
Matrix Rigidity from the Viewpoint of Parameterized Complexity∗ †

FEDOR V. FOMIN ‡ , DANIEL LOKSHTANOV‡ , S. M. MEESUM § , SAKET SAURABH ‡§ ,

AND MEIRAV ZEHAVI‡

Abstract. For a target rank r, the rigidity of a matrix A over a field F is the minimum Hamming
distance between A and a matrix of rank at most r. Rigidity is a classical concept in Computational
Complexity Theory: constructions of rigid matrices are known to imply lower bounds of significant
importance relating to arithmetic circuits. Yet, from the viewpoint of Parameterized Complexity, the
study of central properties of matrices in general, and of the rigidity of a matrix in particular, has been
neglected. In this paper, we conduct a comprehensive study of different aspects of the computation
of the rigidity of general matrices in the framework of Parameterized Complexity. Naturally, given
parameters r and k, the Matrix Rigidity problem asks whether the rigidity of A for the target rank
r is at most k. We show that in case F = R or F is any finite field, this problem is fixed-parameter
tractable with respect to k + r. To this end, we present a dimension reduction procedure, which may
be a valuable primitive in future studies of problems of this nature. We also employ central tools in
Real Algebraic Geometry, which are not well known in Parameterized Complexity, as a black box. In
particular, we view the output of our dimension reduction procedure as an algebraic variety. Our
main results are complemented by a W[1]-hardness result and a subexponential-time parameterized
algorithm for a special case of Matrix Rigidity, highlighting the different flavors of this problem.

Key words. Matrix Rigidity, Parameterized Complexity, Linear Algebra

AMS subject classifications. 15A03, 68W40, 68Q25

1. Introduction. The rigidity of a matrix is a classical concept in Computational
Complexity Theory, which was introduced by Grigoriev [7, 8] in 1976 and by Valiant [23]
in 1977. Constructions of rigid matrices are known, for instance, to imply lower bounds
of significant importance relating to arithmetic circuits. Yet, from the viewpoint of
Parameterized Complexity, the study of central properties of matrices in general, and
of the rigidity of a matrix in particular, has been neglected. The few papers that do
consider such properties are restricted to the very special case of adjacency matrices,
and therefore they are primarily studies in Graph Theory rather than Matrix Theory
[16, 17]. In this paper, we conduct a comprehensive study of different aspects of the
computation of the rigidity of general matrices in the framework of Parameterized
Complexity.

Formally, given a matrix A over a field F, the rigidity of A, denoted by RF
A(r), is

defined as the minimum Hamming distance between A and a matrix of rank at most r.
In other words, RF

A(r) is the minimum number of entries in A that need to be edited
in order to obtain a matrix of rank at most r. Naturally, given parameters r and k,
the Matrix Rigidity problem asks whether RF

A(r) ≤ k. In the case when F = Q or
the edited entries must contain integers, it is not even known whether the problem is
decidable [20]. We therefore focus on the cases where F = R or F = Fp is a finite field
for some prime p. Formally, we study the following forms of Matrix Rigidity. Here,
FF Matrix Rigidity is not restricted to a specific finite field Fp, but includes Fp as
part of the input.

∗A PRELIMINARY VERSION OF THIS ARTICLE HAS APPEARED IN THE PROCEEDINGS
OF STACS 2017.
†Submitted to the editors on 25 March 2017.
Funding: This work was funded by European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 306992.
‡ University of Bergen, Norway (fomin@ii.uib.no), (daniello@ii.uib.no), (meirav.zehavi@ii.uib.no).
§The Institute of Mathematical Sciences, HBNI (meesum@imsc.res.in), (saket@imsc.res.in).

1

mailto:fomin@ii.uib.no
mailto:daniello@ii.uib.no
mailto:meirav.zehavi@ii.uib.no
mailto:meesum@imsc.res.in
mailto:saket@imsc.res.in

2 F. V. FOMIN, D. LOKSHTANOV, S. M. MEESUM, S. SAURABH AND M. ZEHAVI

Real Matrix Rigidity parameter: r, k
input: A matrix A with each entry an integer, and two non-negative integers r, k.
question: Is RR

A(r) ≤ k?

FF Matrix Rigidity parameter: p, r, k
input: A finite field Fp of order p, a matrix A over Fp, and two non-negative
integers r, k.

question: Is RFp

A (r) ≤ k?

Valiant [23] presented the notion of the rigidity of a matrix as a means to prove lower
bounds for linear algebraic circuits. He showed that the existence of an n× n matrix
A with RF

A(εn) ≥ n1+δ would imply that the linear transformation defined by A
cannot be computed by any arithmetic circuit having size O(n) and depth O(log n)
in which each gate of the circuit computes a linear combination of its inputs. Later,
Razborov [18] (see [12]) established relations between lower bounds on rigidity of
matrices over the reals or finite fields and strong separation results in Communication
Complexity. Although many efforts have been made in this direction [6, 21, 13, 10]
(this is not an exhaustive list), proofs of separation lower bounds (quadratic) for
explicit families of matrices still remain elusive. For a recent survey on this topic we
refer the reader to [14]. The formulation of Matrix Rigidity as stated in this paper
was first considered by Mahajan and Sarma [15], and it was shown to be NP-Hard
for any field by Deshpande [4]. In this paper, we study the concept of the rigidity
of a matrix from a different perspective, given by the framework of Parameterized
Complexity (see Section 2).

We remark that Meesum et al. [16] and Meesum and Saurabh [17] studied the
following problems, which are related to Matrix Rigidity but are simpler as they
are restricted to graphs. Given a graph G = (V,E) and two non-negative integers r, k,
the problem r-Rank Vertex Deletion (r-Rank Edge Deletion) asks whether
one can delete at most k vertices (resp. edges) from G so that the rank of its adjacency
matrix would be at most r, while r-Rank Edge Editing asks whether one can edit k
edges in G so that the rank of its adjacency matrix would be at most r.1 For undirected
graphs, Meesum et al. [16] proved that these problems are NP-Hard even if r is fixed,
but can be solved in time O∗(2O(k log r)). They also showed that r-Rank Edge

Deletion and r-Rank Edge Editing can be solved in time O∗(2O(f(r)
√
k log k)).

Meesum and Saurabh [17] obtained similar results for directed graphs.
Our Contribution. In this paper, we establish that both Real Matrix Rigidity

and FF Matrix Rigidity are FPT with respect to r + k. Specifically, we obtain
the following results.

Theorem 1.1. Real Matrix Rigidity can be solved in O∗(2O(r·k·log(r·k))) time.

Theorem 1.2. FF Matrix Rigidity can be solved in O∗(f(r, k)) time for a
function f that depends only on r and k.

Observe that the dependency of the running times on the dimension of the input
matrix is polynomial, and in the case of FF Matrix Rigidity, the dependency of
the running time on p is also polynomial. In the case of Real Matrix Rigidity, the
dependency of the running time on the maximum length (in binary) of any entry in
both input and output matrices is polynomial. In this context, recall that in case F = Q

1Editing an edge {u, v} means that if {u, v} ∈ E then {u, v} is deleted, and otherwise it is added.

MATRIX RIGIDITY FROM THE VIEWPOINT OF PARAMETERIZED COMPLEXITY 3

or the edited entries must contain integers, it is not even known whether Matrix
Rigidity is decidable [20]. We also show that,

Theorem 1.3. FF Matrix Rigidity is solvable in time O∗(2O(f(r,p)
√
k log k)) for

some function f that depends only on r and p.

Here, the dependency of the running time on k is subexponential, but the dependency
of the running time on p is unsatisfactory in case p is not fixed. This algorithm adapts
ideas from the papers [16, 17].

To obtain our main results, we first present a dimension reduction procedure,
which we believe to be a valuable primitive in future studies of problems of this nature.
Our procedure is simple to describe and given an instance of Matrix Rigidity, it
outputs (in polynomial time) an equivalent instance where the matrix contains at most
O((r · k)2) entries. Furthermore, the set of entries of the output matrix is a subset
of the set of entries of the input matrix. We believe this procedure to be of interest
independent of our main results as it establishes that FF Matrix Rigidity admits
a polynomial kernel with respect to r + k + p. The simplicity of our procedure also
stems from its modularity—it handles rows and columns in separate phases. On a
high-level, this procedure is defined as follows. For k + 1 steps, it repeatedly selects a
set of maximum size consisting of rows that are linearly independent, where if the size
of this set exceeds r + 1, it is replaced by a subset of size exactly r + 1. Each such
set of rows is removed from the input matrix, and then it is inserted into the output
matrix. At the end of this greedy process, rows that remain in the input matrix are
simply discarded. The correctness of our procedure relies on two key insights: (i) if
the input instance contains more than k + 1 pairwise-disjoint sets of rows that are
linearly independent, and each of these sets is of size at least r + 1, then the input
instance is a No-instance; (ii) by the pigeonhole principle, any row discarded from
the input matrix belongs to the span of at least one set of rows that cannot be edited.
Having an intermediate matrix with a small number of rows, the procedure applies
the exact same process to the input that is the transpose of this intermediate matrix,
thus overall obtaining a matrix with a small number of entries.

Armed with our dimension reduction procedure, we tackle Real Matrix Rigidity
and FF Matrix Rigidity by employing central tools in Algebraic Geometry, which
are not well known in Parameterized Complexity, as a black box. For this purpose, we
first recall that the rank of a matrix is at most r if and only if the determinant of all of its
(r+1)×(r+1) submatrices is 0. Since at this point we can assume that we have a matrix
containing only O((r · k)2) entries at hand, we may “guess” which entries should be
edited. Yet, it is not clear how these entries should be edited. However, with the above
observation in mind, we are able to proceed by viewing our current problem in terms
of an algebraic variety (such a formulation was also used in the context of complexity
analysis in [20]). In particular, this viewpoint gives rise to the applicability of firmly
established tools [19, 9] that determine the feasibility of a system of polynomials.

Our main results are complemented by a W[1]-hardness result and a subexponential-
time parameterized algorithm for a special case of Matrix Rigidity, which overall
present the different flavors of this problem and the techniques relevant to its study.
We show that both Real Matrix Rigidity and FF Matrix Rigidity are W[1]-hard
with respect to the parameter k. (The papers [16, 17] already imply that both of these
problems are para-NP-Hard with respect to the parameter r.) Our reduction is inspired
by studies in Parameterized Complexity that involve the Odd Set problem [5], and
consists of four reductions, one of which builds upon the recent work of Bonnet et al. [1].

The complexity of our reduction stems from the fact that unlike previous studies

4 F. V. FOMIN, D. LOKSHTANOV, S. M. MEESUM, S. SAURABH AND M. ZEHAVI

of this nature, we establish the W[1]-hardness of our problem of interest over any finite
field and over the field of reals rather than only over a specific finite field. Thus, we
first need to define a special case of Odd Set, which we call Partitioned Unique
Intersection, and observe that its W[1]-hardness follows from the proof of the W[1]-
hardness of Odd Set that is given in [5]. The correctness of our reductions crucially
relies on the implications of the properties of this special case. Our first reduction
translates Partitioned Unique Intersection to a problem involving matrices
rather than sets, which we call Partitioned Unit Multiplication. Then, to be
able to discuss any finite field as well as the field of reals, we introduce new variants of
Partitioned Unit Multiplication and the Nearest Codeword problem, called
F-Unit Multiplication and F-Nearest Codeword, respectively. The application
of our second reduction results in an instance of F-Unit Multiplication. Then,
the application of our third reduction, which builds upon [1], results in an instance
of F-Nearest Codeword. Finally, we devise a reduction whose application results
in an instance of Matrix Rigidity. Here, we make explicit use of the fact that the
rank of the target matrix can be large. The overall structure of the reduction may be
relevant to studies of other problems where the field is not fixed.

2. Preliminaries. The notation [n] is used to denote the set of integers {1, . . . , n}.
The Hamming distance between two strings of equal length is the number of positions
at which they differ.

Linear Algebra. The symbols R, Q and Fp are used to denote the field of real
numbers, the field of rational numbers, and a finite field of order p, respectively. We
also use the unsubscripted symbol F to denote a field, in which case its order is denoted
by |F|. A vector v of length n is an ordered tuple of n values from a field F. A
collection of vectors {v1, v2, . . . , vk} is said to be linearly dependent if there exist values

a1, a2, . . . , ak ∈ F, not all equal 0, such that
∑k
i=1 aivi = 0; otherwise the collection is

said to be linearly independent.
A matrix A of dimension m × n is a sequence of values (aij) for i ∈ [m] and

j ∈ [n]. The i-th row of A, denoted by Ai, is defined as the vector (ai1, ai2, . . . , ain),
and the j-th column of A, denoted by Aj , is defined as the vector (a1j , a2j , . . . , amj).
Given I ⊆ [m] and J ⊆ [n], we define A[I, J] =

(
aij : i ∈ I, j ∈ J

)
, i.e., A[I, J] is

the submatrix (or minor) of A with the row set I and the column set J . The rank
of a matrix is the cardinality of a maximum-sized collection of linearly independent
columns (or rows), and is denoted by rank(A).

We use Sn to denote the collection of all permutation functions of n elements.
We call a matrix Ã a jumbled matrix of A if one can perform a series of row and
column exchanges on Ã to obtain the matrix A. Equivalently, for an m× n matrix
A and its jumbled matrix Ã, there exist two permutations σr ∈ Sm and σc ∈ Sn such

that Ãji = A
σc(j)
σr(i)

, for all i ∈ [m] and j ∈ [n]. Similarly, we call a matrix Ã a jumbled

submatrix of A if there exists a submatrix of A which is a jumbled matrix of Ã. A
mixed matrix is a matrix having either an indeterminate or a value at each entry. We
will be dealing with mixed matrices where the values belong to a finite field or Z. We
use In to denote the identity matrix of size n× n.

System of Polynomial Equations. Let x1, . . . , xn be variables. Then, a monomial
is defined as a product

∏n
i=1 x

ai
i for non-negative integers a1, . . . , an. The degree of a

variable xi in a monomial
∏n
i=1 x

ai
i is defined to be the number ai, for i ∈ [n]. The

degree of a monomial is defined as the sum of degrees of each variable occurring in it.
A polynomial over a field F consists of a sum of monomials with coefficients from the
field F. The total degree of a polynomial is the degree of a monomial having maximum

MATRIX RIGIDITY FROM THE VIEWPOINT OF PARAMETERIZED COMPLEXITY 5

degree. Given a system of polynomial equations P = {P1 = 0, P2 = 0, . . . , Pm = 0}
over a field F, we say that P is feasible over F if there exists an assignment of values from
the field F to the variables in P which satisfies every polynomial equation contained
in P.

Parameterized Complexity. Each problem instance is associated with a parameter
k, and we say that a problem is fixed parameter tractable (FPT) if any instance (I, k)
of the problem can be solved in time τ(k)|I|O(1), where τ is an arbitrary function of k.
Throughout this paper, we use the standard notation O∗ to hide factors polynomial
in |I|.2 On the one hand, to prove that a problem is FPT, it is possible to give an
explicit algorithm of the required form, called a parameterized algorithm, which solves
it. On the other hand, to show that a problem is unlikely to be FPT, it is possible to
use parameterized reductions analogous to those employed in Classical Complexity.
Here, the concept of W[1]-hardness replaces the one of NP-hardness, and we need not
only construct an equivalent instance in FPT time, but also ensure that the size of
the parameter in the new instance depends only on the size of the parameter in the
original instance. For our purposes, it is sufficient to note that if there exists such a
reduction transforming a problem known to be W[1]-hard to another problem Π, then
the problem Π is W[1]-hard as well.

A central notion in Parameterized Complexity is the one of kernelization. Formally,
a parameterized problem Π is said to admit a polynomial kernel if there is a polynomial-
time algorithm, called a kernelization algorithm, that given any instance of Π, outputs
an equivalent instance of Π whose input size as well as the parameter is bounded
by τ(k), where τ is a function polynomial in k and independent of |I|. We say
that the reduced instance is a τ(k)-kernel for Π. Roughly speaking, a kernelization
algorithm can be viewed as an efficient preprocessing procedure that satisfies a well
defined restriction with respect to the size of its output. For more information about
Parameterized Complexity in general and Kernelization in particular, we refer the
reader to monographs such as [5, 2].

Bounded Search Trees. Informally, a bounded search tree or branching is used to
represent the execution of an algorithm which solves a problem based on the solution
of sub-problems. It can be represented as a tree and the algorithm can be imagined
to solve the sub-problems one at a time by traversing this tree. The correctness of a
branching algorithm can be justified by arguing that in the case of a Yes-instance
some sequence of decisions captured by the algorithm leads to a feasible solution.
The running time of the algorithm is given by the size of the branching tree. For a
parameterized instance, if the size of the branching tree is bounded by a function
of the parameter and each step of the algorithm takes polynomial time then such a
branching algorithm leads to an FPT algorithm.

One method to bound the size of a branching tree employs the notion of branching
vectors. To each node of the tree we associate a value using a function which depends
on the instance to be solved at that node. This function, usually referred to as a
measure function, is set up in such a way that it takes a smaller value for a sub-problem.
It should also satisfy the property that it is a bounded function. Now the size of the
tree can be upper-bounded by looking at the drop in value of the measure function
at each branch of a node. This drop is represented as a tuple of numbers and is
referred to as a branching vector. Formally, suppose that the algorithm executes a
rule which has ` branches (each corresponding to a recursive call), such that in the ith

branch, the current value of the measure decreases by bi. Then, (b1, b2, . . . , b`) is the

2That is, O∗(τ(k)) = τ(k) · |I|O(1).

6 F. V. FOMIN, D. LOKSHTANOV, S. M. MEESUM, S. SAURABH AND M. ZEHAVI

branching vector of this rule. We say that α is the branching number of (b1, b2, . . . , b`)
if it is the (unique) positive real root of xb

∗
= xb

∗−b1 + xb
∗−b2 + . . .+ xb

∗−b` , where
b∗ = max{b1, b2, . . . , b`}. If r > 0 is the initial value of the measure, and the algorithm
returns a result when (or before) it becomes negative, the running time is bounded by
O∗(αr). For more details we refer the reader to [2].

3. Dimension Reduction Procedure. In this section we show how to compress
an input instance of Matrix Rigidity to an equivalent instance in which the matrix
has at most O(r2 · k2) entries. This is a crucial step in obtaining our FPT algorithms
for Real Matrix Rigidity and FF Matrix Rigidity. In particular, this step will
imply that FF Matrix Rigidity admits a polynomial kernel with respect to r+k+p.

Our algorithm is based on the following intuition. Suppose that A is a matrix of
rank `. If we could obtain a sequence B1, . . . , Bk of pairwise disjoint sets of columns
of A where each set forms a column basis of A, then the answer to the question
“can we reduce the rank of A to a number r < ` by editing at most k entries in A”
would have been completely determined by the answer to the same question where
the editing operations are restricted to the submatrix of A formed by columns in the
sets B1, . . . , Bk. The same conclusion is also true in the case where each Bi is not
necessarily a basis, but simply a set of r + 1 linearly independent columns. Keeping
this intuition in mind, we turn to examine an approach where we greedily select and
remove (one-by-one) k + 1 pairwise disjoint sets of linearly independent columns. In
each iteration, we attempt to select a set whose size is exactly r + 1, where if it is not
possible, we select a set of maximum size.

Now, let us move to the formal part of our arguments. Note that the relation “is
a jumbled matrix of” as defined in Section 2 is an equivalence relation. We need the
following simple observations which follow from the definition of the rank of a matrix.

Observation 3.1. Let A ∈ Fm×n be a matrix of rank equal to r. To make the rank
of A at most r − 1, one needs to change at least one entry in A.

Observation 3.2. For a matrix A, let Ã be a jumbled matrix of A. Then, the
instances (A, r, k), (AT , r, k), (Ã, r, k) and (ÃT , r, k) are equivalent instances of Matrix
Rigidity.

Observation 3.3. Let Ã be a jumbled submatrix of A. Then rank(Ã) ≤ rank(A). If

Ã is a jumbled matrix of A, then rank(Ã) = rank(A).

Using Observation 3.3, we have the following.

Observation 3.4. If Ã is a jumbled submatrix of A and (Ã, r, k) is a No-instance
of Matrix Rigidity, then (A, r, k) is also a No-instance of Matrix Rigidity.

A solution S to an instance (A, r, k) of Matrix Rigidity is a set of size at most k
consisting of tuples having three values. For an element (i, j, e) ∈ S the value of Aji is
set to the value e in the edited matrix. We denote the matrix edited using the solution
S by AS .

Lemma 3.5. Let Ã be a jumbled matrix of an m× n matrix A. Let σr ∈ Sm and
σc ∈ Sn be the permutations which generate the jumbled matrix Ã. If S is a solution
of the instance (A, r, k) of Matrix Rigidity then a solution of (Ã, r, k) is given by

S̃ = {(σr(i), σc(j), e) : (i, j, e) ∈ S}.

Proof. Using the definition of jumbled matrices and the set S̃, we get that ÃS̃ is

a jumbled matrix of AS . By Observation 3.3, we get that the rank(ÃS̃) ≤ r. The size

of S̃ is equal to k, this proves that S̃ is a solution of (Ã, r, k).

MATRIX RIGIDITY FROM THE VIEWPOINT OF PARAMETERIZED COMPLEXITY 7

As stated before, our procedure greedily selects a set of columns of A of appropri-
ate dimension iteratively. A detailed description of the procedure, called Column-
Reduction, can be found in Figure 1. We will now explain the ideas necessary to
understand this procedure, which is the heart of this section. The input to Column-
Reduction consists of a matrix A over any field, given along with non-negative
integers k and r. It outputs a matrix Ã whose number of columns is bounded by
a function of k and r such that the instances (A, r, k) and (Ã, r, k) are equivalent
instances of Matrix Rigidity. The computation of a column basis and linearly
independent vectors are done in the field F over which the matrix A is provided.

The procedure employs several variables. The variable i is used as an index
variable whose initial value is 0, and it is incremented by 1 at a time. The case when
the value of i exceeds k we will show that we are dealing with a No-instance, otherwise
the value depends on a particular input matrix A and is at most k. The variables
M0,M1, . . . are submatrices of the input matrix A, satisfying the property that Mi is
a submatrix of Mi−1 with M0 = A. In the first loop of Column-Reduction (line
3), if the matrix Mi has rank at least r + 1 then the variable Li stores a set of r + 1
linearly independent columns in the matrix Mi. Additionally, Mi can be obtained by
appending the columns in Li to the matrix Mi+1. The variable i≤r is set to the value
of i where the rank of Mi falls below r + 1—after its initialization the value of i≤r is
not changed. In the second half of the procedure, similar to the set of variables Li,
we define a set of variables Bi which store a column basis of the matrix Mi (line 6).
Recall that in this half of the procedure i ≥ i≤r, and therefore each matrix Mi is of
rank at most r. Additionally, Mi can be obtained by appending the columns in Bi
to the matrix Mi+1, for i ≥ i≤r. Finally, the matrix L is constructed using all the
columns in each matrix Li, and the matrix B is constructed using all the columns in
each matrix Bi for appropriate values of i. By Observation 3.1, we have to edit at
least i≤r entries of L to make its rank at most r.

In the procedure Column-Reduction, a Yes-instance of appropriate size can be
obtained by taking the matrix Z = [0] (of rank 0), which contains 0 as its only entry.
Clearly, (Z, r, k) is a Yes-instance of Matrix Rigidity irrespective of the values of
r and k. On the other hand, the instance (Ir+k+1, r, k) is a No-instance of Matrix
Rigidity. Therefore, the matrix Ir+k+1 can be used in place of a No-instance of
appropriate size. We need Z and Ir+k+1 to satisfy the constraint that a kernel is
an instance of the same problem as the input instance (even though, if the output
is given by either line 1 or 4, we have actually solved the input instance (A, r, k) of
Matrix Rigidity in polynomial time). Using the procedure Column-Reduction, it
is straightforward to reduce the number of rows as well. The details of this procedure
are given in Figure 2.

Lemma 3.6. Let A be a matrix over some field F, and let r and k be two non-
negative integers. Given an instance (A, r, k), the procedure Matrix-Reduction

runs in time polynomial in input size and returns a matrix Ã satisfying the following
properties:

1. Ã has O(r2 · k2) entries.
2. If the output is produced by lines 6c and 9 of Column-Reduction (when

called by Matrix-Reduction), then Ã is a jumbled submatrix of A.

3. (A, r, k) is a Yes-instance of Matrix Rigidity if and only if (Ã, r, k) is a
Yes-instance.

Proof. The steps of procedure Column-Reduction are all computable in poly-
nomial time, and therefore Matrix-Reduction runs in polynomial time. We now

8 F. V. FOMIN, D. LOKSHTANOV, S. M. MEESUM, S. SAURABH AND M. ZEHAVI

Algorithm: Column-Reduction
input: A matrix A over some field F, and two non-negative integers r, k.
output: A matrix having O(r · k) columns.

1. if rank(A) ≤ r then return a Yes-instance of appropriate size and exit.
2. Initialize M0 = A and i = 0.
3. while rank(Mi) ≥ r + 1:

(a) Let Li be a set of columns of Mi which is linearly independent in F
and whose size is r + 1.

(b) Let Mi+1 be the matrix obtained by deleting the columns in Li from
Mi.

(c) Increment i by 1.
4. if i > k then return a No-instance of appropriate size and exit.

// The matrix A has more than k pairwise-disjoint blocks of the form Lj for
j ≤ i, each having r+1 linearly independent columns. By Observation 3.1,
each block Li requires at least 1 edit, hence, by Observation 3.4, (A, r, k)
is a No-instance of Matrix Rigidity.

5. Let i≤r = i store the index where the rank of Mi falls below r + 1.
6. while i ≤ k:

(a) Let Bi be a column basis of Mi.
(b) Obtain Mi+1 by deleting the columns in Bi from Mi.
(c) if Mi+1 is empty (in other words, Bi = Mi) then return A.
(d) Increment i by 1.

7. Let L be a matrix formed by the columns in each Li for i ∈ {0, . . . , i≤r−1}.
8. Let B be a matrix formed by the columns in each Bi for i ∈ {i≤r, . . . , k}.
9. Return the matrix formed by the columns in L ∪ B .

//Note that Mk+1 is non-empty if output occurs here.

Fig. 1. The column reduction procedure.

Algorithm: Matrix-Reduction
input: A matrix A over some field F, and two non-negative integers r, k.
output: A matrix having O(r · k)×O(r · k) entries.

1. Let CA = Column-Reduction(A, r, k).
2. Let RA = Column-Reduction(CTA , r, k).
3. Return RTA.

Fig. 2. The dimension reduction procedure.

prove the desired properties one by one. Let the matrix Ñ denote the output of
Column-Reduction on the input instance (N, r, k).

Proof of 1: We first bound the size of the output of Column-Reduction. The output
of this procedure can occur at lines 1, 4, 6c and 9. If the output happens at line 1,
it has 1 column by construction. Similarly, if the output happens at line 4, it has
r+ k+ 1 ≤ (r+ 1) · (k+ 1) columns by construction. If the output occurs at line 6c or

line 9, then the number of columns in Ñ is at most (k+ 1) · (r+ 1) as it is constructed
using columns of at most i ≤ k matrices, L0, . . . , Li≤r−1, Bi≤r

, . . . , Bi, each having at
most r + 1 columns.

MATRIX RIGIDITY FROM THE VIEWPOINT OF PARAMETERIZED COMPLEXITY 9

The procedure Matrix-Reduction first obtains a matrix CA with the afore-
mentioned number of columns by running Column-Reduction. Then, it runs
Column-Reduction again on the transpose of CA to get its rows bounded. Thus,
the dimensions of the output matrix are as claimed.

Proof of 2: The relation “is a jumbled submatrix of” is a transitive relation, therefore it
suffices to show that the procedure Column-Reduction outputs a jumbled submatrix
of A. If the output happens at lines 6c and 9, then the columns in the output matrix
are a subset of the columns in the input matrix. Therefore, in the first line of procedure
Matrix-Reduction CA is a jumbled submatrix of A. Similarly, RA is a jumbled
submatrix of CTA . Finally note that for matrices X and Y , X is a jumbled submatrix
of Y if and only if XT is a jumbled submatrix of Y T . Hence, the output matrix RTA is
a jumbled submatrix of A.

Proof of 3: We first show that the procedure Column-Reduction produces an
equivalent instance of Matrix Rigidity. In the forward direction, suppose that
(N, r, k) is a Yes-instance of Matrix Rigidity. If the output occurs at line 1, it
is a Yes-instance by construction. The output cannot occur at line 4 as (N, r, k) is
a Yes-instance. At lines 6c and 9, by property 2, Column-Reduction outputs a
jumbled submatrix Ñ of the input matrix N . Let S denote a solution of the instance
(N, r, k) of Matrix Rigidity. By the definition of a jumbled submatrix, there exists

a jumbled matrix N ′ of N such that Ñ is a submatrix of N ′. Construct a solution
S′ of N ′ from S using Lemma 3.5. Now construct a set S̃ from S′ by discarding the
elements of S′ with indices not occurring in the submatrix Ñ . Observe that ÑS̃ is
a submatrix of N ′S′ , therefore it is a jumbled submatrix of NS . By Observation 3.3,

rank(ÑS̃) ≤ rank(NS) ≤ r, hence (Ñ , r, k) is a Yes-instance of Matrix Rigidity.

In the backward direction, suppose (Ñ , r, k) is a Yes-instance of Matrix Rigidity.

If the output of Ñ occurs at lines 1 or 4, then we actually know the solution to the
instance (N, r, k) of Matrix Rigidity as explained in the comment of the pseudocode.

If the output occurs at line 6c, then the output Ñ of Column-Reduction is a jumbled
matrix of N and the result holds by Observation 3.2. Now we are left with the case
when the output occurs at line 9. Let S̃ be any solution to the instance (Ñ , r, k) of

Matrix Rigidity. The matrix edited using a solution S̃ is denoted by ÑS̃ . Notice

that the matrix Ñ consists of two submatrices L and B. As L consists of i≤r blocks
having rank r+ 1, by Observation 3.1, we need to edit at least i≤r entries in L. So, we
can afford to make at most k− i≤r edits in the matrix B. As B consists of k+ 1− i≤r
blocks, by the pigeonhole principle there exists at least one block in B, say Bt, which is
not subject to any edit by the solution S̃. Construct the matrix N ′ by concatenating
the columns of Mk+1 (the columns discarded by the procedure) at the end of the

matrix Ñ . By construction N ′ is a jumbled matrix of N and Ñ is its submatrix.
Moreover, the matrix N ′

S̃
has rank at most r due to the presence of the unedited block

Bt in ÑS̃ which spans the matrix Mk+1. As S̃ is a solution of (N ′, r, k), use Lemma 3.5

to get a solution S of (N, r, k). Thus, rank(NS) = rank(N ′
S̃

) = rank(ÑS̃) ≤ r, proving

that the instance (N, r, k) is a Yes-instance of Matrix Rigidity.
To complete the proof, observe that in the procedure Matrix-Reduction, the

instances (A, r, k) and (CA, r, k) are equivalent by the argument above. By Observa-
tion 3.2, (CA, r, k) and (CTA , r, k) are equivalent. As RA is the output of Column-
Reduction, (RA, r, k) is equivalent to (CA, r, k). Finally, by Observation 3.2, again
(RA, r, k) and (RTA, r, k) are equivalent.

10 F. V. FOMIN, D. LOKSHTANOV, S. M. MEESUM, S. SAURABH AND M. ZEHAVI

Algorithm: MatRig-Alg
input: A matrix A over a field F, and two non-negative numbers r, k.
output: Can we edit at most k entries of A to obtain a matrix of rank at most r?

1. Let A′ =Matrix-Reduction(A, r, k).
2. for each set E of k entries in A′:

(a) Replace each entry of A′ indexed by an element in E by a distinct
indeterminate to obtain a mixed matrix A′E .

(b) Let P be the set of equations obtained by setting the determinant
of each (r + 1)× (r + 1) submatrix of A′E to 0.

(c) If P is feasible over F then return Yes and exit.
3. Return No and exit.

Fig. 3. Description of the algorithm for Matrix Rigidity.

If the matrix A is over a fixed finite field F, we obtain a kernel as well.

Theorem 3.7. Given an instance (A, r, k) of FF Matrix Rigidity over the
field Fp, the procedure Matrix-Reduction outputs an O(r2 · k2 · log p)-kernel.

Proof. The number of entries in the output matrix of Matrix-Reduction is
bounded by O(r2 · k2), and the bit length of each entry is at most dlog2 pe.
In case the field F is infinite—for example, if F is either Q or R—the procedure is
not guaranteed to produce a kernel as the bit lengths of matrix entries may not be
bounded by a function of r and k.

4. Fixed-Parameter Tractability with Respect to k + r. This section de-
scribes an algorithm for Matrix Rigidity. The formulation it presents was also used
in the context of complexity analysis in [20].

Using Lemma 3.6, we can reduce any instance (A, r, k) to an equivalent instance
(A′, r, k) such that the matrix A′ is a jumbled submatrix of A and the number of
entries in A′ is O(r2 · k2). Once we have such a matrix A′, it is useful to examine an
alternative definition of the rank of a matrix, which is given in terms of the determinant
of its square submatrices. Specifically, we will rely on the following proposition.

Proposition 4.1 (see Chapter 7 in [22]). A matrix A over R has rank at most
r if and only if all the (r + 1)× (r + 1) submatrices of A have determinant 0.

The correctness of our algorithm MatRig-Alg for Matrix Rigidity, which is
described in Figure 3, follows in a straightforward fashion using Proposition 4.1. This
algorithm for Matrix Rigidity crucially relies on a procedure which can decide the
feasibility of a system of polynomials over a given field. This procedure shall be the
object of discussion in the rest of the section.

Observe that each polynomial in P, as defined in the algorithm MatRig-Alg,
has at most k unknowns and its total degree is at most k. The size of P is of order
(r · k)O(r). The bit sizes of the coefficients of polynomials in P are bounded using the
following.

Lemma 4.2. Let A be a matrix over R. If the longest length entry in A has bit
length L then the bit lengths of the coefficients of the polynomials in P, as computed
by the algorithm MatRig-Alg, are of size O(r · L+ r · log r).

Proof. The coefficients of polynomials in P are obtained by computing the de-

MATRIX RIGIDITY FROM THE VIEWPOINT OF PARAMETERIZED COMPLEXITY 11

terminant of matrices which have size at most r × r. Moreover, the coefficient of a
monomial is given by the determinant of a single matrix (as opposed to being the
sum of many determinants) because the indeterminates occur only once in the mixed
matrix. By Hadamard’s inequality (for a proof see [11]), for a r× r matrix M , we have
det(M) ≤

∏
i∈[r] ‖Mi‖2. As the bit length of entries in A is at most L, the coefficients

of polynomials in P are at most
∏
i∈[r]
√
r · 2L+1 = (r · 2L+1)

r
2 ; taking its logarithm

gives us the bit length.

We use the following proposition to check the feasibility of the system of polynomials
P when it is defined over R.

Proposition 4.3 (see Proposition 4.2 in [19]). Given a set P of ` polynomials
of degree d in k variables with integer coefficients of bit length L, we can decide the
feasibility of P with L logL log logL(` · d)O(k) bit operations.

Applying the proposition above on the system of equations P, we get the following.

Theorem 4.4. Let A be a matrix over R such that the bit length of each of its
entries is bounded by L, and let r and k be two non-negative integers. Then, the instance
(A, r, k) of Real Matrix Rigidity can be solved in time O∗(2O(r·k·log(r·k))).

Proof. The algorithm MatRig-Alg generates O((r · k)2k) systems of equations.
Each system of equations has ` = (r · k)O(r) equations, where the degree d = k and
there are k variables. Using Proposition 4.3 along with Lemma 4.2, we get the required
running time.

Notice that a system of equations P is feasible if and only if the chosen entries of
the matrix can be edited to reduce the rank. Since we exhaustively try all possible
entries that can be edited, the correctness of MatRig-Alg follows.

In the case where the underlying field Fp is finite, the coefficients of the polynomials
are elements of Fp and hence have bounded bit lengths. The feasibility of P over a
finite field can be decided using the following known algorithm which also gives us an
algorithm for FF Matrix Rigidity.

Proposition 4.5 (Kayal [9]). There is a deterministic algorithm which, given an
input consisting of a finite field Fp and system of polynomials f1, . . . , f` ∈ Fp[x1, . . . , xk]

of total degree bounded by d, decides its feasibility in time dk
O(k) · (` · log p)O(1).

Similar to the proof of Theorem 4.4, we obtain the following.

Theorem 4.6. The problem FF Matrix Rigidity, where the input matrix A is
an m× n matrix over a field Fp, can be solved in time f(r, k)(log p+m+ n)O(1) for
some function f .

This algorithm for FF Matrix Rigidity has the advantage that it runs in time which
is polynomial in the logarithm of the order of the field, even though the dependence on
k is exponential.

5. An Algorithm for FF Matrix Rigidity with Subexponential Depen-
dency on k. In this section, we will also rely on the classic technique of bounded
search trees, which is presented in the Preliminaries. Our objective is to prove the
following theorem.

Theorem 5.1. For some function f , the FF Matrix Rigidity problem is solv-

able in O∗(2O(f(r,p)
√
k log k)) time.

Let Fp be a finite field. We will prove that Matrix Rigidity over Fp is solvable in
the desired time. Let (Am×n, r, k) be an instance of this problem. Meesum et al. [17]

12 F. V. FOMIN, D. LOKSHTANOV, S. M. MEESUM, S. SAURABH AND M. ZEHAVI

proved that any rank r skew-symmetric matrix A with entries from {−1, 0, 1} has at
most 3r distinct columns (Theorem 2 in [17]). Their proof with a straightforward
modification gives us the following corollary which we state here without proof.

Corollary 5.2. Any rank r symmetric matrix A with entries from Fp has at
most pr distinct rows and at most pr distinct columns.

Given a matrix M , let I be a maximum sized set of distinct rows of M , and let J be a
maximum sized set of distinct columns of M . Then, we define distinct(M) = M [I, J].
To be more precise, distinct(M) should be defined as an equivalence class of submatrices
up to reordering of rows and columns, but here we slightly abuse notation and consider
some specific submatrix M [I, J] as distinct(M). Now, let Dr be the set of all rank r
matrices with distinct rows and distinct columns. As each matrix in Dr has at most
pr rows as well as at most pr columns, we get the following observation.

Observation 5.3. The value of |Dr| is bounded by a function of r and p.

To solve (Am×n, r, k) in the desired time, for each D ∈ Dr, we need to check in time

O∗(2O(f(r,p)
√
k log k)), for some function f , whether it is possible to change at most k

entries of A to obtain a matrix M such that distinct(M) = D.
Next, we show how to interpret a given matrix as the adjacency matrix of a

weighted undirected graph. Given an m× n matrix M , let

sym(M) =

[
0 M
MT 0

]
,

where 0 is the matrix of appropriate dimension that contains zero at each of its entries.
Now, suppose that we are given a matrix D ∈ Dr. Observe that at most k entries in A
can be changed to obtain a matrix M such that distinct(M) = D if and only if there are
at most k pairs (i, j), 1 ≤ i ≤ m and 1 ≤ j ≤ n, such that the entries ai,j+m and ai+n,j
in sym(A) can be changed to obtain a matrix M such that distinct(M) = sym(D).
Now, we think of the matrices sym(A) and sym(D) as adjacency matrices of weighted
undirected complete graphs where the weights belong to Fp. More precisely, given
a symmetric matrix Mt×t with zeros at its diagonal, the construction of graph(M)
is performed as follows. For each index i ∈ [t] we introduce a vertex vi, and the
weight of an edge {vi, vj} is given at the entry mij . Given a weighted undirected
complete graph G = (V,E), let (V1, . . . , V`) be a partition of V minimizing ` such that
for all i ∈ [`], the weight of each edge between any two vertices in Vi is 0, and for
all distinct i, j ∈ [`], v, v′ ∈ Vi and u ∈ Vj , the weight of {v, u} equals the weight of
{v′, u}. Observe that this partition is unique up to reordering the sets Vi. Informally,
two vertices of the graph are in the same partition if they correspond to entrywise
equal columns. Now, we let distinct(G) be the weighted undirected complete graph
having one vertex representing each set Vi, and letting the edge between the vertex
representing Vi and the vertex representing Vj have the same weight as any edge
between a vertex in Vi and a vertex in Vj in G. Since changing an entry in a matrix
M is equivalent to changing the weight of an edge in graph(sym(M)), we conclude
that to prove Theorem 5.1, it is sufficient to prove the following lemma.

Lemma 5.4. Let G and H be weighted undirected complete graphs with weights
from Fp such that distinct(H) = H and |V (H)| = g(r, p) for some function g. Then,

it is possible to determine in time O∗(2O(f(r,p)
√
k log k)), for some function f , whether

the weights of at most k edges in G can be changed to obtain a graph G′ such that
distinct(G′) = H.

MATRIX RIGIDITY FROM THE VIEWPOINT OF PARAMETERIZED COMPLEXITY 13

Thus, in the rest of this section, it is sufficient to focus on the proof of Lemma 5.4,
which is based on a proof given in the paper [17] (which, in turn, is inspired by the
paper [3]). The proof idea relies on a branching algorithm in which the branching
parameter is the number of edits allowed for a particular branch. The proof transforms
a given graph G into another fixed graph H, satisfying distinct(H) = H, whose rank is
already known to be at most r, the target rank. To do so, the vertices of H are treated
like bags which need to be filled in with vertices of G. The operation of placing a
vertex inside a bag corresponds to creating a repeated row and a column, which does
not change the rank. Finally, we need to keep track of number of edits required for a
vertex to be placed in a particular bag of H. This procedure ensures that the graph G
is step by step transformed into another graph G′ such that distinct(G′) is a subgraph
of H, thus the rank of G′ is at most the rank of H. Next, we state a proposition about
the branching vectors.

Proposition 5.5 (see [3]). For t > 0, let (1, t, t, . . . , t) be the branching vector in
which t appears s times. If t is significantly larger than s (t > 2s), then its branching

number is bounded by 1 + log2 t
t .

Proof of Lemma 5.4. A vertex of H will be referred to as a bag and will be filled
in with the vertices of G. Let b = |V (H)| denote the number of bags in H and use
B = {Bi : i ∈ [b]} to denote the set of bags. Assume that the vertices in H are v1, . . . , vb
and Bi corresponds to the vertex vi, for all i ∈ [b]. The collection of vertex-sets of G
corresponding to the vertices in distinct(G) is denoted by M = {V1, . . . , Vt} (recall
that M is a partition of V (G) and each Vi denotes a set of vertices in G represented
by the same vertex in distinct(G)). Observe that each change of a weight of an edge
in G can decrease the number of vertices in distinct(G) by at most 2, and therefore if
t > 2k + |V (H)|, the answer to (G,H, r, p, k) is No. Therefore, we may next assume
that t ≤ 2k + |V (H)|. If at any point during the calculations below, the value of the
parameter k drops below 0, we return the answer No at the current node of the search
tree; if at least one leaf of the search tree returns Yes, we propagate the value Yes –
that is, if a node has several children (corresponding to different branches considered
by a branching rule) and at least one of them returns Yes, we return Yes. In the
preprocessing phase of the algorithm we add a “sufficient” number of vertices to each
bag, which will allow us later to perform branching rules associated with branching
vectors where the drop in the parameter at all but one branch is large.

Preprocessing phase: Each bag can be in one of two states: closed or open. At the start
of the algorithm all the bags are empty and open. In every bag we create s = b

√
kc

empty slots. Overall there are b ·s slots that can be filled. We say that a bag is free if it
is open and less than s slots have been filled in it. The state of a node in the bounded
search tree is denoted using (M,B). As long as there is a free bag, we perform the
following branching rule, consisting of t+ 1 branches. In its ith branch, for i ∈ [t], pick
an arbitrary vertex u from Vi, delete it from Vi and add it to the lowest number free
bag in B. In the (t+ 1)th branch we mark the lowest number free bag as closed. The
application of branching rules in the preprocessing phase is finished when no bag is
free. At each leaf node (M,B) of the search tree, we construct a graph H ′ over the
vertices in

⋃
B. For every weighted edge {vi, vj} in H we add all the edges Bi ×Bj in

the graph H ′ with the same weight as {vi, vj}. Edges between vertices of the same
bag have weight 0. Next, for every edge {v, u} in H ′, we check whether the weight of
the edge in H ′ is the same as its weight in G – if this is not the case, we decrease k by
1. This operation is equivalent to changing the weight of the edge in G to its weight
in H ′.

14 F. V. FOMIN, D. LOKSHTANOV, S. M. MEESUM, S. SAURABH AND M. ZEHAVI

At the end of the preprocessing phase the following two cases arise. For each
vertex vi of H either we know exactly which are the at most s vertices of G that
should be equivalent to it in a solution graph G′ (i.e., distinct(G′) = H), or we know
exactly s vertices of G equivalent to vi in G′. In the first case, the bag has been closed,
and in the second case, it remains open. In the preprocessing phase, each branching
rule consists of at most t+ 1 branches and the depth of the search tree is b · s. This
gives us the following.

Observation 5.6. The preprocessing phase can be performed in time O∗((t +

1)b·s) = O∗((b+ 2k + 1)b·s) = O∗(2O(f ′(r,p)
√
k log k)) for some function f ′.

Assigning bags to undecided vertices: This phase of the algorithm begins at a node
(M,B) along with the graph H ′ and the reduced parameter k as provided by a leaf of
the search tree procedure in the previous phase. The vertices in V (G) \ (

⋃
B), which

have not yet been added to any bag, are called undecided vertices. We note that so far
the weight modifications have been done only within the bag vertices added in the
preprocessing phase, and that the (possibly modified) weights of edges between these
bag vertices remain fixed for the rest of the algorithm. The branching rules stated in
the next paragraph are applied exhaustively in the given order – if at any node of the
search tree a rule is applied, then none of the previous rules is applicable. We first
consider the case when all the bags are open and handle the closed bags later.

Before an undecided vertex is placed in a bag, as a first step we need to ensure
that its edge weight with all the vertices of particular bag are the same. If there exists
an undecided vertex u and a bag Bi ∈ B such that not all of the edges between u and
the vertices in Bi have the same weight then we apply the following rule. For each
weight in Fp, we have a separate branch. In the branch corresponding to some weight
w ∈ Fp, for each edge between u and a vertex in Bi whose weight is not w, we change
the weight of the edge to w and decrease k by 1. For now, u is not yet added to any
bag, and remains an undecided vertex. Let us denote Fp = {w1, w2, . . . , wp}. Then,
for all j ∈ [p], we let sj denote the number of edges between u and Bi whose weight is
not wj ∈ Fp. Let us denote ` = |Bi|. Notice that

∑p
j=1 sj = `. As Bi is an open bag

(due to our current assumption), it has at least s slots filled, which means that ` ≥ s.
Observe that the branching vector we obtain is precisely (`− s1, `− s2, . . . , `− sp).

We now show that the branching number of (` − s1, `− s2, . . . , ` − sp) is upper

bounded by 1 + log2(s/2)
(s/2) . For this purpose, since ` ≥ s, it is sufficient to show that

the branching number of (`− s1, `− s2, . . . , `− sp) is upper bounded by 1 + log2(`/2)
(`/2) .

As
∑p
j=1 sj = `, there can be at most one j ∈ [p] such that sj > `/2. Without loss of

generality, suppose that this j equals 1. Then, (`− s1, `− s2, . . . , `− sp) is at least as
good as (1, `− s2, . . . , `− sp), where each sj is at most `/2. In turn, this means that
the latter branching vector is at least as good as (1, `/2, `/2, ..., `/2), where `/2 occurs
(p − 1) times. Then, by Proposition 5.5, we derive that the root of this branching

vector is upper bounded by 1 + log2(`/2)
(`/2) . Now, after applying this rule exhaustively,

given any undecided vertex u, for each bag in B the weights of the edges between u
and the vertices in this bag are the same.

We say that a vertex u fits a bag B(u) ∈ B, if u has edges of the same weights
as vertices in B(u) in the graph induced on the bags. That is, the weight of each edge
between u and a vertex in B(u) is 0, and the weight of an edge between u and a vertex
v ∈ (

⋃
B) \B(u) is the same as the weight of an edge between any vertex in B(u) and

v. Since distinct(H) = H, all the vertices in H have distinct weighted neighborhoods,
and therefore every vertex u fits at most one bag. If there exists an undecided vertex

MATRIX RIGIDITY FROM THE VIEWPOINT OF PARAMETERIZED COMPLEXITY 15

u that fits no bag, we branch and decide on a bag for u, put u in this bag, and perform
the necessary changes of weights of edges between u and vertices in

⋃
B, updating

k accordingly. Here, we have b branches, and at each branch the weights of all of
the edges between u and at least one bag are changed, and therefore the parameter
decreases by at least s. That is, we obtain a branching vector at least as good as
(s, . . . , s), where s appears b times. Below we will obtain a worse branching vector.

After the last step, every undecided vertex u fits exactly one bag B(u). If there
are no two undecided vertices u and v such that if we put u in B(u) and v in B(v),
no conflict is created (that is, the weight of the edge between u and v is the same
as the weight of any edge between a vertex in B(u) and a vertex in B(v)), we can
simply return the answer Yes. Indeed, in this case, since k ≥ 0 (else recall that we
would have already returned No), we have used at most k changes to modify G to
a graph G′ such that distinct(G′) = H – each undecided vertex can be put in the only
bag it fits and no changes are required. Therefore, we now suppose that there are two
undecided vertices u and v that do create a conflict. We apply a branching rule that
is an exhaustive search consisting of the following branches:

1. In the first branch, we address the conflict by changing the weight of the edge
between u and v to the weight of any edge between a vertex in B(u) and a
vertex in B(v), decrease k by 1, and then put u in B(u) and v in B(v).

2. Next, we consider b− 1 branches that find a new bag for u. More precisely, in
each of these branches, we put u in a different bag Bi in B \ {B(u)}, update
the weights of the edges between u and other vertices in

⋃
B accordingly (that

is, if the weight of an edge between u and a vertex in Bi is not 0, we update it
to 0, and if the weight of an edge between u and a vertex in a different bag Bj
is not the same as the weight of the edge {vi, vj} in H, we update it to this
weight). Moreover, in each of these branches, we decrease k by the number
of the changes that were made. Observe that since u fits only B(u), in each
of these branches k is decreased by at least s.

3. Finally, we consider b− 1 branches that find a new bag or v. These branches
are symmetric to those considered in the previous item.

The branching vector we obtain is at least as good as (1, s, . . . , s), where s appears

2(b− 1) times. By Proposition 5.5, the branching number is bounded by 1 + log2 s
s .

Thus, if there are no closed bags the branching rules mentioned above will be
sufficient to decide the fate of that branch. Next, we will show that closed bags can be
ignored safely during the branching procedure and the branching rules can be applied
on the graph induced on open bags.

Handling the closed bags: The closed bags do not guarantee branching vectors as good
as those given previously. For example, when we change all of the weights of the edges
between some undecided vertex u and the vertices of a closed bag, we are changing
less than s values, and therefore the drop in k is smaller than s. However, the closed
bags do not really pose a problem due to the following arguments, which rely on the
fact that after a bag is marked closed in the preprocessing phase, no vertex will ever
be added in it later. In what follows, we show that we can handle the closed bags by
making greedy choices after the branching choices have been made according to the
graph induced on the open bags.

Let U be the set of vertices of H ′ corresponding to the open bags. Note that
H ′[U] may not remain a graph satisfying distinct(H ′[U]) = H ′[U]. In that case we
group together bags which are equivalent in H ′[U] and call each group a superbag,
where two bags Bi an Bj are equivalent if the weight of each edge between them is

16 F. V. FOMIN, D. LOKSHTANOV, S. M. MEESUM, S. SAURABH AND M. ZEHAVI

0, and for every bag B`, the weight of an edge between a vertex in Bi and a vertex
in B` is the same as the weight any edge between a vertex in Bj and a vertex in B`.
So each bag in H ′[U] is either a “normal” bag or a superbag. Observe that each bag
in H ′[U] has at least s vertices in it as we are only merging open bags together, which
had s vertices in them to begin with. Considering the graph H[U] with the superbags,
we perform exactly the same branching rules as above, where we assume that all the
bags are open. We have fewer branches and the branching vectors do not get worse.
After branching, at the point where we have previously returned Yes, we have that
the each undecided vertex fits one of the bags in H ′[U] and the weights of the edges
between them are fixed without conflicts. Now, while actually adding a vertex u to
a bag we also decide on the bag within a superbag S that will host u. Adding u to
a bag does not change the weights of edges within the union of open bags and set of
undecided vertices. Therefore we can take these decisions independently for each u,
adding u to any bag in S that causes the minimum number of changes of weights of
edges between u and vertices in the closed bags, and updating k accordingly.

Time complexity: Recall that the preprocessing phase is performed in the desired time.
Thus, it remains to analyze the time necessary to perform the calculations following

this phase. The worst branching number we obtained was bounded by 1 + log2(s/2)
(s/2) ,

assuming that s is significantly larger than r and p. Therefore, since s = b
√
kc, we

obtain that the running time of our algorithm is bounded by

O∗
(

2f(r,p) ·
(

1 +
log2(s/2)

(s/2)

)k)
= O∗(2O(f(r,p)

√
k log k))

for some function f .

6. W[1]-Hardness with Respect to k. In this section, we first reduce (in two
steps) a special case of Odd Set to a problem that has a formulation easier to use
in our context. The latter problem is reduced to a variant of Nearest Codeword,
which, in turn, is reduced to Real Matrix Rigidity and FF Matrix Rigidity.

Odd Set parameter: k
input: A family F of sets over a universe U and a non-negative integer k.
question: Does there exist a subset S ⊆ U of size at most k such that the
intersection of S with every set in F has odd size?

Nearest Codeword parameter: k
input: An m× n matrix M and an m-dimensional vector b over F2, along with a
non-negative integer k.
question: Is there an n-dimensional vector x over F2 such that the Hamming
distance between Mx and b is at most k?

Theorem 6.1. Real Matrix Rigidity and FF Matrix Rigidity for any
choice of a finite field Fp are W[1]-hard with respect to k.

Proof. Let F denote the field, which is either R or some finite field Fp, over which we
define Matrix Rigidity. First, we observe that the reduction from Multicolored
Clique given in the book [2] (Theorem 13.31) to show that Odd Set is W[1]-hard
actually shows that the following special case of Odd Set is W[1]-hard. That is, the
constructed instances have the form specified in the special case.

MATRIX RIGIDITY FROM THE VIEWPOINT OF PARAMETERIZED COMPLEXITY 17

Partitioned Unique Intersection parameter: k
input: A family F of sets over a universe U , a non-negative integer k, a partition
(U1, . . . , Uk) of U such that for every i ∈ [k], Ui ∈ F , and for every F ∈ F , there
exist i, j ∈ [k] for which F ⊆ Ui ∪ Uj .
question: Is there a subset S ⊆ U of size at most k such that the intersection of
S with every set in F has size 1?

The arguments below will crucially rely on the fact that we restrict ourselves to this
special case. Given a vector v, we let supp(v) denote the indices of the entries of v
that do not contain 0. Now, we reformulate Partitioned Unique Intersection in
the language of matrices as follows.

Partitioned Unit Multiplication parameter: k
input: A t × r binary matrix L over R, a non-negative integer k, a partition
(U1, . . . , Uk) of [r] such that for every i ∈ [k], there exists j ∈ [t] for which Ui =
supp(Lj), and for every i ∈ [t], there exist j, ` ∈ [k] for which supp(Li) ⊆ Uj ∪U`.
question: Is there an r-dimensional binary vector x such that |supp(x)| ≤ k and
Lx = 1?

Given an instance (F , U, (U1, . . . , Uk), k) of Partitioned Unique Intersection, it
is straightforward to obtain (in polynomial time) an equivalent instance (Lt×r, (U

′
1, . . . ,

U ′k), k′) of Partitioned Unit Multiplication as follows. First, we let t = |F|
and r = |U |. We assume w.l.o.g. that U = [r]. Now, we associate a row Li with
each set F ∈ F by letting Li contain 1 at each entry whose index belongs to F
and 0 at each of the remaining entries. That is, supp(Li) = F . Finally, we let
(U ′1, . . . , U

′
k) = (U1, . . . , Uk) and k′ = k. It is easy to see that S ⊆ U is a solution to

(F , U, (U1, . . . , Uk), k) if and only if the binary vector xr×1 such that supp(x) = S is a
solution to (Lt×r, (U

′
1, . . . , U

′
k), k), and therefore the instances are equivalent.

We now incorporate the input field F.

F-Unit Multiplication parameter: k
input: A t× r binary matrix L over F and a non-negative integer k.
question: Is there an r-dimensional vector x over F such that |supp(x)| ≤ k and
Lx = 1?

We reduce Partitioned Unit Multiplication to F-Unit Multiplication as
follows. Given an instance (Lt×r, (U1, . . . , Uk), k) of Partitioned Unit Multipli-
cation, we simply output (Lt×r, k) as the equivalent instance of F-Unit Multipli-
cation. In one direction, let x be a solution to (Lt×r, (U1, . . . , Uk), k). Recall that
L is a binary matrix. Thus, since x is a binary vector satisfying Lx = 1 over R, it
must also satisfy Lx = 1 over F. Since |supp(x)| ≤ k, we get that x is a solution to
(Lt×r, k). In the second direction, let x be a solution to (Lt×r, k). Assume w.l.o.g. that
for s ∈ [k] we have supp(Ls) = Us. As the given k sets Ui form a partition and
|supp(x)| ≤ k, for every s ∈ [k] we have |supp(x) ∩ Us| = 1. Since L is a binary
matrix and for every s ∈ [k] we have Lsx = 1 over F, it implies that x is a binary
vector. It remains to show that Lx = 1 over R. For any index i ∈ [t], there exist
j, ` ∈ [k] such that supp(Li) ⊆ Uj ∪ U`. As L and x are both binary, over R we have
1 ≤ Lix ≤ Ljx + L`x ≤ 2. To complete the proof, we claim that Lix 6= 2 over R.
Assume that F = Fp i.e. the order of the field is some prime number p. On the contrary,
assume that Lix = 2 over R. For Lix to equal 1 over F, we must have (2 mod p) = 1,
which is impossible as p ≥ 2. This allows us to conclude that Lix = 1 also over R.

18 F. V. FOMIN, D. LOKSHTANOV, S. M. MEESUM, S. SAURABH AND M. ZEHAVI

In what follows, calculations are performed over F. Next, we reduce F-Unit
Multiplication to the following variant of the Nearest Codeword problem which
is inspired by a reduction from Nearest Codeword to Odd Set of Bonnet et al. [1].

F-Nearest Codeword parameter: k
input: An m×n matrix M , an m-dimensional vector b over F, and a non-negative
integer k.
question: Is there an n-dimensional vector y over F such that the Hamming
distance between My and b is at most k?

Given an instance (Lt×r, k) of F-Unit Multiplication, construct an instance
(Mm×n, b, k

′) of F-Nearest Codeword as follows. First, let k′ = k. Now, let M be
an m×n matrix, where m = r and n = r−rank(L), such that the rows of L form a basis
for the subspace orthogonal to the column space of M . Then, an r-dimensional vector
v over F satisfies Lv = 0 if and only if v belongs to the column space of M (i.e., there is
an n-dimensional vector y over F such that My = v). Finally, let b be an r-dimensional
vector such that Lb = −1. If no such vector exists, then there is no r-dimensional vector
over F such that Lv = 1, which in particular implies that (Lt×r, k) is a No-instance,
and thus we can return a trivial No-instance of F-Nearest Codeword. Therefore,
next assume that b exists. To prove that the reduction is correct, first let x be a solution
to (Lt×r, k). Then, Lx = 1, and since Lb = −1, we have that L(x+ b) = Lx+ Lb =
Lx− 1 = 0. Therefore, by the choice of M , there exists an n-dimensional vector y over
F such that My = (x+ b). Since |supp(x)| ≤ k, we have that the Hamming distance
between My and b is at most k, which implies that y is a solution to (Mm×n, b, k

′).
In the other direction, let y be a solution to (Mm×n, b, k

′). Then, since the Hamming
distance between My and b is at most k, there exists an m-dimensional vector x such
that |supp(x)| ≤ k and My = x + b. Therefore, by the choice of M , L(x + b) = 0.
Since Lb = −1, we get that Lx = 1, which implies that x is a solution to (Lt×r, k).

Finally, we reduce F-Nearest Codeword to Matrix Rigidity over F. For
this purpose, let (Mm×n, b, k) be an instance of F-Nearest Codeword. We can
assume that the columns of M are linearly independent. To see this, let n′ = rank(M)
and let M ′ be the m× n′ submatrix of M whose columns are a column basis of M .
Notice that the span of columns of M and M ′ are exactly the same. For any choice
of vector y, the vector My lies in the column space of M ′. Thus it easily follows that
the instances (M, b) and (M ′, b) are equivalent instances of F-Nearest Codeword.
Therefore, for the rest of the proof we assume w.l.o.g. that the columns of M are
linearly independent. We construct an equivalent instance (As×t, r, k) of Matrix
Rigidity over F as follows. Let s = m, r = n and t = (k + 1)n+ 1. The matrix A
consists of k + 1 repeated copies of M and b as the last column:

A = [M, . . . ,M︸ ︷︷ ︸
k+1 times

, b].

On the one hand, let y be a solution to (Mm×n, b, k). Then, there are at most k entries
that should be changed in b to obtain an m-dimensional vector b′ over F such that
My = b′. In the matrix A, replace the last column b by b′. Denote the resulting matrix
by A′. Then, the last column of A′ is a linear combination of its other columns, by
the construction of A and since My = b′. Therefore, rank(A′) = n, which implies that
(As×t, r, k) is a Yes-instance. In the other direction, suppose that (As×t, r, k) is a Yes-
instance. Then, it is possible to change at most k entries in A and obtain a matrix A′

such that rank(A′) = n. Since besides the last column of A, A consists of k+1 repeated

MATRIX RIGIDITY FROM THE VIEWPOINT OF PARAMETERIZED COMPLEXITY 19

copies ofM (i.e., more times than the number of changes), it must be that one copy ofM
remains unedited inA′. Let b′ be the last column ofA′, as the rank ofA′ is n, we get that
there exists an n-dimensional vector y over F such that My = b′. Since the Hamming
distance between b and b′ is at most k, we have that y is a solution to (Mm×n, b, k).

REFERENCES

[1] E. Bonnet, L. Egri, and D. Marx, Fixed-parameter approximability of boolean MinCSPs, in
ESA, 2016, pp. 18:1–18:18.

[2] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh, Parameterized algorithms, Springer, 2015.

[3] P. Damaschke and O. Mogren, Editing simple graphs, in WALCOM, 2014, pp. 249–260.
[4] A. J. Deshpande, Sampling-based algorithms for dimension reduction, PhD thesis, Mas-

sachusetts Institute of Technology, 2007.
[5] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts in

Computer Science, Springer, 2013.
[6] J. Friedman, A note on matrix rigidity, Combinatorica, 13 (1993), pp. 235–239.
[7] D. Grigoriev, Using the notions of separability and independence for proving the lower bounds

on the circuit complexity (in russian), Notes of the Leningrad branch of the Steklov
Mathematical Institute, Nauka, (1976).

[8] D. Grigoriev, Using the notions of separability and independence for proving the lower bounds
on the circuit complexity, Journal of Soviet Math., 14 (1980), pp. 1450–1456.

[9] N. Kayal, Solvability of a system of bivariate polynomial equations over a finite field, in ICALP,
2005, pp. 551–562.

[10] A. Kumar, S. V. Lokam, V. M. Patankar, and M. N. J. Sarma, Using elimination theory to
construct rigid matrices, Computational Complexity, 23 (2013), pp. 531–563.

[11] K. Lange, Hadamards determinant inequality, The American Mathematical Monthly, 121
(2014), pp. 258–259.

[12] S. V. Lokam, Spectral methods for matrix rigidity with applications to size-depth tradeoffs and
communication complexity, in FOCS, 1995, pp. 6–15.

[13] S. V. Lokam, On the rigidity of Vandermonde matrices, Theoretical Computer Science, 237
(2000), pp. 477 – 483.

[14] S. V. Lokam, Complexity lower bounds using linear algebra, Found. Trends Theor. Comput.
Sci., 4 (2009), pp. 1–155.

[15] M. Mahajan and J. Sarma M.N., On the complexity of matrix rank and rigidity, in CSR,
2007, pp. 269–280.

[16] S. M. Meesum, P. Misra, and S. Saurabh, Reducing rank of the adjacency matrix by graph
modification, in COCOON, 2015, pp. 361–373.

[17] S. M. Meesum and S. Saurabh, Rank reduction of oriented graphs by vertex and edge deletions,
Algorithmica, (2017), pp. 1–20.

[18] A. A. Razborov, On rigid matrices, Manuscript in russian, (1989).
[19] J. Renegar, On the computational complexity and geometry of the first-order theory of the

reals. part i: Introduction. preliminaries. the geometry of semi-algebraic sets. the decision
problem for the existential theory of the reals, Journal of symbolic computation, 13 (1992),
pp. 255–299.

[20] J. Sarma M.N., Complexity Theoretic Aspects of Rank, Rigidity and Circuit Evaluation, PhD
thesis, The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, 2009.

[21] M. A. Shokrollahi, D. Spielman, and V. Stemann, A remark on matrix rigidity, Information
Processing Letters, 64 (1997), pp. 283 – 285.

[22] L. Sigler, Algebra, Undergraduate Texts in Mathematics, Springer-Verlag, 1976.
[23] L. G. Valiant, Graph-theoretic arguments in low-level complexity, in MFCS, 1977, pp. 162–176.

	Introduction
	Preliminaries
	Dimension Reduction Procedure
	Fixed-Parameter Tractability with Respect to k+r
	An Algorithm for FF Matrix Rigidity with Subexponential Dependency on k
	W[1]-Hardness with Respect to k
	References

