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Abstract

A vertex-subset graph problem Q defines which subsets of the vertices of an

input graph are feasible solutions. A reconfiguration variant of a vertex-subset

problem asks, given two feasible solutions of size k, whether it is possible to

transform one into the other by a sequence of vertex additions/deletions such

that each intermediate set remains a feasible solution of size bounded by k. We

study reconfiguration variants of two classical vertex-subset problems, namely

Independent Set and Dominating Set. We denote the former by ISR and

the latter by DSR. Both ISR and DSR are PSPACE-complete on graphs of

bounded bandwidth and W[1]-hard parameterized by k on general graphs. We

show that ISR is fixed-parameter tractable parameterized by k when the input

graph is of bounded degeneracy or nowhere dense. For DSR, we show the

problem fixed-parameter tractable parameterized by k when the input graph

does not contain large bicliques.
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1. Introduction

Given an n-vertex graph G and two vertices s and t in G, determining whether

there exists a path and computing the length of the shortest path between s

and t are two of the most fundamental graph problems. In the classical battle

of P versus NP or “easy” versus “hard”, both of these problems are on the easy5

side. That is, they can be solved in poly(n) time, where poly is any polynomial

function. But what if our input consisted of a 2n-vertex graph? Of course, we

can no longer assume G to be part of the input, as reading the input alone

requires more than poly(n) time. Instead, we are given an oracle encoded using

poly(n) bits and that can, in constant or poly(n) time, answer queries of the10

form “is u a vertex in G” or “is there an edge between u and v?”. Given such

an oracle and two vertices of the 2n-vertex graph, can we still determine if there

is a path or compute the length of the shortest path between s and t in poly(n)

time?

This seemingly artificial question is in fact quite natural and appears in many15

practical and theoretical problems. In particular, these are exactly the types of

questions asked under the reconfiguration framework, the main subject of this

work. Under the reconfiguration framework, instead of finding a feasible solution

to some instance I of a search problem Q, we are interested in structural and

algorithmic questions related to the solution space of Q. Naturally, given some20

adjacency relation A defined over feasible solutions of Q, the solution space can

be represented using a graph RQ(I), called the reconfiguration graph. RQ(I)

contains one node for each feasible solution of Q on instance I and two nodes

share an edge whenever their corresponding solutions are adjacent under A.

An edge in RQ(I) corresponds to a reconfiguration step, a walk in RQ(I) is a25

sequence of such steps, a reconfiguration sequence.

Studying problems related to reconfiguration graphs has received consid-
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erable attention in the literature [1, 2, 3, 4, 5, 6], the most popular prob-

lem being to determine whether there exists a reconfiguration sequence be-

tween two given feasible solutions/configurations. In many cases, this problem30

was shown PSPACE-hard in general, although some polynomial-time solvable

restricted cases have been identified. For PSPACE-hard cases, it is not surpris-

ing that shortest paths between solutions can have exponential length. More

surprising is that for most known polynomial-time solvable cases the diameter

of the reconfiguration graph has been shown to be polynomial. Some of the35

problems that have been studied under the reconfiguration framework include

Independent Set [7], Shortest Path [8], Coloring [9], Boolean Satis-

fiability [2], and Flip Distance [1, 10]. We refer the reader to the survey

by van den Heuvel [11] for a detailed overview of reconfiguration problems and

their applications. A systematic study of the parameterized complexity [12] of40

reconfiguration problems was initiated by Mouawad et al. [6]; various problems

were identified where the problem was not only NP-hard (or PSPACE-hard), but

also W-hard under various parameterizations. The reader is referred to [12] for

more on parameterized complexity and kernelization.

Overview of our results. In this work, we focus on reconfiguration variants45

of the Independent Set (IS) and Dominating Set (DS) problems. Given

two independent sets Is and It of a graph G such that |Is| = |It| = k, the In-

dependent Set Reconfiguration (ISR) problem asks whether there exists

a sequence of independents sets σ = 〈I0, I1, . . . , I`〉, for some `, such that:

(1) I0 = Is and I` = It,50

(2) Ii is an independent set of G for all 0 ≤ i ≤ `,

(3) |{Ii \ Ii+1} ∪ {Ii+1 \ Ii}| = 1 for all 0 ≤ i < `, and

(4) k − 1 ≤ |Ii| ≤ k for all 0 ≤ i ≤ `.

Alternatively, given a graph G and integer k, the Ris(G, k−1, k) reconfiguration

graph has a node for each independent set of G of size k or k− 1 and two nodes55
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are adjacent in Ris(G, k − 1, k) whenever the corresponding independent sets

can be obtained from one another by either the addition or the deletion of a

single vertex. The reconfiguration graph Rds(G, k, k+ 1) is defined similarly for

dominating sets. Hence, ISR and DSR can be formally stated as follows:

Independent Set Reconfiguration (ISR)

Input: Graph G, integer k > 0, and two independent sets Is and It of size k

Question: Is there a path from Is to It in Ris(G, k − 1, k)?

60

Dominating Set Reconfiguration (DSR)

Input: Graph G, integer k > 0, and two dominating sets Ds and Dt of size k

Question: Is there a path from Ds to Dt in Rds(G, k, k + 1)?

Note that since we only allow independent sets of size k and k − 1 the

ISR problem is equivalent to reconfiguration under the token jumping model

considered by Ito et al. [13, 14]. ISR is known to be PSPACE-complete on graphs

of bounded bandwidth [15] (hence pathwidth and treewidth) and W[1]-hard65

when parameterized by k on general graphs [14]. On the positive side, the

problem was shown fixed-parameter tractable, with parameter k, for graphs of

bounded degree, planar graphs, and graphs excluding K3,d as a (not necessarily

induced) subgraph, for any constant d [13, 14]. We push this boundary further

by showing that the problem remains fixed-parameter tractable for graphs of70

bounded degeneracy and nowhere dense graphs. As a corollary, we answer

positively the question concerning the parameterized complexity of the problem

parameterized by k on graphs of bounded treewidth.

For DSR, we show that the problem is fixed-parameter tractable, with pa-

rameter k, for graphs excluding Kd,d as a (not necessarily induced) subgraph,75

for any constant d. Note that this class of graphs includes both nowhere dense

and bounded degeneracy graphs and is the “largest” class on which the Domi-

nating Set problem is known to be in FPT [16, 17].

Our main open question, which was recently answered positively by Bous-
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quet et al. [18], is whether ISR remains fixed-parameter tractable on graphs80

excluding Kd,d as a subgraph. Also closely related is the work of Siebertz [19]

who showed that for the distance-r variants of Independent Set and Dom-

inating Set the reconfiguration problems become W[1]-hard on somewhere

dense graphs. Specifically, if a class of graphs C is somewhere dense and closed

under taking subgraphs, then for some value of r ≥ 1 the reconfiguration prob-85

lems are W[1]-hard. It remains to be seen whether we can adapt our results for

ISR to find shortest reconfiguration sequences. Our algorithm for DSR does in

fact guarantee shortest reconfiguration sequences but, as we shall see, the same

does not hold for either of the two ISR algorithms.

2. Preliminaries90

For an in-depth review of general graph theoretic definitions we refer the reader

to the book of Diestel [20]. Unless otherwise stated, we assume that each graph

G is a simple, undirected graph with vertex set V (G) and edge set E(G), where

|V (G)| = n and |E(G)| = m. The open neighborhood, or simply neighborhood,

of a vertex v is denoted by NG(v) = {u | uv ∈ E(G)}, the closed neighborhood95

by NG[v] = NG(v) ∪ {v}. Similarly, for a set of vertices S ⊆ V (G), we define

NG(S) = {v | uv ∈ E(G), u ∈ S, v 6∈ S} and NG[S] = NG(S) ∪ S. The degree

of a vertex is |NG(v)|. We drop the subscript G when clear from context. A

subgraph of G is a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The

induced subgraph of G with respect to S ⊆ V (G) is denoted by G[S]; G[S] has100

vertex set S and edge set E(G[S]) = {uv ∈ E(G) | u, v ∈ S}. For r ≥ 0, the

r-neighborhood of a vertex v ∈ V (G) is defined as Nr
G[v] = {u | distG(u, v) ≤ r},

where distG(u, v) is the length of a shortest uv-path in G.

Contracting an edge uv of G results in a new graph H in which the vertices

u and v are deleted and replaced by a new vertex w that is adjacent to NG(u)∪105

NG(v) \ {u, v}. If a graph H can be obtained from G by repeatedly contracting

edges, H is said to be a contraction of G. If H is a subgraph of a contraction

of G, then H is said to be a minor of G, denoted by H �m G. An equivalent
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characterization of minors states that H is a minor of G if there is a map that

associates to each vertex v of H a non-empty connected subgraph Gv of G such110

that Gu and Gv are disjoint for u 6= v and whenever there is an edge between

u and v in H there is an edge in G between some node in Gu and some node

in Gv. The subgraphs Gv are called branch sets. H is a minor at depth r of G,

H �r
m G, if H is a minor of G which is witnessed by a collection of branch sets

{Gv | v ∈ V (H)}, each of which induces a graph of radius at most r. That is,115

for each v ∈ V (H), there is a w ∈ V (Gv) such that V (Gv) ⊆ Nr
Gv

[w].

Sparse graph classes. We define the three main classes we consider.

Definition 1 ([21, 22]). A class of graphs C is said to be nowhere dense if

for every d ≥ 0 there exists a graph Hd such that Hd 6�d
m G for all G ∈ C.

Otherwise, C is said to be somewhere dense. C is effectively nowhere dense if120

the map d 7→ Hd is computable.

Nowhere dense classes of graphs were introduced by Nešetřil and Ossona de

Mendez [21, 22] and “nowhere density” turns out to be a very robust concept

with several natural characterizations and applications [23, 24, 25]. We use one

such characterization in Section 3.2. It follows from the definition that planar125

graphs, graphs of bounded treewidth, graphs of bounded degree, H-minor-free

graphs, and H-topological-minor-free graphs are nowhere dense [21, 22]. As

in the work of Dawar and Kreutzer [26], we are only interested in effectively

nowhere dense classes; all natural nowhere dense classes are effectively nowhere

dense, but it is possible to construct artificial classes that are nowhere dense,130

but not effectively so.

Definition 2. A class of graphs C is said to be d-degenerate if every induced

subgraph of any graph G ∈ C has a vertex of degree at most d.

Graphs of bounded degeneracy and nowhere dense graphs are incompara-

ble [27]. In other words, graphs of bounded degeneracy are somewhere dense.135

Degeneracy is a hereditary property, hence an induced subgraph of a d-degenerate
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Figure 1: Sparse graph classes [21, 22]. Arrows indicate inclusion.

graph is also d-degenerate. It is well-known that graphs of treewidth at most d

are also d-degenerate. Moreover a d-degenerate graph cannot contain Kd+1,d+1

as a subgraph, which brings us to the class of biclique-free graphs. The rela-

tionship between bounded degeneracy, nowhere dense, and Kd,d-free graphs was140

shown by Philip et al. and Telle and Villanger [16, 17].

Definition 3. A class of graphs C is said to be d-biclique-free, for some d > 0,

if Kd,d is not a subgraph of any G ∈ C, and it is said to be biclique-free if it is

d-biclique-free for some d.

Proposition 1 ([16, 17]). Any degenerate or nowhere dense class of graphs is145

biclique-free, but not vice-versa.

Reconfiguration. For any vertex-subset problem Q, graph G, and positive

integer k, we consider the reconfiguration graph RQ(G, k, k + 1) when Q is a

minimization problem (e.g. Dominating Set) and the reconfiguration graph

RQ(G, k − 1, k) when Q is a maximization problem (e.g. Independent Set).150

A set S ⊆ V (G) has a corresponding node in V (RQ(G, rl, ru)), rl ∈ {k − 1, k}

and ru ∈ {k, k+1}, if and only if S is a feasible solution for Q and rl ≤ |S| ≤ ru.

We refer to vertices in G using lower case letters (e.g. u, v) and to the nodes in

RQ(G, rl, ru), and by extension their associated feasible solutions, using upper
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case letters (e.g. A,B). If A,B ∈ V (RQ(G, rl, ru)) then there exists an edge155

between A and B in RQ(G, rl, ru) if and only if there exists a vertex u ∈ V (G)

such that {A\B}∪{B \A} = {u}. Equivalently, for A∆B = {A\B}∪{B \A}

the symmetric difference of A and B, A and B share an edge in RQ(G, rl, ru) if

and only if |A∆B| = 1.

We write A ↔ B if there exists a path in RQ(G, rl, ru), a reconfiguration160

sequence, joining A and B. Any reconfiguration sequence from source feasible

solution Ss to target feasible solution St 6= Ss, which we sometimes denote by

σ = 〈S0, S1, . . . , S`〉, for some `, has the following properties:

- S0 = Ss and S` = St,

- Si is a feasible solution for Q for all 0 ≤ i ≤ `,165

- |Si∆Si+1| = 1 for all 0 ≤ i < `, and

- rl ≤ |Si| ≤ ru for all 0 ≤ i ≤ `.

We denote the length of σ by |σ| = `. For 0 < i ≤ |σ|, we say a vertex v ∈

V (G) is added at step/index/position/slot i if v 6∈ Si−1 and v ∈ Si. Similarly,

a vertex v is removed at step/index/position/slot i if v ∈ Si−1 and v 6∈ Si. A170

vertex v ∈ V (G) is touched in the course of a reconfiguration sequence if v is

either added or removed at least once; it is untouched otherwise. A vertex is

removable (addable) from feasible solution S if S \{v} (S∪{v}) is also a feasible

solution for Q. For any pair of consecutive solutions (Si−1, Si) in σ, we say Si

(Si−1) is the successor (predecessor) of Si−1 (Si). A reconfiguration sequence175

σ′ = 〈S0, S1, . . . , S`′〉 is a prefix of σ = 〈S0, S1, . . . , S`〉 if `′ < `.

We adapt the concept of irrelevant vertices from parameterized complexity

to introduce the notions of irrelevant and strongly irrelevant vertices for recon-

figuration. Since these notions apply to almost any reconfiguration problem, we

give general definitions.180

Definition 4. For any vertex-subset problem Q, n-vertex graph G, positive

integers rl and ru, and Ss, St ∈ V (RQ(G, rl, ru)) such that there exists a recon-

figuration sequence from Ss to St in RQ(G, rl, ru), we say a vertex v ∈ V (G) is
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irrelevant (with respect to Ss and St) if and only if v 6∈ Ss ∪ St and there exists

a reconfiguration sequence from Ss to St in RQ(G, rl, ru) which does not touch185

v. We say v is strongly irrelevant (with respect to Ss and St) if it is irrelevant

and the length of a shortest reconfiguration sequence from Ss to St which does

not touch v is no greater than the length of a shortest reconfiguration sequence

which does (if the latter sequence exists).

At a high level, it is enough to ignore irrelevant vertices when trying to find190

any reconfiguration sequence between two feasible solutions, but only strongly

irrelevant vertices can be ignored if we wish to find a shortest reconfiguration

sequence. As we shall see, our kernelization algorithm for DSR does in fact find

strongly irrelevant vertices and can therefore be used to find shortest reconfig-

uration sequences. For ISR, we are only able to find irrelevant vertices and195

reconfiguration sequences are not guaranteed to be of shortest possible length.

3. Independent set reconfiguration

3.1. Graphs of bounded degeneracy

To show that the ISR problem is fixed-parameter tractable on d-degenerate

graphs, for some integer d, we will proceed in two stages. In the first stage, we200

will show, for an instance (G, Is, It, k), that as long as the number of low-degree

vertices in G is “large enough” we can find an irrelevant vertex (Definition 4).

Once the number of low-degree vertices is bounded, a simple counting argument

(Proposition 2) shows that the size of the remaining graph is also bounded and

hence we can solve the instance by exhaustive enumeration.205

Proposition 2. Let G be an n-vertex d-degenerate graph, S1 ⊆ V (G) be the

set of vertices of degree at most 2d, and S2 = V (G) \ S1. If |S1| < s, then

|V (G)| ≤ (2d+ 1)s.

Proof. The number of edges in a d-degenerate graph is at most dn [28] and

hence its average degree is at most 2d. If |V (G)| = (2d+ 1)s+ c, for c ≥ 1, then
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|S2| = |V (G) \S1| > 2ds+ c,
∑

v∈S2
|NG(v)| > (2ds+ c)(2d+ 1), and we obtain

the following contradiction:∑
v∈S1

|NG(v)|+
∑

v∈S2
|NG(v)|

|V (G)|
>

(2ds+ c)(2d+ 1)

(2d+ 1)s+ c

=
4d2s+ 2ds+ 2dc+ c

(2d+ 1)s+ c

=
2d(2ds+ s+ c) + c

2ds+ s+ c
> 2d.

To find irrelevant vertices, we make use of the following classical result of210

Erdős and Rado [29], also known in the literature as the sunflower lemma. We

first define the terminology used in the statement of the theorem. A sunflower

with k petals and a core Y is a collection of sets S1, . . . , Sk such that Si∩Sj = Y

for all i 6= j; the sets Si \ Y are petals and we require all of them to be non-

empty. Note that a family of pairwise disjoint sets is a sunflower (with an empty215

core).

Theorem 1 (Sunflower Lemma [29]). Let A be a family of sets (without dupli-

cates) over a universe U, such that each set in A has cardinality at most d. If

|A| > d!(k−1)d, then A contains a sunflower with k petals and such a sunflower

can be computed in time polynomial in |A|, |U|, and k.220

Lemma 1. Let (G, Is, It, k) be an instance of ISR and let B be the set of vertices

in V (G) \ {Is ∪ It} of degree at most 2d. If |B| > (2d + 1)!(2k − 1)2d+1, then

there exists an irrelevant vertex v ∈ V (G) \ {Is ∪ It} such that (G, Is, It, k) is a

positive instance if and only if (G′, Is, It, k) is a positive instance, where G′ is

obtained by deleting v and all edges incident to v.225

Proof. We assume, without loss of generality, that there are no two vertices u

and v in V (G) \ {Is ∪ It} such that NG[u] = NG[v], as we can safely delete one

of them from the input graph otherwise, i.e. uv ∈ E(G) and one of the two is

(strongly) irrelevant. Let b1, b2, . . ., b|B| denote the vertices in B and let A =

{NG[b1], NG[b2], . . ., NG[b|B|]} denote the family of the closed neighborhoods230
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of each vertex in B and set U =
⋃

b∈B N [b]. Since |B| is greater than (2d +

1)!(2k − 1)2d+1, we know from Theorem 1 that A contains a sunflower with 2k

petals and such a sunflower can be computed in time polynomial in |A| and k.

Let vir be a vertex whose closed neighborhood is one of those 2k petals. We

claim that vir is irrelevant and can therefore be deleted from G to obtain G′.235

To see why, consider any reconfiguration sequence σ = 〈Is = I0, I1, . . . , It =

I`〉 from Is to It in Ris(G, k − 1, k) that touches vir. Since vir 6∈ Is ∪ It, we let

p, 0 < p < `, be the first index in σ at which vir is added, i.e. vir ∈ Ip and

vir 6∈ Ii for all i < p. Moreover, we let q + 1, p < q + 1 ≤ ` be the first index

after p at which vir is removed, i.e. vir ∈ Iq and vir 6∈ Iq+1. We will consider240

the subsequence σs = 〈Ip, . . . , Iq〉 and show how to suitably modify it so that it

does not touch vir. Applying the same procedure to every such subsequence in

σ suffices to prove the lemma.

Since the sunflower constructed to obtain vir has 2k petals and the size

of any independent set in σ (or any reconfiguration sequence in general) is at245

most k, there must exist another free vertex vfr whose closed neighborhood

corresponds to one of the remaining 2k − 1 petals which we can add at index

p instead of vir, i.e. vfr 6∈ NG[Ip]. We say vfr represents vir. Assume that no

such vertex exists. Then we know that either some vertex in the core of the

sunflower is in Ip contradicting the fact that we are adding vir, or every petal250

of the sunflower contains a vertex in Ip, which is not possible since the size of

any independent set is at most k and the number of petals is larger. Hence, we

first modify the subsequence σs by adding vfr instead of vir. Formally, we have

σ′s = 〈(Ip \ {vir}) ∪ {vfr}, . . . , (Iq \ {vir}) ∪ {vfr}〉.

To be able to replace σs by σ′s in σ and obtain a reconfiguration sequence255

from Is to It, then all of the following conditions must hold:

(1) |(Iq \ {vir}) ∪ {vfr}| = k.

(2) (Ii \ {vir}) ∪ {vfr} is an independent set of G for all p ≤ i ≤ q,

(3) |((Ii \ {vir}) ∪ {vfr})∆((Ii+1 \ {vir}) ∪ {vfr})| = 1 for all p ≤ i < q, and
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(4) k − 1 ≤ |(Ii \ {vir}) ∪ {vfr}| ≤ k for all p ≤ i ≤ q.260

It is not hard to see that if there exists no i, p < i ≤ q, such that σ′s adds a

vertex in N [vfr] at position i, then all four conditions hold. If there exists such

a position, we will modify σ′s into yet another subsequence σ′′s by finding a new

vertex to represent vir. The length of σ′′s will be two greater than that of σ′s.

We let i, p < i ≤ q, be the first position in σ′s at which a vertex in u ∈ N [vfr]265

(possibly equal to vfr) is added (hence |Ii−1| = k−1). Using the same arguments

discussed to find vfr, and since we constructed a sunflower with 2k petals, we

can find another vertex v′fr such that N [vfr] ∩ ((Ii−1 \ {vir}) ∪ {vfr}) = ∅.

This new vertex will represent vir instead of vfr. We construct σ′′s from σ′s as

follows: σ′′s = 〈(Ip \ {vir}) ∪ {vfr}, . . . , (Ii−1 \ {vir}) ∪ {vfr}, (Ii−1 \ {vir}) ∪270

{vfr}∪{v′fr}, (Ii−1 \ {vir})∪{v′fr}, (Ii \ {vir})∪{v′fr}, . . . , (Iq \ {vir})∪{v′fr}〉.

If σ′′s now satisfies all four conditions then we are done. Otherwise, we repeat

the same process (at most q − p times) until we reach such a subsequence.

Theorem 2. ISR on d-degenerate graphs is fixed-parameter tractable param-

eterized by k + d. Moreover, when d is a fixed constant, ISR restricted to275

d-degenerate graphs admits a polynomial kernel when parameterized by k.

Proof. For an instance (G, Is, It, k) of ISR, we know from Lemma 1 that as long

as V (G)\{Is∪It} contains more than (2d+1)!(2k−1)2d+1 vertices of degree at

most 2d we can find an irrelevant vertex and reduce the size of the graph. After

exhaustively reducing the graph to obtain G′, we know that G′[V (G′)\{Is∪It}],280

which is also d-degenerate, has at most (2d+ 1)!(2k − 1)2d+1 vertices of degree

at most 2d. Hence, applying Proposition 2, we know that |V (G′) \ {Is ∪ It}| ≤

(2d+ 1)(2d+ 1)!(2k− 1)2d+1 and |V (G′)| ≤ (2d+ 1)(2d+ 1)!(2k− 1)2d+1 + 2k.

When d is a fixed constant, we get the claimed polynomial kernel.

3.2. Nowhere dense graphs285

Nešetřil and Ossona de Mendez [30] showed an interesting relationship between

nowhere dense classes and a property of classes of structures introduced by
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Dawar [31] called quasi-wideness. We will use quasi-wideness and show a rather

interesting relationship between ISR on graphs of bounded degeneracy and

nowhere dense graphs. That is, our algorithm for nowhere dense graphs will290

closely mimic the previous algorithm in the following sense. Instead of using

the sunflower lemma to find a large sunflower, we will use quasi-wideness to

find a “large enough almost sunflower” with an initially “unknown” core and

then use structural properties of the graph to find this core and complete the

sunflower. We first state some of the results that we need. Given a graph G, a295

set S ⊆ V (G) is called r-scattered if Nr
G(u)∩Nr

G(v) = ∅ for all distinct u, v ∈ S.

Proposition 3. Let G be a graph and let S = {s1, s2, ..., sk} ⊆ V (G) be a 1-

scattered set of size k in G. Then the closed neighborhoods of the vertices in S

form a sunflower with k petals and an empty core.

Definition 5 ([26, 30]). A class C of graphs is uniformly quasi-wide with margin300

sC : N → N and NC : N × N → N if for all r, k ∈ N, if G ∈ C and W ⊆ V (G)

with |W | > NC(r, k), then there is a set S ⊆ W with |S| < sC(r), such that

W contains an r-scattered set of size at least k in G[V (G) \ S]. C is effectively

uniformly quasi-wide if sC(r) and NC(r, k) are computable.

Theorem 3 ([26]). A class C of graphs is effectively nowhere dense if and only305

if C is effectively uniformly quasi-wide.

Theorem 4 ([26]). Let C be an effectively nowhere dense class of graphs and

h be the computable function such that Kh(r) 6�r
m G for all G ∈ C. Let G be

an n-vertex graph in C, r, k ∈ N, and W ⊆ V (G) with |W | ≥ N(h(r), r, k),

for some computable function N . Then in O(n2) time, we can compute a set310

B ⊆ V (G), |B| ≤ h(r) − 2, and a set A ⊆ W such that |A| ≥ k and A is an

r-scattered set in G[V (G) \B].

Lemma 2. Let C be an effectively nowhere dense class of graphs and h be the

computable function such that Kh(r) 6�r
m G for all G ∈ C. Let (G, Is, It, k) be

an instance of ISR where G ∈ C and let R be the set of vertices in V (G) \315

{Is ∪ It}. Moreover, let P = {P1, P2, . . .} be a family of sets which partitions
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R such that for any two distinct vertices u, v ∈ R, u, v ∈ Pi if and only if

NG(u) ∩ {Is ∪ It} = NG(v) ∩ {Is ∪ It}. If there exists a set Pi ∈ P such that

|Pi| > N(h(2), 2, 2h(2)+1k), for some computable function N , then there exists

an irrelevant vertex v ∈ V (G) \ {Is ∪ It} such that (G, Is, It, k) is a positive320

instance if and only if (G′, Is, It, k) is a positive instance, where G′ is obtained

from G by deleting v and all edges incident to v.

Proof. By construction, we know that the family P contains at most 4k sets, as

we partition R based on their neighborhoods in Is ∪ It. Note that it is possible

that some vertices in R have no neighbors in Is ∪ It and such vertices (if they325

exist) will therefore belong to the same set in P.

Assume that there exists a P ∈ P such that |P | > N(h(2), 2, 2h(2)+1k).

Consider the graph G[R]. By Theorem 4, we can, in O(|R|2) time, compute a

set B ⊆ R, |B| ≤ h(2) − 2, and a set A ⊆ P such that |A| ≥ 2h(2)+1k and A

is a 1-scattered set in G[R \ B]. Now let P′ = {P ′1, P ′2, . . .} be a family of sets330

which partitions A such that for any two distinct vertices u, v ∈ A, u, v ∈ P ′i if

and only if NG(u) ∩ B = NG(v) ∩ B. Since |A| ≥ 2h(2)+1k and |P′| ≤ 2h(2), we

know that at least one set in P′ will contain at least 2k vertices of A. Denote

these 2k vertices by A′. All vertices in A′ have the same neighborhood in

B and the same neighborhood in Is ∪ It (as all vertices in A′ belonged to335

the same set P ∈ P). Moreover, A′ is a 1-scattered set in G[R \ B]. Hence,

the sets {NG[a′1], NG[a′2], . . . , NG[a′2k]}, i.e. the closed neighborhoods of the

vertices in A′, form a sunflower with 2k petals (Proposition 3); the core of this

sunflower is contained in B∪ Is∪ It. Using the same arguments as we did in the

proof of Lemma 1, we can show that there exists at least one irrelevant vertex340

v ∈ V (G) \ {B ∪ Is ∪ It}.

Theorem 5. ISR restricted to any effectively nowhere dense class C of graphs

is fixed-parameter tractable parameterized by k. Moreover, for a fixed effectively

nowhere dense class of graphs C, ISR restricted to C admits a polynomial kernel

when parameterized by k.345

Proof. If after partitioning V (G)\{Is∪It} into at most 4k sets the size of every
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set P ∈ P is bounded by N(h(2), 2, 2h(2)+1k), then we can solve the problem by

exhaustive enumeration, as |V (G)| ≤ 2k + 4kN(h(2), 2, 2h(2)+1k). Otherwise,

we can apply Lemma 2 and reduce the size of the graph in polynomial time.

In order to obtain the claimed polynomial kernel, we need to invoke the350

work of Gajarský et al. [32] who showed that the number of equivalence classes

obtained after partitioning V (G) \ {Is ∪ It} is polynomial in k, for a fixed C.

Moreover, Kreutzer et al. [24] showed that N(h(2), 2, 2h(2)+1k) is bounded by a

polynomial in k.

4. Dominating set reconfiguration355

4.1. Graphs excluding Kd,d as a subgraph

The parameterized complexity of the Dominating Set problem (parameterized

by k the solution size) on various classes of graphs has been studied extensively

in the literature; the main goal has been to push the tractability frontier as

far as possible. The problem was shown fixed-parameter tractable on nowhere360

dense graphs by Dawar and Kreutzer [26], on degenerate graphs by Alon and

Gutner [33], and on Kd,d-free graphs by Philip et al. [16] and Telle and Vil-

langer [17]. Figure 1 illustrates the inclusion relationship among these classes of

graphs, which all fall under the category of sparse graphs. Our fixed-parameter

tractable algorithm heavily relies on many of these earlier results. We combine365

several of the ideas introduced in [16, 17, 26, 33, 34] and, as a byproduct, are

able to simplify the proofs of some of the results presented by Philip et al. [16].

Recall that the class of Kd,d-free graphs includes all those other graph classes

(in particular nowhere dense and degenerate graphs). Interestingly, Theorem 6

implies that the diameter of the reconfiguration graph Rds(G, k, k+ 1) (or of its370

connected components), for G in any of the aforementioned classes, is bounded

above by f(k, c). Here f is a computable function and c is constant which de-

pends on the graph class at hand. We start with some definitions and needed

lemmas.
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Definition 6. A bipartite graph G with bipartition (A,B) is B-twinless if there375

are no vertices u, v ∈ B such that N(u) = N(v).

Lemma 3. If G is a bipartite graph with bipartition (A,B) such that |A| ≥

2(d−1), G is B-twinless, and G excludes Kd,d as a subgraph, then |B| ≤ 2d|A|d.

Proof. We partition the vertices of A as follows. We let F≤d−1 = {X ⊆ A |

|X| ≤ d − 1} denote all subsets of A of size at most d − 1. Similarly, we let380

Fd = {Y ⊆ A | |Y | = d} denote all subsets of A of size exactly d. Intuitively,

F≤d−1 will “capture” all vertices of B of degree at most d−1 and Fd will capture

all vertices of B of degree at least d. For X ∈ F≤d−1 and Y ∈ Fd, we define

B(X) = {v ∈ B | X = N(v)} and B(Y ) = {v ∈ B | Y ⊆ N(v)}, respectively.

Since G is B-twinless, the size of B(X), X ∈ F≤d−1, is always at most 1.

Moreover, since G excludes Kd,d as a subgraph, the size of B(Y ), Y ∈ Fd, is at

most d− 1. Putting it all together, we know that when |A| ≥ 2(d− 1) we have

|B| ≤
∑

X∈F≤d−1

|B(X)|+
∑
Y ∈Fd

|B(Y )|

≤ (d− 1)

(
|A|
d− 1

)
+ (d− 1)

(
|A|
d

)
≤ 2d|A|d.

385

Definition 7 ([34]). Given a graph G, the k-domination core of G is a set

C ⊆ V (G) such that any set D ⊆ V (G) of size at most k is a dominating set of

G if and only if D dominates C, i.e. D is a dominating set of G if and only if

C ⊆ NG[D].

Lemma 4. If G is a graph which excludes Kd,d as a subgraph and G has a390

dominating set of size at most k then the size of the k-domination core C of G

is at most 2dk2d and C can be computed in O∗(dkd) time.

Proof. To compute the k-domination core of a graph G excluding Kd,d as a

subgraph, we will consider the Red-Blue Dominating Set formulation of the
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Dominating Set problem. That is, given a graph G with V (G) = {v1, . . . , vn},395

we first compute a bipartite graph G′ with bipartition (B,R), where B =

{b1, . . . bn}, R = {r1, . . . rn}, and E(G′) = {birj | i = j ∨ vivj ∈ E(G)}. We

refer to vertices in B as blue vertices and to vertices in R as red vertices. A

subset D′ ⊆ R is a red-blue dominating set of G′ if N(D′) = B. It is not

hard to see that if G excludes Kd,d as a subgraph then G′ excludes Kd′,d′ as400

a subgraph, d′ = 2d. Moreover, D′ = {ri1 , . . . , rik}, 1 ≤ i1, . . . , ik ≤ n, is a

red-blue dominating set of G′ (of size k) if and only if D = {vi1 , . . . , vik} is a

dominating set of G (of size k). Hence, in order to prove the lemma, it suffices

to show how to reduce the size of B so that it contains at most d′kd
′

vertices;

those vertices will correspond to the k-domination core of G. To that end, we405

need the following claim.

Claim 1. Let G′ be as described above. If there exists a vertex u ∈ R such that

|N(u)| ≥ d′kd′−1, then in time polynomial in n we can find a set S ⊆ R of size

at most d′ − 1 such that every red-blue dominating set of size at most k of G′

intersects S.410

Proof. Suppose that there exists u ∈ R such that |N(u)| ≥ d′kd
′−1. Let S =

{u1, u2, . . . , up} ⊆ R be a maximal set such that for all ` ≤ p we have

⋂̀
x=1

N(ux) ≥ d′kd
′−`.

Observe that p ≤ d′ − 1, else it would imply the existence of Kd′,d′ in G′.

We claim that every red-blue dominating set D′ of size at most k of G′

intersects S. Let I =
⋂p

x=1N(ux). We know that |I| ≥ d′kd′−p. Also, for every415

vertex w ∈ R \ S, we have that |N(w) ∩ I| < d′kd
′−p−1. Thus if D′ ∩ S = ∅,

then k vertices cannot dominate the vertices in I. This implies that D′∩S 6= ∅.

Moreover, we can find a set S in polynomial time by greedily selecting vertices

(of high degree that satisfy the required condition).

We will bound the size of B using the following reduction rule:420
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(A) If there exists a vertex u ∈ R such that |N(u)| ≥ d′kd
′−1 then we let

S = {u1, . . . , up} be a set returned by Claim 1 and let I =
⋂

x∈S N(ux).

We pick a vertex w ∈ I and remove all vertices of I from B except w. We

also remove all edges incident to w except edges from w to S.

Claim 2. Reduction Rule A is sound. In other words, W ⊆ R is a red-blue425

dominating set of size at most k of G′ if and only if W is a red-blue dominating

set of size at most k of G′′, where G′′ is the graph with bipartition (B′ = (B \

I) ∪ {w}, R′ = R) obtained after a single application of the rule.

Proof. To prove the claim, we consider the graph G′′ with bipartition (B′, R′)

obtained after a single application of the rule, i.e. we have B′ = (B \ I) ∪ {w}430

and R′ = R. When |S| = 1, by Claim 1 we know that w is part of every red-blue

dominating set of size at most k. Thus, W is a red-blue dominating set of size

at most k of G′′ if and only if W is a red-blue dominating set of size at most

k of G′. When |S| ≥ 2, by Claim 1 we know that for any red-blue dominating

set W of size at most k we have W ∩ S 6= ∅. This implies that w is dominated435

by a vertex in W ∩ S. The adjacency of vertices in B′ (other than w) in G′′

are the same as in G′ and thus they are also dominated by W in G′. For the

reverse direction observe that NG′′(w) = S and thus any red-blue dominating

set of size at most k of G′′ must contain a vertex of S. Together with the fact

that I =
⋂

x∈S N(ux), we have that every red-blue dominating set W of size at440

most k of G′′ is also a red-blue dominating set of G′. This completes the proof

of soundness.

We apply Reduction Rule A on the vertices of G′ exhaustively. Clearly, this

can be accomplished in time polynomial in n and k. Let G′ be a non-reducible

graph, i.e. the reduction rule can no longer be applied. In this non-reducible445

graph, every vertex in R has degree at most d′kd
′−1. Therefore, every k vertices

of R can dominate at most d′kd
′

vertices. Thus, if |B| > d′kd
′

then G′ cannot

have a dominating set of size k. Consequently, we have that |B| ≤ d′kd′ ≤ 2dk2d,

as needed.
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Since Lemma 4 implies a bound on the size of the k-domination core and450

allows us to compute it efficiently, our main concern is to deal with vertices

outside of the core, i.e. vertices in V (G) \ C. The next lemma shows that we

can in fact find strongly irrelevant vertices outside of the k-domination core.

Lemma 5. For G an n-vertex graph, C the k-domination core of G, and Ds

and Dt two dominating sets of G, if there exist u, v ∈ V (G) \ {C ∪ Ds ∪ Dt}455

such that NG(u) ∩ C = NG(v) ∩ C then u (or v) is strongly irrelevant.

Proof. Given a reconfiguration sequence σ = 〈D0 = Ds, D1, . . . , D` = Dt〉 from

Ds to Dt which touches u, we will show how to obtain a reconfiguration sequence

σ′ such that |σ′| ≤ |σ| and σ′ touches v but not u.

We construct σ′ in two stages. In the first stage, we construct the sequence

α = 〈D′0, D′1, . . . , D′`〉 of dominating sets, where for all 0 ≤ i ≤ `

D′i =

 Di ∪ {v} \ {u} if u ∈ Di

Di if u 6∈ Di.

Note that α is not necessarily a reconfiguration sequence from Ds to Dt. In460

the second stage, we repeatedly delete from α any set D′i such that D′i = D′i+1,

0 ≤ i < `. We let σ′ = 〈D′0, D′1, . . . , D′`′〉 denote the resulting sequence, in which

there are no two consecutive sets that are equal, and we claim that σ′ is in fact

a reconfiguration sequence from Ds to Dt.

To prove the claim, we need to show that the following conditions hold:465

(1) D′0 = Ds and D′`′ = Dt,

(2) D′i is a dominating set of G for all 0 ≤ i ≤ `′,

(3) |D′i∆D′i+1| = 1 for all 0 ≤ i < `′, and

(4) k ≤ |D′i| ≤ k + 1 for all 0 ≤ i ≤ `′.

Since u, v 6∈ Ds∪Dt, condition (1) clearly holds. Moreover, since replacing u by470

v in any set does not increase the size of the corresponding set, k ≤ |D′i| ≤ k+1

(condition (4) holds) and |D′i∆D′i+1| ≤ 1. As there are no two consecutive sets
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in σ′ that are equal, |D′i∆D′i+1| > 0 and therefore |D′i∆D′i+1| = 1 (condition (3)

holds). The fact that D′i is a dominating set of G follows from the definition of a

k-domination core. Since Di is a dominating set of G, C ⊆ NG[Di]. Moreover,475

since NG(u)∩C = NG(v)∩C and u, v 6∈ C, we know that C ⊆ NG[D′i]. By the

definition of the k-domination core, it follows that D′i (which still dominates C)

is also a dominating set of G. Therefore, all four conditions hold, as needed.

Theorem 6. DSR parameterized by k+d is fixed-parameter tractable on graphs

that exclude Kd,d as a subgraph. Moreover, when d is a fixed constant, DSR480

restricted to graphs excluding Kd,d as a subgraph admits a polynomial kernel

when parameterized by k.

Proof. Given a graph G, integer k, and two dominating sets Ds and Dt of G

of size at most k, we first compute the k-domination core C of G, which by

Lemma 4 can be accomplished in O∗(dkd) time. Next, and due to Lemma 5,485

we can delete all strongly irrelevant vertices from V (G) \ {C ∪ Ds ∪ Dt}. We

denote this new graph by G′.

Now consider the bipartite graph G′′ with bipartition (A = C \ {Ds ∪

Dt}, B = V (G′) \ {C ∪ Ds ∪ Dt}). This graph is B-twinless, since for every

pair of vertices u, v ∈ V (G) \ {C ∪Ds ∪Dt} such that NG(u)∩C = NG(v)∩C490

either u or v is strongly irrelevant and is therefore not in V (G′) nor V (G′′).

Moreover, since every subgraph of a Kd,d-free graph is also Kd,d-free, G′′ is

Kd,d-free. Hence, if |A| < 2(d − 1) then |B| ≤ 22(d−1) = 4d−1. Otherwise, by

Lemmas 3 and 4, we have |B| ≤ 2d|A|d ≤ 2d(2dk2d)d.

Putting it all together, we know that after deleting all strongly irrelevant495

vertices, the number of vertices in the resulting graph G′ is at most |V (G′)| =

|V (C)|+ |Ds∪Dt|+ |V (G′)\{C ∪Ds∪Dt}| ≤ 2dk2d + 2k+ 2d(2dk2d)d. Hence,

we can solve DSR by exhaustively enumerating all 2|V (G′)| subsets of V (G′) and

building the reconfiguration graph Rds(G
′, k, k+1). When d is a fixed constant,

we get the claimed polynomial kernel.500
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