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Abstract
For a family of graphs F , an n-vertex graph G, and a positive integer k, the F-Deletion problem
asks whether we can delete at most k vertices from G to obtain a graph in F . F-Deletion
generalizes many classical graph problems such as Vertex Cover, Feedback Vertex Set,
and Odd Cycle Transversal. A (multi) graph G = (V,∪αi=1Ei), where the edge set of G
is partitioned into α color classes, is called an α-edge-colored graph. A natural extension of
the F-Deletion problem to edge-colored graphs is the Simultaneous (F1, . . . ,Fα)-Deletion
problem. In the latter problem, we are given an α-edge-colored graph G and the goal is to find a
set S of at most k vertices such that each graph Gi − S, where Gi = (V,Ei) and 1 ≤ i ≤ α, is in
Fi. Recently, a subset of the authors considered the aforementioned problem with F1 = . . . = Fα
being the family of all forests. They showed that the problem is fixed-parameter tractable when
parameterized by k and α and can be solved in O?(2O(αk)) time1. In this work, we initiate the
investigation of the complexity of Simultaneous (F1, . . . ,Fα)-Deletion with different families
of graphs. In the process, we obtain a complete characterization of the parameterized complexity
of this problem when one or more of the F ′is is the class of bipartite graphs and the rest (if any) are
forests. We show that if F1 is the family of all bipartite graphs and each of F2 = F3 = . . . = Fα
is the family of all forests then the problem is fixed-parameter tractable parameterized by k

and α. However, even when F1 and F2 are both the family of all bipartite graphs, then the
Simultaneous (F1,F2)-Deletion problem itself is already W[1]-hard.
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1 Introduction

Given their tremendous modelling power, graphs have become an integral part of theoretical
computer science in general, and of algorithm design in particular. One graph problem which
encapsulates many problems of both practical and theoretical interest is F-Deletion. For
a family of graphs F , an n-vertex graph G, and a positive integer k, the F-Deletion
problem asks whether we can delete at most k vertices from G to obtain a graph in F .

1 We use the O? notation which hides factors that are polynomial in the input size.
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To state a few, F-Deletion generalizes problems such as Vertex Cover [6], Feedback
Vertex Set (FVS) [5, 8, 17], Vertex Planarization [15], Odd Cycle Transversal
(OCT) [22, 14, 18], Interval Vertex Deletion [3], Chordal Vertex Deletion [4],
and Planar F-Deletion [11, 16].

A graph G = (V,∪αi=1Ei), where the edge set of G is partitioned into α color classes, is
called an α-edge-colored graph. Edge-colored graphs are fundamental in graph theory and
have been extensively studied in the literature, especially for alternating cycles and mono-
chromatic subgraphs [2]. A natural extension of the F-Deletion problem to edge-colored
graphs is the Simultaneous (F1, . . . ,Fα)-Deletion problem. In the latter problem, we
are given an α-edge-colored graph G and the goal is to find a set S of at most k vertices
such that each graph Gi − S is in Fi, where Gi = (V,Ei) and 1 ≤ i ≤ α. Recently, Cai
and Ye [2] studied several problems restricted to 2-edge-colored graphs, where edges are
colored either red or blue. They asked, as an open question, whether the Simultaneous
(F1, . . . ,Fα)-Deletion problem parameterized by k, with α = 2 and F1 = F2 being the
family of all forests, is fixed-parameter tractable (FPT), i.e. whether the problem can be
solved in O?(f(k)) time [10] (for some computable function f). Agrawal et al. [1] and Ye [24]
answered this question in the affirmative. In particular, it was shown in [1] that the prob-
lem can be solved by an algorithm running in O?(2O(αk)) time. This work pointed to a
few natural further directions for research. For instance, does Simultaneous (F1, . . . ,Fα)-
Deletion remain fixed-parameter tractable when the family of all forests is replaced by the
family of all bipartite graphs? What is the complexity of the problem when not all families
are equal?

The results in this work allow us to take a significant step towards a better understanding
of simultaneous deletion problems in general. To that end, we investigate the complexity
of Simultaneous (F1, . . . ,Fα)-Deletion in two settings. First, we consider the problem
with F1 being the family of all bipartite graphs and F2 = F3 = . . . = Fα being the family
of all forests. We call this problem Simultaneous FVS/OCT and define it as follows.

Simultaneous FVS/OCT Parameter(s): k and α
Input: An α-edge-colored graph G = (V,∪αi=1Ei) and an integer k.
Question: Is there a set S ⊆ V of size at most k such that G1 − S is a bipartite graph
and G2 − S, . . ., Gα − S are acyclic, where Gi = (V,Ei) and 1 ≤ i ≤ α?

We call a solution S to the Simultaneous FVS/OCT problem a sim-fvs-oct. Our first
contribution is an algorithm that, given an instance (G = (V,∪αi=1Ei), k) of Simultaneous
FVS/OCT, runs in time O?(kpoly(α,k)) and either computes a sim-fvs-oct in G of size at
most k or correctly concludes that such a set does not exist.

In the second setting, we consider the Simultaneous (F1, . . . ,Fα)-Deletion problem
where F1 = . . . = Fα is the family of all bipartite graphs. We call this problem Simultan-
eous OCT and define it as follows.

Simultaneous OCT Parameter(s): k and α
Input: An α-edge-colored graph G = (V,∪αi=1Ei) and an integer k.
Question: Is there a set S ⊆ V of size at most k such that Gi − S is bipartite, where
Gi = (V,Ei) and 1 ≤ i ≤ α?

We refer to a solution S to the Simultaneous OCT problem as a sim-oct. Our second (and
rather surprising) contribution is a negative answer to the first open question of Agrawal et
al. [1]. We show that, even for α = 2, the Simultaneous OCT problem is W[1]-hard. To
prove this result, we first reduce the well-known Multicolored Clique problem [7] to an
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auxiliary problem we call Simultaneous Cut. Simultaneous Cut is a natural general-
ization of the classical (s, t)-CUT problem to edge-colored graphs. Finally, we show that
Simultaneous Cut can be reduced to Simultaneous OCT. Notice that W[1]-hardness of
Simultaneous OCT implies that Simultaneous (F1, . . . ,Fα)-Deletion problem with at
least two of the families being the family of all bipartite graphs is W[1]-hard.

Overview of the algorithm. Note that for any fixed k and α, our algorithm for solving the
Simultaneous FVS/OCT problem runs in polynomial time. The said algorithm can be
broken down into four stages, three of which are reductions to auxiliary problems. Initially,
as was first proposed by Ye [24], we use the notion of compact representations of feedback
vertex sets (see Section 2 for formal definitions) to reduce Simultaneous FVS/OCT into
2O(αk) instances of the Colorful OCT problem, which is formally defined as follows. We
note that, in any reduced instance, ` will be bounded above by αk.

Colorful OCT Parameter(s): k and `
Input: A graph G = (V,E), integers k and `, and a grouping P of the vertices of G into
(not necessarily distinct) sets {P1, . . . , P`}.
Question: Is there a set S ⊆ V of size at most k such that G− S is a bipartite graph
and S ∩ Pi 6= ∅, for i ∈ {1, . . . , `}?

Intuitively, compact representations give us a partition of a vertex subset of the graph into
sets such that picking one vertex from each part is “guaranteed” to constitute a feedback
vertex set of each graph Gi, 2 ≤ i ≤ α. As such, we are able to encode the feedback vertex
set “side” of the Simultaneous FVS/OCT problem (via the reduction) as colors on the
vertices (i.e. different sets in P represent different colors for each vertex) and focus on a
“colored” variant of Odd Cycle Transversal. Naturally, the second stage is to solve
the Colorful OCT problem within the claimed running time. To do so, we reduce an
instance of Colorful OCT to an instance of the compression variant of the problem, i.e.
Colorful OCT Compression. This problem assumes an odd cycle transversal of size at
most k as part of the input. Note that finding an odd cycle transversal of a graph G = (V,E)
of size at most k can be accomplished using the fixed-parameter tractable algorithms for
OCT parameterized by solution size [14, 22], both of which run in O?(2O(k)) time.

Colorful OCT Compression Parameter(s): k and `
Input: A graph G = (V,E), integers k and `, a grouping P of the vertices of G into
(not necessarily distinct) sets {P1, . . . , P`}, and a set O ⊆ V (G) of size at most k such
that G−O is bipartite.
Question: Is there a set S ⊆ V of size at most k such that G− S is a bipartite graph
and S ∩ Pi 6= ∅, for i ∈ {1, . . . , `}?

Now, to solve an instance of Colorful OCT Compression, we reduce it into 2O(k) in-
stances of yet another problem, namely Colorful Separator. This reduction is in many
ways similar to the iterative compression algorithm for solving the Odd Cycle Trans-
versal problem [7, 13, 23].

Colorful Separator Parameter(s): k and `
Input: A graph G = (V,E), integers k and `, a grouping P of the vertices of G into
(not necessarily distinct) sets {P1, . . . , P`}, and vertices s and t in V (G).
Question: Is there an (s,t)-separator S ⊆ V \ {s, t} such that |S| ≤ k and S ∩ Pi 6= ∅,
for each i ∈ {1, . . . , `}?
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Finally, and arguably the most technical part of our algorithm, is to show how to solve an
instance of Colorful Separator. We will in fact solve a much more general problem,
which we define in Section 4 (to keep the presentation clear). Our two main ingredients are a
dynamic programming routine and a generalization of the concept of important separators,
which has been recently defined to design parameterized algorithms for several “cut” prob-
lems [12, 19, 20]. We note that an alternative algorithm for solving Colorful Separator
can be obtained by applying the treewidth reduction result of Marx et al. [21]. However,
a “simple” application of this result would give an algorithm with a worse running time
(double exponential).

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N, we let [n] denote the set {1, 2, . . . , n}.
Given a universe U , a set S ⊆ U , and a family of sets F = {F1, . . . , F`} over U , we let F

∣∣
S

denote the restriction of F to S, i.e. F
∣∣
S

= {F1∩S, . . . , F`∩S}. We use standard terminology
from the book of Diestel [9] for the graph-related terms which are not explicitly defined here.
For a graph G, we use V (G) and E(G) to denote the vertex and edge sets of G, respectively.
For S ⊆ V (G), by NG(S) we denote the set {u ∈ V (G) \ S | (u, v) ∈ E(G) ∧ v ∈ S}. We
drop the subscript G from NG(S) when the context is clear. For a vertex subset S ⊆ V (G),
by G[S] we denote the graph with vertex set S and edge set {(u, v) ∈ E(G) | u, v ∈ S}. By
G − S we denote the graph G[V (G) \ S]. A path from v1 to v` in a graph G is a sequence
of vertices v1, v2, . . . , v` such that for all i ∈ [`− 1], (vi, vi+1) ∈ E(G). We call such a path
a (v1, v`)-path. For X,Y ⊆ V (G), an (X,Y )-path in G is a path v1, v2, . . . , v` such that
v1 ∈ X and v` ∈ Y . We say that X and Y are linked in G if there exists an (X,Y )-path in
G. We say that vertices in Y are reachable from X if, for all y ∈ Y , there exists x ∈ X such
that there is a path from x to y.

A vertex subset S ⊆ V (G) is a feedback vertex set (fvs) in G if G−S is a forest. If there is
no S′ ⊂ S such that G−S′ is a forest then S is a minimal feedback vertex set (minimal fvs)
in G. A vertex subset S ⊆ V (G) is an odd cycle transversal (oct) in G if G− S is bipartite.
If there is no S′ ⊂ S such that G − S′ is a bipartite graph then S is a minimal odd cycle
transversal (minimal oct) in G. For a graph G and set X ⊆ V (G), we refer to a partition
(A,B) of X as a valid bipartition of G[X] if G[A] and G[B] are both edgeless graphs. We
refer to a valid bipartition of V (G) as a valid bipartition of the graph G.

I Definition 2.1. Let G be a graph and X and Y be disjoint subsets of V (G). A vertex set
S disjoint from X ∪ Y is called an (X,Y )-separator if there is no (X,Y )-path in G−S. We
denote by RG(X,S) the set of vertices of G− S reachable from vertices of X via paths and
by NRG(X,S) the set of vertices of G− S not reachable from vertices of X.

We remark that it is not necessary that Y and N(X) be disjoint in the above definition.
If these sets do intersect, then there is no (X,Y )-separator in the graph.

I Definition 2.2. [13] A compact representation of a set S of minimal feedback vertex sets
of a graph G is a collection C of pairwise disjoint subsets of V (G) such that choosing exactly
one vertex from every set in C results in a minimal feedback vertex set for G that is in S.

I Lemma 2.3. [13] The set of all minimal feedback vertex sets of size at most k can be
represented by a collection of compact representations of size 2O(k). Furthermore, given a
graph G = (V,E) and a feedback vertex set F for G of size k + 1, we can enumerate the
compact representations of all minimal feedback vertex sets for G having size at most k in
O?(2O(k)) time.
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3 From Simultaneous FVS/OCT to Colorful OCT

We first describe how to reduce an instance of Simultaneous FVS/OCT to 2O(αk) in-
stances of Colorful OCT. Note that since both Feedback Vertex Set [20] and Odd
Cycle Transversal [22, 14] can be solved in O?(2O(k)) time, we assume that, along with
an instance (G = (V,∪αi=1Ei), k), we are given sets O,F2, . . . , Fα ⊆ V (G) of size at most k
such that G1 − O is a bipartite graph and Gi − Fi, 2 ≤ i ≤ α, is acyclic (as otherwise we
can safely conclude that the given instance is a no-instance).

I Lemma 3.1. There is an algorithm that, given an instance (G = (V,∪αi=1Ei), k) of Sim-
ultaneous FVS/OCT, runs in time O?(2O(αk)) and returns a set of 2O(αk) instances of
Colorful OCT such that the original instance is a yes-instance if and only if at least one
of the returned instances is a yes-instance.

Proof. Armed with the sets Fi which are of size at most k, we apply the algorithm of
Lemma 2.3 to each graph Gi, 2 ≤ i ≤ α, to obtain a set of compact representations Ci =
{C1
i , C2

i , . . .}, 2 ≤ i ≤ α. Note that each Ci is of size 2O(k) and each Cji is of size at
most k. The said algorithm runs in O?(2O(k)) time for each graph Gi. For each tuple
{Cj2

2 , . . . , Cjαα } ∈ C2 × . . .×Cα, we construct an instance (G′,P, k′, `) of Colorful OCT
as follows. We let G′ = (V,E1), k′ = k, and ` =

∑α
i=2 |C

j
i | ≤ αk.

For each C ∈ {Cj2
2 , . . . , Cjαα } and for each set C ∈ C, we add a set P ∈ P and we let

P = C. In other words, all vertices in C are added to P . Observe that |C| ≤ k. Since each
Ci is of size 2O(k), it is easy to verify that the number of instances is in fact 2O(αk). We
now prove the correctness of the algorithm.

Assume that (G = (V,∪αi=1Ei), k) is a yes-instance and let S be a solution of size at most
k. Note that S need not be a minimal fvs in Gi, 2 ≤ i ≤ α. However, for each i ∈ {2, . . . , α},
there exists a set S′ ⊆ S such that S′ is a minimal fvs for Gi. Hence, by Definition 2.2 and
Lemma 2.3, for every i ∈ {2, . . . , α}, there exists a Cji ∈ Ci such that for all C ∈ Cji we have
S′ ∩ C 6= ∅. Since we enumerate all compact representations and create one instance for
each, we know that at least one instance (G′,P, k′, `) of Colorful OCT will correspond
to the correct choice. The fact that S is a solution for (G′,P, k′, `) follows from the fact
that S contains a minimal oct for G1.

For the other direction, let S′ be a solution for an instance (G′,P, k′, `) of Colorful
OCT. Since S′ is of size at most k, it is clearly an oct for G1. Moreover, since S′ must
intersect every P ∈ P, it follows from the definition of compact representations and our
construction that S′ is an fvs for Gi, 2 ≤ i ≤ α, as needed. J

We now focus on solving an instance (G,P, k, `) of Colorful OCT. Recall that we
also have access to the set O which is an oct of G of size at most k. Our next step is to
reduce (G,P, k, `) to an instance (G,P, O, k, `) of Colorful OCT Compression. The
correctness of this reduction is immediate. The final piece in our sequence of reductions is
to reduce (G,P, O, k, `) to 2O(k) instances of Colorful Separator. Before we state our
final reduction, we need the following.

I Definition 3.2. Let G be a graph, let O be an oct of G, let X ⊆ O, let Q = (L,R)
be a valid bipartition of G − O, and let W = (A,B) be a partition of X. We define the
graph GXQ,W as the graph obtained from G as follows. Add two new vertices s and t, make
s adjacent to all vertices in (N(A)∩L)∪ (N(B)∩R), and make t adjacent to all vertices in
(N(A) ∩R) ∪ (N(B) ∩ L). Finally, delete X.

I Proposition 1. [7] Let G be a graph, let X be an oct of G, and let Q be a valid bipartition
of G−X. Then the following statements hold.
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(i) Let Y be an oct of G, Z = X \ Y , let G′ = G − (X ∩ Y ), and let Q′ = Q
∣∣
V (G′). Then,

there is a partition Z = (Z1, Z2) of Z such that Y \X is an (s, t)-separator in G′ZQ′,Z .
(ii) Let Z ⊆ X, let G′ = G−Z, and let Q′ = Q

∣∣
V (G′). Let B be a valid bipartition of X \Z.

If Y is an (s, t)-separator in the graph G′X\ZQ′,B , then Y ∪ Z is an oct of G.

I Lemma 3.3. There is an algorithm that, given an instance (G,P, O, k, `) of Colorful
OCT Compression, runs in time O?(2O(k)) and returns a set of 2O(k) instances of Col-
orful Separator such that the original instance is a yes-instance if and only if at least
one of the returned instances is a yes-instance.

Proof. First, we let Q be an arbitrary valid bipartition of G − O. Next, for each of the
at most 3k partitions of O into three sets X, Y , and Z, we make sure that the following
conditions hold. We check that O = X∪Y ∪Z, G[X] and G[Y ] are edgeless ((X,Y ) is a valid
bipartition of O \ Z), and P 6⊆ X ∪ Y , for any P ∈ P. If all conditions hold, we construct
an instance (G′X∪YQ′,W ,P ′, s, t, k′, `′) of Colorful Separator where G′ = G − Z, Q′ is the
bipartition of G−O restricted to V (G′), W is the partition (X,Y ), and the graph G′X∪YQ,W is
obtained from G′ by adding vertices s and t and deleting X ∪Y (see Definition 3.2). We set
k′ = k−|Z|. It remains to show how to construct P ′ = {P ′1, . . . , P ′`′} from P = {P1, . . . , P`}.
Let P ′′ be the subset of P consisting of all sets P ∈ P such that P ∩ Z 6= ∅. For every
P ∈ P \ P ′′, we assign a unique index j ∈ [|P \ P ′′|] and set P ′j = P . It follows that `′ ≤ `.

We now claim that the given instance (G,P, O, k, `) is a yes-instance of Colorful OCT
Compression if and only if at least one of the constructed 3k instances (G′X∪YQ′,W ,P ′, s, t, k−
|Z|, `′) is a yes-instance of Colorful Separator. We first argue the forward direction.
Suppose that (G,P, O, k, `) is a yes-instance of Colorful OCT Compression. Let S ⊆
V (G) denote a set of vertices of size at most k such that G− S is bipartite and S ∩ P 6= ∅,
for each P ∈ P. Let Z = S ∩ O and P ′′ = {P ∈ P | P ∩ Z 6= ∅}. Then, from statement
(i) of Proposition 1, there is a partition R of O \ S into sets X and Y such that S \ O is
an (s, t)-separator in the graph G′O\SQ′,R, where G′ = G− Z. Moreover, for each P ∈ P \ P ′′,
(S \ O) ∩ P 6= ∅. Therefore, (G′O\SQ′,R,P ′, s, t, k − |Z|, `′) is a yes-instance of Colorful
Separator.

For the reverse direction, suppose that there is a partition of O into sets X, Y , and Z
such that (G′X∪YQ′,W ,P ′, s, t, k− |Z|, `′) is a yes-instance of Colorful Separator. Then, let
Y be a corresponding solution. That is, Y is an (s, t)-separator in G′X∪YQ′,W of size at most
k − |Z|, where G′ = G − Z. By the second statement of Proposition 1, Y ∪ Z is an oct of
G of size at most k. Moreover, for each P ∈ P, either Z ∩ P 6= ∅ or Y ∩ P 6= ∅. Hence,
(G,P, O, k, `) is a yes-instance of Colorful OCT Compression. J

To summarize, given an instance (G = (V,∪αi=1Ei), k) of Simultaneous FVS/OCT,
we first compute an odd cycle transversal of G1 and a feedback vertex set of Gi, i ∈ [α]\{1},
in O?(2O(k)) time. Then, we generate 2O(αk) instances of Colorful OCT, of the form
(G,P, k, ` ≤ αk), inO?(2O(αk)) time. Each instance of Colorful OCT is converted into an
instance (G,P, O, k, `) of Colorful OCT Compression in polynomial time. Finally, for
each instance of Colorful OCT Compression we generate 2O(k) instances of Colorful
Separator, with parameters k and ` ≤ αk, in O?(2O(k)) time. Lemmas 3.1 and 3.3 together
imply that if we can solve an instance of Colorful Separator in O?(kpoly(α,k)) time then
the algorithm for Simultaneous FVS/OCT follows. We describe such an algorithm in the
next section.
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4 An FPT algorithm for finding colorful separators

We in fact give an algorithm for a more general problem, which we call Colorful Multi-
way Cut (or CMWC for short). Before we proceed, we need a few definitions.

I Definition 4.1. Given a graph G, a set T ⊆ V (G), and a partition T of T into (pairwise
disjoint) sets {T1, . . . , Tr}, we say that S ⊆ V (G) \ T is a T -multiway cut if, in G − S, no
vertex in Ti \ S can reach a vertex in Tj \ S, for all i, j ∈ [r], such that i 6= j. We say that
T is an edge-free partition of T if there are no edges (u, v) in G[T ] where u and v belong to
different sets of T .

Given a grouping {P1, . . ., P`} of the vertices of a graph G, we define a partial coloring
function col : V (G)→ 2[`]. That is, we have i ∈ col(v) if and only if v ∈ Pi, for some i ∈ [`].
In this context, for a set C ⊆ [`], a subset S of vertices of G is called C-colorful if, for each
i ∈ C, there is a vertex v in S such that i ∈ col(v). For a subset S ⊆ V (G), we denote by
col(S) the set {j | v ∈ S ∩ (

⋃`
i=1 Pi) ∧ j ∈ col(v)}, i.e. the set of colors appearing in S. The

CMWC can now be defined as follows.

Colorful Multiway Cut (CMWC) Parameter(s): k, |T |, and `
Input: A graph G = (V,E), a set T ⊆ V (G), a partition T of T into (pairwise disjoint)
sets {T1, . . . , Tr}, a grouping P of the vertices of G into (not necessarily distinct) sets
{P1, . . . , P`}, a set C ⊆ [`], and an integer k.
Question: Is there a set S ⊆ V (G) \ T such that |S| ≤ k, S is a T -multiway cut in G,
and S is C-colorful?

4.1 Setting up the algorithm
Let (G,T, T ,P, C, k) be an instance of CMWC. We start by stating a few simple reduction
rules (which are applied in the order they are stated).
I Reduction Rule 1. If k < 0 then return false, i.e. (G,T, T ,P, C, k) is a no-instance.
I Reduction Rule 2. If k = 0 and ∅ is a solution to (G,T, T ,P, C, k) then return true, i.e.
(G,T, T ,P, C, k) is yes-instance. If k = 0 and ∅ is not a solution then return false.
I Reduction Rule 3. If there exists i ∈ C such that Pi ⊆ T then return false.
I Reduction Rule 4. If there exists i ∈ C such that Pi ∩ T 6= ∅ then set Pi = Pi \ T .
I Reduction Rule 5. If there exists i ∈ C such that Pi = ∅ then return false.
I Reduction Rule 6. If T is not an edge-free partition then return false.
It is easy to see that Reduction Rules 1 to 6 are safe and can be applied in polynomial time.
When k > 0 and ∅ is a T -multiway cut, we can solve the corresponding instance in time
O?(2O(`)). The following observation describes how.
I Observation 1. Let I = (G,T, T ,P, C, k) be an instance of Colorful Multiway Cut. If
k > 0 and ∅ is a T -multiway cut then I can be solved in O(2O(`)n2) time, where n = |V (G)|.

Proof. If k > 0 and ∅ is a T -multiway cut then we are left with the problem of finding a set
S ⊆ V (G) \ T of size at most k such that S ∩ Pi 6= ∅, for each i ∈ C. Hence, we construct a
family F consisting of a set fPi = Pi for each for each i ∈ C and we let U = ∪i∈CPi. Note
that |F| ≤ ` ≤ αk and |U| ≤ |V (G)|. Since Reduction Rules 3, 4, and 5 are not applicable,
for each i ∈ C, we have fPi 6= ∅ and fPi ∩ T = ∅. If we can find a subset U ⊆ U which
intersects all the sets in F , such that |U | ≤ k, then U is the required solution. Otherwise, we
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Q0 Qq+1
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Figure 1 An illustration of a tight separator sequence.

have a no-instance. It is known that the Hitting Set problem parameterized by the size
of the family F is fixed-parameter tractable and can be solved in O(2O(|F|)|U|2) time [7]. In
particular, we can find an optimum hitting set U ⊆ U , hitting all the sets in F . Therefore,
we have a subset of vertices that intersects all sets Pi, for i ∈ C. J

Before proceeding with the description of the algorithm, we first recall the notion of
tight separator sequences introduced in [19]. However, the definition and structural lemmas
regarding tight separator sequences used in this paper are from [20]. Note that although [20]
contains Definition 4.2 and Lemma 4.3 in terms of directed graphs, the same holds true for
undirected graphs because one can represent any undirected graph as a directed graph by
adding bidirectional edges between every pair of adjacent vertices.

I Definition 4.2. Let X and Y be two subsets of V (G) and let k ∈ N. A tight (X,Y )-
reachability sequence of order k is an ordered collection H = {H0, H1, . . . ,Hq, Hq+1} of sets
in V (G) satisfying the following properties:

X ⊆ Hi ⊆ V (G) \N [Y ] for any 0 ≤ i ≤ q;
X = H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ Hq ⊂ Hq+1 = V (G) \ Y ;
Hi is reachable from X in G[Hi] and every vertex in N(Hi) can reach Y in G−Hi

(implying that N(Hi) is a minimal (X,Y )-separator in G);
|N(Hi)| ≤ k for every 1 ≤ i ≤ q;
N(Hi) ∩N(Hj) = ∅ for all 1 ≤ i, j ≤ q and i 6= j;
For any 0 ≤ i ≤ q − 1, there is no (X,Y )-separator S of size at most k where S ⊆
Hi+1 \N [Hi] or S ∩N [Hq] = ∅ or S ⊆ H1.

We let Q0 = X, Qi = N(Hi), for 1 ≤ i ≤ q, Qq+1 = Y , and Q = {Q0, Q1, . . . , Qq, Qq+1}.
We call Q a tight (X,Y )-separator sequence of order k.

I Lemma 4.3. (see [20]) There is an algorithm that, given a graph G on n vertices and m
edges, subsets X,Y ⊆ V (G) and k ∈ N, runs in time O(k2nm) and either correctly concludes
that there is no (X,Y )-separator of size at most k in G or returns the sets H0, H1, H2 \
H1, . . . ,Hq \ Hq−1, Hq+1 \ Hq corresponding to a tight (X,Y )-reachability sequence H =
{H0, H1, . . . ,Hq, Hq+1} of order k.

See Figure 1 for an illustration of a tight (X,Y )-separator sequence. Our algorithm will
be a combination of dynamic programming over the sets Qi, 0 ≤ i ≤ q + 1, and recursive
calls for solving “smaller” instances of the same problem. Below we state some observations
that help understand the structure of a solution and are crucial for achieving the stated
running time.
I Observation 2. Let (G,T, T ,P, C, k) be an instance of Colorful Multiway Cut and
let T1 be a set in T which is linked to some set in T \ {T1}. Moreover, let H = {H0,
H1, . . ., Hq, Hq+1} be a tight (T1,T \ T1)-reachability sequence of order k and let Q =
{Q0, Q1, . . . , Qq, Qq+1} be the corresponding tight separator sequence. Assume (G, T , T ,
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Figure 2 An illustration of the division of a solution S into various sets.

P, C, k) is a yes-instance and let S be one of its solution. Then, S can be partitioned into
the following (pairwise-disjoint) sets (see Figure 2).

Z1 = S ∩ (H1 \Q0).
Si = S ∩Qi for 1 ≤ i ≤ q.
Zi = (S ∩ (Hi \N [Hi−1])) \Qq+1 for 2 ≤ i ≤ q + 1.

We invoke the last property of tight separator sequences to obtain the following bound.
I Observation 3. |Zi| ≤ k − 1 for each i ∈ [q + 1].
Observation 3 is crucial as it allows us to apply our algorithm on sub-instances with a strictly
smaller parameter.

Algorithm 1: Pseudocode for ALG1
Input: (G,T, T ,P, C, k)
Output: true or false

1 Apply all reduction rules (in order) and return true/false appropriately (if applicable).
2 if k > 0 and ∅ is a T -multiway cut then
3 return true/false appropriately (Observation 1)
4 Let T1 ∈ T such that T1 is linked to some Tj ∈ T , where j 6= 1.
5 Let H = {H0, H1, . . . ,Hq, Hq+1} be a (T1,T \ T1)-reachability sequence of order k;
6 Let Q = {Q0, Q1, . . . , Qq, Qq+1} be the corresponding (T1,T \ T1)-separator sequence;
7 if Q = ∅ then
8 return false;
9 return ALG2(G,T, T ,P, C, k,Q);

To keep the presentation clean, we shall define two routines ALG1 and ALG2. ALG1
(Algorithm 1) delegates most of the “heavy lifting” to ALG2. That is, ALG1 simply checks
if any of the reduction rules are applicable and solves the instance if it corresponds to one of
the base cases. When this is not the case, ALG1 proceeds by computing a tight separator
sequence and calls ALG2. Note that we can safely return false when the algorithm fails to
construct such a sequence (Lines 7 and 8 of Algorithm 1). We now move to the description
of ALG2, which takes as additional input the newly constructed tight separator sequence.
Roughly speaking, ALG2 will recursively solve a “large” number of instances restricted
to graphs that “reside” between two consecutive separators of a separator sequence. The
number of instances will be bounded by the number of possible “interactions” between the
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Figure 3 An illustration of graphs in Definition 4.4.
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Figure 4 An illustration of compatible tuples.

two consecutive separators and a hypothetical solution. However, due to Observation 3,
each one of those recursive calls can be made with a strictly smaller value of k. Having
solved all such instances (and stored the outcomes in tables), ALG2 then proceeds using
a dynamic programming routine which computes the answer in a left-to-right manner, i.e.
starting from Q0 all the way to Qq+1. We now give a formal description.

IDefinition 4.4. For a graph G and a tight separator sequenceQ = {Q0, Q1, . . . , Qq, Qq+1},
we let Gi = G−RG(Qq+1, Qi), i.e. the graph obtained after removing the vertices that are
reachable from Qq+1 after deleting Qi, and we let Ĝi = Gi−(V (Gi−1)\Qi−1) (see Figure 3).

For each graph Gi, i ∈ [q + 1], we maintain a table Γi, where each entry is indexed by a
tuple (X,A, C, p). For each graph Ĝi, i ∈ [q + 1], we maintain a table Λi, where each entry
is indexed by a tuple (L,R,B, Ĉ, p̂). The tuples are described below.

X ⊆ Qi \ T and L ⊆ Qi−1 \ T and R ⊆ Qi \ T ;
A is an edge-free partition of (Qi ∪Q0) \X;
B is an edge-free partition of (Qi−1 ∪Qi) \ (L ∪R);
C, Ĉ ⊆ [`] and p ≤ k − |X| and p̂ ≤ k − |L ∪R| if L ∪R 6= ∅ and p̂ ≤ k − 1, otherwise.

I Definition 4.5. For a tuple τ = (X,A, C, p), we denote by Iτ the instance (Gi−X, (Qi ∪
Q0)\X,A,P

∣∣
V (Gi−X), C, p) of CMWC. Similarly, for a tuple τ = (L,R,B, Ĉ, p̂), we denote

by Iτ the instance (Ĝi − (L ∪R), (Qi−1 ∪Qi) \ (L ∪R),B,P
∣∣
V (Gi−(L∪R)), Ĉ, p̂) of CMWC.

Finally, we define Γi(τ) (or Λi(τ))= true if and only if Iτ is a yes-instance of CMWC.

I Definition 4.6. Given three tuples τ1 = (X,A, C, p), τ2 = (L,R,B, Ĉ, p̂), and τ3 =
(X ′,A′, C ′, p′), we say that they are compatible if all of the following conditions hold (see
Figure 4).
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τ1 ∈ Γi and τ2 ∈ Λi and τ3 ∈ Γi−1, where i ∈ [q + 1];
X ′ = L and X = R;
A
∣∣
Qi\X

= B
∣∣
Qi\R

and B
∣∣
Qi−1\L

= A′
∣∣
Qi−1\X′

and A
∣∣
Q0

= A′
∣∣
Q0

;
p′ + p̂+ |L| ≤ p and C ′ ∪ Ĉ ∪ col(L) = C.

Algorithm 2: Pseudocode for ALG2
Input: (G,T, T ,P, C, k,Q)
Output: true or false

1 Initialize all entries in Γi to false, for i ∈ [q + 1];
2 Initialize all entries in Λi to false, for i ∈ [q + 1];
3 for each Ĝi ∈ {Ĝ1, . . . , Ĝq+1} do
4 for each L ⊆ Qi−1 \ T and each each R ⊆ Qi \ T do
5 for each edge-free partition B of (Qi−1 ∪Qi) \ (L ∪R) do
6 for each Ĉ ⊆ [`] and each 0 ≤ p̂ ≤ k −max{1, |L ∪R|} do
7 I = (Ĝi − (L ∪R), (Qi−1 ∪Qi) \ (L ∪R),B,P

∣∣
V (Gi−(L∪R)), p̂);

8 Λi(L,R,B, Ĉ, p̂) = ALG1(I);

9 Copy table entries for Γ1, i.e. Γ1(X,A, C, p) = Λ1(∅, X,A, C, p);
10 for each Gi ∈ {G2, . . . , Gq+1} (in order) do
11 for each X ⊆ Qi \ T do
12 for each edge-free partition A of (Qi ∪Q0) \X do
13 for each C ⊆ [`] and each 0 ≤ p ≤ k − |X| do
14 τ1 = (X,A, C, p);
15 for each tuple τ2 = (L,R,B, Ĉ, p̂) ∈ Λi do
16 for each tuple τ3 = (X ′,A′, C ′, p′) ∈ Γi−1 do
17 if τ1, τ2, and τ3 are compatible then
18 Γi(τ1) = Γi(τ1) ∨ [Γi−1(τ3) ∧ Λi(τ2)];

19 if Γq+1(∅, T , C, p) = true (for some p ≤ k) then
20 return true;
21 return false;

The complete description of ALG2 is given in Algorithm 2. Initially, we set all table
entries to false (Lines 1 and 2). Then, for each Ĝi ∈ {Ĝ1, . . . , Ĝq+1} and for each possible
tuple (L,R,B, Ĉ, p̂) ∈ Λi, we solve the corresponding CMWC instance I = (Ĝi − (L ∪
R), (Qi−1 ∪Qi) \ (L∪R),B,P

∣∣
V (Gi−(L∪R)), p̂). That is, we set Λi(L,R,B, Ĉ, p̂) if I is a yes-

instance (Lines 3 to 8). Having computed all those values, we then proceed to filling table Γ1.
Since G0 is a subgraph of G1, and G1 = Ĝ1, we simply set Γ1(X,A, C, p) = Λ1(∅, X,A, C, p)
(for all tuples). This is justified by the fact that a solution is not allowed to delete any vertex
in Q0. To complete table Γi, i > 1, we simply use the following:

Γi(X,A, C, p) =
∨

[Γi−1(X ′,A′, C ′, p′) ∧ Λi(L,R,B, Ĉ, p̂)],

where tuples (X,A, C, p), (X ′,A′, C ′, p′), and (L,R,B, Ĉ, p̂) are compatible. Finally, ALG2
returns true whenever there exists a tuple Γq+1(∅, T , C, p) = true (for some p ≤ k).
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Figure 5 An illustration of the proof of Lemma 4.7.

4.2 Correctness and runtime analysis
We are now ready to prove our main structural lemma which reduces the computation of
the entries in Γi (when i > 1) to those in Γi−1 and Λi. The lemma is proved in a purely
existential setting and serves as the proof of correctness of the algorithm.

I Lemma 4.7. For any i ∈ [q+1] and tuple τ1 = (X,A, C1, p1) ∈ Γi, Iτ1 is a yes-instance if
and only if there is a tuple τ2 = (L,R,B, C2, p2) ∈ Λi and a tuple τ3 = (X ′,A′, C3, p3) ∈ Γi−1
such that Iτ2 and Iτ3 are both yes-instances and all three tuples are compatible.

Proof. We begin with the forward direction. Suppose that Iτ1 is a yes-instance. Then, it
must be the case that there is a C1-colorful set Sτ1 ⊆ V (Gi) \ X of size at most p1 such
that Sτ1 is an A-multiway cut in Gi. We define sets Sτ2 = Sτ1 ∩ (V (Ĝi) \ (Qi−1 ∪ Qi))
and Sτ3 = Sτ1 ∩ (V (Gi−1) \Qi−1) (see Figure 5). We will now define tuples τ2 and τ3. Let
C2 = col(Sτ2), C3 = col(Sτ3), p2 = |Sτ2 |, p3 = |Sτ3 |, X ′ = L = Sτ1 ∩ Qi−1 and R = X.
Furthermore, we let C be the equivalence class defined on the vertex sets of connected
components in Gi − (Sτ1 ∪ X). We set B = C|(Qi−1∪Qi)\L and A′ = C|Q0∪Qi−1 . Finally,
we set τ2 = (L,R,B, C2, p2) and τ3 = (X ′,A′, C3, p3). We will now argue that Sτ2 and
Sτ3 are solutions for Iτ2 and Iτ3 , respectively. For two distinct sets B,B′ ∈ B we have no
path between them in Gτ2 − Sτ2 since they belong to different connected components in
Gi − (Sτ1 ∪X), Ĝi is a subgraph of Gi, Qi−1 is a (Q0, Qi)-separator, and by the definition
of B. This proves that Sτ2 is a solution for Iτ2 . An analogous argument can be given for Sτ3

being a solution for Iτ3 . This completes the argument in the forward direction.
In the reverse direction, suppose that there are τ2 = (L,R,B, C2, p2) ∈ Λi and τ3 =

(X ′,A′, C3, p3) ∈ Γi−1 compatible with τ1 ∈ Γi such that Iτ3 and Iτ2 are yes-instances. Let
Sτ2 and Sτ3 be solutions for the respective instances.

We claim that Sτ1 = Sτ2 ∪Sτ3 ∪L is a solution for Iτ1 . Notice that p1 ≤ p2 +p3 + |L| and
C1 = C2 ∪C3 ∪ col(L) (we have R = X). We need to show that Sτ1 is an A-multiway cut in
Gi −X. Targeting a contradiction, suppose there are distinct sets A1, A2 ∈ A such that A1
and A2 are linked. Then, there exists a path P from a1 ∈ A1 to a vertex a2 ∈ A2. Consider
the following ordered sequence of vertices x1, x2, . . . , xt in V (P )∩ (Q0∪Qi−1∪Qi) obtained
from P , i.e. by the order in which they appear in P . Notice that each of the subpaths Pj
from (xj , xj+1) of P , for j ∈ [t−1], is completely contained in one of Ĝi−Sτ2 or Gi−1−Sτ3 .
But this implies that there exists B ∈ B such that {xj | j ∈ [t]}∩(Qi−1∪Qi) ⊆ B. Similarly,
there exists A′ ∈ A′ such that {xj | j ∈ [t]} ∩ (Q0 ∪Qi−1) ⊆ A′. But since τ1, τ2, and τ3 are
compatible therefore, a1 and a2 must belong to the same set in A, contradicting the choice
of a1 and a2. This concludes the proof. J
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The above lemma proves the correctness of our algorithm since we set Γi(τ1) to be true
precisely when there are τ2 and τ3 such that Γi−1(τ2) = Λi(τ3) = true. Finally, we prove the
claimed running time bound.

I Theorem 4.8. Colorful Multiway Cut can be solved in O?((k + t)O(kt+k3)2O(`k))
time, where t = |T |.

Proof. Let n = |V (G)|, m = |E(G)|, t = |T |, and T(n, t, `, k) denote the “local” time
taken by our algorithm to solve an instance (G, T , T , P, C, k) of Colorful Multiway
Cut. By local, we mean the time taken ignoring all recursive calls. At the base case,
the algorithm correctly decides the instance in O(2O(`)n2) time (Observation 1). Hence,
at the base case we have T(n, t, `, k) = O(2O(`)n2). Otherwise, we have T(n, t, `, k) ≤
O(k2nm) + O(n(t + k)t+k2k2`), where O(k2nm) is the time taken to construct a tight
separator sequence (Lemma 4.3) and O(n(t + k)t+k2k2`) is the time taken to compute all
table entries Γi, for i ∈ [q + 1] ∪ {0}. Stated differently, O((t+ k)t+k2k2`) is the size of the
largest table. The correctness of this step follows from Lemma 4.7 and the description of
our two subroutines ALG1 and ALG2.

Now consider the recursion tree. We let Nd denote a node in this tree at depth d.
Note that the depth of our recursion tree is at most k; since k decreases by at least one
in every recursive call (Observation 3 and Definition 4.5). Consider any node Nd in the
recursion tree with associated measures (n′, t′, `′, k′), i.e. Nd = (n′, t′, `′, k′). We have
n′ ≤ n, k′ ≤ k, `′ ≤ `, and t′ ≤ max(2k, t + k2) ≤ t + 2k + k2 (since t is either 2k or
increases by at most k when computing Γq+1 and the depth of our recursion tree is at
most k). Moreover, if we sum n′ for all nodes at depth d in the recursion tree we get∑
Nd
n′ ≤ (

∑
Nd−1

n′)O((t+ 3k+ k2)t+3k+k22k2`) (since t′ ≤ t+ 2k+ k2). Therefore, at the
deepest level, i.e. level k, we get:∑

Nk

n′ ≤ n · O(((t+ 3k + k2)t+3k+k2
2k2`)k) = n · O((t+ 3k + k2)kt+3k2+k3

2k
2
2k`).

Replacing for n in T(n, t, `, k), we get:

T(n, t, `, k) ≤ (k + t)O(kt+k3)2O(`k)nO(1).

Multiplying by the number of nodes in the recursion tree, which is bounded by O((k +
t)O(kt+k3)2O(`k)nO(1)), we get the desired running time. J

Combining Theorem 4.8 with our series of reductions from Section 3, we have obtain the
following corollary (Corollary 4.9).

I Corollary 4.9. Simultaneous FVS/OCT can be solved in O?(kpoly(α,k)) time.

Proof. Recall that Lemmas 3.1 and 3.3 together imply that if we can solve an instance
of Colorful Separator in O?(kpoly(α,k)) time then the algorithm for Simultaneous
FVS/OCT follows. Any instance of Colorful Separator can be reduced to an instance
of Colorful Multiway Cut with |T | = 2. From Theorem 4.8, such an instance can be
solved in time O?(kO(k3)2O(αk)). J

5 W[1]-hardness of Simultaneous OCT

In this section we show that Simultaneous OCT is W[1]-hard. For notational convenience,
we shall use a different encoding of α-edge-colored graphs. Given a graph G with vertex set
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V (G) and edge set E(G), we define a coloring function col(e) ⊆ 2[α]. In particular, when
α = 2, we have col(e) ⊆ 2{1,2}. We start by establishing W[1]-hardness of Simultaneous
Cut. In Section 5.1 we show that Simultaneous Cut is W[1]-hard, even for α = 2, by
giving a parameterized reduction from Multicolored Clique. In Section 5.2 we give a
parameterized reduction from Simultaneous Cut to Simultaneous OCT for the same
value of α and hence establish the W[1]-hardness of Simultaneous OCT for α = 2. We
note that this also implies W[1]-hardness of Simultaneous OCT for all α ≥ 2.

5.1 W[1]-hardness of Simultaneous Cut

The Simultaneous Cut problem is formally defined below.

Simultaneous Cut Parameter(s): k and α
Input: A graph G, two vertices s, t ∈ V (G), an integer k, and a coloring function
col : E(G)→ 2[α].
Question: Is thereX ⊆ V (G)\{s, t} of size at most k such that, for all i ∈ [α], Gi−X has
no (s,t)-paths? Here, for i ∈ [α], Gi = (V (G), Ei), where Ei = {e ∈ E(G) | i ∈ col(e)}.

We give a parameterized reduction from Multicolored Clique which is known to be
W[1]-hard [7]. The Multicolored Clique problem is formally defined below.

Multicolored Clique Parameter(s): k
Input: A k-partite graph G with a partition V1, V2, . . . , Vk of V (G) such that for all
i, j ∈ [k], |Vi| = |Vj |.
Question: Is there X ⊆ V (G) such that, for all i ∈ [k], |X ∩ Vi| = 1 and G[X] is a
clique?

Given an instance (G,V1, V2, . . . , Vk) of Multicolored Clique, we proceed by creating
an instance (G′, s, t, k′, col′ : E(G′)→ 2{1,2}) of Simultaneous Cut such that (G, V1, V2,
. . ., Vk) is a yes-instance of Multicolored Clique if and only if (G′, s, t, k′, col′ : E(G′)→
2{1,2}) is a yes-instance of Simultaneous Cut.

The intuitive description of the parameterized reduction is as follows. Let (G,V1, V2, . . .,
Vk) be an instance of Multicolored Clique. Since |Vi| = |Vj |, for all i, j ∈ [k], we
assume that |Vi| = |Vj | = n. Furthermore, we assume that for every i, j ∈ [k], i 6= j,
there is at least one edge between Vi and Vj , otherwise, the instance is a trivial no-instance
of Multicolored Clique and our reduction will simply output a trivial no-instance of
Simultaneous Cut with α = 2. For each i ∈ [k] we assume an arbitrary (but fixed)
ordering on the vertices in Vi. For each i ∈ [k], we will have a vertex selection gadget Si
that will be responsible for selecting a vertex in Vi. To achieve this, Si will have k−1 copies
of each vertex in Vi, so that each vertex in Vi has a copy corresponding to every j ∈ [k]\{i}.
For each j ∈ [k]\{i}, we have an (s,t)-path with all edges having color 1. Each path contains
exactly one copy of every vertex in Vi. Furthermore, these vertices appear in the order given
by the ordering we already fixed on the vertices of Vi (see Figure 6).

The jth copy of the vertex set Vi will be used to ensure that there is an edge between
the selected vertex in Vi and a vertex in Vj . The copies of any single vertex will form an
(s,t)-separator of size k − 1. Furthermore, the size of minimum (s,t)-separator in Si will be
k− 1 and there will be exactly n distinct minimum separator each of which will correspond
to a set comprising of k − 1 copies of a vertex in Vi. By construction of the gadget and by
setting budget constraints appropriately we will ensure that we must select a vertex from
each of the k − 1 copies of Vi, for each i ∈ [k] and the selected k − 1 vertices correspond



A. Agrawal, R. Krithika, D. Lokshtanov, A. E. Mouawad, and M. S. Ramanujan XX:15

s

vi
11 vi

12

vi
22vi

21

vi
31 vi

32

vi
k1 vi

k2

vi
13

vi
23

vi
33

vi
k3

t

vi
1n

vi
2n

vi
3n

vi
kn

Figure 6 Vertex selection gadget with red color denoting color 1.

to copies of the same vertex, i.e. we select a minimum separator. This will ensure that we
have selected exactly one vertex from each Vi, for i ∈ [k].

For i, j ∈ [k], i 6= j, we will have edge selection gadgets Eij which will ensure that there
is an edge selected between Vi and Vj , and the selected edge is incident to the vertex selected
from the vertex selection gadget. Finally, we will have a compatibility gadget which will
ensure that the edges selected by Eij and Eji correspond to the same edge in G. We need to
differentiate between gadgets Eij and Eji for technical reasons that will become clear later.
We will now move to the formal description of the reduction.

Construction. Initially, V (G′) = ∅ and E(G′) = ∅. We add two special vertices s and
t to V (G′), which are the vertices we want to separate, and which will be common to all
the gadgets. For i ∈ [k] we let vij be the jth vertex in Vi. We now formally describe the
construction of the various gadgets. We note that the gadgets are not necessarily vertex or
edge disjoint (in addition to intersecting with {s, t}).

Vertex Selection Gadget. For each i ∈ [k] we have a vertex selection gadget Si defined
as follows. For each j ∈ [k] \ {i}, Si contains vertices in Vij = {vij1, vij2, . . . , vijn} (refer
to Figure 6). Here, the vertices vij1, vij2, . . . , vijn corresponds to one copy of the vertices
vi1, v

i
2, . . . , v

i
n in Vi. Note that for j, j′ ∈ [k] \ {i} vertices vij`, vij′` correspond to copies of the

same vertex, namely vi` ∈ Vi. For i ∈ [k] and ` ∈ [n], we let V i` = {vij` | j ∈ [k] \ {i}}, i.e. V i`
denotes the set comprising of k− 1 copies of the vertex vi` ∈ Vi. For i ∈ [k], ` ∈ [n− 1], and
for each u ∈ V i` and u′ ∈ V i`+1 we add the edge (u, u′) ∈ E(G′) and set col′((u, u′)) = {1}.
Note that G′[V i` ∪ V i`+1] is a complete bipartite graph with all edges having the color 1 in
their color set. For i ∈ [k], u ∈ V i1 we add the edge (s, u) ∈ E(G′) and set col′((s, u)) = {1}.
Similarly, for i ∈ [k], u ∈ V in we add the edge (u, t) ∈ E(G′) and set col′((u, t)) = {1}.

Edge Selection Gadget. For i ∈ [k] and j ∈ [k] \ {i} the edge selection gadget Eij is
constructed as follows. The vertex set of Eij contains a vertex euu′ , for each edge (u, u′) ∈
E(G) with u ∈ Vi and u′ ∈ Vj . We refer the reader to Figure 7 for an illustration. We
note here that Eij and Eji denote distinct gadgets. For ` ∈ [n], we let Eij` = {evi

`
u′ | u′ ∈

Vj , (vi`, u) ∈ E(G)}, i.e. Eij` contains vertices corresponding to those edges between Vi and
Vj that are incident to the vertex vi` ∈ Vi. We let Eij = ∪`∈[n]E

ij
` . For ` ∈ [n] and each

u ∈ Eij` , we add the edge (u, vij`) to Eij . We add an induced path P ij` on the vertices in Eij`
(where the vertices appear in the natural order implied by the ordering of the vertices in Vj)
and add these edges to E ij` . For each edge e ∈ E(P ij` ), we let col′(e) = {2}. For ` ∈ [n+ 1],
we let Kij

` denote a K3,3 (complete bipartite graph with 3 vertices on both side) with vertex
bipartition ({pij` , q

ij
` , r

ij
` }, {p̄

ij
` , q̄

ij
` , r̄

ij
` }) and add it to Eij . We will refer to Kij

` s as barrier
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Figure 7 An illustration of an edge selection gadget with blue color denoting color 2.

blocks of Eij . Finally, we join s, t and Eij` , for ` ∈ [n] using the barrier blocks. This is done
as follows.

For ` ∈ [n], let aij` , b
ij
` be the first and the last vertex respectively, in the path P ij` . We add

the edges (aij` , p̄
ij
` ), (aij` , q̄

ij
` ), (aij` , r̄

ij
` ) and (bij` , p

ij
`+1), (bij` , q

ij
`+1), (bij` , r

ij
`+1) to E(Eij). Also,

for ` ∈ [n], we add the edges (vij`, p̄
ij
` ), (vij`, q̄

ij
` ), (vij`, r̄

ij
` ) and (vij`, p

ij
`+1), (vij`, q

ij
`+1), (vij`, r

ij
`+1)

to E(Eij). In addition, we add the edges (s, pij1 ), (s, qij1 ), (s, r̄ij1 ), (p̄ijn+1, t), (q̄
ij
n+1, t), (r̄

ij
n+1, t)

to Eij . For each e ∈ E(Eij), we set col′(e) = {2}. This completes the description of the edge
selection gadget.

Edge Compatibility Gadget. This gadget is used to ensure that the edge selected by Eij and
Eji corresponds to the same edge of G. For i, j ∈ [k], i < j, the edge compatibility gadget
Cij is constructed as described below. Basically, Cij comprises of a set of edges between
vertices in Eij and vertices in Eji. Recall that Eij and Eji contains vertices corresponding
to the same edges, namely the edges between Vi and Vj in G. Hence, we can think of Eji as
a set comprising of a copy of the vertices in Eij . We fix a lexicographic ordering on vertices
in Eij which we obtain as follows. For evia,vjx , evib,vjy ∈ Eij , evia,vjx < evi

b
,vjy

if (i) a < b or
(ii) a = b and x < y. We denote the ordering of vertices in Eij by eij1 , e

ij
2 , . . . , e

ij
m. Refer

to Figure 8 for an illustration. Note this also fixes an ordering of vertices in Eji which we
denote by eji1 , e

ji
2 , . . . , e

ji
m. Here, m is the number of edges between Vi and Vj in G. For

` ∈ [m− 1], we add the edges (eij` , e
ij
`+1), (eij` , e

ji
`+1), (eji` , e

ij
`+1), (eji` , e

ji
`+1) to Cij . That is we

add all the edges in the bipartition between each consecutive pair of vertices in the ordered
sets Eij and Eji. We add edges (s, eij1 ), (s, eji1 )(eijm, t), (ejim, t) to Cij . For each edge e ∈ Cij ,
we set col′(e) = {1}. We note here that in case we have created multiple edges say e, e′

between vertices u, v then we delete e′ and set col′(e) := col′(e) ∪ col′(e′).
We finally set k′ = k(k − 1) + 2

(
k
2
)
. In the following we prove certain lemmata which

will be helpful in establishing the equivalence between the given instance of Multicolored
Clique and the created instance of Simultaneous Cut. We denote the graph constructed
above as G′ with the coloring function on the edge set being col′. For i ∈ [2], by G′i we
denote the graph with vertex set V (G′) and edge set Ei = {e ∈ E(G′) | i ∈ col′(e)}.

I Lemma 5.1. For i ∈ [n], consider the graph Ĝi = G′1[V (Si)]. The minimum (s,t)-
separator in Ĝi has size k − 1. Furthermore, F = {V i` | ` ∈ [n]} is the set of all minimum
sized (s,t)-separators in Ĝi.
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Figure 8 An illustration of edge compatibility gadget with red color denoting color 1 and i < j.

Proof. We start by showing that for any (s,t)-separator X ′ in Ĝi, there exists ` ∈ [n]
such that V i` ⊆ X ′. Suppose not, then there exists an (s,t)-separator X, in Ĝi such that
for all ` ∈ [n], V i` 6⊆ X. This in turn implies that for all ` ∈ [n], there exists v∗` ∈ V i`
such that v∗` /∈ X. Recall that from construction (s, v∗1), (v∗n, t) ∈ E(Ĝi) and for all ` ∈
[n − 1], (v∗` , v∗`+1) ∈ E(Ĝi). This implies that there is an (s,t)-path in Ĝi − X, namely
P = s, v∗1 , v

∗
2 , . . . , v

∗
n, t, contradicting that X is an (s,t)-separator in Ĝi. Since for any (s,t)-

separator X ′ in Ĝi, there exists ` ∈ [n] such that V i` ⊆ X ′, this implies that the size of
minimum (s,t)-separator in Ĝi is at least k − 1 and F = {V i` | ` ∈ [n]} is the set of all
minimum sized (s,t)-separators in Ĝi. J

I Lemma 5.2. For i, j ∈ [n] and i 6= j, consider the graph Ĝij = G′1[V (Eij)∪V (Eji)∪{s, t}].
The minimum (s,t)-separator in Ĝij has size 2. Furthermore, F = {{eij` , e

ji
` } | ` ∈ [m]} is

the set of all minimum sized (s,t)-separators in Ĝij. Here, m is the number of edges between
Vi and Vj in G.

Proof. We start by showing that for any (s,t)-separator X ′ in Ĝij , there exists ` ∈ [m] such
that eij` , e

ji
` ∈ X ′. Suppose not, then there exists an (s,t)-separator X, in Ĝij such that

for all ` ∈ [m] there exits ê` ∈ {eij` , e
ji
` } such that ê` /∈ X ′. Recall that from construction

(s, ê1), (êm, t) ∈ E(Ĝij) and for all ` ∈ [m − 1], (ê`, ê`+1) ∈ E(Ĝij). This implies that
there is an (s,t)-path in Ĝij −X, namely P = s, ê1, ê2, . . . , ên, t, contradicting that X is an
(s,t)-separator in Ĝij . Since for any (s,t)-separator X ′ in Ĝij , there exists ` ∈ [m] such that
{eij` , e

ji
` } ⊆ X ′, this implies that the size of minimum (s,t)-separator in Ĝij is at least 2 and

F = {{eij` , e
ji
` } | ` ∈ [m]} is the set of all minimum sized (s,t)-separators in Ĝij . J

I Lemma 5.3. For i, j ∈ [n] and i 6= j, consider the graph Ĝij = G′2[V (Eij)]. The minimum
(s,t)-separator in Ĝij has size 2. For ` ∈ [n], let F` = {{e, vij`} | e ∈ Eij` }. Then, F =
∪`∈[n]F` is the set of all minimum sized (s,t)-separators in Ĝij.

Proof. We start by showing that for any (s,t)-separator X ′ of size at most 2 in Ĝij , there
exists ` ∈ [n], e ∈ Eij` such that vij`, e ∈ X ′. Suppose not. Then there exists an (s,t)-
separator X, in Ĝij of size at most 2, such that for all ` ∈ [n], either vij` /∈ X or Eij` ∩X = ∅.
Since |X| ≤ 2, for every barrier block Kij

` , for ` ∈ [n+ 1], there exists p∗` ∈ {p
ij
` , q

ij
` , r

ij
` } \X

and p̄∗` ∈ {p̄
ij
` , q̄

ij
` , r̄

ij
` } \ X. For each ` ∈ [n], we now define a path P` as follows. If

vij` /∈ X then P` = p̄∗` , v
i
j`, p

∗
`+1, otherwise P` = p̄∗` , E

ij
` , p

∗
`+1, where the path is defined

with respect to the ordering of vertices of Eij` used in the construction of the edge selection
gadget. But then, P = s, p∗1, p̄

∗
1, P

ij
1 , p

∗
2, P

ij
2 , . . . , p

∗
nP

ij
n , p̄

∗
n+1, t is an (s,t)-path in Ĝij − X,
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contradicting the assumption that X is an (s,t)-separator in Ĝij . Furthermore, it follows
from the construction that for all ` ∈ [n], e ∈ Eij` , {vij`, e} is an (s,t)-separator in Ĝij . This
concludes the proof. J

I Lemma 5.4. (G,V1, V2, . . . , Vk) is a yes-instance of Multicolored Clique if and only
if (G′, s, t, k′, col′ : E(G′)→ 2{1,2}) is a yes-instance of Simultaneous OCT.

Proof. In the forward direction suppose that (G,V1, V2, . . . , Vk) is a yes-instance of Mul-
ticolored Clique and let X = {vi`i ∈ Vi | i ∈ [k]} be a set such that G[X] is a clique.
We note here that for i ∈ [k], vi`i is the `ith vertex in Vi. Let Y = {euv, evu | u, v ∈ X}
and X ′ = (∪i∈[k]V

i
`i

) ∪ Y . We will show that X ′ is a solution to Simultaneous Cut in
(G′, s, t, k′, col′ : E(G′)→ 2{1,2}). Note that |X ′| = k′ = k(k− 1) + 2

(
k
2
)
. Therefore, we only

need to show that G′1 −X ′ and G′2 −X ′ have no (s,t)-paths, respectively.
We first show that G′1−X ′ has no (s,t)-paths. Consider the set Z = {V (Si) \ {s, t} | i ∈

[k]} ∪ {Eij | i, j ∈ [k], i 6= j}. Observe that for any two distinct sets A,B ∈ Z, A ∩ B = ∅,
and for any a ∈ A and b ∈ B, (a, b) /∈ E(G′1). Hence any (s,t)-separator in G′1 is the union
of (s,t)-separators in G′1[A ∪ {s, t}], for A ∈ Z. But then from the construction of the set
X ′, Lemma 5.1 and Lemma 5.2 it follows that X ′ is an (s,t)-separator in G′1.

We will now show that G′2−X ′ has no (s,t)-paths. Consider the set Z ′ = {V (Eij)\{s, t} |
i, j ∈ [k], i 6= j}. For any two distinct sets A′, B′ ∈ Z ′, A′ ∩B′ = ∅, and for any a′ ∈ A′ and
b′ ∈ B′, (a′, b′) /∈ E(G′2). Hence any (s,t)-separator in G′2 is the union of (s,t)-separators in
G′2[A′ ∪ {s, t}], for A′ ∈ Z ′. But then from the construction of the set X ′ and Lemma 5.3 it
follows that X ′ is an (s,t)-separator in G′2. This concludes the proof in the forward direction.

In the reverse direction, let (G′, s, t, k′, col′ : E(G′) → 2{1,2}) be a yes-instance of Sim-
ultaneous OCT and X ′ be one of its solution. Since X ′ is a solution, therefore, G′1 −X ′
and G′2 − X ′ have no (s,t)-paths. Consider the set Z = {V (Si) \ {s, t} | i ∈ [k]} ∪ {Eij |
i, j ∈ [k], i 6= j}. Observe that for any two distinct sets A,B ∈ Z, A ∩ B = ∅, and for
any a ∈ A and b ∈ B, (a, b) /∈ E(G′1). Hence, any (s,t)-separator in G′1 is the union of
(s,t)-separator in G′1[A∪ {s, t}], for A ∈ Z. This together with Lemma 5.1, Lemma 5.2 and
the definition of k′ implies that for each A ∈ Z, we must pick a minimum sized separator
(s,t)-separator in G′1[A ∪ {s, t}]. Any minimum sized (s,t)-separator in G′1[V (Si)] must be-
long to Fv = {V i` | ` ∈ [n]}. We let X = {vi`i | i ∈ [k], V i`i ⊆ X ′}. We will show that X is a
solution to Multicolored Clique in (G,V1, V2, . . . , Vk). It is easy to see that |X∩Vi| = 1.
We need to show that G[X] is a clique. Consider vi`i , v

j
`j
∈ X, where i, j ∈ [k], i < j and

suppose (vi`i , v
j
`j

) /∈ E(G). Lemma 5.3 (together with construction of k′) implies that for
some e ∈ Eij`i , e ∈ X

′ and for some e′ ∈ Eji`j , e
′ ∈ X ′. Moreover, Lemma 5.3 implies that

{e, e′} ∈ F = {{eij` , e
ji
` } | ` ∈ [m]}. But this implies that (vi`i , v

j
`j

) ∈ E(G). This concludes
the proof. J

Theorem 5.5 follows from combining Lemma 5.4 and the W[1]-hardness of Multi-
colored Clique.

I Theorem 5.5. For all α ≥ 2, Simultaneous Cut is W[1]-hard when parameterized by
k. Here, α is the number of colors in the coloring function of the edge set.

5.2 From Simultaneous Cut to Simultaneous OCT
In this section we give a parameterized reduction from Simultaneous Cut to Simultan-
eous OCT. Roughly speaking, given an instance (G, s, t, k, col : E(G) → 2[α]) of Simul-
taneous Cut we create an instance (G′, k′, col′ : E(G′) → 2[α]) of Simultaneous OCT
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by subdividing edges in G and adding k + 1 vertex disjoint (s,t)-paths on 2 vertices. Fur-
thermore, we create k + 1 duplicates (also known as false twins) of s and t. The objective
behind these operations is the conversion of (s,t)-paths in G to odd-cycles in G′. Moreover,
all the odd cycles in G′ will be shown to correspond to an (s′, t′)-path (subdivided), where
s′ and t′ are false twins of s and t, respectively, along with one of the newly added paths
on 2 vertices. Along the way, we will also duplicate certain vertices k + 1 times simply to
ensure that a copy of these vertices always remains in the graph resulting from deleting a
set of at most k vertices. We now move to the formal description of the reduction.

Let (G, s, t, k, col : E(G) → 2[α]) be an instance of Simultaneous Cut. For technical
reasons we will assume that (s, t) /∈ E(G). Such an assumption is legitimate because oth-
erwise, either we have a trivial no-instance of Simultaneous Cut which is the case when
col((s, t)) 6= ∅ or we can delete the edge (s, t) which is the case when col((s, t)) = ∅. We
create an instance (G′, k′, col′ : E(G′) → 2[α]) of Simultaneous OCT as follows. Ini-
tially, V (G′) = V (G) and E(G′) = ∅. For each edge (u, v) ∈ E(G) we add a vertex euv
to V (G′), add the edges (u, euv), (v, euv) to E(G′), and set col′((u, euv)) = col((u, v)) and
col′((v, euv)) = col((u, v)). For i ∈ [k + 1], we add vertices wi, w′i to V (G′) and add the
edges (s, wi), (wi, w′i), (w′i, t) to E(G′). In addition, we set col′((s, wi)) = col′((wi, w′i)) =
col′((w′i, t)) = [α]. We create k chromatic false twins, i.e. false twins with the color sets on
edges duplicated appropriately, of vertices s and t respectively in G′ and let Sf = {si | i ∈
[k]} ∪ {s} and Tf = {ti | i ∈ [k]} ∪ {t}. Finally, we set k′ = k.

I Proposition 2. Let H be a graph containing a cycle C with an odd number of vertices.
Then H contains an induced cycle C ′ with an odd number of vertices.

In the following lemmata we establish some of the properties of the instance (G′, k′, col′ :
E(G′) → 2[α]) of Simultaneous OCT that will be helpful in establishing its equivalence
with the instance (G, s, t, k, col : E(G)→ 2[α]) of Simultaneous Cut. We let G′ to be the
graph constructed as described above from G. For i ∈ [α], by Gi we denote the graph G[Ei],
where Ei = {e ∈ E(G) | i ∈ col(e)}. Analogously, we define G′i, for i ∈ [α].

I Lemma 5.6. For i ∈ [α], let C be an induced cycle in G′i such that |V (C)| 6= 4. Then,
|V (C) ∩ Sf | ≤ 1 and |V (C) ∩ Tf | ≤ 1.

Proof. Consider an induced cycle C in G′i such that |V (C)| 6= 4. We will only argue
that |V (C) ∩ Sf | ≤ 1 and |V (C) ∩ Tf | ≤ 1 will follow from a symmetric argument. If C
contains a vertex from Sf , say s′, then C must contain at least 2 vertices from {wi, w′i |
i ∈ [k + 1]} ∪ {esv | v ∈ NGi(s)} since they are the only neighbors of s′ in G′. But then C
cannot contain any other vertex from Sf since vertices in Sf are chromatic false twins of s′
in G′ and |V (C)| 6= 4. This concludes the proof. J

I Lemma 5.7. For i ∈ [α], let C be an induced cycle in G′i such that V (C) ∩ {wi, w′i | i ∈
[k + 1]} = ∅. Then, C is a cycle with an even number of vertices.

Proof. Consider an induced cycle C in G′i such that |V (C)| ∩ {wi, w′i | i ∈ [k + 1]} = ∅. If
|V (C)| = 4 then the claim trivially holds. Otherwise, Lemma 5.6 implies that |V (C)∩Sf | ≤ 1
and |V (C) ∩ Tf | ≤ 1. Since vertices in Sf and Tf are chromatic false twins, we can find
a cycle C ′ with |V (C)| vertices by replacing vertex s′ ∈ V (C) ∩ Sf (if it exists) by s and
vertex t′ ∈ V (C) ∩ Sf (if it exists) by t. Recall that for X = (V (G′) \ (Sf ∪ Tf ∪ {wi, w′i |
i ∈ [k + 1]})) ∪ {s, t}, G′[X] is a graph obtained by subdivision of edges in G. But C ′ is a
cycle in G′i[X] and hence it follows that |V (C ′)| = |V (C)| is an even number. J
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I Lemma 5.8. For i ∈ [α], let C be an induced cycle in G′i such that |V (C)| 6= 4. Then
for ` ∈ [k + 1], w` ∈ V (C) if and only if w′` ∈ V (C). Furthermore, if |V (C)| 6= 6 then
|V (C) ∩ {wj | j ∈ [k + 1]}| ≤ 1.

Proof. For ` ∈ [k + 1], let C be an induced cycle in G′i such that w` ∈ V (C). Recall
that NG′

i
(w`) = Sf ∪ {w′`}. Therefore, C must contain two vertices from Sf ∪ {w′`}. From

Lemma 5.6 it follows that |V (C) ∩ Sf | ≤ 1. This implies that w′` ∈ V (C). An analogous
argument can be given for the reverse direction.

For the second part of the lemma, suppose there exists distinct `, `′ ∈ [k + 1] such that
w`, w`′ ∈ V (C). First part of the lemma implies that w′`, w′`′ ∈ V (C). But then C must
contain a vertex s′ ∈ Sf and a vertex t′ ∈ Tf as C must contain two neighbors of w` and
two neighbors of w′`. But s′ ∈ NG′i(w`′) and t

′ ∈ NG′
i
(w′`′). This contradicts the assumption

that C is an induced cycle such that |V (C)| 6= 6. J

I Lemma 5.9. (G, s, t, k, col : E(G) → 2[α]) is a yes-instance of Simultaneous Cut if
and only if (G′, k′, col′ : E(G′)→ 2[α]) is a yes-instance of Simultaneous OCT.

Proof. In the forward direction let (G, s, t, k, col : E(G) → 2[α]) be a yes-instance of Sim-
ultaneous Cut and S ⊆ V (G) \ {s, t} be one of its solutions. We will show that S is
a solution to the instance (G′, k′, col′ : E(G′) → 2[α]) of Simultaneous OCT. Suppose
not. Then, there is an odd cycle Ĉ in G′i − S, for some i ∈ [α]. Since G′i − S has an
odd-cycle Ĉ, Proposition 2 implies that G′i − S has an induced odd-cycle C. As C is an
odd-cycle, Lemma 5.7 and Lemma 5.8 imply that there exists a unique ` ∈ [k + 1] such
that w`, w′` ∈ V (C). But then C must contain a vertex in Sf and a vertex in Tf . This
together with Lemma 5.6 implies that there exists a unique s′ ∈ Sf and t′ ∈ Tf such that
s′, t′ ∈ V (C). Let P ′ be the path from s′ to t′ obtained from C by deleting w` and w′`. Since
V (P ′) ∩ (Sf \ {s′}) = ∅ and V (P ′) ∩ (Tf \ {t′}) = ∅ it must be that all the internal vertices
in P ′ are in X = V (G′)\ (Sf ∪Tf ∪{wj , w′j | j ∈ [k+ 1]}∪S). Recall that G′[X] is obtained
from G by subdividing edges in G. But then we can obtain an (s,t)-path in Gi − S from P ′

by replacing s′ by s, t′ by t and edges (u, euv)(euv, v) by (u, v) in G− S contradicting that
S is a solution to Simultaneous Cut.

In the reverse direction, let (G′, k′, col′ : E(G′) → 2[α]) be a yes-instance of Simultan-
eous OCT and S′ ⊆ V (G′) be a solution. Let Ŝ = S′ \ (Sf ∪Tf ∪{wi, w′i | i ∈ [k+ 1]}). We
obtain S from Ŝ by replacing each euv ∈ Ŝ (if any) by either of u or v. Here, in making the
choice we give preference to one that is not s nor t and since (s, t) /∈ E(G) such a choice al-
ways exists. We will show that S is a solution to the instance (G, s, t, k, col : E(G)→ 2[α]) of
Simultaneous Cut. Note that |S| ≤ k, therefore it is enough to show that for each i ∈ [α],
Gi−S has no (s,t)-path. Aiming for a contradiction, suppose for some i ∈ [α], Gi−S has an
(s,t)-path P . Since |S′| ≤ k, there exists j ∈ [k + 1] such that wj , w′j /∈ S′, s′ ∈ Sf \ S′ and
t′ ∈ Tf \ S′. Let P ′1 be the (s′,t′)-path in G′i obtained from P by replacing each edge (u, v)
by (u, euv) and (euv, v), replacing s by s′ and t by t′. Also, let P ′2 = s′, wj , w

′
j , t
′ be another

(s′,t′)-path in G′i. Recall that by construction, for each edge e ∈ E(P ′1)∪E(P ′2), i ∈ col′(e).
Furthermore, S′∩ (V (P ′1)∪V (P ′2)) = ∅, which follows from our construction of the paths P ′1
and P ′2. But then we have two (s′,t′)-paths P ′1 and P ′2 (internally vertex disjoint). Therefore,
we obtain a cycle C containing s′ and t′ with paths P ′1 and P ′2 between them. Notice that
C has an odd number of vertices since P ′2 has an even number of vertices and P ′1 has odd
number of vertices. This contradicts the fact that S′ is a solution to Simultaneous OCT,
as needed. J

As a consequence of the reduction presented above, we obtain the following theorem.
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I Theorem 5.10. For all α ≥ 2, Simultaneous OCT is W[1]-hard when parameterized
by k. Here, α is the number of colors in the coloring function of the edge set.

6 Conclusion

In light of Theorem 4.8, it is natural to ask whether one can improve the running time of our
algorithm for Colorful Multiway Cut. In particular, is it possible to solve the problem
in O?(kO(k)) time when the number of terminals is constant and the number of colors is at
most k? Another interesting question which remains open is whether the Simultaneous
FVS/OCT problem admits a (randomized) polynomial kernel. Finally, we would also like to
point out another interesting consequence of Theorem 5.10, i.e. the fact that Simultaneous
OCT is W[1]-hard when parameterized by k. If we replace minimal feedback vertex sets by
minimal odd cycle transversals in Lemma 2.3 then Theorem 5.10 implies that such a lemma
cannot be true.

Acknowledgements: The authors are thankful to Saket Saurabh for helpful discussions.
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