
A (2 + ε)-factor Approximation Algorithm for1

Split Vertex Deletion2

Daniel Lokshtanov3

University of California, Santa Barbara, USA. daniello@ucsb.edu4

Pranabendu Misra5

MPI Informatik, Saarbrücken, Germany. pmisra@mpi-inf.mpg.de6

Fahad Panolan7

IIT Hyderabad, Hyderabad, India. fahad@iith.ac.in8

Geevarghese Philip9

Chennai Mathematical Institute, Chennai, India. gphilip@cmi.ac.in10

Saket Saurabh11

Institute of Mathematical Sciences, Chennai, India and University of Bergen, Bergen, Norway.12

saket@imsc.res.in13

Abstract14

In the Split Vertex Deletion (SVD) problem, the input is an n-vertex undirected graph G and15

a weight function w : V (G) 7→ N, and the objective is to find a minimum weight subset S of vertices16

such that G − S is a split graph (i.e., there is bipartition of V (G − S) = C] I such that C is a17

clique and I is an independent set in G− S). This problem is a special case of 5-Hitting Set and18

consequently, there is a simple factor 5-approximation algorithm for this. On the negative side, it is19

easy to show that the problem does not admit a polynomial time (2− δ)-approximation algorithm,20

for any fixed δ > 0, unless the Unique Game Conjecture fails.21

We start by giving a simple quasipolynomial time (nO(log n)) factor 2-approximation algorithm22

for SVD using the notion of clique-independent set separating collection. Thus, on the one hand SVD23

admits a factor 2-approximation in quasipolynomial time, and on the other hand this approximation24

factor cannot be improved assuming UGC. It naturally leads to the following question: Can SVD be25

2-approximated in polynomial time? In this work we almost close this gap and prove that for any26

ε > 0, there is a nO(log 1
ε

)-time 2(1 + ε)-approximation algorithm.27

2012 ACM Subject Classification Design and analysis of algorithms → Approximation algorithms28

analysis29

Keywords and phrases Approximation Algorithms, Graph Algorithms, Split Vertex Deletion30

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2331

© Daniel Lokshtanov and Pranabendu Misra and Fahad Panolan and Geevarghese Philip and Saket
Saurabh;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

1 Introduction32

The Hitting Set problem encompasses a large number of well studied problems in Computer33

Science. Here, the input is a family F of sets over an n-element universe U and a weight34

function w : U 7→ N, and the objective is to compute a hitting set of minimum weight. A35

hitting set is a subset S ⊆ U such that for any F ∈ F , F ∩ U 6= ∅ and the weight of S is36

w(S) =
∑
u∈S w(u). Consequently, this problem is very hard to approximate: it can not37

be approximated within a factor 2log1−δc(n) n in polynomial time, for any constant c < 1/2,38

unless SAT can be decided in slightly subexponential time, where δc(n) = 1/(log logn) [12].39

A restricted version of this problem, is the d-Hitting Set problem, where d ∈ N and the40

cardinality of every set in F is at most d. This problem also generalizes a number of well41

studied problems, and it admits a simple factor d-approximation algorithm: Solve the natural42

LP relaxation and select all elements whose corresponding variable in the LP is set to at43

least 1/d. Unfortunately, this simple algorithm is likely to be the best possible. That is,44

assuming Unique Game Conjecture (UGC), there is no c-factor approximation algorithm for45

d-Hitting Set, for any c < d in the general case [8].46

A number of vertex deletion problems on graphs are can be considered as special cases of47

d-Hitting Set, and it is of great interest to devise factor-α approximation algorithm for48

them where α < d, or rule out any such algorithm. For example, in the Vertex Cover49

problem, the input is a graph G and a weight function w : V (G) 7→ N, and the objective50

is to find a subset of vertices of minimum weight that hits all edges in G. This is same as51

2-Hitting Set, and assuming the Unique Games Conjecture we cannot do better. However,52

there are other examples of vertex deletion problems on graphs, that are special cases53

of d-Hitting Set, for which we can indeed do better. Consider the Cluster Vertex54

Deletion problem, where the input is a graph G and a weight function w : V (G) 7→ N,55

and the objective is to find a minimum weight subset S of vertices such that S is a cluster56

graph. Equivalently, S hits all induced paths of length 3 in G. Hence, it is a special case57

of 3-Hitting Set and admits a simple 3-approximation algorithm. You et al. [14] showed58

that the unweighted version of Cluster Vertex Deletion admits a 5/2 approximation59

algorithm. Recently, this was improved to factor 9/4 by Fiorini et al. [6]. The problem60

also admits an approximation-preserving reduction from Vertex Cover and hence there61

is a lower bound of 2 on the approximation-factor assuming UGC [6]. Fiorini et al. [6]62

have conjectured that Cluster Vertex Deletion admits a 2-approximation algorithm.63

Another example which is the Tournament Feedback Vertex Set (TFVS) problem,64

which is equivalent to hitting all directed triangles in a digraph. It is very well studied in65

the realm of approximation algorithms [4, 1, 11, 10], and very recently a 2-approximation66

algorithm was designed by Lokshtanov et al. [10], matching the lower-bound under UGC [13].67

Similarly, a number of such “implicit” d-Hitting Set problems are studied in Computer68

Science, and it is of great interest to settle their approximation complexity.69

In this work we study another implicit d-Hitting Set problem called Split Vertex70

Deletion(SVD) (defined below). A subset S of vertices in a graph G is a split vertex71

deletion set if G− S is a split graph (i.e., there is bipartition of V (G− S) = C] I such that72

C is a clique and I is an independent set in G− S).73

Split Vertex Deletion (SVD)
Input: An undirected graph G and a weight function w : V (G)→ N.
Output: A split vertex deletion set S ⊆ V (G) of G of the smallest weight (an optimum
split vertex deletion set of G).

74

A graph G is a split graph if and only if it does not contain C4, C5 and 2K2 as induced75

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:3

subgraphs in G. This implies that SVD is special case of 5-Hitting Set and hence it admits76

a simple 5-approximation algorithm. Furthermore, it is interesting to note that we can obtain77

a 2-approximation algorithm for SVD in time nO(logn) using the notion of clique-independent78

set separating collection. For a graph G, a clique-independent set separating collection is a79

family C of vertex subsets of V (G) such that for a clique C and an independent set I in G80

such that C ∩ I = ∅, there is subset X in the collection C such that C ⊆ X and I ⊆ V (G)\X.81

Thus, if there is a “small” clique-independent set separating collection, then we can enumerate82

such a collection C and solve Vertex Cover of G[X] and G−X for each X ∈ C. Notice83

that for any X ∈ C, the union of the two solutions of Vertex Cover instances on G[X] and84

G−X is a solution to SVD. Moreover, the best c-approximation solutions over all choices85

of X, is a c-approximate solution of SVD. It is known that for any n-vertex graph, there is86

clique-independent set separating collection of size nO(logn) and this can be enumerated in87

time linear in the size of the collection [5]. This along with a 2-approximation algorithm of88

Vertex Cover leads to a nO(logn)-time 2-approximation algorithm for SVD. There is also a89

simple approximation preserving reduction from Vertex Cover to SVD, which shows that90

we cannot improve upon factor 2-approximation algorithm, unless UGC fails. The reduction91

is as follows: Given an instance (G,w) of Vertex Cover, we add a large complete graph H92

of size 2|V (G)| into G with weight of each vertex in H to be max{w(u) : u ∈ V (G)}. One93

can easily verify that this is an approximation preserving reduction.94

Thus, on the one hand SVD admits a 2-approximation in quasipolynomial (nO(logn))95

time, and on the other hand this approximation factor cannot be improved assuming UGC.96

It naturally leads to the following question: Can SVD be 2-approximated in polynomial time?97

This is precisely the question we address in this paper, and obtain the following result.98

I Theorem 1. There exists a randomized algorithm that given a graph G, a weight function99

w on V (G) and ε > 0, runs in time O(ng(ε)) and outputs S ⊆ V (G) such that G−S is a split100

graph and w(S) ≤ 2(1 + ε)w(OPT) with probability at least 1/2, where OPT is a minimum101

weight split vertex deletion set of G. Here, g(ε) = 6 + 8 log(80(1 + 12
ε)) · log(30

ε)/ log(4/3).102

Overview of Theorem 1. At a very high level the algorithm described in Theorem 1 is103

inspired from the algorithm developed for factor 2-approximation algorithm for TFVS [10].104

In TFVS knowing just one vertex is sufficient to completely split the instance into two105

independent sub-instances and thus leading to a natural divide and conquer scheme. However,106

in our case (SVD) the instances don’t become truly independent before every vertex is107

classified as either potential clique or potential independent set vertex. To classify all the108

vertices requires several new ideas and insights in the problem. This classification could be109

be vaguely viewed as a polynomial time algorithm that quickly navigates through sets in110

clique-independent set separating collection, C, and almost reaches a correct partition.111

Our algorithm in fact finds a (2 + ε)-factor approximate solution for a more general112

annotated variant of the problem, where the solution must obey certain additional constraints.113

Annotated Split Vertex Deletion (A-SVD)
Input: An undirected graph G, a weight function w : V (G) → N, and a partition of
V (G) into three parts V (G) = C] I]U , where at most two of these parts may be empty.
Output: A set S? ⊆ V (G) of G of the smallest weight such that G− S? is a split graph
with a split partition (C?, I?) where C? ⊆ (C ∪ U) and I? ⊆ (I ∪ U) hold.

114

A feasible solution to an instance (G,w, (C, I, U)) of Annotated Split Vertex Dele-115

tion is a split vertex deletion set S of G such that the split graph G−S has a split partition116

(C ′, I ′) where no vertex in the specified set I goes to the split part C ′ and no vertex in the117

specified set C goes to the independent part I ′. Thus, each vertex in the set I is either118

CVIT 2016

23:4 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

deleted as part of S or ends up in the independent set I ′ in graph G− S, and each vertex in119

C is either deleted or ends up in the clique C ′ in G− S. There are no restrictions on where120

the vertices in the “unconstrained” set U may go. We call a feasible solution of A-SVD an121

annotated split vertex deletion set of the instance (G,w, (C, I, U)); the A-SVD problem asks122

for an optimum annotated split vertex deletion set of the input instance.123

First we show that we can, in polynomial time, find 2-factor approximate solutions to A-124

SVD instances which are of the form (G,w, (C, I, U = ∅)) (Lemma 12). Let (G,w, (C, I, U))125

be an instance of A-SVD, let OPT be an (unknown) optimum solution to (G,w, (C, I, U)),126

let (C? ⊆ (C ∪ U), I? ⊆ (I ∪ U)) be a split partition of G − OPT , and let C?U = (C? ∩127

U), I?U = (I? ∩ U). We show that if w(C?U \ {c?}) ≤
ε·w(OPT)

2 holds for some c? ∈ C?U or128

w(I?U \{i?}) ≤
ε·w(OPT)

2 holds for some i? ∈ I?U then we can, in polynomial time, find a (2+ε)-129

factor approximate solution to (G,w, (C, I, U)) (Lemma 16, Lemma 18). These constitute130

the base cases of our algorithm. It is not difficult to see that moving a vertex x ∈ C?U to the131

set C and moving a vertex y ∈ I?U to the set I are approximation-preserving transformations.132

At a high level, our algorithm starts with an arbitrary instance (G,w, (C, I, U)) of A-SVD,133

correctly identifies—with a constant probability of success—a good fraction of vertices which134

belong to the sets C?U or I?U , and moves these vertices to the sets C or I, respectively. It135

then recurses on the resulting instance, till it reaches one of the base cases described above.136

We now briefly and informally outline how our algorithm identifies vertices as belonging137

to C?U or I?U . Consider the bipartite subgraph H of G induced by the pair (C?U , I?U). Define138

the weight of an edge to be the product of the weights of its two end-points, and suppose139

the total weight of edges in H is at least half the maximum possible weight. Then each of a140

constant fraction (by weight) of the vertices in I?U has a constant fraction (by weight) of C?U141

in its neighbourhood (Lemma 4). If we can identify one of these special vertices of I?U then142

we can safely move all its neighbours in U to the set C while reducing the weight of C?U by a143

constant fraction. The catch, of course, is that we have no idea what the set I?U is.144

To get around this, we find an approximate solution X of the Split Vertex Deletion145

instance defined by the induced subgraph G[U]. Let (CX , IX) be a split partition of G− U .146

We show that we can, in polynomial time and with constant probability, sample a vertex147

from the set X ∪ (IX \ C?U) (Lemma 26). We further show that the weight of X ∪ (IX \ C?U)148

is at most a constant multiple of the weight of I?U (Lemma 22). So if I?U ⊆ (X ∪ (IX \ C?U))149

holds then we can, with good probability, sample a vertex from the set I?U . The hard part150

is when this condition does not hold. We show using a series of lemmas that we can, even151

in this case, sample a vertex from one of the two sets C?U , I?U with constant probability. A152

symmetric analysis applies when the total weight of non-edges across (C?U , I?U) is at least half153

the maximum possible weight.154

Organization of the rest of the paper. In section 2 we collect together various preliminary155

results. We describe our algorithm in section 3; in subsection 3.1 we describe how to deal156

with instances whose vertex weights are bounded by some constant-degree polynomial in157

the number of vertices, and in subsection 3.2 we show how to extend this to instances with158

arbitrary weights. We conclude in section 4.159

2 Preliminaries160

We use] to denote the disjoint union of sets. Moreover, when we write X] Y we implicitly161

assert that the sets X and Y are disjoint. We use V (G (respectively, E(G)) to denote the162

vertex set (respectively, the edge set) of graph G. For a subset S ⊆ V (G) of vertices of G we163

use G[S] to denote the subgraph of G induced by S and G− S to denote the subgraph of164

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:5

G obtained by deleting all vertices in S (and their incident edges) from G. A non-edge in165

a graph G is any 2-subset {x, y} ⊆ V (G) of vertices such that xy is not an edge in G. For166

the sake of brevity we use the notation xy to denote a non-edge {x, y}. For a finite set U ,167

weight function w : U → N, and subset X ⊆ U we use wX to denote the weight function w168

restricted to the subset X, and w(X) to denote the sum
∑
x∈X w(x) of weights of all the169

elements in X. For the sake of brevity we drop the subscript X from the expression wX170

when there is no risk of ambiguity.171

The operation of sampling (or picking) proportionately at random from U according to172

the weight function w chooses one element from U , where each element x ∈ U is chosen173

with probability w(x)/w(U). We use G to denote the complement of a graph G, defined as174

follows: The vertex set of G is V (G). For every two vertices {u, v} ⊆ V (G) there is an edge175

uv in G if and only if uv is not an edge in graph G. A vertex cover of graph G is any subset176

S ⊆ V (G) of its vertex set such that the graph G− S has no edges. A clique in graph G is177

any non-empty subset S ⊆ V (G) of its vertex set such that (i) |S| = 1, or (ii) if |S| ≥ 2 then178

for every two vertices u, v in S, the edge uv is present in graph G.179

B Observation 2. For an undirected graph G and any S ⊆ V (G), the vertex set V (G) \ S is180

a clique in G if and only if S is a vertex cover of the complement graph G.181

For a graph G and two disjoint vertex subsets X,Y ⊆ V (G) ; X ∩ Y = ∅ the bipartite182

subgraph of G induced by the pair (X,Y) has vertex set X ∪ Y and edge set {xy | x ∈ X, y ∈183

Y, xy ∈ E(G)}. Note that the bipartite subgraph of G induced by the pair (X,Y) is not184

necessarily identical to the subgraph G[X ∪ Y] induced by the subset X ∪ Y , and is defined185

even if the induced subgraph G[X ∪ Y] is not bipartite. For a bipartite graph H with vertex186

bipartition V (H) = V1] V2 we define Ê(H) = {v1v2 | v1 ∈ V1, v2 ∈ V2, v1v2 /∈ E} to be187

the set of all non-edges of H with one end in V1 and the other end in V2. Further, for a188

weight function w : V (H)→ N defined on the vertex set of a bipartite graph H we define189

the weight of its edge set to be w(E(H)) =
∑
v1v2∈E(H)(w(v1) · w(v2)) and the weight of its190

set of non-edges to be w(Ê(H)) =
∑
v1v2∈Ê(H)(w(v1) · w(v2)).191

I Definition 3. Let G be an undirected graph and w : V (G) → N a weight function. Let192

X,Y be two disjoint vertex subsets of G and let H be the bipartite subgraph of G induced by193

the pair (X,Y). Let w(E(H)) and w(Ê(H)) be defined as above. We say that (X,Y) is a194

heavy pair if w(E(H)) ≥ w(X)·w(Y)
2 holds, and is a light pair if w(Ê(H)) ≥ w(X)·w(Y)

2 holds.195

I Lemma 4. Let H = (V,E) be a bipartite graph, let V = V1] V2 be a bipartition of H, and196

let w : V (H)→ N be a weight function. Then (V1, V2) is either a heavy pair or a light pair.197

Moreover,198

1. Suppose (V1, V2) is a heavy pair, and let X = {x ∈ V1 | w(N(x)) ≥ w(V2)
4 } be the set of199

all vertices x in the set V1 such that the total weight of the neigbhourhood of x in the set200

V2 is at least one-fourth the total weight of the set V2. Then w(X) > w(V1)
4 .201

2. Suppose (V1, V2) is a light pair, and let Y = {y ∈ V1 | w(V2 \N(y)) ≥ w(V2)
4 } be the set202

of all vertices y in the set V1 such that the total weight of the non-neighbours of y in the203

set V2 is at least one-fourth the total weight of the set V2. Then w(Y) > w(V1)
4 .204

Proof. Observe that (i) every pair of vertices (v1, v2) in the set V1×V2 is either an edge or a205

non-edge (and not both) in the bipartite graph H, and (ii) every edge or non-edge with one206

end in the set V1 and the other end in the set V2 is an element of V1 × V2. As a consequence207

CVIT 2016

23:6 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

we get that208

w(E(H)) + w(Ê(H)) =
∑

v1v2∈E(H)

(w(v1) · w(v2)) +
∑

v1v2∈Ê(H)

(w(v1) · w(v2))209

=
∑

(v1,v2)∈V1×V2

(w(v1) · w(v2))210

= (
∑
v1∈V1

w(v1)) · (
∑
v2∈V2

w(v2))211

= w(V1) · w(V2).212
213

It follows that the two terms {w(E(H)), w(Ê(H))} cannot simultaneously be smaller than one214

half of w(V1) · w(V2). Thus at least one of {w(E(H)) ≥ w(V1)·w(V2)
2 , w(Ê(H)) ≥ w(V1)·w(V2)

2 }215

must hold.216

We prove each of the two cases in turn.217

1. By assumption the inequality w(N(v1)) =
∑
v1v2∈E(H) w(v2) < w(V2)

4 holds for each218

vertex v1 ∈ (V1 \X). If possible, let it be the case that w(X) ≤ w(V1)
4 holds. Then219

w(E(H)) =
∑

v1v2∈E(H)

(w(v1) · w(v2)) =
∑
v1∈V1

(w(v1) ·
∑

v1v2∈E(H)

w(v2))220

=
∑
v1∈X

(w(v1) ·
∑

v1v2∈E(H)

w(v2)) +
∑

v1∈(V1\X)

(w(v1) ·
∑

v1v2∈E(H)

w(v2))221

<
∑
v1∈X

(w(v1) · w(V2)) +
∑

v1∈(V1\X)

(w(v1) · w(V2)
4)222

= w(X) · w(V2) + w(V1 \X) · w(V2)
4223

≤ w(V1)
4 · w(V2) + w(V1) · w(V2)

4 = w(V1) · w(V2)
2 ,224

225

a contradiction.226

2. By assumption the inequality w(V2 \N(v1)) =
∑
v1v2∈Ê(H)(w(v2)) < w(V2)

4 holds for each227

vertex v1 ∈ (V1 \ Y). If possible, let it be the case that w(Y) ≤ w(V1)
4 holds. Then228

w(Ê(H)) =
∑

v1v2∈Ê(H)

(w(v1) · w(v2)) =
∑
v1∈V1

(w(v1) ·
∑

v1v2∈Ê(H)

w(v2))229

=
∑
v1∈Y

(w(v1) ·
∑

v1v2∈Ê(H)

w(v2)) +
∑

v1∈(V1\Y)

(w(v1) ·
∑

v1v2∈Ê(H)

w(v2))230

<
∑
v1∈Y

(w(v1) · w(V2)) +
∑

v1∈(V1\Y)

(w(v1) · w(V2)
4)231

= w(Y) · w(V2) + w(V1 \ Y) · w(V2)
4232

≤ w(V1)
4 · w(V2) + w(V1) · w(V2)

4 = w(V1) · w(V2)
2 ,233

234

a contradiction. J235

For a graph G given together with a weight function w : V (G)→ N, an optimum vertex236

cover of G is any vertex cover of G with the least total weight.237

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:7

Weighted Vertex Cover (wVC)
Input: An undirected graph G and a weight function w : V (G)→ N.
Output: An optimum vertex cover S ⊆ V (G) of G

238

I Theorem 5 ([2]). There is an algorithm which, given an instance (G,w) of Weighted239

Vertex Cover as input, runs in O(|E(G)|) time and outputs a vertex cover S of G whose240

weight is at most twice the weight of an optimum vertex cover of G.241

3 The Algorithm242

An undirected graph G is a split graph if its vertex set V (G) can be partitioned into two243

parts, V (G) = C] I, such that C is a clique and I is an independent set in G. Such a244

partition is called a split partition of graph G. We use (C, I) to denote such a split partition.245

A split vertex deletion set of a graph G is any subset S ⊆ V (G) such that the graph G− S246

obtained by deleting the vertices of S from G, is a split graph. Note that any vertex cover of247

G which leaves out at least two vertices of G is a split vertex deletion set of G. This implies248

that every graph with at least two vertices has a (possibly empty) split vertex deletion set.249

In the Split Vertex Deletion (SVD) problem the input consists of an undirected graph250

G and a weight function w : V (G)→ N and the objective is to find a split vertex deletion set251

of G of the smallest weight.252

Split Vertex Deletion (SVD)
Input: An undirected graph G and a weight function w : V (G)→ N.
Output: A split vertex deletion set S ⊆ V (G) of G of the smallest weight (an optimum
split vertex deletion set of G).

253

Since deleting vertices conserves the property of being a split graph one can safely add254

zero-weight vertices to any split vertex deletion set. So we assume without loss of generality255

that w(v) ≥ 1 holds for every v ∈ V (G). Split Vertex Deletion is NP-complete by the256

meta-result of Lewis and Yannakakis [9], and has a simple 5-factor approximation algorithm257

based on the Local Ratio Technique.258

I Theorem 6. There is a deterministic algorithm which, given an instance (G,w) of SVD,259

runs in O(|V (G)|6) time and outputs a split vertex deletion set S ⊆ V (G) of G such that260

w(S) ≤ 5 · w(OPT) where OPT is an optimum split vertex deletion set of G.261

Proof. A graph is a split graph if and only if does not contain any of the three graphs262

{2K2, C4, C5} as induced subgraphs [7]. Since the maximum order of these graphs is five and263

we can find each in O(|V (G)|5) time , a direct application of the Local Ratio Technique [3]264

gives a 5-factor approximate solution in O(|V (G)|6) time. J265

We describe a randomized polynomial-time algorithm which outputs a (2 + ε)-factor266

approximate solution for this problem for any fixed ε > 0.267

Note that in an instance (G,w, (C, I, U)) of Annotated Split Vertex Deletion the268

set C is not necessarily a clique, nor is I necessarily an independent set in G. But we have269

the following.270

B Observation 7. Let S be a feasible solution of an A-SVD instance (G,w, (C, I, U)) and271

let (C ′, I ′) be a split partition of G− S where C ′ ⊆ (C ∪ U) and I ′ ⊆ (I ∪ U) hold. Then272

C \ S ⊆ C ′ and I \ S ⊆ I ′ hold. Hence C \ S is a clique in G and I \ S is an independent set273

in G.274

CVIT 2016

23:8 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

From Observations 2 and 7 we get275

I Corollary 8. Let S be a feasible solution of an A-SVD instance (G,w, (C, I, U)). Let V CC276

be an optimum solution of the wVC instance (G[C], w) and let V CI be an optimum solution277

of the wVC instance (G[I], w). Then w(V CC) ≤ w(S ∩ C) and w(V CI) ≤ w(S ∩ I) hold.278

A-SVD is clearly a generalization of SVD: Given an instance (G,w) of SVD, construct the279

instance (G,w, (C = ∅, I = ∅, U = V (G))) of A-SVD. Every split vertex deletion set of graph280

G is a feasible solution of the A-SVD instance, and every annotated split vertex deletion281

set of (G,w, (∅, ∅, V (G))) is a split vertex deletion set of graph G. It follows that for any282

constant c, a c-factor approximate solution to the A-SVD instance is a c-factor approximate283

solution to the SVD instance as well.284

We can find feasible solutions to an A-SVD instance (G,w, (C, I, U)) by computing vertex285

covers for certain pairs of subgraphs derived from G.286

B Observation 9. Let (G,w, (C, I, U)) be an instance of A-SVD.287

1. Let V1 be a vertex cover of the graph G[I] U] and let V2 be a vertex cover of the graph288

G[C]. Then V1] V2 is a feasible solution to (G,w, (C, I, U)).289

2. Let V3 be a vertex cover of the graph G[I] and let V4 be a vertex cover of the graph290

G[C] U]. Then V3] V4 is a feasible solution to (G,w, (C, I, U)).291

Proof. We prove each part in turn:292

1. Let S = V1] V2, I
′ = ((I] U) \ V1), C ′ = (C \ V2). Then I ′ ⊆ (I ∪ U) and C ′ ⊆ (C ∪ U)293

hold. Since V1 is a vertex cover of the graph G[I] U] we get that I ′ is an independent294

set in G. Since V2 is a vertex cover of the graph G[C] we get that C ′ is a clique in G.295

Now V (G) \ S = (I] C] U) \ (V1] V2) = ((I] U) \ V1)] (C \ V2) = I ′] C ′. Hence296

S = V1] V2 is a feasible solution to (G,w, (C, I, U)).297

2. Let S = V3] V4, I
′ = (I \ V3), C ′ = ((C] U) \ V4). Then I ′ ⊆ (I ∪ U) and C ′ ⊆ (C ∪ U)298

hold. Since V3 is a vertex cover of the graph G[I] we get that I ′ is an independent set299

in G. Since V4 is a vertex cover of the graph G[C] U] we get that C ′ is a clique in G.300

Now V (G) \ S = (I] C] U) \ (V3] V4) = (I \ V3)] ((C] U) \ V4) = I ′] C ′. Hence301

S = V3] V4 is a feasible solution to (G,w, (C, I, U)). J302

B Observation 10. Let (G,w, (C, I, U)) be an instance of A-SVD and let u ∈ U .303

1. Let V1 be a vertex cover of the graph G[I] (U \ {u})] and let V2 be a vertex cover of the304

graph G[C ∪ {u}]. Then V1] V2 is a feasible solution to (G,w, (C, I, U)).305

2. Let V3 be a vertex cover of the graph G[I ∪{u}] and let V4 be a vertex cover of the graph306

G[C] (U \ {u})]. Then V3] V4 is a feasible solution to (G,w, (C, I, U)).307

Proof. We prove each part in turn:308

1. Let S = V1] V2, I
′ = ((I] (U \ {u})) \ V1), C ′ = ((C ∪ {u}) \ V2). Then I ′ ⊆ (I ∪ U)309

and C ′ ⊆ (C ∪ U) hold. Since V1 is a vertex cover of the graph G[I] (U \ {u})]310

we get that I ′ is an independent set in G. Since V2 is a vertex cover of the graph311

G[C ∪ {u}] we get that C ′ is a clique in G. Now V (G) \ S = (I] C] U) \ (V1] V2) =312

((I] (U \ {u})) \V1)] ((C ∪{u}) \V2) = I ′]C ′. Hence S = V1]V2 is a feasible solution313

to (G,w, (C, I, U)).314

2. Let S = V3] V4, I
′ = ((I ∪ {u}) \ V3), C ′ = ((C] (U \ {u})) \ V4). Then I ′ ⊆ (I ∪U) and315

C ′ ⊆ (C ∪ U) hold. Since V3 is a vertex cover of the graph G[I ∪ {u}] we get that I ′ is316

an independent set in G. Since V4 is a vertex cover of the graph G[C] (U \ {u})] we get317

that C ′ is a clique in G. Now V (G)\S = (I]C]U)\ (V3]V4) = ((I ∪{u})\V3)] ((C]318

(U \{u}))\V4) = I ′]C ′. Hence S = V3]V4 is a feasible solution to (G,w, (C, I, U)). J319

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:9

Observation 9 has some interesting consequences. For instance, it implies that when320

the “unconstrained” set in an A-SVD instance is empty, an optimum solution to the A-SVD321

instance corresponds to optimum solutions of two Weighted Vertex Cover instances derived322

from the A-SVD instance in a natural fashion.323

I Lemma 11. Let S? be an optimum solution to an A-SVD instance (G,w, (C, I, U = ∅)).324

Then the set (S? ∩ I) is an optimum solution to the wVC instance (G[I], w), and the set325

(S? ∩ C) is an optimum solution to the wVC instance (G[C], w).326

Proof. Since S? is a solution of the A-SVD instance (G,w, (C, I, U = ∅)), we get that the327

vertex set V (G) \ S? = (C] I) \ S? = (C \ S?)] (I \ S?) can be partitioned into a clique328

C? ⊆ C and an independent set I? ⊆ I. Since U is the empty set we get that I? = I \ S?329

and C? = C \ S? hold. These in turn imply that S? ∩ I is a vertex cover of the graph G[I],330

and that S? ∩ C is a vertex cover of the graph G[C].331

Suppose there exists a vertex cover S′ ⊆ I of the graph G[I] with w(S′) < w(S?∩I). Since332

the set S′ ⊆ I is a vertex cover of the graph G[I] and the set (S?∩C) ⊆ C is a vertex cover of333

the graph G[C] we get—Observation 9—that the set Ŝ = (S′](S?∩C)) is a feasible solution to334

the instance (G,w, (C, I, ∅)). Now w(Ŝ) = w(S′)+w(S?∩C) < w(S?∩I)+w(S?∩C) = w(S?),335

and so Ŝ is a feasible solution with weight less than the weight of an optimum solution, a336

contradiction. It follows that S? ∩ I is an optimum vertex cover of the graph G[I] with the337

weight function w.338

A symmetric argument shows that S? ∩C is an optimum vertex cover of the graph G[C].339

Indeed, suppose S′ ⊆ C is a vertex cover of G[C] with w(S′) < w(S? ∩ C). Since the set340

(S? ∩ I) ⊆ I is a vertex cover of the graph G[I] and the set S′ ⊆ C is a vertex cover of the341

graph G[C] we get—Observation 9—that the set Ŝ = ((S?∩I)]S′) is a feasible solution to the342

instance (G,w, (C, I, ∅)). Now w(Ŝ) = w(S? ∩ I) +w(S′) < w(S? ∩ I) +w(S? ∩C) = w(S?),343

and so Ŝ is a feasible solution with weight less than the weight of an optimum solution, a344

contradiction. It follows that S? ∩ C is an optimum vertex cover of the graph G[C] with the345

weight function w. J346

This in turn implies that given an A-SVD instance in which the unconstrained set U is347

empty, we can find a 2-factor approximate solution to the instance in polynomial time.348

I Lemma 12. There is a deterministic algorithm which finds 2-factor approximate solutions349

to A-SVD instances which are of the form (G,w, (C, I, U = ∅)), in O(|E(G)|) time.350

Proof. Let (G,w, (C, I, U = ∅)) be an instance of A-SVD. Note that V (G) = C] I. Recall351

that G[C] denotes the complement of the graph G[C], and that we use wI , wC to denote352

the restrictions of the weight function w to the vertex sets I, C, respectively. We drop the353

subscripts when there is no risk of ambiguity.354

Given the input (G,w, (C, I, U = ∅)) the algorithm computes a 2-factor approximate355

solution SI to the wVC problem on the graph G[I] with the weight function wI , and a 2-factor356

approximate solution SC to the wVC problem on the graph G[C] with the weight function357

wC . It then returns the set Ŝ = SI] SC as a solution to the instance (G,w, (C, I, U = ∅)).358

From Theorem 5 we get that this algorithm runs in O(|E(G)|) time. We show that it359

returns a 2-factor approximate solution. Since the set SI is a vertex cover of the graph G[I]360

and the set SC is a vertex cover of the graph G[C] we get—Observation 9—that the set361

Ŝ = SI] SC is a feasible solution to the instance (G,w, (C, I, ∅)). Let S? be an optimum362

solution to the instance (G,w, (C, I, U = ∅)). Then we have—Lemma 11—that S? ∩ I is363

an optimum solution to the wVC problem on the graph G[I] with the weight function wI ,364

and that S? ∩ C is an optimum solution to the wVC problem on the graph G[C] with the365

CVIT 2016

23:10 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

I

C

U

UOPT

IOPT

COPT

I?U

C?
U

IX

CX

C?
U

I?U

U

X

C? ∩ C

I? ∩ I

Figure 1 Illustration of Definition 13

weight function wC . So we get that w(SI) ≤ 2w(S? ∩ I) and that w(SC) ≤ 2w(S? ∩ C).366

Therefore w(Ŝ) = w(SI) + w(SC) ≤ 2w(S? ∩ I) + 2w(S? ∩ C) = 2w(S?), and so Ŝ is a367

2-factor approximate solution to the A-SVD instance (G,w, (C, I, U = ∅)). J368

This idea generalizes as follows. Let OPT be an optimum solution to an A-SVD instance369

(G,w, (C, I, U)). Suppose the split graph G−OPT has a split partition (C?, I?) such that370

vertices from the unconstrained set U contribute a small weight to either the clique C? or371

the independent set I?. Then a variant of the algorithm in the proof of Lemma 12 yields a372

small-factor approximate solution to the instance, in polynomial time. We state this formally373

in Lemma 16 below, for which we need some notation (see Figure 1).374

I Definition 13. Let (G,w, (C, I, U)) be an instance of A-SVD, and let ε ≥ 0 be a constant.375

Let OPT ⊆ V (G) be an optimum solution of (G,w, (C, I, U)) and let (C?, I?) be a split376

partition of the split graph G? = (G − OPT) such that C? ⊆ (C ∪ U) and I? ⊆ (I ∪ U)377

hold. Let C?U = (C? ∩ U) be the set of vertices from the unconstrained set U which become378

part of the clique C? and let I?U = (I? ∩ U) be the set of vertices from U which become379

part of the independent set I? in G?. Let UOPT = (U ∩ OPT), COPT = (C ∩ OPT) and380

IOPT = (I ∩OPT).381

Further, let X be a 5-factor approximate solution of the Split Vertex Deletion382

instance (G[U], wU) defined by the induced subgraph G[U], and let (CX , IX) be a split383

partition of the split graph G[U]−X.384

I Remark 14. Given an instance (G,w, (C, I, U)) of A-SVD we can, using Theorem 6, compute385

such a set X and partition (CX , IX) in polynomial time.386

B Observation 15. Let (G,w, (C, I, U)), X, IX , CX , I?U , C?U be as in Definition 13. Then both387

|I?U \ (X ∪ (IX \ C?U))| ≤ 1 and |C?U \ (X ∪ (CX \ I?U))| ≤ 1 hold.388

Proof. Since I?U ∩C?U = ∅ holds we get that I?U \ (X ∪ (IX \C?U)) = I?U \ (X ∪ IX) = I?U ∩CX .389

And since I?U is an independent set and CX is a clique we get that |I?U ∩ CX | ≤ 1 holds.390

Similarly, since C?U ∩ I?U = ∅ holds we get that C?U \ (X ∪ (CX \ I?U)) = C?U \ (X ∪CX) =391

C?U ∩ IX . And since C?U is a clique and IX is an independent set we get that |C?U ∩ IX | ≤ 1392

holds. J393

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:11

I Lemma 16. Let (G,w, (C, I, U)), ε, OPT,C?U , I?U be as in Definition 13. Let S1 be a 2-394

factor approximate solution for the wVC instance (G[I ∪U], w) and S2 a 2-factor approximate395

solution for the wVC instance (G[C], w). Let S12 = (S1∪S2). Let S3 be a 2-factor approximate396

solution for the wVC instance (G[C ∪ U], w) and S4 a 2-factor approximate solution for the397

wVC instance (G[I], w). Let S34 = (S3 ∪ S4). Then the sets S12 and S34 can be computed in398

O(|E(G)|) time. Further,399

1. If w(C?U) ≤ ε·w(OPT)
2 holds then the set S12 is a (2 + ε)-factor approximate solution for400

the Annotated Split Vertex Deletion instance (G,w, (C, I, U)).401

2. If w(I?U) ≤ ε·w(OPT)
2 holds then the set S34 is a (2 + ε)-factor approximate solution for402

the Annotated Split Vertex Deletion instance (G,w, (C, I, U)).403

I Remark 17. Note that these two cases are neither exclusive nor exhaustive.404

Proof. From Theorem 5 we get that the sets S1, S2, S3, S4 can all be computed in O(|E(G)|)405

time. Hence we get that the sets S12 and S34 can be computed in O(|E(G)|) time as well.406

The two cases are symmetric; we prove each case in turn.407

1. From part (1) of Observation 9 we get that the set (S1 ∪ S2) is a feasible solution to408

the A-SVD instance (G,w, (C, I, U)). We now show that (S1 ∪ S2) is a (2 + ε)-factor409

approximate solution to (G,w, (C, I, U)).410

Observe first that ((I∪U)\OPT) = I?∪C?U . From this, and since I? is an independent set411

in G, we get that the set (OPT∩(I∪U))∪C?U = (OPT \COPT)∪C?U is a vertex cover of the412

graph G[I∪U], of weight w(OPT)−w(COPT)+w(C?U) ≤ w(OPT)−w(COPT)+ ε·w(OPT)
2 .413

Thus an optimum vertex cover of the graph G[I ∪ U] has weight at most w(OPT)(1 +414

ε
2)− w(COPT), and since S1 is a 2-factor approximate vertex cover for G[I ∪ U] we get415

that w(S1) ≤ 2w(OPT)(1 + ε
2)− 2w(COPT) holds. From Corollary 8 we know that an416

optimum vertex cover of the graph G[C] has weight at most w(COPT), and since S2 is a417

2-factor approximate vertex cover for G[C] we get that w(S2) ≤ 2w(COPT) holds. Putting418

these together we get that w(S1 ∪ S2) ≤ 2w(OPT)(1 + ε
2)− 2w(COPT) + 2w(COPT) =419

(2 + ε)w(OPT), and this completes the proof.420

2. From part (2) of Observation 9 we get that the set (S3 ∪ S4) is a feasible solution to421

the A-SVD instance (G,w, (C, I, U)). We now show that (S3 ∪ S4) is a (2 + ε)-factor422

approximate solution to (G,w, (C, I, U)).423

Observe first that ((C∪U)\OPT) = C?∪I?U . From this, and since C? is an independent set424

in G, we get that the set (OPT ∩(C∪U))∪I?U = (OPT \IOPT)∪I?U is a vertex cover of the425

graph G[C ∪ U], of weight w(OPT)−w(IOPT)+w(I?U) ≤ w(OPT)−w(IOPT)+ ε·w(OPT)
2 .426

Thus an optimum vertex cover of the graph G[C ∪ U] has weight at most w(OPT)(1 +427

ε
2)− w(IOPT), and since S3 is a 2-factor approximate vertex cover for G[C ∪ U] we get428

that w(S3) ≤ 2w(OPT)(1 + ε
2)− 2w(IOPT) holds. From Corollary 8 we know that an429

optimum vertex cover of the graph G[I] has weight at most w(IOPT), and since S4 is a430

2-factor approximate vertex cover for G[I] we get that w(S4) ≤ 2w(IOPT) holds. Putting431

these together we get that w(S3 ∪ S4) ≤ 2w(OPT)(1 + ε
2) − 2w(IOPT) + 2w(IOPT) =432

(2 + ε)w(OPT), and this completes the proof. J433

By repeatedly applying the procedure in the proof of Lemma 16 and taking the minimum,434

we can find a (2 + ε)-factor approximate solution in polynomial time even in the more general435

case where there is at most one “heavy” vertex in C?U or I?U .436

I Lemma 18. Let (G,w, (C, I, U)), ε, OPT,C?U , I?U be as in Definition 13. For each vertex437

u ∈ U let Su1 be a 2-factor approximate solution for the wVC instance (G[I∪(U \{u})], w), Su2438

a 2-factor approximate solution for the wVC instance (G[C ∪ {u}], w), and let Su12 = Su1 ∪Su2 .439

Let Su3 be a 2-factor approximate solution for the wVC instance (G[C ∪ (U \ {u})], w), Su4 a440

CVIT 2016

23:12 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

2-factor approximate solution for the wVC instance (G[I ∪ {u}], w), and let Su34 = Su3 ∪ Su4 .441

Finally, let S† be a set of the form Su12 of the minimum weight and let S‡ be a set of the442

form Su34 of the minimum weight, both minima taken over all vertices u ∈ U .443

The sets S† and S‡ can be computed in O(|V (G)| · |E(G)|) time. Further,444

1. If w(C?U \{c?}) ≤
ε·w(OPT)

2 holds for some vertex c? ∈ C?U then the set S† is a (2+ε)-factor445

approximate solution for the A-SVD instance (G,w, (C, I, U)).446

2. If w(I?U \{i?}) ≤
ε·w(OPT)

2 holds for some vertex i? ∈ I?U then the set S‡ is a (2+ε)-factor447

approximate solution for the A-SVD instance (G,w, (C, I, U)).448

I Remark 19. Note that these two cases are neither exclusive nor exhaustive.449

Proof. From Theorem 5 we get that for each vertex u ∈ U the sets Su1 , Su2 , Su3 , Su4 can all450

be computed in O(|E(G)|) time. Hence we get that the sets S† and S‡ can be computed in451

O(|V (G)| · |E(G)|) time.452

The two cases are symmetric; we prove each case in turn.453

1. Let S1 be a 2-factor approximate solution for the wVC instance (G[I ∪ (U \ {c?})], w),454

let S2 be a 2-factor approximate solution for the wVC instance (G[C ∪ {c?}], w), and let455

S? = (S1 ∪ S2). From part (2) of Observation 10 we get that the set S? is a feasible456

solution to the A-SVD instance (G,w, (C, I, U)).457

B Claim 19.1. S? is a (2 + ε)-factor approximate solution to (G,w, (C, I, U)).458

Proof. Recall that by assumption the vertex c? belongs to the set C?U . This implies, in459

particular—see Definition 13—that c? is not in the set OPT .460

Observe first that ((I ∪ (U \ {c?})) \OPT) = I? ∪ (C?U \ {c?}). From this, and since I?461

is an independent set in G, we get that the set (OPT ∩ (I ∪ (U \ {c?}))) ∪ (C?U \ {c?}) =462

(OPT ∩ (I ∪ U)) ∪ (C?U \ {c?}) = (OPT \ COPT) ∪ (C?U \ {c?}) is a vertex cover of the463

graph G[I ∪ (U \ {c?})], of weight w(OPT) − w(COPT) + w(C?U \ {c?}) ≤ w(OPT) −464

w(COPT) + ε·w(OPT)
2 . Thus an optimum vertex cover of the graph G[I ∪ (U \ {c?})] has465

weight at most w(OPT)(1 + ε
2)−w(COPT), and since S1 is a 2-factor approximate vertex466

cover for G[I ∪ (U \ {c?})] we get that w(S1) ≤ 2w(OPT)(1 + ε
2)− 2w(COPT) holds.467

Since the sets C \COPT and C?U are subsets of the clique C? and since c? ∈ C?U holds by468

assumption, we get that the set (C \ COPT) ∪ {c?} is a clique in G. It follows that the469

set COPT is a vertex cover of the induced subgraph G[C ∪ {c?}]. Thus we get that an470

optimum vertex cover of the graph G[C ∪ {c?}] has weight at most w(COPT), and since471

S2 is a 2-factor approximate vertex cover for G[C ∪ {c?}] we get that w(S2) ≤ 2w(COPT)472

holds. Putting these together we get that w(S1 ∪ S2) ≤ 2w(OPT)(1 + ε
2)− 2w(COPT) +473

2w(COPT) = (2 + ε)w(OPT). Thus S? is a (2 + ε)-factor approximate solution to474

(G,w, (C, I, U)). C475

Since S† is a set of the minimum weight of the form Su12 ; u ∈ U , we get from Claim 19.1476

that S† is a (2 + ε)-factor approximate solution for (G,w, (C, I, U)).477

2. Let S3 be a 2-factor approximate solution for the wVC instance (G[C ∪ (U \ {i?})], w),478

let S4 be a 2-factor approximate solution for the wVC instance (G[I ∪ {i?}], w), and let479

S? = (S3 ∪ S4). From part (2) of Observation 10 we get that the set S? is a feasible480

solution to the A-SVD instance (G,w, (C, I, U)).481

B Claim 19.2. S? is a (2 + ε)-factor approximate solution to (G,w, (C, I, U)).482

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:13

Proof. Recall that by assumption the vertex i? belongs to the set I?U . This implies, in483

particular—see Definition 13—that i? is not in the set OPT .484

Observe first that ((C ∪ (U \ {i?})) \OPT) = C? ∪ (I?U \ {i?}). From this, and since C?485

is an independent set in G, we get that the set (OPT ∩ (C ∪ (U \ {i?}))) ∪ (I?U \ {i?}) =486

(OPT ∩ (C ∪U))∪ (I?U \ {i?}) = (OPT \ IOPT)∪ (I?U \ {i?}) is a vertex cover of the graph487

G[C ∪ (U \ {i?})], of weight w(OPT)−w(IOPT) +w(I?U \ {i?}) ≤ w(OPT)−w(IOPT) +488
ε·w(OPT)

2 . Thus an optimum vertex cover of the graph G[C ∪ (U \ {i?})] has weight at489

most w(OPT)(1 + ε
2)−w(IOPT), and since S3 is a 2-factor approximate vertex cover for490

G[C ∪ (U \ {i?})] we get that w(S3) ≤ 2w(OPT)(1 + ε
2)− 2w(IOPT) holds.491

Since the sets I \ IOPT and I?U are subsets of the independent set I? and since i? ∈ I?U492

holds by assumption, we get that the set (I \ IOPT) ∪ {i?} is an independent set in493

G. It follows that the set IOPT is a vertex cover of the induced subgraph G[I ∪ {i?}].494

Thus we get that an optimum vertex cover of the graph G[I ∪ {i?}] has weight at495

most w(IOPT), and since S4 is a 2-factor approximate vertex cover for G[I ∪ {i?}] we496

get that w(S4) ≤ 2w(IOPT) holds. Putting these together we get that w(S3 ∪ S4) ≤497

2w(OPT)(1 + ε
2)− 2w(IOPT) + 2w(IOPT) = (2 + ε)w(OPT). Thus S? is a (2 + ε)-factor498

approximate solution to (G,w, (C, I, U)). C499

Since S‡ is a set of the minimum weight of the form Su34 ; u ∈ U , we get from Claim 19.2500

that S‡ is a (2 + ε)-factor approximate solution for (G,w, (C, I, U)). J501

I Definition 20. Let (G,w, (C, I, U)), ε, OPT,C?, I?, C?U , I?U be as in Definition 13. We say502

that (G,w, (C, I, U)) is an easy instance if U = ∅ holds, or if at least one of the following503

holds: (i) w(C?U) ≤ ε·w(OPT)
2 , (ii) w(I?U) ≤ ε·w(OPT)

2 , (iii) w(C?U \ {c?}) ≤
ε·w(OPT)

2 holds504

for some vertex c? ∈ C?U , (iv) w(I?U \ {i?}) ≤
ε·w(OPT)

2 holds for some vertex i? ∈ I?U . We505

say that (G,w, (C, I, U)) is a hard instance otherwise.506

From Lemma 12, Lemma 16 and Lemma 18 we get507

I Corollary 21. There is an algorithm which, given an easy instance (G,w, (C, I, U)) of508

A-SVD and a constant ε > 0 as input, computes a (2 + ε)-factor approximate solution for509

(G,w, (C, I, U)) in deterministic polynomial time.510

I Lemma 22. Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε, C?U , I?U , X, IX , CX511

be as in Definition 13. Then the following hold:512

1. w(X ∪ (IX \ C?U)) < (1 + 12
ε) · w(I?U)513

2. w(X ∪ (CX \ I?U)) < (1 + 12
ε) · w(C?U)514

Proof. Let OPT,UOPT , IOPT be as in Definition 13. Then w(UOPT) ≤ w(OPT) and515

w(IOPT) ≤ w(OPT) hold trivially. From Definition 13 we get that w(X) ≤ 5w(OPT) holds,516

and since IX , CX are subsets of U and I?U]C?U] UOPT is a partition of U we get that both517

(IX \C?U) ⊆ (I?U ∪UOPT) and (CX \ I?U) ⊆ (C?U ∪UOPT) hold. Finally, since (G,w, (C, I, U))518

is a hard instance of A-SVD we have—Definition 20—that both w(OPT) < 2w(I?U)
ε and519

w(OPT) < 2w(C?U)
ε hold.520

Hence we get521

w(X ∪ (IX \ C?U)) = w(X) + w(IX \ C?U) ≤ 5w(OPT) + w(I?U ∪ UOPT)522

= 5w(OPT) + w(I?U) + w(UOPT) ≤ 6w(OPT) + w(I?U)523

< (1 + 12
ε

)w(I?U).524
525

CVIT 2016

23:14 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

Similarly,526

w(X ∪ (CX \ I?U)) = w(X) + w(CX \ I?U) ≤ 5w(OPT) + w(C?U ∪ UOPT)527

= 5w(OPT) + w(C?U) + w(UOPT) ≤ 6w(OPT) + w(C?U)528

< (1 + 12
ε

)w(C?U). J529
530

Recall the notion of heavy and light pairs from Definition 3.531

I Lemma 23. Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?, C?U , I?U532

be as in Definition 13. Suppose (I?U , C?U) is a heavy pair. Let I© = {v ∈ I?U ; w(N(v)∩C?U) ≥533

w(C?U)
4 } be the set of vertices in I?U which have a “heavy” neighbourhood in C?U , and let i© be534

a heaviest vertex in I©. Let C© = {v ∈ C?U ; w((I?U \ {i©}) \ (N(v)∩ I?U)) ≥ w(I?U\{i
©})

4 } be535

the set of vertices in C?U which have a “heavy” non-neighbourhood in the subset I?U \ {i©},536

and let c© be a heaviest vertex in C©. Let I� = {v ∈ (I?U \ {i©}) ; w(N(v)∩ (C?U \ {c©}) ≥537

w(C?U\{c
©})

4 } be the set of vertices in I?U \ {i©} which have a “heavy” neighbourhood in538

C?U \ {c©}, and let C� = {v ∈ (C?U \ {c©}) ; w((I?U \ {i©}) \ (N(v)∩ I?U)) ≥ w(I?U\{i
©})

4 } be539

the set of vertices in (C?U \ {c©}) which have a “heavy” non-neighbourhood in I?U \ {i©}.540

Then at least one of the following statements holds:541

(1a) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U) yields a vertex542

v ∈ I© with probability at least 1/(20(1 + 12
ε)).543

(1b) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U) yields a vertex544

v ∈ I� with probability at least 1/(4(1 + 12
ε)).545

(2a) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U) yields a vertex546

v ∈ C© with probability at least 1/(20(1 + 12
ε)).547

(2b) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U) yields a vertex548

v ∈ C� with probability at least 1/(4(1 + 12
ε)).549

Proof. We structure the proof as a number of short claims.550

B Claim 23.1. w(X ∪ (IX \ C?U)) < 4(1 + 12
ε) · w(I©)551

Proof. Since (I?U , C?U) is a heavy pair we get from Lemma 4 that w(I©) > w(I?U)
4 holds.552

Since (G,w, (C, I, U)) is a hard instance we get from Lemma 22 that w(X ∪ (IX \ C?U)) <553

(1 + 12
ε) · w(I?U) holds. Putting these together we get the claim. C554

B Claim 23.2. If w(i©) < 4w(I©)
5 holds then part (1a) of the lemma holds.555

Proof. If I© ⊆ X ∪ (IX \C?U) holds then from Claim 23.1 we get that part (1a) of the lemma556

holds.557

So suppose I© * X ∪ (IX \C?U) holds. Then we get from Observation 15 that |I© \ (X ∪558

(IX \C?U))| = 1 holds. Since a heaviest vertex in I© has weight less than 4w(I©)
5 we get that559

w(I© \ (X ∪ (IX \ C?U))) < 4w(I©)
5 holds as well. Hence w(I© ∩ (X ∪ (IX \ C?U))) > w(I©)

5560

holds, and using Claim 23.1 we get that picking a vertex proportionately at random from561

the set X ∪ (IX \ C?U) yields a vertex from the set I© ∩ (X ∪ (IX \ C?U)) with probability562

more than 1/20(1 + 12
ε), which satisfies part (1a) of the lemma. C563

From now on we assume that w(i©) ≥ 4w(I©)
5 holds. If i© ∈ X ∪ (IX \ C?U) holds, then564

from Claim 23.1 and our assumption about w(i©) we get that picking a vertex proportionately565

at random from the set X ∪ (IX \ C?U) yields the vertex i© itself with probability at least566

1/5(1 + 12
ε), which satisfies part (1a) of the lemma. So from now on we assume that567

i© /∈ X ∪ (IX \ C?U) holds.568

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:15

B Claim 23.3. If ((I?U \ {i©}), C?U) is a heavy pair then part (1a) of the lemma holds.569

Proof. Since ((I?U \{i©}), C?U) is a heavy pair we get from Lemma 4 that w(I©∩(I?U \{i©})) >570

w((I?U\{i
©}))

4 holds. It follows that if we pick a vertex from the set I?U \ {i©} proportionately571

at random with probability p then we get a vertex from the set I© with probability more572

than p
4 .573

Since i© /∈ X∪(IX\C?U) holds, from Observation 15 we get that (I?U\{i©}) ⊆ X∪(IX\C?U)574

holds. Observe that, in general, (IX \C?U) ⊆ (I?U ∪UOPT) holds. In this case since the vertex575

i© ∈ I?U is not in the set IX \C?U we get that (IX \C?U) ⊆ ((I?U \{i©})∪UOPT) holds. Hence576

we get that w(X∪ (IX \C?U)) ≤ w(X)+w(I?U \{i©})+w(UOPT) ≤ 6w(OPT)+w(I?U \{i©})577

holds in this case. Also, since (G,w, (C, I, U)) is a hard instance we get—Definition 20—that578

w(I?U \ {i©}) >
ε·w(OPT)

2 holds. Putting these together we get579

w(X ∪ (IX \ C?U))
w(I?U \ {i©})

≤ 6w(OPT) + w(I?U \ {i©})
w(I?U \ {i©})

= 1 + 6w(OPT)
w(I?U \ {i©})

580

< 1 + 6w(OPT)
ε·w(OPT)

2

= ε+ 12
ε

.581

582

Thus we get that w(X ∪ (IX \ C?U)) < (1 + 12
ε)w(I?U \ {i©}) holds. It follows that picking583

a vertex proportionately at random from the set X ∪ (IX \ C?U) yields a vertex from the584

set I?U \ {i©} with probability more than 1/(1 + 12
ε). And this vertex is in the set I© with585

probability more than 1/4(1 + 12
ε), which satisfies part (1a) of the lemma. C586

From now on we assume that ((I?U \ {i©}), C?U) is a light pair.587

B Claim 23.4. w(X ∪ (CX \ I?U)) < 4(1 + 12
ε) · w(C©)588

Proof. Since ((I?U \{i©}), C?U) is a light pair we get from Lemma 4 that w(C©) > w(C?U)
4 holds.589

Since (G,w, (C, I, U)) is a hard instance we get from Lemma 22 that w(X ∪ (CX \ I?U)) <590

(1 + 12
ε) · w(C?U) holds. Putting these together we get the claim. C591

B Claim 23.5. If w(c©) < 4w(C©)
5 holds then part (2a) of the lemma holds.592

Proof. If C© ⊆ X ∪ (CX \ I?U) holds then from Claim 23.4 we get that part (2a) of the593

lemma holds.594

So suppose C© * X∪ (CX \I?U) holds. Then we get from Observation 15 that |C© \ (X∪595

(CX \ I?U))| = 1 holds. Since a heaviest vertex in C© has weight less than 4w(C©)
5 we get that596

w(C© \ (X ∪ (CX \ I?U))) < 4w(C©)
5 holds as well. Hence w(C© ∩ (X ∪ (CX \ I?U))) > w(C©)

5597

holds, and using Claim 23.4 we get that picking a vertex proportionately at random from598

the set X ∪ (CX \ I?U) yields a vertex from the set C© ∩ (X ∪ (CX \ I?U)) with probability599

more than 1/20(1 + 12
ε), which satisfies part (2a) of the lemma. C600

From now on we assume that w(c©) ≥ 4w(C©)
5 holds. If c© ∈ X ∪ (CX \ I?U) holds then601

from Claim 23.4 and our assumption about w(c©) we get that picking a vertex proportionately602

at random from the set X ∪ (CX \ I?U) yields the vertex c© itself with probability at least603

1/5(1 + 12
ε), which satisfies part (2a) of the lemma. So from now on we assume that604

c© /∈ X ∪ (CX \ I?U) holds.605

B Claim 23.6. If ((I?U \ {i©}), C?U \ {c©})) is a heavy pair then part (1b) of the lemma606

holds.607

CVIT 2016

23:16 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

Proof. Since ((I?U \ {i©}), (C?U \ {c©})) is a heavy pair we get from Lemma 4 that w(I� ∩608

(I?U \ {i©})) >
w((I?U\{i

©}))
4 holds. It follows that if we pick a vertex from the set I?U \ {i©}609

proportionately at random with probability p then we get a vertex from the set I� with610

probability more than p
4 .611

Applying the exact same argument as in the proof of Claim 23.3 we get that picking612

a vertex proportionately at random from the set X ∪ (IX \ C?U) yields a vertex from the613

set I?U \ {i©} with probability more than 1/(1 + 12
ε). And this vertex is in the set I� with614

probability more than 1/4(1 + 12
ε), which satisfies part (1b) of the lemma. C615

From Lemma 4 we get that in the remaining case ((I?U \ {i©}), C?U \ {c©})) is a light616

pair.617

B Claim 23.7. If ((I?U \ {i©}), C?U \ {c©})) is a light pair then part (2b) of the lemma holds.618

Proof. Since ((I?U \ {i©}), (C?U \ {c©})) is a light pair we get from Lemma 4 that w(C� ∩619

(C?U \{c©})) >
w((C?U\{c

©}))
4 holds. It follows that if we pick a vertex from the set C?U \{c©}620

proportionately at random with probability p then we get a vertex from the set C� with621

probability more than p
4 .622

Since c© /∈ X ∪ (CX \ I?U) holds, from Observation 15 we get that (C?U \ {c©}) ⊆623

X ∪ (CX \ I?U) holds. Observe that, in general, (CX \ I?U) ⊆ (C?U ∪UOPT) holds. In this case624

since the vertex c© ∈ C?U is not in the set CX\I?U we get that (CX\I?U) ⊆ ((C?U\{c©})∪UOPT)625

holds. Hence we get that w(X ∪ (CX \ I?U)) ≤ w(X) + w(C?U \ {c©}) + w(UOPT) ≤626

6w(OPT) + w(C?U \ {c©}) holds in this case. Also, since (G,w, (C, I, U)) is a hard instance627

we get—Definition 20—that w(C?U \ {c©}) >
ε·w(OPT)

2 holds. Putting these together we get628

w(X ∪ (CX \ I?U))
w(C?U \ {c©})

≤ 6w(OPT) + w(C?U \ {c©})
w(C?U \ {c©})

= 1 + 6w(OPT)
w(C?U \ {c©})

629

< 1 + 6w(OPT)
ε·w(OPT)

2

= ε+ 12
ε

.630

631

Thus we get that w(X ∪ (CX \ I?U)) < (1 + 12
ε)w(C?U \ {c©}) holds. It follows that picking a632

vertex proportionately at random from the set X ∪ (CX \ I?U) yields a vertex from the set633

C?U \ {c©} with probability more than 1/(1 + 12
ε). And this vertex is in the set C� with634

probability more than 1/4(1 + 12
ε), which satisfies part (2b) of the lemma. C635

Thus, assuming (C?U , I?U) is a heavy pair, at least one of the statements is always true. J636

I Lemma 24. Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?, C?U , I?U637

be as in Definition 13. Suppose (I?U , C?U) is a light pair. Let C‖ = {v ∈ C?U ; w(I?U \ (N(v) ∩638

I?U)) ≥ w(I?U)
4 } be the set of vertices in C?U which have a “heavy” non-neighbourhood in I?U ,639

and let c‖ be a heaviest vertex in C‖. Let I‖ = {v ∈ I?U ; w(N(v)∩(C?U \{c‖})) ≥
w(C?U\{c

‖})
4 }640

be the set of vertices in I?U which have a “heavy” neighbourhood in the subset C?U \ {c‖}, and641

let i‖ be a heaviest vertex in I‖. Let C‡ = {v ∈ (C?U \ {c‖}) ; w((I?U \ {i‖}) \ (N(v) ∩ I?U)) ≥642

w(I?U\{i
‖})

4 } be the set of vertices in C?U \ {c‖} which have a “heavy” non-neighbourhood in643

I?U \ {i‖}, and let I‡ = {v ∈ (I?U \ {i‖}) ; w(N(v) ∩ (C?U \ {c‖})) ≥
w(C?U\{c

‖})
4 } be the set of644

vertices in (I?U \ {i‖}) which have a “heavy” neighbourhood in C?U \ {c‖}.645

Then at least one of the following statements is true.646

(1a) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U) yields a vertex647

v ∈ C‖ with probability at least 1/(20(1 + 12
ε)), or648

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:17

(1b) Picking a vertex proportionately at random from the set X ∪ (CX \ I?U) yields a vertex649

v ∈ C‡ with probability at least 1/(4(1 + 12
ε)).650

(2a) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U) yields a vertex651

v ∈ I‖ with probability at least 1/(20(1 + 12
ε)), or652

(2b) Picking a vertex proportionately at random from the set X ∪ (IX \ C?U) yields a vertex653

v ∈ I‡ with probability at least 1/(4(1 + 12
ε)).654

Proof. We structure the proof as a number of short claims.655

B Claim 24.1. w(X ∪ (CX \ I?U)) < 4(1 + 12
ε) · w(C‖)656

Proof. Since (I?U , C?U) is a light pair we get from Lemma 4 that w(C‖) > w(C?U)
4 holds.657

Since (G,w, (C, I, U)) is a hard instance we get from Lemma 22 that w(X ∪ (CX \ I?U)) <658

(1 + 12
ε) · w(C?U) holds. Putting these together we get the claim. C659

B Claim 24.2. If w(c‖) < 4w(C‖)
5 holds then part (1a) of the lemma holds.660

Proof. If C‖ ⊆ X ∪ (CX \ I?U) holds then from Claim 24.1 we get that part (1a) of the lemma661

holds.662

So suppose C‖ * X ∪ (CX \ I?U) holds. Then we get from Observation 15 that |C‖ \ (X ∪663

(CX \ I?U))| = 1 holds. Since a heaviest vertex in C‖ has weight less than 4w(C‖)
5 we get that664

w(C‖ \ (X ∪ (CX \ I?U))) < 4w(C‖)
5 holds as well. Hence w(C‖ ∩ (X ∪ (CX \ I?U))) > w(C‖)

5665

holds, and using Claim 24.1 we get that picking a vertex proportionately at random from666

the set X ∪ (CX \ I?U) yields a vertex from the set C‖ ∩ (X ∪ (CX \ I?U)) with probability667

more than 1/20(1 + 12
ε), which satisfies part (1a) of the lemma. C668

From now on we assume that w(c‖) ≥ 4w(C‖)
5 holds. If c‖ ∈ X ∪ (CX \ I?U) holds, then669

from Claim 24.1 and our assumption about w(c‖) we get that picking a vertex proportionately670

at random from the set X ∪ (CX \ I?U) yields the vertex c‖ itself with probability at least671

1/5(1 + 12
ε), which satisfies part (1a) of the lemma. So from now on we assume that672

c‖ /∈ X ∪ (CX \ I?U) holds.673

B Claim 24.3. If ((C?U \ {c‖}), I?U) is a light pair then part (1a) of the lemma holds.674

Proof. Since ((C?U \{c‖}), I?U) is a light pair we get from Lemma 4 that w(C‖∩(C?U \{c‖})) >675

w((C?U\{c
‖}))

4 holds. It follows that if we pick a vertex from the set C?U \ {c‖} proportionately676

at random with probability p then we get a vertex from the set C‖ with probability more677

than p
4 .678

Since c‖ /∈ X∪(CX\I?U) holds, from Observation 15 we get that (C?U \{c‖}) ⊆ X∪(CX\I?U)679

holds. Observe that, in general, (CX \ I?U) ⊆ (C?U ∪UOPT) holds. In this case since the vertex680

c‖ ∈ C?U is not in the set CX \ I?U we get that (CX \ I?U) ⊆ ((C?U \{c‖})∪UOPT) holds. Hence681

we get that w(X ∪ (CX \I?U)) ≤ w(X)+w(C?U \{c‖})+w(UOPT) ≤ 6w(OPT)+w(C?U \{c‖})682

holds in this case. Also, since (G,w, (C, I, U)) is a hard instance we get—Definition 20—that683

w(C?U \ {c‖}) >
ε·w(OPT)

2 holds. Putting these together we get684

w(X ∪ (CX \ I?U))
w(C?U \ {c‖})

≤ 6w(OPT) + w(C?U \ {c‖})
w(C?U \ {c‖})

= 1 + 6w(OPT)
w(C?U \ {c‖})

685

< 1 + 6w(OPT)
ε·w(OPT)

2

= ε+ 12
ε

.686

687

CVIT 2016

23:18 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

Thus we get that w(X ∪ (CX \ I?U)) < (1 + 12
ε)w(C?U \ {c‖}) holds. It follows that picking688

a vertex proportionately at random from the set X ∪ (CX \ I?U) yields a vertex from the689

set C?U \ {c‖} with probability more than 1/(1 + 12
ε). And this vertex is in the set C‖ with690

probability more than 1/4(1 + 12
ε), which satisfies part (1a) of the lemma. C691

From now on we assume that ((C?U \ {c‖}), I?U) is a heavy pair.692

B Claim 24.4. w(X ∪ (IX \ C?U)) < 4(1 + 12
ε) · w(I‖)693

Proof. Since ((C?U \{c‖}), I?U) is a heavy pair we get from Lemma 4 that w(I‖) > w(I?U)
4 holds.694

Since (G,w, (C, I, U)) is a hard instance we get from Lemma 22 that w(X ∪ (IX \ C?U)) <695

(1 + 12
ε) · w(I?U) holds. Putting these together we get the claim. C696

B Claim 24.5. If w(i‖) < 4w(I‖)
5 holds then part (2a) of the lemma holds.697

Proof. If I‖ ⊆ X ∪ (IX \C?U) holds then from Claim 24.4 we get that part (2a) of the lemma698

holds.699

So suppose I‖ * X ∪ (IX \ C?U) holds. Then we get from Observation 15 that |I‖ \ (X ∪700

(IX \ C?U))| = 1 holds. Since a heaviest vertex in I‖ has weight less than 4w(I‖)
5 we get that701

w(I‖ \ (X ∪ (IX \ C?U))) < 4w(I‖)
5 holds as well. Hence w(I‖ ∩ (X ∪ (IX \ C?U))) > w(I‖)

5702

holds, and using Claim 24.4 we get that picking a vertex proportionately at random from the703

set X ∪ (IX \ C?U) yields a vertex from the set I‖ ∩ (X ∪ (IX \ C?U)) with probability more704

than 1/20(1 + 12
ε), which satisfies part (2a) of the lemma. C705

From now on we assume that w(i‖) ≥ 4w(I‖)
5 holds. If i‖ ∈ X ∪ (IX \C?U) holds then from706

Claim 24.4 and our assumption about w(i‖) we get that picking a vertex proportionately707

at random from the set X ∪ (IX \ C?U) yields the vertex i‖ itself with probability at least708

1/5(1 + 12
ε), which satisfies part (2a) of the lemma. So from now on we assume that709

i‖ /∈ X ∪ (IX \ C?U) holds.710

B Claim 24.6. If ((C?U \ {c‖}), I?U \ {i‖})) is a light pair then part (1b) of the lemma holds.711

Proof. Since ((C?U \ {c‖}), (I?U \ {i‖})) is a light pair we get from Lemma 4 that w(C‡ ∩712

(C?U \ {c‖})) >
w((C?U\{c

‖}))
4 holds. It follows that if we pick a vertex from the set C?U \ {c‖}713

proportionately at random with probability p then we get a vertex from the set C‡ with714

probability more than p
4 .715

Applying the exact same argument as in the proof of Claim 24.3 we get that picking716

a vertex proportionately at random from the set X ∪ (CX \ I?U) yields a vertex from the717

set C?U \ {c‖} with probability more than 1/(1 + 12
ε). And this vertex is in the set C‡ with718

probability more than 1/4(1 + 12
ε), which satisfies part (1b) of the lemma. C719

From Lemma 4 we get that in the remaining case ((C?U \ {c‖}), I?U \ {i‖})) is a heavy pair.720

B Claim 24.7. If ((C?U \ {c‖}), I?U \ {i‖})) is a heavy pair then part (2b) of the lemma holds.721

Proof. Since ((C?U \ {c‖}), (I?U \ {i‖})) is a heavy pair we get from Lemma 4 that w(I‡ ∩722

(I?U \ {i‖})) >
w((I?U\{i

‖}))
4 holds. It follows that if we pick a vertex from the set I?U \ {i‖}723

proportionately at random with probability p then we get a vertex from the set I‡ with724

probability more than p
4 .725

Since i‖ /∈ X∪(IX \C?U) holds, from Observation 15 we get that (I?U \{i‖}) ⊆ X∪(IX \C?U)726

holds. Observe that, in general, (IX \C?U) ⊆ (I?U ∪UOPT) holds. In this case since the vertex727

i‖ ∈ I?U is not in the set IX \C?U we get that (IX \C?U) ⊆ ((I?U \ {i‖})∪UOPT) holds. Hence728

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:19

we get that w(X ∪ (IX \C?U)) ≤ w(X) +w(I?U \ {i‖}) +w(UOPT) ≤ 6w(OPT) +w(I?U \ {i‖})729

holds in this case. Also, since (G,w, (C, I, U)) is a hard instance we get—Definition 20—that730

w(I?U \ {i‖}) >
ε·w(OPT)

2 holds. Putting these together we get731

w(X ∪ (IX \ C?U))
w(I?U \ {i‖})

≤ 6w(OPT) + w(I?U \ {i‖})
w(I?U \ {i‖})

= 1 + 6w(OPT)
w(I?U \ {i‖})

732

< 1 + 6w(OPT)
ε·w(OPT)

2

= ε+ 12
ε

.733

734

Thus we get that w(X ∪ (IX \ C?U)) < (1 + 12
ε)w(I?U \ {i‖}) holds. It follows that picking735

a vertex proportionately at random from the set X ∪ (IX \ C?U) yields a vertex from the736

set I?U \ {i‖} with probability more than 1/(1 + 12
ε). And this vertex is in the set I‡ with737

probability more than 1/4(1 + 12
ε), which satisfies part (2b) of the lemma. C738

Thus, assuming (C?U , I?U) is a light pair, at least one of the statements is always true. J739

From Lemma 23 and Lemma 24 we get740

I Lemma 25. Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?, C?U , I?U741

be as in Definition 13. Then one of the following statements is true.742

(1a) Picking a vertex proportionately at random from X ∪ (IX \ C?U) yields a vertex from743

{v ∈ I?U | w(N(v) ∩ C?U) ≥ w(C?U)
4 } with probability at least 1/20(1 + 12

ε).744

(1b) Picking a vertex proportionately at random from X ∪ (IX \ C?U) yields a vertex from745

{v ∈ I?U | w(N(v) ∩ (C?U \ {c?})) ≥
w(C?U)\{c?}

4 } with probability at least 1/20(1 + 12
ε), for746

some vertex c? ∈ C?U .747

(2a) Picking a vertex proportionately at random from X ∪ (CX \ I?U) yields a vertex from748

{v ∈ C?U | w(I?U \N(v)) ≥ w(I?U)
4 } with probability at least 1/20(1 + 12

ε).749

(2b) Picking a vertex proportionately at random from X ∪ (CX \ I?U) yields a vertex from750

{v ∈ C?U | w((I?U \ {i?}) \N(v)) ≥ w(I?U\{i
?})

4 } with probability at least 1/20(1 + 12
ε), for751

some vertex i? ∈ I?U .752

Proof. From Lemma 4 we get that (I?U , C?U) is either a heavy pair or a light pair. If (I?U , C?U)753

is a heavy pair then Lemma 23 applies, and at least one of the four options of that lemma754

holds. Option (1a) of Lemma 23 implies option (1a) of the current lemma. Option (1b) of755

Lemma 23 implies option (1b) of the current lemma. Options (2a) and (2b) of Lemma 23756

both imply option (2b) of the current lemma.757

If (I?U , C?U) is a light pair then Lemma 24 applies, and at least one of the four options758

of that lemma holds. Option (1a) of Lemma 24 implies option (2a) of the current lemma.759

Option (1b) of Lemma 24 implies option (2b) of the current lemma. Options (2a) and (2b)760

of Lemma 24 both imply option (1b) of the current lemma.761

Thus in every case, one of the four options of the current lemma holds. J762

I Lemma 26. Let (G,w, (C, I, U)) be a hard instance of A-SVD and let ε,OPT,C?, I?, C?U , I?U763

be as in Definition 13.764

1. There is a randomized polynomial-time algorithm which, given (G,w, (C, I, U)) as input,765

picks a vertex proportionately at random from the set X ∪ (IX \ C?U) with probability766

at least 1
2 . That is, the algorithm runs in polynomial time and outputs a vertex v, and767

the following hold with probability at least 1
2 : (i) v ∈ X ∪ (IX \ C?U), and (ii) for any768

x ∈ (X ∪ (IX \ C?U)), Pr[v = x] = w(x)/w(X ∪ (IX \ C?U)).769

CVIT 2016

23:20 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

2. There is a randomized polynomial-time algorithm which, given (G,w, (C, I, U)) as input,770

picks a vertex proportionately at random from the set X ∪ (CX \ I?U) with probability771

at least 1
2 . That is, the algorithm runs in polynomial time and outputs a vertex v, and772

the following hold with probability at least 1
2 : (i) v ∈ X ∪ (CX \ I?U), and (ii) for any773

x ∈ (X ∪ (CX \ I?U)), Pr[v = x] = w(x)/w(X ∪ (CX \ I?U)).774

Proof. Given an instance (G,w, (C, I, U)) of Annotated Split Vertex Deletion as775

input, in each case the algorithm first applies Remark 14 to compute a 5-factor approximate776

solution X to the Split Vertex Deletion instance (G[U], wU), and a split partition777

(CX , IX) of the split graph G[U]−X, in polynomial time.778

The two cases are symmetric; we prove each case in turn.779

1. In this case the algorithm picks a vertex v1 proportionately at random from the set780

X ∪ IX . It then deletes v1 from X ∪ IX and picks a vertex v2 proportionately at random781

from the remaining set (X ∪ IX) \ {v1}. Finally, it returns one of the two vertices {v1, v2}782

uniformly at random as the vertex v.783

This procedure clearly runs in polynomial time. We now analyze the probability of success.784

Suppose IX ∩C?U = ∅ holds. Then X ∪ IX = X ∪ (IX \C?U) holds, and vertex v1 satisfies785

the requirement on vertex v with probability 1. Since the algorithm returns vertex v1786

with probability 1
2 , in this case the algorithm succeeds with probability 1

2 .787

The other case is when IX ∩ C?U 6= ∅. Now, since IX is an independent set and C?U a788

clique, we get that |IX ∩ C?U | = 1 holds in this case. So let IX ∩ C?U = {y}, and hence789

X ∪ (IX \ C?U) = (X ∪ IX) \ {y}. Note that we sample two distinct vertices v1 and v2790

from X ∪ IX , and then set v as one of them uniformly at random. Now consider two791

cases:792

a. Suppose that v1 = y. Then we sample v2 from (X ∪ IX) \ {y} = X ∪ (IX \ C?U)793

proportionately at random. Then we pick v ∈ {v1, v2} uniformly at random. Hence,794

with probability 1
2 we return v2, which satisfies all the required conditions.795

b. Otherwise, v1 6= y. Then conditioned on this event (when we pick v1), the following796

holds: for any x ∈ X∪(IX \C?U) = (X∪IX)\{y}, Pr[v1 = x] = w(x)/w(X∪(IX \C?U)).797

Once again, with probability 1
2 we return v1, and it satisfies all the required conditions.798

2. In this case the algorithm picks a vertex v1 proportionately at random from the set799

X ∪CX . It then deletes v1 from X ∪CX and picks a vertex v2 proportionately at random800

from the remaining set (X ∪CX)\{v1}. Finally, it returns one of the two vertices {v1, v2}801

uniformly at random as the vertex v.802

This procedure clearly runs in polynomial time. We now analyze the probability of803

success. Suppose CX ∩ I?U = ∅ holds. Then X ∪ CX = X ∪ (CX \ I?U) holds, and vertex804

v1 satisfies the requirement on vertex v with probability 1. Since the algorithm returns805

vertex v1 with probability 1
2 , in this case the algorithm succeeds with probability 1

2 .806

The other case is when CX ∩ I?U 6= ∅. Then |CX ∩ I?U | = 1 and let CX ∩ I?U = {y}. Note807

that we sample two distinct vertices v1 and v2 from X ∪ CX , and then set v as one of808

them uniformly at random. Now consider two cases:809

a. Suppose that v1 = y. In this case, we sample v2 from X ∪CX \ {y} proportionately at810

random. The algorithm returns v2 with probability at least 1
2 , which satisfies all the811

required conditions.812

b. Otherwise v1 6= y. Then conditioned on this event (when we pick v1), the following813

holds: for any x ∈ (X∪CX)\{y} = X∪(CX \I?U), Pr[v1 = x] = w(x)/w(X∪(CX \I?U)).814

The algorithm returns v1 with probability at least 1
2 , which satisfies all the required815

conditions.816

J817

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:21

Algorithm 1
Input: An instance (G,w, (C, I, U)) of A-SVD, a tuples (βC1 , βC2 , βI1 , βI2) and ε > 0.
Output: A (2 + ε)-factor approximate solution to (G,w, (C, I, U)).

1: procedure ASVD-Approx((G,w, (C, I, U)), ε, βC1 , βC2 , βI1 , βI2))
2: if U = ∅ then
3: Compute a 2-approximation S using Lemma 12
4: return S

5: end if
6: X ← 5-approximate solution to (G[U], w) from Theorem 6
7: IX , CX ← the independent set and the clique in the split partition of G[U]−X.
8: Compute the sets S12 and S34 as described in Lemma 16.
9: Compute the sets S† and S‡ as described in Lemma 18.
10: if βC1 ≥ 0 and βC2 ≥ 0 and βI1 ≥ 0 and βI2 ≥ 0 then
11: for all j ∈ {1, 2, . . . , b(ε)} do . b(ε) = d80(1 + 12

ε)e.
12: Sample a vertex vI proportionally at random from the set X ∪ (IX \ C?U)

using Lemma 26.
13: Set ZC ← N(vI) ∩ U .
14: Set C ′ ← C ∪ ZC
15: Set U ′ ← U \ ZC
16: Set SCj,1 ← ASVD-Approx((G,w, (C ′, I, U ′)), ε, βC1 − 1, βC2 , βI1 , βI2)
17: Set SCj,2 ← ASVD-Approx((G,w, (C ′, I, U ′)), ε, βC1 , βC2 − 1, βI1 , βI2)
18: Sample a vertex vC proportionally at random from the set X ∪ (CX \ I?U)

using Lemma 26.
19: Set ZI ← U \N(vC).
20: Set I ′ ← I ∪ ZI
21: Set U ′ ← U \ ZI
22: Set SIj,1 ← ASVD-Approx((G,w, (C, I ′, U ′)), ε, βC1 , βC2 , βI1 − 1, βI2)
23: Set SIj,1 ← ASVD-Approx((G,w, (C, I ′, U ′)), ε, βC1 , βC2 , βI1 , βI2 − 1)
24: end for
25: else
26: for all j ∈ {1, 2, . . . , b(ε)} do
27: SCj,1, S

C
j,2, S

I
j,1, S

I
j,2 ← V (G), V (G), V (G), V (G)

28: end for
29: end if
30: S ← a min weight set in

⋃
j=1,2,...b(ε){SCj,1, SCj,2, SIj,1, SIj,2}

⋃
{S12, S34, S

†, S‡}.
31: return S

32: end procedure

3.1 Polynomially Bounded Weights818

Let us first consider instances (G,w) of SVD which have polynomially bounded weights. Let819

n = |V (G)|. Recall that w(v) ≥ 1 holds for each vertex v of G. We say that the weight820

function w is polynomially bounded if, in addition,
∑
v∈V (G) w(v) ≤ c1n

c0 holds for every821

v ∈ V (G) and some constants c0, c1. For such instances we have the following theorem.822

I Theorem 27. There exists a randomized algorithm that given a graph G, a polynomially823

bounded weight function w on V (G) and ε > 0, runs in time O(nf(ε)) and outputs S ⊆ V (G)824

such that G − S is a split graph and w(S) ≤ (2 + ε)w(OPT) with probability at least 1/2,825

CVIT 2016

23:22 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

where OPT is a minimum weight split vertex deletion set of G. Here, f(ε) = 6 + log(80(1 +826

12
ε)) · 4c0 log(c1)/ log(4/3), where c0, c1 are constants such that w(V) ≤ c1 · nc0 .827

Proof. Let us fix an optimum solution OPT to (G,w). We treat the instance (G,w) of SVD828

as an instance (G,w, (C = ∅, I = ∅, U = V (G))) of A-SVD, and apply Algorithm 1 to it,829

along with the given value of ε and four integers βC1 , βC2 , βI1 , βI2 each set to dlog4/3(w(V (G)))e.830

Note that, as w is polynomially-bounded, we have w(V (G)) ≤ c1n
c0 for some constants831

c0, c1, and hence β′ ≤ c2 log(n) for every β′ ∈ {βC1 , βC2 , βI1 , βI2} where c2 is a constant. We832

will show that the value β = 1 + βC1 + βC2 + βI1 + βI2 ≤ 1 + 4c2 log(n) is an upper-bound on833

the depth of the recursion tree of Algorithm 1, and that in each recursive call this value834

drops by 1. Hence the depth of recursion is bounded by β. Each recursive call is made on835

more constrained sub-instances of A-SVD where the underlying graph G, weight function w,836

and the value of ε remain fixed. When one of {βC1 , βC2 , βI1 , βI2} falls to −1, we argue that the837

current instance must be an easy instance (see Definition 20), assuming all the recursive838

calls leading the current call were “good” (as defined below). During its run the algorithm839

also computes a 5-approximate solution X to (G[U], w) using Theorem 6; let IX , CX be a840

fixed split partition of G[U] −X. We have a split partition (C?, I?) of G − OPT and we841

define I?U = I? ∩U,C?U = C? ∩U . These sets, introduced in Definition 13, play an important842

role in Algorithm 1 and its analysis.843

To argue the correctness of Algorithm 1, we require the following definition. An invocation844

ASVD-Approx(G,w, (C, I, U), ε, βC1 , βC2 , βI1 , βI2) is good if the following conditions are true:845

βC1 ≥ log4/3(w(C?U)),846

βC2 ≥ log4/3(w(C?U \ {c})) for some c ∈ C?U ,847

βI1 ≥ log4/3(w(I?U)), and848

βI2 ≥ log4/3(w(I?U \ {i})) for some i ∈ I?U .849

Note that the definitions of C?U and I?U depend only on (G,w, (C, I, U)) and on the850

optimum solution OPT that was fixed at the beginning. These sets are hypothetical and851

unknown, and we can’t directly test if an invocation of Algorithm 1 is a good invocation.852

However, observe that in the initial call, U = V (G) and we set each of βC1 , βC2 , βI1 , βI2 to853

dlog4/3(w(V (G)))e, and hence the initial invocation is good. We will argue that if the854

current invocation is good and the instance of A-SVD is a hard instance (see Definition 20),855

then each recursive call made by the algorithm is good with a constant probability (which856

depends on ε). Then (via an induction) we argue that a good recursive call will return a857

(2 + ε)-approximate solution with probability at least 1
2 , and hence with constant probability858

we obtain a (2 + ε)-approximate solution from a recursive call. To boost the probability of859

success to 1
2 , we need to repeat this process constantly many times, so we make constantly860

many recursive calls. Finally, to bound the running time, we argue that the depth of the861

recursion tree is bounded by β = O(logn), and we make constantly many recursive calls in862

each invocation of the algorithm. So the total number of calls made to this algorithm, which863

is upper-bounded by the size of the recursion tree, is nO(1). This means that in polynomial864

time, with probability at least 1/2, we obtain a (2 + ε)-approximate solution to (G,w). Let865

us now present these arguments formally.866

Let us recall the optimum solution OPT to (G,w) that was fixed at the beginning. We say867

that an instance (G,w, (C,U, I)) is a nice instance if the solution OPT is also an optimum868

solution to this A-SVD instance. This means that a split partition C?, I? of G−OPT satisfies,869

C? ∩ I = ∅ and I? ∩ C = ∅. Note that this condition is trivially satisfied at the beginning870

for the starting instance (G,w, (C = ∅, I = ∅, U = V (G)). Let us consider an invocation871

of Algorithm 1 on a nice instance of (G,w, (C, I, U)) with polynomially bounded weight872

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:23

function w and βC1 , βC2 , βI1 , βI2 such that it is a good invocation. Let S denote the solution873

returned by it. We will show that S is a (2 + ε)-approximate solution with probability at874

least 1
2 , by an induction on |U |. Suppose that |U | = 0, i.e. U = ∅. Then Lemma 12 ensures875

that S is a 2-approximate solution. This forms the base case of our induction on |U |.876

Now suppose that |U | > 0, and we have two cases depending on whether (G,w, (C, I, U))877

is an easy instance or not. If it is an easy instance, then either the premise of Lemma 16 or878

the premise of Lemma 18 holds. Hence, one of S12, S23, S
†, S‡ is a (2 + ε)-approximation879

to (G,w, (C, I, U)). Moreover, we claim that if any one of βC1 , βC2 , βI1 , βI2 drops to −1, then880

the instance (G,w, (C, I, U)) is an easy instance. Consider the case when βC2 = −1. Then881

log4/3(w(C?U \ {c})) = −1 for some c ∈ C?U . This means w(C?U \ {c}) < 3/4, and since882

w(v) ≥ 1 for every v ∈ V (G), it must be the case that C?U = {c}. Hence, the premise of883

Lemma 18 holds and we obtain a (2 + ε)-approximate solution for (G,w, (C, I, U)). Similar884

arguments apply to the other cases, i.e. when βC1 = −1, or βI1 = −1 or βI2 = −1, and we885

can obtain a (2 + ε)-approximation in all these cases. Therefore, in all these cases S is a886

(2 + ε)-approximation to (G,w, (C, I, U)).887

Now, consider the case when the given instance is a hard instance, i.e. U 6= ∅ and the888

premises of Lemma 16 and Lemma 18 don’t hold. In this case βC1 , βC2 , βI1 , βI2 ≥ 0. Recall that889

X is a 5-approximate solution to SVD in the subgraph G[U], and hence w(X) ≤ 5 · OPT .890

We will make recursive calls on instances of A-SVD of the form (G,w, (C ′, I ′, U ′)) such891

that C ⊆ C ′, I ⊆ I ′ and U ′ (U . Suppose that (G,w, (C ′, I ′, U ′)) is a nice instance. Then892

by the induction hypothesis, as |U ′| < |U |, we can assume that Algorithm 1 returns a893

(2 + ε)-approximate solution Ŝ to this instance with probability at least 1/2. This is an894

approximate solution to the current instance as well:895

B Claim 27.1. Ŝ is a (2 + ε)-approximate solution to (G,w, (C, I, U))896

Proof. Observe that, since Ŝ is feasible solution to the nice instance (G,w, (C ′, I ′, U ′)), there897

is a split partition (C
Ŝ
, I
Ŝ

) of G − Ŝ such that C ′ ∩ I
Ŝ

= ∅ and I ′ ∩ C
Ŝ

= ∅. Therefore,898

we have C ∩ I
Ŝ

= ∅ and I ∩ C
Ŝ

= ∅, i.e. Ŝ is a feasible solution to (G,w, (C, I, U)). Since899

w(Ŝ) ≤ (2 + ε)w(OPT), the claim is true. J900

Let us now consider the recursive calls made by the algorithm for each j ∈ {1, 2, . . . , b(ε) =901

d80(1 + 12
ε)e}, and argue that with a constant probability (depending on ε) we can obtain a902

(2+ε)-approximation to the given instance. In each recursive call, one of βC1 , βC2 , βI1 , βI2 drops903

by exactly 1. Let us fix j ∈ {1, 2, . . . , b(ε)} and consider the two vertices vI , vC sampled904

using Lemma 26. Since (G,w, (C, I, U)) is a hard instance, the following hold.905

With probability at least 1/2, vI ∈ X ∪ (IX \ C?U), and for any x ∈ (X ∪ (IX \ C?U)),906

Pr[vI = x] = w(x)/w(X ∪ (IX \ C?U)).907

With probability at least 1/2, vC ∈ X ∪ (CX \ I?U), and for any x ∈ (X ∪ (CX \ I?U)),908

Pr[vC = x] = w(x)/w(X ∪ (CX \ I?U)).909

By the induction hypothesis, any good invocation ASVD-Approx(G,w, (C ′, I ′, U ′), ε, β̂C1 , β̂C2 , β̂I1 , β̂I2)910

where (G,w, (C ′, I ′, U ′) is a nice instance and |U ′| < |U | holds, returns a (2 + ε)-approximate911

solution to (G,w, (C ′, I, , U ′)) with probability at least 1
2 . We now have four cases, depending912

on which of the four statements in Lemma 25 is true for (G,w, (C, I, U)). In each case we913

will argue that with constant probability, we make a good recursive call on a nice instance914

and obtain a (2 + ε)-approximate solution from it.915

(i) Suppose that statement (1a) of Lemma 25 is true. That is, picking a vertex proportionally916

at random from X ∪ (IX \ C?U) yields a vertex from {v ∈ I?U | w(N(v) ∩ C?U) ≥ w(C?U)
4 }917

with probability at least 1/20(1 + 12
ε). Then vI ∈ {v ∈ I?U | w(N(v) ∩ C?U) ≥ w(C?U)

4 }918

CVIT 2016

23:24 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

with probability at least 1/40(1 + 12
ε). As vI ∈ I?U , every vertex in ZC = N(vI) ∩ U919

must either be in OPTU or in C?U . Furthermore, w(ZC ∩ C?U) ≥ w(C?U)
4 . Let U ′ =920

U\ZC , C ′ = C∪ZC and consider the invocation ASVD-Approx(G,w, (C ′, I, U ′), ε, βC1 −921

1, βC2 , βI1 , βI2). Let us argue that it is a good invocation. By definition C?U ′ = C? ∩ U ′922

satisfies w(C?U ′) ≤ 3
4w(C?U). Therefore, as βC1 ≥ log4/3(w(C?U)), we have βC1 − 1 ≥923

log4/3(w(C?U ′)). Furthermore, observe that β2
C ≥ log4/3(w(C?U ′ \ {c?})), and I, βI1 , β

I
2924

remain unchanged. Hence, assuming that the current invocation is good, this invocation925

is also good. Let us argue that (G,w, (C ′, I, U ′)) is a nice instance, i.e. OPT is an926

optimum solution to it. Towards this, recall that C ′ = C ∪ ZC where ZC = N(vI) ∩ U927

and vI ∈ I?U ⊆ I?. Hence, every vertex in ZC is either in OPT or in C?, i.e. ZC ∩ I? = ∅.928

Since OPT is feasible for (G,w, (C, I, U)) we have that C ∩ I? = ∅. Therefore, C ′ ∩ I? =929

(C ∪ZC)∩ I? = ∅, and hence OPT is a feasible solution for (G,w, (C ′, I, U ′)). Finally, as930

any feasible solution for (G,w, (C ′, I, U ′)) is also feasible for (G,w), OPT is an optimum931

solution for (G,w, (C ′, I, U ′)). Now |U ′| < |U |, and by the induction hypothesis, this932

invocation returns a solution SCj,1 to (G,w, (C ′, I, U ′)) with probability at least 1/2. By933

Claim 27.1, SC1,j is a (2 + ε)-approximate solution to (G,w, (C, I, U)). Hence, we obtain a934

solution SC1,j that is a (2 + ε)-approximation to (G,w, (C, I, U)), and this event happens935

with probability at least 1/80(1 + 12
ε). Note that βC1 drops by 1 in the recursive call .936

(ii) Suppose that statement (1b) of Lemma 25 is true. That is, picking a vertex proportionately937

at random from X ∪ (IX \ C?U) yields a vertex from {v ∈ I?U | w(N(v) ∩ (C?U \ {c?})) ≥938

w(C?U)\{c?}
4 } with probability at least 1/20(1+ 12

ε), for some vertex c? ∈ C?U (as determined939

by Lemma 25). Then, with probability at least 1/40(1 + 12
ε), vI ∈ {v ∈ I?U | w(N(v) ∩940

(C?U \ {c?})) ≥
w(C?U)\{c?}

4 }. As vI ∈ I?U , every vertex in ZC = N(vI) ∩ U must either941

be in OPT or in C?U . Let C ′ = C ∪ ZC , U ′ = U \ ZC and consider the invocation942

ASVD-Approx(G,w, (C ′, I, U ′), ε, βC1 , βC2 − 1, βI1 , βI2). Let us argue that it is a good943

invocation. Let Ĉ = (C?U \ {c?}) \ N(vI) and C?U ′ = C? ∩ U ′, and note that either944

C?U ′ = Ĉ or C?U ′ = Ĉ ∪ {c?}. Since w(Ĉ) ≤ 3
4w(C?U \ {c?}) by the choice of vI , we have945

log4/3(w(Ĉ)) ≤ log4/3(w(C?U \ {c?})− 1 ≤ βC2 − 1. Therefore, if C?U ′ = Ĉ, then for any946

arbitrary c′ ∈ C?U ′ we have βC2 − 1 ≥ log4/3(w(C?U ′ \ {c′})); otherwise C?U ′ = Ĉ ∪ {c?},947

and βC2 − 1 ≥ log4/3(w(C?U ′ \ {c?})). Furthermore, observe that βC1 is unchanged and948

C?U ′ ⊆ C?U , we have log4/3(w(C?U ′)) ≤ βC1 . Similarly, I, βI1 , βI2 are also unchanged. Hence,949

this invocation is good. Next, as in the previous case, we can argue that (G,w, (C ′, I, U ′)950

is a nice instance. Then, as |U ′| < |U |, by the induction hypothesis the invocation returns951

a (2 + ε)-approximate solution SCj,2 to (G,w, (C ′, I ′U ′)) with probability at least 1/2. By952

Claim 27.1, SCj,2 is a (2 + ε)-approximate solution to (G,w, (C, I, U)). Hence, we obtain a953

solution SCj,2 that is a (2 + ε)-approximation to (G,w, (C, I, U)), and this event happens954

with probability at least 1/80(1 + 12
ε). Note that βC2 drops by 1 in recursive call made955

here.956

(iii) Suppose that statement (2a) of Lemma 25 is true. This case is symmetric to Case-957

(i), above, where the arguments are made with respect to vC ∈ X ∪ (CX \ I?U). Here958

vC ∈ {v ∈ C?U | w(I?U \N(v)) ≥ w(I?U)
4 } with probability at least 1/40(1+ 12

ε). We consider959

the instance (G,w, (C, I ′, U ′)) where I ′ = I ∪ ZI , U ′ = U \ ZI and ZI = U \N(vC). We960

can argue that this invocation is good and the instance (G,w, (C, I ′, U ′)) is nice. Then,961

as |U ′| ≤ |U |, by the induction hypothesis, this invocation returns a (2 + ε)-approximate962

solution to (G,w, (C, I ′, U ′)) with probability at least 1/2. Let SIj,1 denote this solution,963

and we argue that it is also a (2 + ε)-approximate solution to (G,w, (C, I, U)). In964

conclusion, we obtain a solution SIj,1 that is a (2 + ε)-approximation to (G,w, (C, I, U)),965

and this event happens with probability at least 1/80(1 + 12
ε). Note that βI1 drops by 1966

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:25

in recursive call made here.967

(iv) Suppose that statement (2a) of Lemma 25 is true. This case is symmetric to Case-(ii) above.968

Here we have a vertex vC ∈ {v ∈ C?U | w(I?U \N(v)) ≥ w(I?U)
4 } with probability at least969

1/40(1+ 12
ε). We make a recursive call ASVD-Approx(G,w, (C, I ′, U ′), ε, βC1 , βC2 , βI1 , βI2−970

1), where I ′ = I ∪ ZI , U ′ = U \ ZI and ZI = U \ N(vC). Here, we obtain a solution971

SIj,2 that is a (2 + ε)-approximation to (G,w, (C, I, U)), and this event happens with972

probability at least 1/80(1 + 12
ε). Note that βI2 drops by 1 in recursive call made here.973

Therefore, if (G,w, (C, I, U)) is a hard instance, then for each j ∈ {1, 2, . . . , b(ε)}, one of974

SCj,1, S
C
j,2, S

I
j,1, S

I
j,2 is a (2+ε)-approximate solution to it with probability at least 1/80(1+ 12

ε).975

Note that the recursive calls made for any two distinct j, j′ ∈ {1, 2, . . . , b(ε)} are independent976

events. Therefore, by setting b(ε) = d80(1+ 12
ε)e, we obtain that with probability at least 1/2977

there exists j ∈ {1, 2, . . . , b(ε)} such that one of SCj,1, SCj,2, SIj,1, SIj,2 is a (2 + ε)-approximate978

solution to (G,w, (C, I, U)).979

Finally, let us bound the running time of this algorithm. Towards this, we must bound the980

total number of calls made to Algorithm 1, when run on an instance (G,w) with polynomially981

bounded weights. Observe that, we start with an instance (G,w, (C = ∅, I = ∅, U = V (G)))982

of A-SVD along with βC1 , βC2 , βI1 , βI2 set to dlog4/3(w(V (G))e = c2 log(n) for some constant983

c2. Then, for each instance (G,w, (C, I, U)), we make b(ε) recursive calls and at least one984

of βC1 , βC2 , βI1 , βI2 drops by 1 in each of these calls. Additionally U drops to a strict subset985

in each of these calls. Hence in a finite number of steps, either U becomes empty, or986

one of βC1 , βC2 , βI1 , βI2 becomes equal to −1, and we reach an easy instance. Observe that987

this must happen at some point before the depth of recursion exceeds β = 1 + 4c2 log(n).988

Hence, the number of recursive calls made for the instance (G,w) is upper bounded by989

b(ε)β = O(nh(ε)) where h(ε) = log(80(1 + 12
ε)) · 4c0 log(c1)/ log(4/3). Recall that c0, c1 are990

constants such that w(V (G)) ≤ c1 · nc0 . Observe that in each recursive call, we spend O(n6)991

time (excluding the recursive calls). Hence the total running time is upper-bounded by nf(ε)
992

where f(ε) = 6 + log(80(1 + 12
ε)) · 4c0 log(c1)/ log(4/3). Alternatively, this bound on the993

running time can be obtained from the Master Theorem. J994

3.2 General Weight Functions995

In this section, we extend Theorem 27 to instances of SVD with general weight function. In996

particular we show that given an instance with general weights, we can construct an instance997

with polynomially-bounded weights such that an approximate solution to the new instance998

can be lifted back to the original instance.999

I Lemma 28. Let (G,w) be an instance of SVD, and ε > 0 be a constant. Then we can1000

construct another instance (G′, w′) of SVD such that G′ is a subgraph of G and given any α-1001

approximate solution to (G′, w′) where α ≤ 5, we can obtain an (α+ ε)-approximate solution1002

to (G,w). Moreover, the weight function w′ is polynomially bounded, and w′(V (G′)) ≤ 30n2

ε .1003

Proof. Given the instance (G,w) of SVD, let us compute a 5-approximation X to it by1004

applying Theorem 6. Let OPT denote an optimum solution to (G,w) and note that1005

w(OPT) ≤ w(X) ≤ 5w(OPT). We then construct an instance (G′, w′′) as follows.1006

1. Let Z = {v ∈ V (G) | w(v) ≤ ε · 1
n ·

w(X)
5 }, and let G′ = G[V (G) \ Z].1007

2. Let H = {v ∈ V (G) | w(v) > 5w(X)}, and define w′′(v) = w(X) + 1. For all other1008

vertices v ∈ V (G′) \H, define w′′(v) = w(v).1009

Consider the instance (G′, w′′), and let S be an α-approximate solution to (G′, w′′) for some1010

α ≤ 5. We claim that S ∪ Z is an (α + ε)-approximate solution to (G,w). Let us first1011

argue that S ∩H = ∅. Let OPT ′′ denote the optimum solution to (G′, w′′). Consider the1012

CVIT 2016

23:26 A (2 + ε)-factor Approximation Algorithm for Split Vertex Deletion

solution X ⊆ V (G) to (G,w) and observe that as G′ is an induced subgraph of G, the graph1013

G′ −X is a split graph. Further, w(X) = w′′(X) (since for any v ∈ X, w(v) ≤ w(X) and1014

hence w′′(v) = w(v)). Similarly, if we consider the solution OPT to (G,w), we obtain that1015

w′′(OPT) = w(OPT). Hence, w′′(OPT ′′) ≤ w′′(OPT) and OPT ′′ ∩H = ∅. Therefore, if1016

w′′(S) ≤ αw′′(OPT ′′) for α ≤ 5, then w′′(S) ≤ αw′′(OPT) = αw(OPT) ≤ 5w(X), and1017

hence S ∩ H = ∅. Therefore, w′′(S) = w(S) and w(S) ≤ αw(OPT). Then we have the1018

following.1019

w(S ∪ Z) = w(S) + w(Z)1020

≤ w(S) + n · ε · 1
n
· w(X)

51021

≤ αw(OPT) + εw(OPT)1022
1023

Thus given any α-approximate solution S to (G′, w′′) we can construct an (α + ε)-
approximate solution to (G,w). Next, observe that every vertex v ∈ V (G′) satisfies the
following.

ε · 1
n
· w(X)

5 ≤ w′′(v) ≤ 5w(X) + 1

Define w′(v) = w(v) · 1
ε ·

5n
w(X) . The we have the following.

1 ≤ w′(v) ≤ 5w(X) + 1
w(X) · 5n

ε
≤ 30n

ε

Hence w′(v) ≥ 1 for every vertex v ∈ V (G) and
∑
v∈V (G′) w

′(v) ≤ 30n2

ε . Since ε is a constant1024

(G′, w′) is a polynomially-bounded instance. Furthermore, by definition of w′, any S ⊆ V (G′)1025

is an α-approximate solution to (G′, w′′) if and only if it is an α-approximate solution to1026

(G′, w′). Therefore, if α ≤ 5, then given any α-approximate solution S to (G′, w′), S ∪ Z is1027

an (α+ ε)-approximate solution to (G,w). J1028

We have the following corollary of Theorem 27 and Lemma 28.1029

I Theorem 29. There exists a randomized algorithm that given a graph G, a weight function1030

w on V (G) and ε > 0, runs in time O(ng(ε)) and outputs S ⊆ V (G) such that G−S is a split1031

graph and w(S) ≤ 2(1 + ε)w(OPT) with probability at least 1/2, where OPT is a minimum1032

weight split vertex deletion set of G. Here, g(ε) = 6 + 8 log(80(1 + 12
ε)) · log(30

ε)/ log(4/3).1033

Proof. Given the instance (G,w) and ε, we apply Lemma 28 and obtain an instance1034

(G′, w′), where w′(V (G′)) ≤ 30n2

ε . We then apply Theorem 27 to (G′, w′) and ε and1035

obtain a solution S′ to it. This algorithm runs in time |V (G′)|g(ε) ≤ ng(ε, where g(ε) =1036

6 + 8 log(80(1 + 12
ε)) · log(30

ε)/ log(4/3), and with probability at least 1/2 S′ is a (2 + ε)-1037

approximate solution to (G′, w′). Then by Lemma 28, S′ can be lifted to a 2(1+ε)-approximate1038

solution S to (G,w). J1039

4 Conclusion1040

One of the natural open question is to obtain a polynomial time 2-approximation algorithm1041

for SVD and match the lower bound obtained under UGC. It will be interesting to find other1042

implicit d-Hitting Set problems and find its correct “approximation complexity”. Towards1043

this we restate the conjecture of Fiorini et al. [6] about a concrete implicit 3-Hitting Set1044

problem: there is a 2-approximation algorithm for Cluster Vertex Deletion matching1045

the lower bound under UCG.1046

D. Lokshtanov and P. Misra and F. Panolan and G. Philip and S. Saurabh 23:27

References1047

1 R Bar-Yehuda and S Even. A linear-time approximation algorithm for the weighted1048

vertex cover problem. Journal of Algorithms, 2(2):198 – 203, 1981. URL: http://1049

www.sciencedirect.com/science/article/pii/0196677481900201, doi:https://doi.org/1050

10.1016/0196-6774(81)90020-1.1051

2 Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the weighted1052

vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981.1053

3 Reuven Bar-Yehuda and Shimon Even. A local-ratio theorm for approximating the weighted1054

vertex cover problem. Technical report, Computer Science Department, Technion, 1983.1055

4 Mao-cheng Cai, Xiaotie Deng, and Wenan Zang. An approximation algorithm for feedback1056

vertex sets in tournaments. SIAM J. Comput., 30(6):1993–2007, 2000.1057

5 Marek Cygan and Marcin Pilipczuk. Split vertex deletion meets vertex cover: New fixed-1058

parameter and exact exponential-time algorithms. Inf. Process. Lett., 113(5-6):179–182, 2013.1059

6 Samuel Fiorini, Gwenaël Joret, and Oliver Schaudt. Improved approximation algorithms for1060

hitting 3-vertex paths. CoRR, abs/1808.10370, 2018. URL: http://arxiv.org/abs/1808.1061

10370, arXiv:1808.10370.1062

7 Stephane Foldes and Peter L. Hammer. Split graphs. Proceedings of the 8th Southeastern1063

Conference on Combinatorics, Graph Theory, and Computing, pages 311–315, 1977.1064

8 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2− ε.1065

Journal of Computer and System Sciences, 74(3):335 – 349, 2008. Computational Complex-1066

ity 2003. URL: http://www.sciencedirect.com/science/article/pii/S0022000007000864,1067

doi:https://doi.org/10.1016/j.jcss.2007.06.019.1068

9 John M Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties1069

is np-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.1070

10 Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese1071

Philip, and Saket Saurabh. 2-approximating feedback vertex set in tournaments. In Proceedings1072

of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,1073

USA, January 5-8, 2020, pages 1010–1018. SIAM, 2020. URL: https://doi.org/10.1137/1.1074

9781611975994.61, doi:10.1137/1.9781611975994.61.1075

11 Matthias Mnich, Virginia Vassilevska Williams, and Lászlo A Végh. A 7/3-approximation1076

for feedback vertex sets in tournaments. In 24th Annual European Symposium on Algorithms1077

(ESA 2016). Schloss Dagstuhl, 2016.1078

12 Jelani Nelson. A note on set cover inapproximability independent of universe size. Elec-1079

tronic Colloquium on Computational Complexity (ECCC), 14(105), 2007. URL: http:1080

//eccc.hpi-web.de/eccc-reports/2007/TR07-105/index.html.1081

13 Ewald Speckenmeyer. On feedback problems in diagraphs. In Graph-Theoretic Concepts in1082

Computer Science, 15th International Workshop, WG ’89, Castle Rolduc, The Netherlands,1083

June 14-16, 1989, Proceedings, volume 411 of Lecture Notes in Computer Science, pages1084

218–231. Springer, 1989. URL: https://doi.org/10.1007/3-540-52292-1_16, doi:10.1007/1085

3-540-52292-1_16.1086

14 Jie You, Jianxin Wang, and Yixin Cao. Approximate association via dissociation. Discrete1087

Applied Mathematics, 219:202–209, 2017. URL: https://doi.org/10.1016/j.dam.2016.11.1088

007, doi:10.1016/j.dam.2016.11.007.1089

CVIT 2016

http://www.sciencedirect.com/science/article/pii/0196677481900201
http://www.sciencedirect.com/science/article/pii/0196677481900201
http://www.sciencedirect.com/science/article/pii/0196677481900201
http://dx.doi.org/https://doi.org/10.1016/0196-6774(81)90020-1
http://dx.doi.org/https://doi.org/10.1016/0196-6774(81)90020-1
http://dx.doi.org/https://doi.org/10.1016/0196-6774(81)90020-1
http://arxiv.org/abs/1808.10370
http://arxiv.org/abs/1808.10370
http://arxiv.org/abs/1808.10370
http://arxiv.org/abs/1808.10370
http://www.sciencedirect.com/science/article/pii/S0022000007000864
http://dx.doi.org/https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1137/1.9781611975994.61
https://doi.org/10.1137/1.9781611975994.61
https://doi.org/10.1137/1.9781611975994.61
http://dx.doi.org/10.1137/1.9781611975994.61
http://eccc.hpi-web.de/eccc-reports/2007/TR07-105/index.html
http://eccc.hpi-web.de/eccc-reports/2007/TR07-105/index.html
http://eccc.hpi-web.de/eccc-reports/2007/TR07-105/index.html
https://doi.org/10.1007/3-540-52292-1_16
http://dx.doi.org/10.1007/3-540-52292-1_16
http://dx.doi.org/10.1007/3-540-52292-1_16
http://dx.doi.org/10.1007/3-540-52292-1_16
https://doi.org/10.1016/j.dam.2016.11.007
https://doi.org/10.1016/j.dam.2016.11.007
https://doi.org/10.1016/j.dam.2016.11.007
http://dx.doi.org/10.1016/j.dam.2016.11.007

	Introduction
	Preliminaries
	The Algorithm
	Polynomially Bounded Weights
	General Weight Functions

	Conclusion

