
Even Faster Algorithm for Set Splitting!

Daniel Lokshtanov∗ Saket Saurabh∗

Abstract

In the p-Set Splitting problem we are given a universe U , a family F of subsets
of U and a positive integer k and the objective is to find a partition of U into W and
B such that there are at least k sets in F that have non-empty intersection with both
B and W . In this paper we study p-Set Splitting from the view point of kerneliza-
tion and parameterized algorithms. Given an instance (U,F , k) of p-Set Splitting,
our kernelization algorithm obtains an equivalent instance with at most 2k sets and k
elements in polynomial time. Finally, we give a fixed parameter tractable algorithm for
p-Set Splitting running in time O(1.9630k +N), where N is the size of the instance.
Both our kernel and our algorithm improve over the best previously known results. Our
kernelization algorithm utilizes a classical duality theorem for a connectivity notion in
hypergraphs. We believe that the duality theorem we make use of could become an
important tool in obtaining kernelization algorithms.

1 Introduction

In the Max Cut problem we are given a graph G with vertex set V (G) and edge set E(G)
and asked to find a partitioning of V (G) into W (white) and B (black) such that the number
of edges with one endpoint in W and one in B is maximized. The Max Cut problem is one
of Karp’s 21 NP-hard problems [13] and also the first problem for which an approximation
algorithm using semi-definite programming was obtained [12]. The problem has also been
studied from the viewpoint of parameterized algorithms [16, 18].

A natural generalization of Max Cut to hypergraphs is the Set Splitting problem,
also known as Max Hypergraph 2-Coloring. A hypergraph H = (V, E) consists of a
vertex set V and a set E of hyperedges. A hyperedge e ∈ E is a subset of the vertex set V. By
V (e) we denote the subset of vertices corresponding to the edge e. In the Set Splitting
problem we are given a family F of sets over a universe U . We say that a partitioning (W,B)
of U splits a set S ∈ F if S ∩ W 6= ∅ and S ∩ B 6= ∅. The objective is to partition U
into W and B such that the number of sets in F that are split is maximized. If the Set
Splitting instance (U,F) is viewed as a hypergraph H = (U,F) the objective is to color
the vertices of H black or white, maximizing the number of hyperedges containing at least
one white and at least one black vertex. It should be noted that Max Cut is the special case
of Set Splitting when all sets in F have cardinality 2. The Set Splitting and (Max)
Hypergraph 2-Coloring problems have been studied intensively from a combinatorial as
well as an algorithmic viewpoint [1, 2, 5, 6, 7, 15, 17, 21, 22].

We study Set Splitting from the parameterized algorithms perspective. In parameter-
ized algorithms every instance x comes with a parameter k and an algorithm for the problem
with running time f(k)nO(1) is said to be fixed parameter tractable. Formally a parameterized
problem Π is a subset of Γ∗ × N for some finite alphabet Γ and an instance of the problem
∗Department of Infomatics, University of Bergen, Norway. {daniello|saket.saurabh}@ii.uib.no.

1

History of p-Set Splitting

Dehne, Fellows and Rosamond WG 2003 O(72kNO(1)) Deterministic
Dehne, Fellows, Rosamond and Shaw IWPEC 2004 O(8kNO(1)) Deterministic
Lokshtanov and Sloper ACiD 2005 O(2.6499kNO(1)) Deterministic
Chen and Lu COCOON 2007 O(2k +N) Randomized
Lokshtanov and Saurabh? 2009 O(1.96k +N) Deterministic

Table 1: List of known results about p-Set Splitting in chronological order. The row
marked with ? represents result in the current article.

consists of (x, k), where k is the parameter. The problem Π is said to admit a g(k) kernel
if there is a polynomial time algorithm that transforms any instance (x, k) to an equivalent
instance (x′, k′) such that |x′| ≤ g(k) and k′ ≤ g(k). If g(k) = kO(1) or g(k) = O(k) we
say that Π admits a polynomial kernel and linear kernel respectively. We remark that for
most kernels, and in particular all kernels mentioned in this article k′ is in fact bounded by
k. In the parameterized version of Max Cut, called p-Max Cut the input is a graph G
and an integer k and the objective is to partition V (G) into W and B such that at least
k edges have one white and one black endpoint. Similarly, in p-Set Splitting an input
instance is a family F of sets over a universe U and an integer k. The objective is to find
a partitioning (W,B) of U that splits at least k sets. Throughout this paper we denote the
size of an instance (U,F , k) of p-Set Splitting by N .

Related Work. The fastest known parameterized algorithm for the p-Max Cut problem
has running time O(1.2418k + |V (G)| + |E(G)|) [18] and the smallest kernel has k vertices
and 2k edges [16, 18]. In fact, bounding the number of vertices by k is easy - any connected
graph G has a spanning tree with |V (G)|−1 edges. Since trees are bipartite we can partition
V (G) into (W,B) such that all edges in the spanning tree have one endpoint in W and one
in B. Hence, if |V (G)| − 1 ≥ k we can immediately answer yes. This immediately yields a
O(2k + |V (G)|+ |E(G)|) time algorithm for the problem.

On the other hand, until this work, no deterministic algorithm with running time O(2k +
N) was known for p-Set Splitting, even though the problem is quite well-studied in pa-
rameterized algorithms. Dehne, Fellows and Rosamond [4] initiated the study of p-Set
Splitting and gave an algorithm running in time O(72kNO(1)). They also provided kernel
for the problem with at most 2k sets in the family. Later Dehne, Fellows, Rossmand and
Shaw [5] obtained an algorithm with running time O(8kNO(1)). Continuing this chain of im-
provement Lokshtanov and Sloper [14] gave an algorithm with running time O(2.65kNO(1))
and obtained a kernel with both universe size and family size at most 2k. Finally, Chen and
Lu [2] provided a randomized algorithm with running time O(2k +N) for a weighted version
of problem. We refer to Table 1 for a quick reference on the history of the p-Set Splitting
problem.

Our Results. The first part of this article is devoted to generalizing the simple kerneliza-
tion algorithm for p-Max Cut to hypergraphs and giving a kernel with at most 2k sets and
k elements for the p-Set Splitting problem. To this end, we make a detour and introduce
notions of spanning trees and strong cut-sets in a hypergraph. The purpose of these notions
is to be able to generalize the statement “every connected graph has a spanning tree” to
“every hypergraph without a strong cut-set has a spanning tree”. Making this generalization

2

turned out to be non-trivial and required using a duality theorem for a connectivity notion
in hypergraphs. Our first result is the following.

Theorem 1. p-Set Splitting admits a kernel with 2k sets and k elements.

On the face of it Theorem 1 could like a simple improvement over the previous known
kernel with 2k sets and 2k elements but it is not. Observe that Theorem 1 yields as a corollary
the fastest known deterministic algorithm for p-Set Splitting running in time O(2k +N).
In the last section of this article we break the “2k barrier” and give a O(1.9630k +N) time
algorithm for problem using memoization and the Measure & Conquer paradigm.

Theorem 2. There is an O(1.9630k +N) time algorithm for the p-Set Splitting problem

The Measure & Conquer paradigm has been extensively applied to obtain faster exact
exponential time algorithms. We refer to [9, 10] for a reference on Measure & Conquer. Even
though Measure & Conquer has been applied to several problems to obtain exact exponential
time algorithms, its applicability in obtaining parameterized algorithm has been limited to an
algorithm for 3-Hitting Set by Wahlström [20]. Our fixed parameter algorithm for p-Set
Splitting provides another example of application of Measure & Conquer in parameterized
algorithms.

Throughout this paper for an undirected graph G by V (G) we denote its vertex set and
by E(G) we denote its edge set. For a subset V ′ ⊆ V (G), by G[V ′] we mean the subgraph
of G induced on V ′.

2 Kernelization Algorithm

In this seciton we first give an algorithmic version of a classical duality theorem for a con-
nectivity notion in hypergraphs. Next, we use this duality result to get a kernel for p-Set
Splitting with at most 2k sets and k elements.

2.1 A Duality Theorem for Hypergraph Connectivity

We begin with a few definitions related to hypergraphs. With every hypergraph H = (V, E)
we can associate the following graph: The primal graph, also called the Gaifmann graph,
P (H) has the same vertices V as H and, two vertices u, v ∈ V are connected by an edge in
P (H) if there is a hyperedge e ∈ E , such that {u, v} ⊆ V (e). We say that H is connected or
has r components if the corresponding primal graph P (H) is connected or has r components.
Now we define the notions of strong cut-sets and forests in hypergraphs.

Definition 1 (Strong Cut-Set). A subset X ⊆ E is called a strong cut-set if the hypergraph
H ′ = (V, E \X) has at least |X|+ 2 connected components.

Definition 2 (Hypergraph Forest). A forest F of a hypergraph H is a pair (F, g) where F is
a forest on the vertex set V with edge set E(F) where F is a forest in normal graph sense and
g : E(F)→ E is an injective map such that for every uv ∈ E(F) we have {u, v} ⊆ V (g(uv)).
The number of edges in F is |E(F)|.

Observe that if a forest F has |V| − 1 edges then F is a spanning tree on V. In this
case we say that F is a spanning tree of H. Frank, Király, and Kriesell proved the following
duality result relating spanning trees and strong cut-set in hypergraphs [11, Corollary 2.6].

Proposition 1 ([11]). A hypergraph H contains a hypertree if and only if H does not have
a strong cut-set.

3

We give an algorithmic version of Proposition 1 in Theorem 3 which is central to our
kernelizatio algorithm. We start with a few observations about forest in hypergraphs and a
definition useful for the proof of Theorem 3. Given a forest F = (F, g) we classify the edges
of E as follows. An edge e ∈ E is

• a forest edge if there exists an edge f in E(F) such that g(f) = e;

• a cut edge if there exist two connected components C1 and C2 of F such that V (e) ∩
V (C1) 6= ∅ and V (e) ∩ V (C2) 6= ∅.

• an unused edge if there does not exist an edge f in E(F) such that g(f) = e; that is e
is not in the image of the map g.

We remark that an edge e can be a forest edge as well as a cut edge at the same time.
Similarly an edge can be a cut edge as well as an unused edge at the same time.

Definition 3. For a hypergraph H = (V, E), a forest F = (F, g) and e1, e2 ∈ E, we say
that an edge e2 follows e1 if e1 is a forest edge of F and e2 is a cut edge with respect to
F ′ = (F ′, g′) where F ′ = (V, E(F) \ {g−1(e1)}) and g′(f) = g(f) for f ∈ E(F ′).

We are now in position to state the algorithm version of Proposition 1 which will be used
later in our kernelization algorithm.

Theorem 3. There is a polynomial time algorithm that given a connected hypergraph H =
(V, E) and a forest F = (F, g) of H such that |E(F)| < |V| − 1 finds either a forest F ′ =
(F ′, g′) of H with |E(F ′)| ≥ |E(F)|+ 1 or a strong cut-set X of H.

Proof. Given a hypergraph H = (V, E) and a forest F = (F, g) of H, a sequence of hyperedges
L(H,F) = e1e2 . . . et such that ei ∈ E is called an augmenting sequence if (a) e1 is a cut edge
(b) ei+1 follows ei for all 1 ≤ i ≤ t and (c) et is an unused edge.

We first prove that if there exists an augmenting sequence with respect to a forest F =
(F, g) of H then there exists a forest F ′ = (F ′, g′) of H with |E(F ′)| ≥ |E(F)| + 1. We
prove this by induction on the length of the shortest augmenting sequence t. If t = 1 then
L(H,F) = e1. In this case e1 is a cut edge as well as an unused edge. Since e1 is a cut
edge there exists two connected components C1 and C2 of F such that V (C1) ∩ V (e1) 6= ∅
and V (C2) ∩ V (e1) 6= ∅. Let u ∈ V (C1) ∩ V (e1) and v ∈ V (C2) ∩ V (e1). Now define
F ′ = (V, E(F) ∪ {uv}) and g′ : E(F ′) → E as g′(f) = g(f) if f ∈ E(F) and g′(uv) = e1.
Since we have added an edge between two distinct components of F , we have that the F ′ is
also a forest and has one more edge than that in F .

Assume now that t ≥ 2 and that if we are given a forest F = (F, g) of H and a shortest
augmenting sequence L(H,F) of length at most t′ < t then there exists a forest F ′ = (F ′, g′)
of H with |E(F ′)| ≥ |E(F)| + 1. Let F = (F, g) be a forest and L(H,F) = e1e2 . . . et be
a shortest augmenting sequence of F with length t. Observe that e1 is a cut edge. Hence
there exist two connected components C1 and C2 of F such that V (C1) ∩ V (e1) 6= ∅ and
V (C2) ∩ V (e1) 6= ∅. Let u ∈ V (C1) ∩ V (e1) and v ∈ V (C2) ∩ V (e1). Furthermore e1 is a
forest edge and hence we let f ∈ E(F) such that g(f) = e1. Now we construct a forest
F∗ = (F ∗, g′) as follows. We let F ∗ = (V, E(F) ∪ {uv} \ {f}) and g′ : E(F ∗) → E as
g′(f) = g(f) if f ∈ E(F) and g′(uv) = e1. Now we show that the L(H,F∗) = e2 . . . et is an
augmenting sequence of length at most t− 1 for F∗.

To show this we will use the following properties of L(H,F), which follows by the fact
that L(H,F) is of shortest length:

4

• if t > 1 then e1, e2, . . ., et−1 are forest edges;

• if t > 1 then e2, . . ., et−1 are not cut edges with respect to F .

Since e2 follows e1 and e2 is not a cut edge of F we have that e2 is a cut edge with respect
to F∗. Since g(E(F)) = g′(E(F ∗)) we have that et is an unused edge of F∗. The only
thing that remains to be proved is that ej+1 follows ej for j ∈ {2, . . . , t− 1} with respect to
F∗. Let ej be a hyperedge, j ∈ {2, . . . , t − 1}, and let u and v be two vertices in V (ej+1)
that lie in different connected components of F \ g−1(ej). We prove that u and v lie in
different connected components of F ∗ \ g′−1(ej). Suppose not, then there is a path P from
u to v in F ∗ \ g′−1(ej). If P does not contain g′−1(e1) then P is a path from u to v in
F \ g−1(ej) because g′−1(ej) = g−1(ej) and g′−1(e1) is the only edge in F ∗ that is not in F .
This contradicts that ej+1 follows ej with respect to F . If P contains g′−1(e1) then u and v
must lie in different connected components of F ∗ \ g′−1(e1) = F \ g−1(e1). But ej+1 does not
follow e1 with respect to F , and hence u and v must lie in the same connected component
F \ g−1(e1), a contradiction. Thus, we conclude that ej+1 follows ej with respect to F∗.

Hence we have shown that L(H,F∗) = e2 . . . et is an augmenting sequence of length at
most t − 1 for F∗. This implies that the F∗ has a shortest augmenting sequence of length
at most t − 1 and hence by the induction hypothesis this implies that there exists a forest
F ′ = (F ′, g′) of H with |E(F ′)| ≥ |E(F ∗)|+ 1 = |E(F)|+ 1.

For the other direction of the proof we show that if we do not have an augmenting
sequence then we have a strong cut-set. We say that a hyperedge e is reachable from a
hyperedge e∗ ∈ Y if there exists a sequence of hyperedges e∗e1 . . . ele and e1 follows e∗,
ei+1 follows ei for i ∈ {1, . . . , l − 1} and e follows el. Let Y be the set of cut edges with
respect to F and X be the set of all hyperedges containing Y and all those hyperedges
which are reachable from a hyperedge in X. We claim that X is the desired strong cut-
set. Let H ′ = (V, E \ X) be the hypergraph obtained from H by removing the hyperedges
from X. Now we show P (H ′) has at least |X| + 2 connected components. Observe that all
the edges in X are forest edges, otherwise there would exist an augmenting sequence. Let
X−1 = {g−1(x) | x ∈ X}. The forest F which we started with has at least two components
and hence when we remove the edges from X−1 it has at least |X|+2 connected components.
We show that for every connected component C, of F ′ = (V, E(F) \ X−1) , P (H ′)[V (C)]
is a connected component. Suppose not, then there exist two connected components C1

and C2 of F ′ such that there exists a hyperedge e /∈ X such that V (e) ∩ V (C1) 6= ∅ and
V (e) ∩ V (C2) 6= ∅. Let u ∈ V (e) ∩ V (C1) and v ∈ V (e) ∩ V (C2). Since e is not a cut edge,
u and v are in the same component of F . Since u and v are not in the same component of
F ′ there is a hyperedge e′ ∈ X such that u and v are in different components of F \ g−1(e′).
Hence e follows e′, a contradiction.

We have proved that for a connected hypergraph H = (V, E) and a forest F = (F, g) of
H such that |E(F)| < |V| − 1, either there exists a forest F ′ = (F ′, g′) of H with |E(F ′)| ≥
|E(F)| + 1 or there exists a strong cut-set X of H. We can make our proof constructive if
we have a way to find a shortest augmenting path with respect to F . In what follows we
show how to find a shortest augmenting path corresponding to F by reducing this to finding
a shortest path in an auxiliary directed graph. We make a graph G′ with vertex set V (G′)
having a vertex ve for every hyperedge e ∈ E . We make an edge from ve to vf if f follows
e with respect to F . Hence to find a shortest augmenting sequence it is sufficient to do a
breadth first search in G′ starting from {ve ∈ V (G′) : e is a cut edge} and checking whether
a vertex vf corresponding to an unused hyperedge is reached. It is clear that this procedure
takes polynomial time. If we find an augmenting sequence then we can find the desired forest

5

F ′ in polynomial time and if we do not find an augmenting sequence then we can find the
desired cut-set X as described in the proof in polynomial time.

2.2 Kernel for Set Splitting

In this section we show how to utilize Theorem 3 to give a kernel with 2k sets and k elements
for the p-Set Splitting problem. Since Theorem 3 is phrased in terms of hypergraphs, it
is useful to view the p-Set Splitting instance (U,F , k) as a hypergraph H = (U,F) and
integer k. We start by showing that if H contains a strong cut-set, then the instance (U,F , k)
can be reduced.

Definition 4. Let f : V → {0, 1} be a function from set of vertices of the hypergraph
H to the set {0, 1}. Then Split(f) is the set of hyperedges such that for every hyperedge
e ∈ Split(f) there exist vertices u, v ∈ V (e) such that f(u) = 0 and f(v) = 1.

Lemma 1. There is a polynomial time algorithm that given a strong cut-set X of a connected
hypergraph H = (V, E) finds a cut-set X ′ ⊆ X such that X ′ 6= ∅ and (H = (V, E), k) is a yes
instance of p-Set Splitting if and only if (H ′ = (V, E \X ′), k − |X ′|) is a yes instance of
p-Set Splitting.

Proof. Let H∗ = (V, E \ X) and let |X| = t. By assumption, X is a strong cut-set and
hence the primal graph P (H∗) has at least t+ 2 connected components. Let the connected
components of P (H∗) be C = {C1, . . . , Cq} where q ≥ t + 2 and X = {e1, . . . , et}. We
construct an auxiliary bipartite graph B with vertex set A∪B with a vertex ai ∈ A for every
edge ei ∈ X and a vertex bi ∈ B for every connected component Ci ∈ C. There is an edge
aibj if V (ei) ∩ V (Cj) 6= ∅.

We prove the statement of the lemma by induction on |X|. For the base case we assume
that |X| = 1 and X = {e1}. In particular, we show that given any f : V → {0, 1} there
exists a function g : V → {0, 1} such that Split(g) = Split(f) ∪ {e1} which will prove the
desired assertion. If e1 ∈ Split(f) the statement follows, so assume that e1 /∈ Split(f). Since
P (H) is connected we have that a1bj , j ∈ {1, . . . , q} are edges in B. Let g : V → {0, 1}
be such that g(v) = f(v) if and only if v /∈ C1. That is, for all vertices in C1, g flips the
assignment given by f . Observe that e1 ∈ Split(g) since V (e1) contains a vertex u ∈ C1 and
a vertex v ∈ C2. Since f(u) = f(v), g(u) 6= g(v) and hence e1 ∈ Split(g). For every edge
in Split(f) we have that V (e) is completely contained in one of the components and hence,
e ∈ Split(f) implies e ∈ Split(g). This completes the proof for the base case. So we assume
that |X| ≥ 2 and that the statement of the lemma holds for all X ′ satisfying the conditions
of the lemma and |X ′| < |X|. In inductive step we consider two cases:

(a) there does not exist a matching in B which saturates A; or

(b) there is a matching saturating A in B.

In Case (a) by Hall’s theorem we know that there exists a subset A′ ⊆ A , A′ 6= ∅ such
that |A′| > |N(A′)| and such a set can be found in polynomial time. We claim that X ′ =
X \{ej | aj ∈ A′} is a strong cut-set and is of smaller size than X. It is clear that |X ′| < |X|
as A′ 6= ∅. We now show that X ′ is indeed a strong cut-set. Let C′ = C \ {Cj | bj ∈ N(A′)}.
Observe that in H ′ = (V, E \X ′), every Ci ∈ C′ is a connected component. The size of C′ is
bounded as follows

|C′| = |C| − |N(A′)| ≥ (t+ 2)− |N(A′)| > (t+ 2)− |A′| = t− |A′|+ 2 = |X ′|+ 2,

6

and hence X ′ is indeed a strong cut-set. In this case the statement of the lemma follows
from the induction hypothesis as |X ′| < |X|.

For Case (b) we assume that we have a matching M saturating A. Without loss of
generality let M be a1b1, . . . , atbt. Let U = {bt+1, . . . , bq} be the set of vertices in B that are
unsaturated by M . Iteratively we construct a set U ′ containing U as follows. Initially we set
U ′ := U and Ã = A.

• Check whether there exists a neighbor of a vertex in U ′ in Ã; if yes go to the next step.
Otherwise, output U ′.

• Let aj be a vertex in Ã having a neighbor in U ′. Set U ′ := U ′∪{bj} (bj is the matching
end point of aj in B), Ã := Ã \ {aj} and go to the first step.

Let U ′ be the set returned by the iterative process above. Observe that U (U ′ and Ã (A
as P (H) is connected and hence there exists at least one vertex aj having a neighbor in
U and hence the above iteration does not stop in the first round. Let A′ = A \ Ã and let
X ′ = {ej | aj ∈ A′}. In what follows we prove that X ′ is the desired subset of X ′ mentioned
in the statement of the lemma.

We first show that X ′ is a strong cut-set. Let C′ = {Cj | bj ∈ U ′}. From the construction
it follows that every Ci ∈ C′ is a connected component of H ′ = (V, E \X ′). The size of C ′ is
bounded as follows

|C′| = |U ′| = |U |+ |A′| ≥ |A′|+ 2 = |X ′|+ 2,

and hence X ′ is a strong cut set.
We show that given any f : V → {0, 1} there exists a function g : V → {0, 1} such

that Split(g) = Split(f) ∪ X ′. This will complete the proof of the lemma. Let U ′ \ U =
{b1′ , b2′ , . . . , br′} and without loss of generality assume that b1′ , b2′ , . . ., br′ is the order in
which these elements are included in the set U ′. Let Bi = B[U ∪{b1′ , . . . , bi′}∪{a1′ , . . . , ai′}].
Iteratively we construct the function g : V → {0, 1} as follows. Initially we set g := f and
i := 1 and repeat the following until i = r:

Check whether ei′ ∈ Split(g). If yes i := i + 1 and repeat. Otherwise let Ci′ be
the connected component corresponding to bi′ having vertex set V (Ci′). Now for
every vertex u ∈ V (Ci′) change g(u) to 1−f(u). Basically, we flip the assignment
of 0 and 1 in the vertex set V (Ci′). Set i := i+ 1 and repeat the procedure.

Now we show that Split(g) = Split(f) ∪ X ′. Observe that when we flip the assignment
of the vertex set V (Ci′) the only hyperedges which could go out of the set Split(g) are
{ei′ , e(i+1)′ , . . . , er′}. The reason we flip the assignment is because ei′ /∈ Split(g) at that
point. Also notice that by construction there exists a bj′ ∈ {b1′ , b2′ . . . , b(i−1)′} such that
V (e)∩ V (Cj′) 6= ∅. Hence after we flip the assignment of the vertex set V (Ci′) we have that
ei′ ∈ Split(g). Hence after the rth step of the procedure we have that Split(g) = Split(f)∪X ′.
This concludes the proof.

Lemma 1 naturally gives rise to a reduction rule for the p-Set Splitting problem. Given
a strong cut set X, a strong cut set X ′ obtained by the Lemma 1 is called reducible strong
cut-set. This brings us to the following reduction rule.

Reduction Rule 1. : Let (H = (V, E), k) be an instance of p-Set Splitting and X ′ be a
reducible strong cut-set of H. Remove X ′ from the set of hyperedges and reduce k to k−|X ′|,
that is, obtain an instance (H ′ = (V, E \X), k − |X|).

7

When the hypergraph H is disconnected we can give a simple reduction rule.

Reduction Rule 2. : Let (H = (V, E), k) be an instance of p-Set Splitting such that
P (H) has connected components P (H)[C1], . . . , P (H)[Ct]. Let v1, . . . , vt be vertices such that
vi ∈ Ci. Construct a hypergraph H ′ = (V ′, E ′) from H by unifying the vertices v1, . . . , vt. In
particular V ′ = V \ {v2, . . . , vt} and for every hyperedge e ∈ E make the edge e′ ∈ E ′ where
e′ = e if vi /∈ e for every i and e′ = (V (e) \ {v2, . . . , vt}) ∪ {v1} otherwise. We obtain the
instance (H ′, k).

The correctness proof for this reduction rule is simple, and given for example in [19] for
the case of p-Max Cut.

Proof of Theorem 1. Given an instance (H, k) of p-Set Splitting we first obtain an
equivalent instance with at most 2k sets and at most 2k2 elements by applying the kernel-
ization algorithm of Chen and Lu [2], given in Theorem 1 of their paper. We then apply
Reduction Rules 1 and 2 extensively. Let (H ′ = (V ′, E ′), k′) be the reduced instance. Since
both our rules and the rules of Chen and Lu [2] only reduce k we have that k′ ≤ k. Let H ′

have n elements and m ≤ 2k sets. We show that if n > k′ then (H ′, k′) is a yes-instance. In
particular, since Reduction Rule 2 does not apply, H ′ is connected. Since Reduction Rule 1
does not apply, H ′ does not have a strong cut-set. By Theorem 3 we can find in polynomial
time a forest F = (F, g) of H ′ with n − 1 edges. Since F is a forest, F is bipartite. Let
W] B be bipartitions of V ′. By the definition of a forest in a hypergraph, the bipartitions
(W,B) splits all sets corresponding to hyperedges in F . Since F has n − 1 edges, at least
n − 1 ≥ k hyperedges are split and hence (H ′, k′) is a yes-instance. Thus if n > k for a
reduced instance, the kernelization algorithm outputs that (H ′, k′) is a yes-instance. Hence
any unresolved reduced instance has at most k′ ≤ k elements. This concludes the proof.

3 Faster Parameterized Algorithm for p-Set Splitting

Theorem 1 yields a simple O(2kk2 + N) time algorithm for the p-Set Splitting problem
by looping over all possible bipartitions of set of elements into (W,B) and for each checking
whether they split at least k edges. Previously, only a randomized O(2kk2 + N) time algo-
rithm [2] and a deterministic O(2.65k + N) time algorithm [14] was known. In this section
we give an algorithm for for the p-Set Splitting problem running in O(1.9630k +N) time.
Our algorithm first obtains a kernel with 2k sets and at most k elements using Theorem 1.
Then the algorithm proceeds to solve the small instance recursively.

The subcases generated by the algorithm are naturally phrased as a colored version of the
p-Set Splitting. In this version of the problem the sets in F are either uncolored or colored
white or black. A black set S is split by a partitioning of U into W and B if S ∩W 6= ∅.
Similarly a white set S is split if S ∩ B 6= ∅. Hence, an instance to the Colored p-Set
Splitting (p-CSS) problem is a universe U , a family F = Fu] Fw] Fb over U and an
integer k. The families Fu, Fw, and Fb denote the families of uncolored, white and black
sets respectively.

Our algorithm is based on a single branching step. For a particular element v of U we
try putting v in W or in B. If v is inserted into W , all sets in Fb containing v are split
and all sets in Fu containing v are put into Fw instead. The sets that are split are removed
from Fb and k is decreased by the number of newly split sets. Finally v is removed from
the universe U and from all sets containing v. Similarly, if v is inserted into B then all sets
in Fw containing v are split and all sets in Fu containing v are put into Fb instead. For a
vertex v let Nu(v), Nb(v) and Nw(v) be the set of uncolored, black and white sets containing

8

v respectively. We call du(v) = |Nu(v)|, db(v) = |Nb(v)| and dw(v) = |Nw(v)| the uncolored,
black and white degree of v. The degree of v is d(v) = du(v) + dw(v) + db(v). Formalizing
the discussion above we obtain the following recurrence.

(U,Fu,Fw,Fb, k) ∈ p-CSS
⇐⇒

(U \ {v},Fu \ Nu(v),Fw ∪Nu(v),Fb \ Nb(v), k − db(v)) ∈ p-CSS (1)∨
(U \ {v},Fu \ Nu(v),Fw \ Nw(v),Fb ∪Nu(v), k − dw(v)) ∈ p-CSS

We now describe the algorithm for p-Set Splitting using Recurrence 1. We first formu-
late the p-Set Splitting instance (UF , k) as a p-CSS instance (U,Fu, ∅, ∅, k) where Fu = F .
We fix K = k, and fix α = 0.027, β = 0.31, and γ = 0.13.

Preprocessing. The algorithm computes a table for all subproblems (U ′,F ′u,F ′w,F ′b, k′)
where

• U ′ ⊆ U and |U ′| ≤ αk;

• F ′u] F ′w] F ′b ⊆ Fu and |F ′u] F ′w] F ′b| ≤ 4αk;

• k′ ≤ k.

An entry of the table contains true if the corresponding instance (U ′,F ′u,F ′w,F ′b, k′) is in
p-CSS. The table can be filled using Recurrence 1 and bottom up dynamic programming
in time linear in the number of table entries. Thus the total time required to perform the
preprocessing step is

O

((
k

αk

)
·
(

2k
4αk

)
· 34αk · k

)
.

Rewriting
(
a
b

)
as a!

b!(a−b)! , using Stirling’s approximation for n! and plugging in the value of
α = 0.027 yields that the preprocessing step is done in O(1.9630k) time.

Branching. The algorithm selects an element v ∈ U of highest degree and branches on
this vertex using Recurrence 1. If the algorithm generates a subcase for which the answer is
already stored in the preprocessing table, the algorithm returns this answer. If k reaches 0 or
a negative number the algorithm returns “yes” and if k is positive and U = ∅ the algorithm
returns “no”. While k might not be the same in different recursive calls, the value of K fixed
initially remains the same throughout the algorithm. Correctness of the algorithm follows
directly from Recurrence 1. We now proceed to analyze the running time of the algorithm.

Running Time Analysis. We use the Measure & Conquer paradigm to analyze the run-
ning time of the algorithm. For two constants β and γ we define

µ = µ(U,Fu,Fw,Fb, k) = |U |+ βk + γ|Fu|.

The running time of the algorithm is bounded from above by the number of leaves in the
search tree, modulo a polynomial in k. Let T (µ, |U |) be an upper bound on the number of
leaves in the search tree of the algorithm on an instance with measure µ and universe size
|U |. We first need an auxiliary claim about the size of the search tree when the degree of
any element is at most 4.

9

Claim 1. Let K and α be fixed as in the discussion above and (U,Fu,Fw,Fb, k) be an
instance of p-CSS such that |U | ≥ αK generated during a recursive call such that the degree
of any element is at most 4. Then T (µ, |U |) ≤ 2|U |−αK .

Proof. We prove the claim by induction on |U |. If |U | = αK then the algorithm solves the
instance by looking up in the preprocessing table as |F| ≤ 4αK and hence T (µ, |U |) = 1.
Assume now that the statement holds whenever |U | = t for some fixed t ≥ αK and consider
an instance with |U | = t+1. The algorithm makes two recursive calls applying Recurrence 1.
In each recursive call all elements have degree at most 4 and the size of |U | is exactly t. By
the induction hypothesis the number of leaves in the search tree of the two subinstances is
at most 2t−αK . Hence the total number of leaves in the search tree is bounded from above
by 2 · 2t−αK = 2|U |−αK .

We now extend the analysis in Claim 1 to instances with no constraints on element degree.

Claim 2. Let K and α be fixed as in the discussion above and (U,Fu,Fw,Fb, k) be an
instance of p-CSS generated during a recursive call. Then T (µ, |U |) ≤ 2|U |−αK + 1.5222µ.

Proof. We prove the claim by induction on |U |. If there are no elements of degree at least 5
and |U | ≥ 4αK then the statement of the claim holds by Claim 1. If there are no elements of
degree at least 5 and |U | < 4αK then T (µ, |U |) = 1 ≤ 1.5222µ. Assume now that there are
elements of degree at least 5 and let v be the element on which the algorithm branches. Since
the algorithm picks an element of largest degree, v has degree at least 5. If the uncolored,
white and black degrees of v are du(v), dw(v), db(v) we let d′u, d′w and d′b be non-negative
integers such that d′u + d′w + d′b = 5 and d′u ≤ du(v), d′w ≤ dw(v) and d′b ≤ db(v). When we
apply Recurrence 1 to branch on an element v we get the following recurrence for T

T (µ, |U |) ≤ T (µ− 1− βd′b − γd′u, |U | − 1) + T (µ− 1− βd′w − γd′u, |U | − 1).

One can verify that if we pick c = 1.5222 then for any choice of (d′u, d
′
w, d

′
b) such that

d′u + d′w + d′b = 5 we have

T (µ, |U |) ≤ T (µ− 1− βd′b − γd′u, |U | − 1) + T (µ− 1− βd′w − γd′u, |U | − 1)
≤ cµ−1−βd′b−γd

′
u + 2|U |−1−αK + cµ−1−βd′w−γd′u + 2|U |−1−αK

= cµ · (c−1−βd′b−γd
′
u + c−1−βd′w−γd′u) + 2 · 2|U |−1−αK

≤ cµ + 2|U |−αK .

Hence T (µ, |U |) ≤ 2|U |−αK + 1.5222µ, concluding the proof.

Summing up the above analysis, noticing that µ ≤ K+βK+γ2K in a reduced instance,
and inserting this into the bound for T (µ, |U |) from Claim 2 yields an upper bound of
O(1.9630k) for the running time of the branching part of the algorithm. Since both parts of
the algorithm take O(1.9630k) time, this completes the proof of Theorem 2.

4 Conclusion and Discussions

In this paper we gave a smaller kernel and a faster algorithm for the p-Set Splitting
problem improving over the previosuly known results. The number of elements and sets in
our kernel matches the number of vertices and edges in the best known kernel for p-Max
Cut. It should be noted that both the kernel and the algorithm for p-Set Splitting
presented here also work for the p-Not All Equal SAT problem. The reduction rule we

10

use to handle instances with strong cut-sets has similarities with reduction rules based on
crown decompositions [3, 8, 19], and it seems that crown decompositions and strong cut-sets
are closely related. This similarity also makes us believe that the duality theorem we made
us of in our kenrelization algorithm will be a useful tool in the filed of kernelization.

Acknowledgments.

We would like to thank Stéphan Thomassé and Fedor V. Fomin for valuable suggestions
and insightful discussions. We especially thank Stéphan Thomassé for pointing us to the
Proposition 1 and the reference [11].

References

[1] G. Andersson and L. Engebretsen. Better approximation algorithms for SET SPLITTING and NOT-
ALL-EQUAL SAT. Inf. Process. Lett., 65(6):305–311, 1998.

[2] J. Chen and S. Lu. Improved algorithms for weighted and unweighted set splitting problems. In CO-
COON, volume 4598 of Lecture Notes in Computer Science, pages 537–547, 2007.

[3] M. Chleb́ık and J. Chleb́ıková. Crown reductions for the minimum weighted vertex cover problem.
Discrete Applied Mathematics, 156(3):292–312, 2008.

[4] F. K. H. A. Dehne, M. R. Fellows, and F. A. Rosamond. An FPT algorithm for set splitting. In WG,
volume 2880 of Lecture Notes in Computer Science, pages 180–191, 2003.

[5] F. K. H. A. Dehne, M. R. Fellows, F. A. Rosamond, and P. Shaw. Greedy localization, iterative com-
pression, modeled crown reductions: New fpt techniques, an improved algorithm for set splitting, and a
novel 2k kernelization for vertex cover. In IWPEC, volume 3162 of Lecture Notes in Computer Science,
pages 271–280, 2004.

[6] P. Erdős. On a combinatorial problem, I. Nordisk Mat. Tidskrift, 11:5–10, 1963.

[7] P. Erdős. On a combinatorial problem, II. Acta Math, Hungary, 15:445–447, 1964.

[8] M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in FPT. In WG, volume
2880 of Lecture Notes in Computer Science, pages 1–12, 2003.

[9] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: Domination - a case study. In ICALP,
volume 3580 of Lecture Notes in Computer Science, pages 191–203, 2005.

[10] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: a simple o(20.288) independent set
algorithm. In SODA, pages 18–25, 2006.

[11] A. Frank, T. Király, and M. Kriesell. On decomposing a hypergraph into k connected sub-hypergraphs.
Discrete Applied Mathematics, 131(2):373–383, 2003.

[12] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, 1995.

[13] R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer Computations, pages
85–103, 1972.

[14] D. Lokshtanov and C. Sloper. Fixed parameter set splitting, linear kernel and improved running time.
In ACiD, volume 4 of Texts in Algorithmics, pages 105–113, 2005.

[15] L. Lovász. Covering and coloring of hypergraphs. In Proceedings of the 4th Southeastern Conference on
Combinatorics, Graph Theory and Computing, Utilitas Mathematica Publishing, pages 3–12, 1973.

[16] E. Prieto. The method of extremal structure on the k-maximum cut problem. In CATS, pages 119–126,
2005.

[17] J. Radhakrishnan and A. Srinivasan. Improved bounds and algorithms for hypergraph 2-coloring. Ran-
dom Struct. Algorithms, 16(1):4–32, 2000.

[18] V. Raman and S. Saurabh. Improved fixed parameter tractable algorithms for two “edge” problems:
MAXCUT and MAXDAG. Inf. Process. Lett., 104(2):65–72, 2007.

[19] C. Sloper. Techniques in parameterized algorithm design. PhD thesis, University of Bergen, 2005.

[20] M. Wahlström. Algorithms, measures, and upper bounds for satisfiability and related problems. PhD
thesis, Linkp̈ing University, 2007.

11

[21] J. Zhang, Y. Ye, and Q. Han. Improved approximations for max set splitting and max NAE SAT.
Discrete Applied Mathematics, 142(1-3):133–149, 2004.

[22] U. Zwick. Outward rotations: A tool for rounding solutions of semidefinite programming relaxations,
with applications to max cut and other problems. In STOC, pages 679–687, 1999.

12

