example, a tree has treewidth 1 and an n-vertex clique has treewidth n− 1.
Formally, the treewidth of a graph is defined as follows.

Definition 2.1. A tree decomposition of a graph G is a pair (T, β) of a tree T and β : V (T )→
2V (G), such that

1.
⋃
t∈V (T ) β(t) = V (G), and

2. for any edge e ∈ E(G), there exists a node t ∈ V (T ) such that both endpoints of e belong
to β(t), and

3. for any vertex v ∈ V (G), the subgraph of T induced by the set Tv = {t ∈ V (T ) : v ∈ β(t)}
is a tree.

The width of (T, β) is maxv∈V (T ){|β(v)|} − 1. The treewidth of G is the minimum width of a
tree decomposition of G.

Unbreakability. To formally introduce the notion of unbreakability, we rely on the definition
of a separation:

4



Definition 2.2. [Separation] A pair (X,Y ) where X ∪ Y = V (G) is a separation if E(X \
Y, Y \X) = ∅. The order of (X,Y ) is |X ∩ Y |.

Roughly speaking, a graph is breakable if it is possible to “break” it into two large parts by
removing only a small number of vertices. Formally,

Definition 2.3. [(s, c)-Unbreakable graph] Let G be a graph. If there exists a separation
(X,Y ) of order at most c such that |X \ Y | > s and |Y \ X| > s, called an (s, c)-witnessing
separation, then G is (s, c)-breakable. Otherwise, G is (s, c)-unbreakable.

The following lemma implies that it is possible to determine (approximately) whether a
graph is unbreakable or not, and lemmata similar to it can be found in [6]. We give a proof for
the sake of completeness and in order to avoid interrupting the flow of the reader and to ensure
that we keep the presentation focussed on the main result, the proof has been moved to the
Appendix (Section 5.1).

Lemma 2.1. There exists an algorithm, Break-ALG, that given s, c ∈ N and a graph G, in time

2O(c log(s+c)) · n3 log n either returns an (
s

2c
, c)-witnessing separation or correctly concludes that

G is (s, c)-unbreakable.

Boundaried Graphs. Roughly speaking, a boundaried graph is a graph where some vertices
are labeled. Formally,

Definition 2.4. [Boundaried graph] A boundaried graph is a graph G with a set δ(G) ⊆
V (G) of distinguished vertices called boundary vertices, and an injective labeling λG : δ(G)→ N.
The set δ(G) is the boundary of G, and the label set of G is Λ(G) = {λG(v) | v ∈ δ(G)}.

We remark that we also extend the definition of (s, c)-(un)breakability from graphs, to
boundaried graphs in the natural way. That is, we ignore the boundary vertices when considering
the existence of an (s, c)-witnessing separation. For ease of presentation, we sometimes abuse
notation and treat equally-labeled vertices of different boundaried graphs, as well as the vertex
that is the result of the identification of two such vertices, as the same vertex. Given a finite set
I ⊆ N, FI denotes the class of all boundaried graphs whose label set is I, and F⊆I =

⋃
I′⊆I FI′ .

A boundaried graph in F⊆[t] is called a t-boundaried graph. Finally, F denotes the class of all
boundaried graphs. The main operation employed to unite two boundaried graphs is the one
that glues their boundary vertices together. Formally,

Definition 2.5. [Gluing by ⊕] Let G1 and G2 be two boundaried graphs. Then, G1 ⊕ G2

is the (not-boundaried) graph obtained from the disjoint union of G1 and G2 by identifying
equally-labeled vertices in δ(G1) and δ(G2).

1

2.2 Structures

We first define the notion of a structure in the context of our paper.

Definition 2.6. [Structure] A structure α is a tuple whose first element is a graph, denoted
by Gα, and each of the remaining elements is a subset of V (Gα), a subset of E(Gα), a vertex in
V (Gα) or an edge in E(Gα). The number of elements in the tuple is the arity of the structure.

Given a structure α of arity p and an integer i ∈ [p], we let α[i] denote the i’th element of α.
Note that α[1] = Gα. By appending a subset S of V (Gα) (or E(Gα)) to a structure α of arity p,
we produce a new structure, denoted by α′ = α �S, of arity p+ 1 with the first p elements of α′

1Each edge in G1 (or G2) whose endpoints are boundaried vertices in G1 (or G2) is preserved as a unique edge
in G1 ⊕G2.

5



being the elements of α and α′[p+ 1] = S. For example, consider the structure α = (Gα, S, e) of
arity 3, where S ⊆ V (Gα) and e ∈ E(Gα). Let S′ be some subset of V (Gα). Then, appending
S′ to α results in the structure α′ = α � S′ = (Gα, S, e, S

′).
Next, we define the notions of a type of a structure and a property of structures.

Definition 2.7. [Type] Let α be a structure of arity p. The type of α is a tuple of arity p,
denoted by type(α), where the first element, type(α)[1], is graph, and for every i ∈ {2, 3, . . . , p},
type(α)[i] is vertex if α[i] ∈ V (Gα), edge if α[i] ∈ E(Gα), vertex set if α[i] ⊆ V (Gα), and edge
set otherwise.2

Definition 2.8. [Property] A property is a function σ from the set of all structures to
{true, false}.

Finally, we extend the notion of unbreakability to structures.

Definition 2.9. [(s, c)-Unbreakable structure] Let α be a structure. If Gα is an (s, c)-
unbreakable graph, then we say that α is an (s, c)-unbreakable structure, and otherwise we say
that α is an (s, c)-breakable structure.

2.3 Counting Monadic Second Order Logic

The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical connectives
∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices and sets of edges, the quantifiers ∀
and ∃, which can be applied to these variables, and five binary relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable;

2. d ∈ D, where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is that
the edge d is incident to u;

4. adj(u, v), where u and v are vertex variables, and the interpretation is that u and v are
adjacent;

5. equality of variables representing vertices, edges, vertex sets and edge sets.

Counting Monadic Second Order Logic (CMSO) extends MSO by including atomic sentences
testing whether the cardinality of a set is equal to q modulo r, where q and r are integers such
that 0 ≤ q < r and r ≥ 2. That is, CMSO is MSO with the following atomic sentence:
cardq,r(S) = true if and only if |S| ≡ q (mod r), where S is a set. We refer to [2, 7, 9] for a
detailed introduction to CMSO.

Evaluation. To evaluate a CMSO-formula ψ on a structure α, we instantiate the free variables
of ψ by the elements of α. In order to determine which of the free variables of ψ are instantiated
by which of the elements of α, we introduce the following conventions. First, each free variable
x of a CMSO-formula ψ is associated with a rank, rx ∈ N \ {1}. Thus, a CMSO-formula ψ can
be viewed as a string accompanied by a tuple of integers, where the tuple consists of one integer
rx for each free variable x of ψ.

Given a structure α and a CMSO-formula ψ, we say that type(α) matches ψ if (i) the arity
of α is at least max rx, where the maximum is taken over each free variable x of ψ, and (ii) for
each free variable x of ψ, type(α)[rx] is compatible with the type of x. For example, if x is a
vertex set variable, then type(α)[rx] = vertex set. Finally, we say that α matches ψ if type(α)
matches ψ. Given a free variable x of a CMSO sentence ψ and a structure α that matches ψ,
the element corresponding to x in α is α[rx].

2Note that we distinguish between a set containing a single vertex (or edge) and a single vertex (or edge).

6



Definition 2.10. [Property σψ] Given a CMSO-formula ψ, the property σψ is defined as
follows. Given a structure α, if α does not match ψ, then σψ(α) equals false, and otherwise
σψ(α) equals the result of the evaluation of ψ where each free variable x of ψ is instantiated by
α[rx].

Note that some elements of α might not correspond to any variable of ψ. However, ψ may
still be evaluated on the structure α—in this case, the evaluation of ψ does not depend on all
the elements of the structure. If the arity of α is 1, then we use σψ(Gα) as a shorthand for
σψ(α).

Definition 2.11. [CMSO-definable property] A property σ is CMSO-definable if there ex-
ists a CMSO-formula ψ such that σ = σψ. In this case, we say that ψ defines σ.

2.4 Boundaried Structures

The notion of a boundaried structure is an extension of the notion of a boundaried graph and is
defined as follows.

Definition 2.12. [Boundaried structure] A boundaried structure is a tuple whose first ele-
ment is a boundaried graph G, denoted by Gα, and each of the remaining elements is a subset
of V (G), a subset of E(G), a vertex in V (G), an edge in E(G), or the symbol ?. The number of
elements in the tuple is the arity of the boundaried structure.

Given a boundaried structure α of arity p and an integer i ∈ [p], we let α[i] denote the i’th
element of α. We remark that we extend the definition of (s, c)-(un)breakability of structures,
to boundaried structures. Next, other terms presented in previous subsections are adapted to
fit boundaried structures.

Definition 2.13. [Type] Let α be a boundaried structure of arity p. The type of α is a tuple
of arity p, denoted by type(α), where the first element, type(α)[1], is boundaried graph, and
for every i ∈ {2, 3, . . . , p}, type(α)[i] is vertex if α[i] ∈ V (Gα), edge if α[i] ∈ E(Gα), vertex set
if α[i] ⊆ V (Gα), edge set if α[i] ⊆ E(Gα) and ? otherwise.

Now, given a boundaried structure and a CMSO-formula ψ, we say that type(α) matches
ψ if (i) the arity of α is at least max rx, where the maximum is taken over each free variable
x of ψ, and (ii) for each free variable x of ψ, type(α)[rx] is compatible with the type of x.
Moreover, we say that α matches ψ if type(α) matches ψ.

Given p ∈ N, Ap denotes the class of all boundaried structures of arity p, and given a finite
set I ⊆ N, ApI (Ap⊆I) denotes the class of all boundaried structures of arity p whose boundaried
graph belongs to FI (resp. F⊆I). A boundaried structure in Ap⊆[t] is called a t-boundaried
structure. Finally, we let A denote the class of all boundaried structures.

Definition 2.14. [Compatiblity] Two boundaried structures α and β are compatible (nota-
tionally, α∼cβ) if the following conditions are satisfied.

• α and β have the same arity p.

• For every i ∈ [p]:

– type(α)[i] = type(β)[i] 6= ?, or

– type(α)[i] ∈ {vertex,edge} and type(β)[i] = ?, or

– type(β)[i] ∈ {vertex,edge} and type(α)[i] = ?.

• For every i ∈ [p] such that both α[i] and β[i] are vertices: α[i] ∈ δ(Gα), β[i] ∈ δ(Gβ) and
λGα(α[i]) = λGβ (β[i]).

7



• For every i ∈ [p] such that both α[i] and β[i] are edges: α[i] ∈ E(Gα[δ(Gα)]), β[i] ∈
E(Gβ[δ(Gβ)]) and {λGα(xα[i]), λGα(yα[i])} = {λGβ (xβ[i]), λGβ (yβ[i])}, where α[i] = (xα[i], yα[i])
and β[i] = (xβ[i], yβ[i]). That is, xj and yj are the endpoints of the edge j ∈ {α[i], β[i]}.

Definition 2.15. [Gluing by ⊕] Given two compatible boundaried structures α and β of arity
p, the operation α⊕ β is defined as follows.

• α⊕ β is a structure γ of arity p.

• Gγ = Gα ⊕Gβ.

• For every i ∈ [p]:

– if α[i] and β[i] are sets, γ[i] = α[i] ∪ β[i];

– if α[i] and β[i] are vertices/edges, γ[i] = α[i] = β[i];

– if α[i] = ?, γ[i] = β[i];

– if β[i] = ?, γ[i] = α[i].

2.5 Finite State

This subsection states a variant of the classical Courcelle’s Theorem [7, 8, 9] (see also [10]),
which is a central component in the proof of our main result. To this end, we first define the
compatibility equivalence relation ≡c on boundaried structures as follows. We say that α ≡c β
if Λ(Gα) = Λ(Gβ) and for every boundaried structure γ,

α ∼c γ ⇐⇒ β ∼c γ.

Now, we define the canonical equivalence relation ≡σ on boundaried structures.

Definition 2.16. [Canonical equivalence] Given a property σ of structures, the canonical
equivalence relation ≡σ on boundaried structures is defined as follows. For two boundaried
structures α and β, we say that α ≡σ β if (i) α ≡c β, and (ii) for all boundaried structures γ
compatible with α (and thus also with β), we have

σ(α⊕ γ) = true⇔ σ(β ⊕ γ) = true.

It is easy to verify that ≡σ is indeed an equivalence relation. Given a property σ of structures,
p ∈ N and I ⊆ N, we let E≡σ [Ap⊆I ] denote the set of equivalence classes of ≡σ when restricted
to Ap⊆I .

Definition 2.17. [Finite state] A property σ of structures is finite state if, for every p ∈ N
and I ⊆ N, E≡σ [Ap⊆I ] is finite.

Given a CMSO sentence ψ, the canonical equivalence relation associated with ψ is ≡σψ , and
for the sake of simplicity, we denote this relation by ≡ψ.

We are now ready to state the variant of Courcelle’s Theorem which was proven in [3] (see
also [7, 8, 9]) and which we use in this paper.

Lemma 2.2 ([3]). Every CMSO-definable property on structures has finite state.

8



2.6 Parameterized Complexity

An instance of a parameterized problem is a pair of the form (x, k), where k is a non-negative
integer called the parameter. Thus, a parameterized problem Π is a subset of Σ∗×N0, for some
finite alphabet Σ.

Two central notions in parameterized complexity are those of uniform fixed-parameter tractabil-
ity and non-uniform fixed-parameter tractability. In this paper, we are interested in the second
notion, which is defined as follows.

Definition 2.18. [Non-uniform fixed-parameter tractability (FPT)] Let Π be a parame-
terized problem. We say that Π is non-uniformly fixed-parameter tractable (FPT) if there exists
a fixed d such that for every fixed k ∈ N0, there exists an algorithm Ak that for every x ∈ Σ∗,
determines whether (x, k) ∈ Π in time O(|x|d).

Note that in Definition 2.18, d is independent of k. We refer to books such as [15, 11] for a
detailed introduction to parameterized complexity.

3 CMSO Model Checking

Given a CMSO formula ψ, the CMSO[ψ] problem is defined as follows. The input of CMSO[ψ]
is a structure α that matches ψ, and the objective is to output σψ(α). In this section, we prove
the following result, which then implies Theorem 1.

Theorem 2. Let ψ be a CMSO formula. For all c ∈ N, there exists s ∈ N such that if there
exists an algorithm that solves CMSO[ψ] on (s, c)-unbreakable structures in time O(nd) for
some d > 4, then there exists an algorithm that solves CMSO[ψ] on general structures in time
O(nd).

In the context of parameterized complexity, min-CMSO[ψ] (min-Edge-CMSO[ψ]) is de-
fined as follows. The input of min-CMSO[ψ] is a structure α, where for all S ⊆ V (Gα)
(resp. S ⊆ E(Gα)), α �S matches ψ, and a parameter k. The objective is to determine whether
there exists S ⊆ V (Gα) (resp. S ⊆ E(Gα)) of size at most k such that σψ(α � S) is true. Simi-
larly, we define max-CMSO[ψ] (resp. max-Edge-CMSO[ψ]), where the size of S should be at
least k, and eq-CMSO[ψ] (resp. eq-Edge-CMSO[ψ]), where the size of S should be exactly
k. Then, as a consequence of Theorem 2, we derive the following result.

Theorem 3. Let x∈ {min,max,eq,min-Edge,max-Edge,eq-Edge}, and let ψ̂ be a CMSO
sentence. For all ĉ : N0 → N0, there exists ŝ : N0 → N0 such that if x-CMSO[ψ̂] parameterized
by k is FPT on (ŝ(k), ĉ(k))-unbreakable structures, then x-CMSO[ψ̂] parameterized by k is FPT
on general structures.

Proof. Denote V = V (Gα) and E = E(Gα). First, notice that for every fixed k, there exists
a CMSO sentence ψk such that x-CMSO[ψ̂] is essentially equivalent to CMSO[ψk]. Indeed, if
x∈ {min,max,eq}, we can define ψk as follows:

• if x=min, then set ψk = ∃S⊆V [(|S| ≤ k) ∧ ψ̂(S)];

• if x=max, then set ψk = ∃S⊆V [(|S| ≥ k) ∧ ψ̂(S)];

• if x=eq, then set ψk = ∃S⊆V [(|S| = k) ∧ ψ̂(S)].

Here, we have that

• |S| ≤ k is the CMSO sentence ∃v1,...,vk∈V [∀u∈V (u = v1 ∨ · · · ∨ u = vk ∨ ¬u ∈ S),

9



• |S| ≥ k is the CMSO sentence ∃v1,...,vk∈V [v1 ∈ S∧· · ·∧vk ∈ S∧distinct(v1, . . . , vk)], where
distinct(v1, . . . , vk) is the CMSO sentence [(¬v1 = v2) ∧ · · · ∧ (¬v1 = vk)] ∧ · · · ∧ [(¬vi =
v1)∧· · ·∧(¬vi = vi−1)∧(¬vi = vi+1)∧· · ·∧(¬vi = vk)]∧· · ·∧[(¬vk = v1)∧· · ·∧(¬vk = vk−1)],
and

• |S| = k is the CMSO sentence (|S| ≤ k) ∧ (|S| ≥ k).

In case x∈ {min-Edge,max-Edge,eq-Edge}, we replace each occurrence of V by an occurrence
of E.

Let ĉ : N0 → N0. Accordingly, define ŝ : N0 → N0 as follows. For all k ∈ N0, let ŝ(k) be
the constant s in Theorem 2 where ψ = ψk and c = ĉ(k). Suppose that x-CMSO[ψ̂] param-
eterized by k is FPT on (s(k), c(k))-unbreakable structures. Then, there exists a fixed d > 4
such that for every fixed k ∈ N0, there exists an algorithm Ak that solves x-CMSO[ψ̂] on
(s(k), c(k))-unbreakable structures in time O(nd). Thus, we can employ Ak to solve CMSO[ψk]
on (s(k), c(k))-unbreakable structures in time O(nd). By Theorem 2, we obtain that for ev-
ery fixed k ∈ N0, there exists an algorithm that solves CMSO[ψk] on general structures in
time O(nd), which implies that for every fixed k ∈ N0, there exists an algorithm that solves
x-CMSO[ψ] on general structures in time O(nd). We thus conclude that x-CMSO[ψ̂] param-
eterized by k is FPT on general structures.

From now on, to prove Theorem 2, we assume a fixed CMSO formula ψ and a fixed c ∈ N.
Moreover, we fix p as the number of free variables of ψ, and I = [2c]. We also let s ∈ N be fixed,
where its exact value (that depends only on ψ and c) is determined later. Finally, we assume
that there exists an algorithm, Solve-Unbr-ALG, that solves CMSO[ψ] on (s, c)-unbreakable
structures in time O(nd) for some d > 4.

3.1 Understanding the CMSO[ψ] Problem

To solve CMSO[ψ], we consider a generalization of CMSO[ψ], called Understand[ψ]. The
definition of this generalization is based on an examination of E≡ψ [Ap⊆I ]. Given a boundaried
structure α ∈ Ap⊆I , we let Eα denote the equivalence class in E≡ψ [Ap⊆I ] that contains α. For every
equivalence class Eq ∈ E≡ψ [Ap⊆I ], let αEq denote some boundaried structure in Eq such that
there is no boundaried structure α ∈ Eq where the length of the string encoding α is smaller than
the length of the string encoding αEq . Accordingly, denote R≡ψ [Ap⊆I ] = {αEq : Eq ∈ E≡ψ [Ap⊆I ]}.
These will be the representatives of the equivalence classes induced by ≡ψ. By Lemma 2.2, there
is a fixed r ∈ N (that depends only on ψ and c) such that both |R≡ψ [Ap⊆I ]| and the length of
encoding of any boundaried structure in R≡ψ are upper bounded by r as well as c ≤ r. Note
that the encoding explicitly lists all vertices and edges. By initially choosing s appropriately,
we ensure that s ≥ 2r2c + r.

The Understand[ψ] problem is defined as follows. The input is a boundaried structure
α ∈ Ap⊆I that matches ψ, and the objective is to output a boundaried structure β ∈ R≡ψ [Ap⊆I ]
such that Eα = Eβ.

We proceed by showing that to prove Theorem 2, it is sufficient to prove that there exists
an algorithm that solves Understand[ψ] on general boundaried structures in time O(nd).

Lemma 3.1. If there exists an algorithm that solves Understand[ψ] on general boundaried
structures in time O(nd), then there exists an algorithm that solves CMSO[ψ] on general struc-
tures in time O(nd).

Proof. Let G∅ denote the graph satisfying V (G∅) = ∅. Suppose that there exists an algorithm,
Understand-ALG, that solves Understand[ψ] on general structures in time O(nd). Then, given
an input for CMSO[ψ], which is a structure α, our algorithm works as follows. It lets α′ be the

10



boundaried structure that is identical to α except that the (not-boundaried) graphGα is replaced
by the boundaried graph defined by Gα′ and δ(Gα′) = ∅. Then, it calls Understand-ALG with
α′ as input to obtain a boundaried structure β′ ∈ R≡ψ [Ap⊆I ]. Next, it lets γ be the boundaried
structure of arity p where Gγ = G∅, and for all i ∈ [p], if type(α)[i] is vertex or edge then
γ[i] = ?, and otherwise γ[i] = ∅. Moreover, it lets β be the (not-boundaried) structure β′ ⊕ γ.
Recall that s ≥ 2r2c + r where r is an upper bound on the length of any boundaried structure
in R≡ψ , and therefore β is an (s, c)-unbreakable structure. Thus, our algorithm can finally call
Solve-Unbr-ALG (whose existence we have already assumed) with β as input, and outputs the
answer that this call returns.

Clearly, the algorithm runs in time O(nd). Let us now prove that it solves CMSO[ψ]
correctly. By the correctness of Understand-ALG, it holds that Eα′ = Eβ′ . In particular, this
equality implies that σψ(α′ ⊕ γ) = σψ(β′ ⊕ γ). Notice that α = α′ ⊕ γ. Hence, σψ(α) = σψ(β).
By the correctness of Solve-Unbr-ALG, we thus conclude that our algorithm is correct.

In light of Lemma 3.1, the rest of this section focuses on the proof of the following result.

Lemma 3.2. There exists an algorithm that solves Understand[ψ] on general boundaried
structures in time O(nd).

3.2 Understand[ψ] on Unbreakable Structures

Recall that s ≥ 2r2c+r. In this subsection, we show that Algorithm Solve-Unbr-ALG can be used
as a subroutine in order to efficiently solve Understand[ψ] on (s−r, c)-unbreakable boundaried
structures. For this, we follow the method of test sets (see for example, [Section 12.5, [15]]).
The high level idea here is as follows. We first enumerate the relevant subset of the finite set of
minimal representatives. In other words, we simply list those minimal representatives which can
be glued in a meaningful way to the structure under consideration, call it α. We now observe
that gluing each of these representatives to α results in an (s, c)-unbreakable structure, which
is what we need to call Solve-Unbr-ALG. In this way we solve the instance obtained by gluing α
to each minimal representative.

Now, for every (not necessarily distinct) pair of minimal representatives, we glue them to-
gether and do the same. This way, we can identify the specific minimal representative whose
behaviour when glued with every minimal representative, precisely resembles that of the struc-
ture α when we do the same with α. Consequently, we obtain a solution for Understand[ψ].
We now formalize this intuition in the following lemma.

Lemma 3.3. There exists an algorithm Understand-Unbr-ALG, that solves Understand[ψ],
where it is guaranteed that inputs are (s−r, c)-unbreakable boundaried structures, in time O(nd).3

Proof. We design the algorithm Understand-Unbr-ALG as follows. Let α be an input, which is
an (s − r, c)-unbreakable boundaried structure. Moreover, let C = {γ ∈ R≡ψ [Ap⊆I ] : γ ≡c α},
and let T denote the set of boundaried structures in R≡ψ [Ap⊆I ] that are compatible with α. In
the first phase, the algorithm performs the following computation. Notice that for every β ∈ T ,
since |V (Gβ)| ≤ r, it holds that α⊕β is an (s, c)-unbreakable structure. Thus, for every β ∈ T ,
Understand-Unbr-ALG can call Solve-Unbr-ALG with α⊕ β as input, and it lets ans(α, β) denote
the result.

In the second phase, the algorithm performs the following computation. Notice that for
every γ ∈ C and β ∈ T , since |V (Gβ)|, |V (Gγ)| ≤ r, it holds that γ ⊕ β is a (2r, c)-unbreakable
structure. Thus, since s ≥ 2r2c + r, for all β ∈ C and γ ∈ T , Understand-Unbr-ALG can call
Solve-Unbr-ALG with γ ⊕ β as input, and it lets ans(γ, β) denote the result.

3Here, Understand-Unbr-ALG is not requested to verify whether the input is indeed an (s − r, c)-unbreakable
boundaried structure.

11



Finally, in the third phase, for every β ∈ C, the algorithm performs the following computa-
tion. It checks whether for every γ ∈ T it holds that ans(α, γ) = ans(β, γ), and if the answer
is positive, then it outputs β. Since α ∈ Ap⊆I , there exists β′ ∈ C such that Eα = Eβ′ , and
therefore, at the latest, when β = β′, the algorithm terminates. Thus, the algorithm is well
defined, and it is clear that it runs in time O(nd).

To conclude that the algorithm is correct, it remains to show that for all β ∈ C \ {β′}, there
exists γ ∈ T such that ans(α, γ) 6= ans(β, γ), as this would imply that the algorithm necessarily
outputs β′. For this purpose, suppose by way of contradiction that there exists β ∈ C \ {β′}
such that for all γ ∈ T it holds that ans(α, γ) = ans(β, γ). We now argue that Eβ = Eβ′ which
leads to a contradiction since each boundaried structure in R≡ψ [Ap⊆I ] belongs to a different
equivalence class.

For all γ ∈ T , since it holds that ans(α, γ) = ans(β, γ), it also holds that ans(β′, γ) =
ans(β, γ). This implies that σψ(β′ ⊕ γ) = σψ(β ⊕ γ). Consider some boundaried structure
γ (not necessarily in T ) that is compatible with β′ (and thus also with β). We claim that
σψ(β′ ⊕ γ) = σψ(β ⊕ γ). Indeed, let γ′ be the (unique) boundaried structure in R≡ψ [Ap⊆I ]
such that Eγ′ = Eγ . Then, σψ(β′ ⊕ γ′) = σψ(β′ ⊕ γ) and σψ(β ⊕ γ′) = σψ(β ⊕ γ). Note that
since γ′ is compatible with β′, it is also compatible with α, and hence γ′ ∈ T . Therefore,
σψ(β′ ⊕ γ′) = σψ(β ⊕ γ′). Overall, we obtain that indeed σψ(β′ ⊕ γ) = σψ(β ⊕ γ).

Note that β ≡c β′, and thus, since we have shown that for every boundaried structure γ
compatible with β′ it holds that σψ(β′ ⊕ γ) = σψ(β ⊕ γ), we derive that Eβ = Eβ′ . However,
each boundaried structure in R≡ψ [Ap⊆I ] belongs to a different equivalence class, and thus we
have reached the desired contradiction.

3.3 Understand[ψ] on General Structures

The Algorithm Understand-ALG. We start by describing an algorithm called Understand-ALG,
which is based on recursion. Given an input to Understand[ψ] on general boundaried struc-
tures, which is a boundaried structure α, the algorithm works as follows. First, it calls

Break-ALG (given by Lemma 2.1) with Gα as input to either obtain an (
s− r

2c
, c)-witnessing

separation (X,Y ) or correctly conclude that Gα is (s − r, c)-unbreakable. In the second case
or if n < 2(s− r), it calls Understand-Unbr-ALG (given by Lemma 3.3), and returns its output.

Next, suppose that Understand-ALG obtained an (
s− r

2c
, c)-witnessing separation (X,Y ) and

that n ≥ 2(s− r). Without loss of generality, assume that |X ∩ δ(Gα)| ≤ |Y ∩ δ(Gα)|. Denote
∆ = {v ∈ X ∩ Y : v /∈ δ(Gα)}.

Now, we define a boundaried structure, β ∈ Ap⊆I , which can serve as an instance of
Understand[ψ]. First, we let the graph Gβ be Gα[X], and we define δ(Gβ) = (X∩δ(Gα))∪∆.
Now, for all v ∈ X ∩ δ(Gα), we define λGβ (v) = λGα(v). Since |X ∩ δ(Gα)| ≤ |Y ∩ δ(Gα)|,
α ∈ Ap⊆I and |X ∩ Y | ≤ c, we have that |(X ∩ δ(Gα)) ∪∆| ≤ 2c. Thus, to each v ∈ ∆, we can
let λGβ (v) assign some unique integer from I \ λGα(X ∩ δ(Gα)). Hence, Gβ ∈ F⊆I . Now, for all
i ∈ {2, . . . , p}, we set β[i] as follows.

• If type(α)[i] ∈ {vertex,edge}: If α[i] ∈ V (Gβ) ∪ E(Gβ), then β[i] = α[i], and otherwise
β[i] = ?.

• Else: β[i] = α[i] ∩ (V (Gβ) ∪ E(Gβ)).

Understand-ALG proceeds by calling itself recursively with β as input, and it lets β′ be the
output of this call.

Now, we define another boundaried structure, γ ∈ Ap⊆I , which can serve as an instance of
Understand[ψ]. First, we define the boundaried graph Gγ as follows. Let H be the disjoint
union of Gβ′ and G[Y ], where both Gβ′ and G[Y ] are treated as not-boundaried graphs. For

12



all v ∈ X ∩ Y , identify (in H) the vertex v of G[Y ] with the vertex u of Gβ′ that satisfies
λGβ′ (u) = λGβ (v), and for the sake of simplicity, let v and u also denote the identity of the
resulting (unified) vertex. The graph Gγ is the result of this process. Moreover, let ∆′ denote the
set of vertices in Gβ′ whose labels belong to Gβ(∆). Next, set δ(Gγ) = (Y ∩δ(Gα))∪(δ(Gβ′)\∆′).
Now, for all v ∈ Y ∩ δ(Gα), we define λGγ (v) = λGα(v), and for all v ∈ δ(Gβ′) \∆′, we define
λGγ (v) = λGβ′ (v) (note that if a vertex belongs to both Y ∩ δ(Gα) and δ(Gβ′) \ ∆′, we still
assign it the same label). Hence, Gγ ∈ F⊆I . For the sake of simplicity, if two vertices have the
same label (one in Gα and the other in Gγ), we let the identity of one of them also refer to the
other and vice versa. For all i ∈ {2, . . . , p}, we set γ[i] to have the same type as α[i], and define
it as follows.

• If type(α)[i] ∈ {vertex,edge}: If α[i] ∈ V (Gγ) ∪ E(Gγ), then γ[i] = α[i], and otherwise
γ[i] = ?.

• Else: γ[i] = α[i] ∩ (V (Gγ) ∪ E(Gγ)).

Finally, Understand-ALG calls itself recursively with γ as input, and it returns γ′, the output
of this call.

Correctness. Here, we prove the following result.

Lemma 3.4. If Understand-ALG terminates, then it correctly solves Understand[ψ] on general
boundaried structures.

Proof. The proof is by induction on the number of recursive calls that the algorithm performs.
Here, we suppose that at a given call which terminates, the recursive calls (which must then also
terminate) return correct answers. At the basis, we are at a call where the algorithm performs
no recursive calls. Thus, the basis corresponds to calls where either n < 2(s− r) or Break-ALG
concludes that Gα is (s − r, c)-unbreakable; then, correctness follows from Lemma 3.3. Next,
consider a call that terminates and where the algorithm calls itself recursively.

We need to show that Eα = Eγ′ . Since we assume that the recursive calls return correct
answers, it is sufficient to show that Eα = Eγ . Moreover, due to this assumption, it also holds
that Eβ′ = Eβ.

First, we show that α ≡c γ. By the definition of Gγ , every vertex in Y that has a label in
Gα, is present in Gγ and has the same label in Gγ . Moreover, every vertex v in X \ Y that
has a label ` in Gα, also has the same label in Gβ (by the definition of Gβ). Therefore, this
label is also present in G′β (since Eβ′ = Eβ) and not given to a vertex in ∆′ (since it is not
given to a vertex in ∆). Thus, this label is also present in Gγ (by the definition of Gγ)—in this
context, recall that we refer to the vertex in Gγ that has the label ` by v as well. Thus, we have
that ∆(Gα) = ∆(Gγ). Moreover, since α defines an input instance, its arity is p, which is also
the arity of γ (by the definition of γ). The definition of γ also immediately implies that for all
i ∈ [p], type(α)[i] = type(γ)[i], and by the above arguments, it also implies that if both α[i]
and γ[i] are vertices/edges, then α[i] = γ[i] and this vertex has the same label in both Gα and
Gγ . This concludes the proof that α ≡c γ.

Now, to derive that Eα = Eγ , we also need to show that given any boundaried structure
η compatible with α (and thus also with γ), it holds that σψ(α ⊕ η) = true if and only if
σψ(β ⊕ η) = true. For this purpose, consider some boundaried structure η compatible with α.
First, we define a boundaried structure µ in Ap⊆I such that β⊕µ = α⊕ η as follows. We let the
graph Gµ be Gα⊕η \ (V (Gβ) \ δ(Gβ)), and we define δ(Gµ) = δ(Gβ). Now, for all v ∈ δ(Gµ), we
define λGµ(v) = λGβ (v). For all i ∈ {2, . . . , p}, we set µ[i] as follows.

• If type(β)[i] ∈ {vertex,edge}: If β[i] ∈ V (Gµ) ∪ E(Gµ), then µ[i] = β[i], and otherwise
µ[i] = ?.

13



• Else: µ[i] = β[i] ∩ (V (Gµ) ∪ E(Gµ)).

Second, we define a boundaried structure ρ in Ap⊆I such that β′ ⊕ ρ = γ ⊕ η as follows.
We let the graph Gρ be Gγ⊕η \ (V (Gβ′) \ δ(Gβ′)), and we define δ(Gρ) = δ(Gβ′). Now, for all
v ∈ δ(Gρ), we define λGρ(v) = λGβ′ (v). For all i ∈ {2, . . . , p}, we set ρ[i] as follows.

• If type(β′)[i] ∈ {vertex,edge}: If β′[i] ∈ V (Gρ) ∪ E(Gρ), then ρ[i] = β′[i], and otherwise
ρ[i] = ?.

• Else: ρ[i] = β′[i] ∩ (V (Gρ) ∪ E(Gρ)).

However, by our definition of γ, we have that µ = ρ. Indeed, since Eβ = Eβ′ and as we reuse
vertex identities (namely, we treat equally labeled vertices in Gβ and Gβ′ as the same vertex),
we have that for all i ∈ {2 . . . , p}, it holds that β[i] = β′[i]. Thus, to derive that µ = ρ, it is
sufficient to show that Gµ = Gρ, that is, Gα⊕η\(V (Gβ)\δ(Gβ)) = Gγ⊕η\(V (Gβ′)\δ(Gβ′)). The
correctness of this claim follows by noting that δ(Gβ) = δ(Gβ′), and thus Gα\(V (Gβ)\δ(Gβ)) =
Gα[Y ∪ δ(Gβ)] = Gγ [Y ∪ δ(Gβ′)] = Gγ \ (V (Gβ′) \ δ(Gβ′)) (by the definition of Gγ).

Finally, since Eβ = Eβ′ , we have that σψ(β ⊕ µ) = true if and only if σψ(β′ ⊕ µ) = true. As
β ⊕ µ = α ⊕ η and β′ ⊕ ρ = β′ ⊕ µ = γ ⊕ η, we conclude that σψ(α ⊕ η) = true if and only if
σψ(β ⊕ η) = true.

Time Complexity. Finally, we prove the following result, which together with Lemma 3.4,
implies that Lemma 3.2 is correct.

Lemma 3.5. Understand-ALG runs in time O(nd).

Proof. We prove that Understand-ALG runs in time bounded by x · nd for some fixed x (to be
determined). The proof is by induction on the number of recursive calls that the algorithm
performs. At the basis, we are at a call where the algorithm performs no recursive calls. Thus,
the basis corresponds to calls where either n < 2(s − r) or Break-ALG concludes that Gα is
(s − r, c)-unbreakable; then, by choosing x that is large enough (but independent of the input
instance), correctness follows from Lemmata 2.1 and 3.3. Next, consider a call where the
algorithm calls itself recursively.

Denote n′ = |V (Gβ)| = |X \ Y | + |X ∩ Y | and n̂ = |V (Gγ)| = |Y \ X| + |V (Gβ′)|. By
Lemma 2.1 and the inductive hypothesis, there exists a fixed y (independent of x and the input
instance) such that Understand-ALG runs in time bounded by

y · n3 log n+ x · (n′d + n̂d).

Recall that c ≤ r. Denote a = |X \Y |, b = |Y \X| and ŝ = s−r. Then, n = a+b+ |X∩Y | ≤
a+ b+ c and ŝ/2c ≤ a, b. Thus, ŝ/2c ≤ n′ = n− ñ+ c ≤ n− ñ+ r and ŝ/2c ≤ n̂ ≤ n− n′ + r.
Hence, the running time can further be bounded by

y · n3 log n+ x · ((ŝ/2c)d + (n− ŝ/2c + r)d) ≤

x · nd + (y · n3 log n+ x · (ŝ/2c)d + x · rnd−1)
−x · (ŝ/2c)nd−1.

Denote t = ŝ/2c. Thus, it remains to show that

xtnd−1 ≥ yn3 log n+ xtd + xrnd−1.

Now, recall that s ≥ 2r2c + r, and therefore t > 2r. Thus, it is sufficient to show that

xtnd−1/2 ≥ yn3 log n+ xtd.

14



Since d > 4, by ensuring that x/4 ≥ y, we further have that it is sufficient to show that

xtnd−1/4 ≥ xtd.

Finally, recall that n ≥ 2(s − r), and therefore nd−1 ≥ 4td−1. Thus, the inequality above
holds.

4 Applications

In this section, we first show how Theorem 3 can be easily deployed to show the fixed parameter
tractability of a wide range of problems of the following kind. The input is a graph G and the
task is to find a connected induced subgraph of G of bounded treewidth such that “few” vertices
outside this subgraph have neighbors inside the subgraph, and additionally the subgraph has
a CMSO-definable property. Then, we show that technical problem-specific ingredients of a
powerful method for designing parameterized algorithms called recursive understanding, can be
replaced by a black-box invocation of Theorem 3. Here, we consider the Vertex Multiway
Cut-Uncut (V-MWCU) problem as an illustrative example.

4.1 “Pendant” Subgraphs with CMSO-Definable Properties

Formally, given a CMSO sentence ψ and a non-negative integer t, the t-Pendant[ψ] problem
is defined as follows. The input of t-Pendant[ψ] is a graph G and a parameter k, and the
objective is to determine whether there exists U ⊆ V (G) such that G[U ] is a connected graph
of treewidth at most t, |N(U)| ≤ k and σψ(G[U ]) is true.

We start by defining a CMSO formula ϕ with free variable S as follows.

ϕ = ∃U⊆V (G)[(G[U ] |= ψ) ∧ (G[U ] |= twt) ∧ conn(U)∧
(∀v∈S¬(v ∈ U)) ∧ (∀v∈U∀u∈V (G)\(U∪S)¬adj(v, u))],

where conn(U) is the standard CMSO sentence that tests whether G[U ] is a connected graph
(see, e.g., [11]), and twt is the standard CMSO sentence that tests whether the treewidth of a
graph is at most t (see, e.g., [19]). We remark that twt can be constructed by observing that
there exists a finite set of graphs, M, such that a graph has treewidth at most t if and only if
it excludes every graph in M as a minor, and it is known how to construct a CMSO sentence
that tests the exclusion of a fixed graph as a minor (see, e.g., [19]).

Having defined ψ, it is immediate that the t-Pendant[ψ] problem is equivalent to min-
CMSO[ϕ] as follows.

Observation 4.1. Let G be a graph, and let k be a parameter. Then, (G, k) is a Yes-instance
of t-Pendant[ψ] if and only if ((G), k) is a Yes-instance of min-CMSO[ϕ].

Next, we solve t-Pendant[ψ] on unbreakable graphs with the appropriate parameters. De-
fine c : N0 → N0 as follows. For all k ∈ N0, let ĉ(k) = k + t. Let s : N0 → N0 be the function ŝ
in Theorem 3 with ψ̂ = ϕ and ĉ = c. We first prove the following lemma.

Lemma 4.1. Let (G, k) be a Yes-instance of t-Pendant[ψ] parameterized by k on (s(k), k+t)-
unbreakable graphs. Then, there exists U ⊆ V (G) such that G[U ] is a connected graph of
treewidth at most t, |N(U)| ≤ k, σψ(G[U ]) is true and |U | < 3(s(k) + t).

Proof. Since (G, k) is a Yes-instance, there exists U ⊆ V (G) such thatG[U ] is a connected graph
of treewidth at most t, |N(U)| ≤ k and σψ(G[U ]) is true. Moreover, since the treewidth of G[U ]
is at most t, it is easy to see that there exists a separation (X,Y ) of order at most t of G[U ] such
that |X|, |Y | ≥ |U |/3 (see, e.g., [11]). Then, set X ′ = X ∪N(U) and Y ′ = (V (G)\X)∪ (X ∩Y ).

15



Note that (X ′, Y ′) is a separation of order |X ∩Y |+ |N(U)| ≤ k+ t. Moreover, X \Y ⊆ X ′ \Y ′
and Y \ X ⊆ Y ′ \ X ′. Thus, (X ′, Y ′) is a (|U |/3 − t, k + t)-witnessing separation. Since G is
(s(k), k + t)-unbreakable graph, we have that |U |/3 − t < s(k). Therefore, |U | < 3(s(k) + t),
which concludes the correctness of the lemma.

We also need the following result, proved by Fomin and Villanger [21].

Lemma 4.2 ([21]). Fix p, q ∈ N0. Given a graph G and a vertex v ∈ V (G), the number of
subsets U ⊆ V (G) such that v ∈ U , G[U ] is a connected graph, |U | ≤ p and |N(U)| ≤ q is upper
bounded by

(
p+q
p

)
and they can be enumerated in constant time (dependent only on p and q).

Lemma 4.3. t-Pendant[ψ] parameterized by k is FPT on (s(k), k + t)-unbreakable graphs.

Proof. Fix some k ∈ N0. Given an (s(k), k + t)-unbreakable graph G, our algorithm Ak works
as follows. By using the algorithm in Lemma 4.2, for every vertex v ∈ V (G), it first computes
(in constant time) the set Uv of subsets U ⊆ V (G) such that v ∈ U , G[U ] is a connected graph,
|U | ≤ 3(s(k) + t) and |N(U)| ≤ k. Then, it sets U =

⋃
v∈V (G) Uv. For each U ∈ U , since

|U | ≤ 3(s(k) + t) = O(1), the algorithm can test (in constant time) whether G[U ] |= ψ and the
treewidth of G[U ] is at most t.

By Lemma 4.2, it holds that |U| = O(n), and therefore Ak runs in timeO(n). The correctness
of Ak directly follows from Lemmata 4.1 and 4.2. This concludes the proof of the lemma.

Finally, by Theorem 3, Observation 4.1 and Lemma 4.3, we derive the following result.

Theorem 4. t-Pendant[ψ] parameterized by k is FPT on general graphs.

4.2 Recursive Understanding as a Black Box

The Vertex Multiway Cut-Uncut (V-MWCU) problem is defined as follows. The input
of V-MWCU consists of a graph G, a terminal set T ⊆ V (G), an equivalence relation R on T ,
and a parameter k. The objective is to determine whether there exists a subset U ⊆ V (G) \ T
such that |U | ≤ k, and for all u, v ∈ T , it holds that u and v belong to the same connected
component of G \ U if and only if (u, v) ∈ R. Our goal is to prove the following result.

Theorem 5. V-MWCU parameterized by k is FPT on general graphs.

For syntactic reasons, we view V-MWCU as the Vertex Red-Blue Cut-Uncut (V-
RBCU) problem, which we define as follows. The input of V-RBCU consists of a graph G, an
edge-set R ⊆ E(G) such that G[R] is a cluster graph, and a parameter k. The objective is to
determine whether there exists a subset S ⊆ V (G) \ V [R], called a solution, such that |S| ≤ k,
and for every two vertices u, v ∈ V [R], it holds that u and v belong to the same connected
component of (G \ S) \R if and only if there exists an edge in R whose endpoints are u and v.

Given an instance (G,T,R, k) of V-MWCU, we construct (in polynomial time) an equivalent
instance (G′, R, k) of V-RBCU as follows. We set V (G′) = V (G), and initialize E(G′) = E(G)
and R = ∅. Then, for each u, v ∈ T such that (u, v) ∈ R, we insert into both E(G′) and R a
new edge whose endpoints are u and v. Thus, to prove Theorem 5, it is sufficient to prove the
following result.

Lemma 4.4. V-RBCU parameterized by k is FPT on general graphs.

We start by defining a CMSO formula ϕ with free variables R and S as follows.

ϕ = cluster(R) ∧ [∀v∈S¬∃e∈R inc(e, v)]∧
[∀u,v∈V (G)\S ϕ1 ∨ ϕ2 ∨ ϕ3],

16



where
ϕ1 = ¬∃e∈R inc(e, u) ∨ ¬∃e∈R inc(e, v),
ϕ2 = ∃U⊆V (G)\S [u ∈ U ∧ v ∈ U ∧ conn(U)]∧

∃e∈R(inc(e, u) ∧ inc(e, v)),
ϕ3 = ¬∃U⊆V (G)\S [u ∈ U ∧ v ∈ U ∧ conn(U)]∧

¬∃e∈R(inc(e, u) ∧ inc(e, v)),

and cluster(R) is the standard CMSO sentence that tests whether G[R] is a cluster graph. For
completeness,

cluster(R) = ∀u,v,w∈V (G)[ϕ1 ∨ ¬∃e∈R inc(e, w)∨
¬∃e∈R(inc(e, u) ∧ inc(e, v)) ∨ ¬∃e∈R(inc(e, v) ∧ inc(e, w))
∨∃e∈R(inc(e, u) ∧ inc(e, w))].

Having defined ϕ, it is immediate that V-RBCU is equivalent to min-CMSO[ϕ] as follows.

Observation 4.2. Let G be a graph, and let k be a parameter. Then, (G,R, k) is a Yes-instance
of V-RBCU if and only if ((G,R), k) is a Yes-instance of min-CMSO[ϕ].

Next, we solve V-RBCU on unbreakable graphs with the appropriate parameters. Define
c : N0 → N0 as follows. For all k ∈ N0, let ĉ(k) = k. Let s : N0 → N0 be the function ŝ in
Theorem 3 with ψ̂ = ϕ and ĉ = c. Given an instance (G,R, k) of V-RBCU, let R1, R2, . . . , Rr
denote the vertex sets of the cliques in G[R] for the appropriate r. We first prove the following
lemma.

Lemma 4.5. Let (G,R, k) be a Yes-instance of V-RBCU parameterized by k on (s(k), k)-
unbreakable graphs. Then, there exists a solution S and i ∈ [r] such that for all j ∈ [r] \ {i},
|V (Cj)| ≤ s(k), where Cj is the connected component of (G \ S) \ R whose vertex-set contains
Rj.

Proof. Since (G,R, k) is a Yes-instance, there exists a solution S. For all j ∈ [r], let Cj is
the connected component of (G \ S) \ R whose vertex-set contains Rj . Let i denote an index
in [r] that maximizes |V (Cj)|. We claim that for all j ∈ [r] \ {i}, |V (Cj)| ≤ s(k). Suppose,
by way of contradiction, that there exists j ∈ [r] \ {i} such that |V (Cj)| > s(k). Then, since
V (Cj) ⊆ V (G) \ (V (Ci)∪ S), we have that (V (Ci)∪ S, V (G) \ V (Ci)) is an (s(k), k)-witnessing
separation of G \ R. Since S is a solution, there is no edge in R with one endpoint in V (Ci)
and another endpoint outside V (Ci). Therefore, (V (Ci) ∪ S, V (G) \ V (Ci)) is also an (s(k), k)-
witnessing separation of G, which contradicts the fact that G is an (s(k), k)-unbreakable graph.
This concludes the proof of the lemma.

Lemma 4.6. V-RBCU parameterized by k is FPT on (s(k), k)-unbreakable graphs.

Proof. Fix some k ∈ N0. Given an instance (G,R, k) of V-RBCU where G is an (s(k), k)-
unbreakable graph, our algorithm, Ak, works as follows. For all j ∈ [r], it selects a vertex
vj ∈ Rj (arbitrarily). By using the algorithm in Lemma 4.2, for all j ∈ [r], Ak computes (in
constant time) the set Uj of subsets U ⊆ V (G) such that vj ∈ U , G[U ] is a connected graph,
|U | ≤ s(k) and |N(U)| ≤ k. Then, for all j ∈ [r] and U ∈ Uj , if it does not hold that Rj ⊆ U
and (

⋃
`∈[r]\{j}R`) ∩ U = ∅, Ak removes U from Uj . Afterwards, for every i ∈ [r], Ak calls the

recursive procedure Bk, whose pseudocode is given below, with i and a set S that is initialized
to be ∅.

1. If |S| > k: Output No.

2. Else if there exists j ∈ [r] such that Rj is not a subset of the vertex-set of a single connected
component of G \ S: Output No.

17



3. Else if for all distinct j, t ∈ [r], Rj and Rt are subsets of distinct vertex-sets of connected
components of G \ S: Output Yes.

4. Else:

(a) Let j be an index in [r] \ {i} for which there exists t ∈ [r] \ {j} such that Rj and Rt
are subsets of the vertex-set of a single connected component of G \ S.

(b) For all U ∈ Uj : If Bk(i, S ∪N(U)) outputs Yes, then output Yes.

(c) Return No.

If no call outputted Yes, then Ak outputs No.
Note that at each recursive call, the size of S increases by at least 1. Indeed, we only update

S by inserting vertices into it, and at Step 4, there exists t ∈ [r] \ {j} such that Rj and Rt
are subsets of the vertex-set of a single connected component of G \ S, while at the subsequent
recursive calls, there does not exist such t (by our definition of Uj). Thus, by Lemma 4.2, the
running time of each call of Ak to Bk is bounded by O(n+m).4 Since r = O(n), we have that Ak
runs in time O(n(n+m)). The correctness of Ak easily follows from Lemmata 4.2 and 4.5.

Finally, by Theorem 3, Observation 4.2 and Lemma 4.6, we conclude the correctness of
Lemma 4.4.

References

[1] K. Abrahamson and M. Fellows, Finite automata, bounded treewidth and well-
quasiordering, in Graph structure theory (Seattle, WA, 1991), vol. 147 of Contemp. Math.,
Providence, RI, 1993, Amer. Math. Soc., pp. 539–563. 1

[2] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable graphs,
Journal of Algorithms, 12 (1991), pp. 308–340. 1, 6

[3] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and
D. M. Thilikos, (Meta) kernelization, J. ACM, 63 (2016), pp. 44:1–44:69. 4, 8

[4] R. B. Borie, R. G. Parker, and C. A. Tovey, Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively constructed graph
families, Algorithmica, 7 (1992), pp. 555–581. 1

[5] S. Bova, R. Ganian, and S. Szeider, Model checking existential logic on partially or-
dered sets, ACM Trans. Comput. Log., 17 (2016), pp. 10:1–10:35. 1

[6] R. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk, Designing
FPT algorithms for cut problems using randomized contractions, SIAM J. Comput., 45
(2016), pp. 1171–1229. 2, 3, 5

[7] B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of finite
graphs, Inform. and Comput., 85 (1990), pp. 12–75. 1, 3, 6, 8

[8] B. Courcelle, The monadic second-order logic of graphs. III. Tree-decompositions, mi-
nors and complexity issues, RAIRO Inform. Théor. Appl., 26 (1992), pp. 257–286. 1, 3,
8

4We remark that by not guessing i in advance, but considering two distinct indices, j and j′, in Step 4, the
algorithm can be modified to run in linear time.

18



[9] B. Courcelle, The expression of graph properties and graph transformations in monadic
second-order logic, in Handbook of graph grammars and computing by graph transforma-
tion, Vol. 1, World Sci. Publ, River Edge, NJ, 1997, pp. 313–400. 1, 3, 6, 8

[10] B. Courcelle and J. Engelfriet, Graph Structure and Monadic Second-Order Logic:
A Language-Theoretic Approach, Cambridge University Press, 2012. 1, 8

[11] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015. 9, 15

[12] A. Dawar, M. Grohe, and S. Kreutzer, Locally excluding a minor, in LICS’07, IEEE
Computer Society, 2007, pp. 270–279. 1

[13] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos, Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs, J. ACM, 52
(2005), pp. 866–893. 1

[14] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer, Berlin, 1998.
1

[15] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts
in Computer Science, Springer, 2013. 9, 11

[16] Z. Dvořák, D. Král’, and R. Thomas, Deciding first-order properties for sparse graphs,
in FOCS’10, IEEE Computer Society, 2010, pp. 133–142. 1

[17] M. R. Fellows and M. A. Langston, An analogue of the Myhill-Nerode theorem and
its use in computing finite-basis characterizations (extended abstract), in Proceedings of the
30th Annual Symposium on Foundations of Computer Science (FOCS 1989), IEEE, 1989,
pp. 520–525. 3

[18] J. Flum and M. Grohe, Fixed-parameter tractability, definability, and model-checking,
SIAM J. Comput., 31 (2001), pp. 113–145. 1

[19] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh, Planar f-deletion: Approx-
imation, kernelization and optimal FPT algorithms, in 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012, 2012, pp. 470–479. 15

[20] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh, Efficient computation
of representative families with applications in parameterized and exact algorithms, J. ACM,
63 (2016), pp. 29:1–29:60. 20

[21] F. V. Fomin and Y. Villanger, Treewidth computation and extremal combinatorics,
Combinatorica, 32 (2012), pp. 289–308. 16

[22] M. Frick and M. Grohe, Deciding first-order properties of locally tree-decomposable
structures, J. ACM, 48 (2001), pp. 1184–1206. 1

[23] J. Gajarský, P. Hlinený, J. Obdrzálek, and S. Ordyniak, Faster existential FO
model checking on posets, Logical Methods in Computer Science, 11 (2015). 1

[24] R. Ganian, P. Hlinený, D. Král, J. Obdrzálek, J. Schwartz, and J. Teska, FO
model checking of interval graphs, Logical Methods in Computer Science, 11 (2015). 1

19



[25] M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan, Finding topological sub-
graphs is fixed-parameter tractable, in Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, 2011, pp. 479–488. 2

[26] M. Grohe, S. Kreutzer, and S. Siebertz, Deciding first-order properties of nowhere
dense graphs, in STOC’14, ACM, 2014, pp. 89–98. 1

[27] K. Kawarabayashi and M. Thorup, The minimum k-way cut of bounded size is fixed-
parameter tractable, in IEEE 52nd Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, 2011, pp. 160–169. 2

[28] E. J. Kim, C. Paul, I. Sau, and D. M. Thilikos, Parameterized algorithms for min-max
multiway cut and list digraph homomorphism, J. Comput. Syst. Sci., 86 (2017), pp. 191–206.
2

[29] H. Nagamochi and T. Ibaraki, A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph, Algorithmica, 7 (1992), pp. 583–596. 21

[30] A. Rai and M. S. Ramanujan, Strong parameterized deletion: Bipartite graphs, in 36th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2016, December 13-15, 2016, Chennai, India, 2016, pp. 21:1–21:14.
2

[31] A. Rai, M. S. Ramanujan, and S. Saurabh, A parameterized algorithm for mixed-cut,
in LATIN 2016: Theoretical Informatics - 12th Latin American Symposium, Ensenada,
Mexico, April 11-15, 2016, Proceedings, 2016, pp. 672–685. 2

[32] D. Seese, Linear time computable problems and first-order descriptions, Math. Structures
Comput. Sci., 6 (1996), pp. 505–526. 1

5 Appendix

Before presenting the proof of Lemma 2.1, we recall the notion of universal sets.

Definition 5.1. Let n, k, p ∈ N, and let F be a set of functions f : [n]→ {0, 1}. We say that F
is an (n, k, p)-universal set if for every subset I ⊆ [n] of size k and a function f ′ : I → {0, 1} that
assigns ’1’ to exactly p indices, there is a function f ∈ F such that for all i ∈ I, f(i) = f ′(i).

The next result asserts that small universal sets can be computed efficiently.

Lemma 5.1 ([20]). There exists an algorithm that, given n, k, p ∈ N, computes an (n, k, p)-
universal set F of size

(
k
p

)
2o(k) · log n in deterministic time

(
k
p

)
2o(k) · n log n.

5.1 Proof of Lemma 2.1

To design the desired algorithm, we first prove two claims.

Claim 5.1. There exists an algorithm that given s, c ∈ N and a graph G, in time 2O(c log(s+c)) ·
n3 log n either returns an (s/2, c)-witnessing separation or correctly concludes that there does
not exist such a separation, (X,Y ), where both G[X \ Y ] and G[Y \ X] contain a connected
component of size at least s/2.

20



Proof. For the sake of simplicity, let us identify each vertex in V (G) with a unique integer in
[n]. Our algorithm works as follows. By using the algorithm in Lemma 5.1, it computes (in
time 2O(c log(s+c)) · n log n) an (n, s + c, c)-universal set F of size

(
s+c
c

)
2o(s+c) · log n. Then, for

every f ∈ F , it performs the following operations. First, it computes the set C of connected
components of G[f−1(0)]. Then, for every two distinct connected components C,C ′ ∈ C, it
computes a minimum vertex-cut S that is disjoint from V (C) ∪ V (C ′) and which separates
V (C) and V (C ′) (that is, C and C ′ are subgraphs of different connected components of G \ S).
Notice that this computation can be done by contracting the edges of any spanning tree of
C and any spanning tree of C ′, and then obtaining a minimum vertex-cut between the two
resulting vertices. In case |S| ≤ c, the algorithm returns the following separation (X,Y ): the
set X contains the union of S and the set of vertices of the connected component of G \ S
that contains C as a subgraph, and Y = S ∪ (V (G) \ X). Overall, the total time to perform
the operations presented for each individual f ∈ F can be bounded by O(n3) by applying the
sparsifying technique of Nagamochi and Ibaraki [29] and the classical Ford-Fulkerson. Finally,
if no separation was returned, the algorithm concludes that there does not exist an (s/2, c)-
witnessing separation, (X,Y ), where both G[X\Y ] and G[Y \X] contain a connected component
of size at least s/2.

Clearly, the algorithm runs in time 2O(c log(s+c)) ·n3 log n, and if it returns a separation, then
it is an (s/2, c)-witnessing separation. Next, suppose that there exists an (s/2, c)-witnessing
separation (X,Y ) where both G[X \Y ] and G[Y \X] contain a connected component of size at
least s/2. Let Ĉ and Ĉ ′ denote a connected component of G[X \ Y ] of size at least s/2 and a
connected component of G[Y \X] of size at least s/2, respectively. Now, let C̃ and C̃ ′ denote
a connected subgraph of C on exactly ds/2e vertices and a connected subgraph of C on exactly
ds/2e vertices, respectively. Then, by the definition of an (n, s+ c, c)-universal set, there exists
f ∈ F such that for all v ∈ X ∩ Y , f(v) = 1 and for each v ∈ V (C) ∪ V (C ′), f(v) = 0. When
the algorithm examines such a function f , it holds that X ∩ Y is a vertex-cut of that is disjoint
from V (C) ∪ V (C ′) and which separates V (C) and V (C ′), where C and C ′ are the connected
components of G[f−1(0)] that contain C̃ and C̃ ′ as subgraphs, respectively. Then, the algorithm
returns an (s/2, c)-witnessing separation. This concludes the proof of the claim.

Claim 5.2. There exists an algorithm that given s, c ∈ N and a graph G, in time 2O(c log(s+c)) ·
n log n either returns an (s/2c, c)-witnessing separation or correctly concludes that there does
not exist an (s, c)-witnessing separation (X,Y ), where not both G[X \ Y ] and G[Y \X] contain
a connected component of size at least s/2.

Proof. For the sake of simplicity, let us identify each vertex in V (G) with a unique integer in
[n]. Our algorithm works as follows. If n < 2s, it concludes that there does not exist an (s, c)-
witnessing separation (X,Y ). Otherwise, by using the algorithm in Lemma 5.1, it computes (in
time 2O(c log(s+c)) · n log n) an (n, b3s/2c + c, c)-universal set F of size

(b3s/2c+c
c

)
2o(s+c) · log n.

Then, for every f ∈ F , it performs the following operations. First, it computes the set C of
connected components of G[f−1(0)]. For every C ∈ C, denote CC = {C ′ ∈ C : N(V (C ′)) =
N(V (C)), |V (C ′)| < s/2}. Then, if 3s/2 < |

⋃
C′∈CC V (C ′)| and as long as this condition holds,

by removing one-by-one the largest connected component in C, the algorithm ensures that
|
⋃
C′∈CC V (C ′)| ≤ 3s/2. After handling each C ∈ C individually, if there exists C ∈ C such

that s/2c ≤ |
⋃
C′∈CC V (C ′)| ≤ 3s/2 and |N(V (C))| ≤ c, it returns the following separation

(X,Y ): X = N [
⋃
C′∈CC V (C ′)], and Y = N [V (G \

⋃
C′∈CC V (C ′))]. Finally, if no separation

was returned, the algorithm concludes that there does not exist an (s, c)-witnessing separation
(X,Y ), where both G[X \ Y ] and G[Y \ X] do not contain a connected component of size at
least s/2.

Clearly, the algorithm runs in time 2O(c log(s+c)) · n log n, and if it returns a separation, then
it is an (s/2c, c)-witnessing separation. Next, suppose that there exists an (s, c)-witnessing

21



separation (X ′, Y ′) where not both G[X ′ \ Y ′] and G[Y ′ \X ′] contain a connected component
of size at least s/2. Then, n ≥ 2s and there also exists an (s, c)-witnessing separation (X,Y )
where |X \ Y | ≤ b3s/2c and G[X] does not contain a connected component of size at least s/2.
Since |X ∩ Y | ≤ c, there exists a subset S ⊆ X \ Y of size at least |X \ Y |2|X∩Y | ≥ s/2c such
that N(S) ⊆ X ∩ Y and for every two connected components C and C ′ of G[S], it holds that
N(V (C)) = N(V (C ′)). Then, by the definition of an (n, b3s/2c+ c, c)-universal set, there exists
f ∈ F such that for all v ∈ X ∩ Y , f(v) = 1 and for each v ∈ S, f(v) = 0. When the algorithm
examines such a function f , there exists C ∈ C such that s/2c ≤ |

⋃
C′∈CC V (C ′)| ≤ 3s/2 and

|N(V (C))| ≤ c. Then, the algorithm returns an (s/2c, c)-witnessing separation. This concludes
the proof of the claim.

To conclude that Lemma 2.1 is correct, note that for all x ≥ y, an (x, c)-witnessing separation
is also an (y, c)-witnessing separation, and that if a graph does not have an (s/2c, c)-witnessing
separation then it is (s, c)-unbreakable. Thus, we apply the algorithms given by Claims 5.1 and
5.1. If at least one of them returns a separation, which is an (s/2c, c)-witnessing separation, then
we return this separation, and otherwise we correctly conclude that G is (s, c)-unbreakable.

22


