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Abstract
In the Odd Cycle Transversal (OCT) problem we are given a graph G on n vertices and
an integer k, and the objective is to determine whether there exists a vertex set O in G of size
at most k such that G \ O is bipartite. Reed, Smith, and Vetta [Oper. Res. Lett., 2004] gave
an algorithm for OCT with running time 3knO(1). Assuming the exponential time hypothesis
of Impagliazzo, Paturi and Zane, the running time cannot be improved to 2o(k)nO(1). We show
that OCT admits a randomized algorithm running in O(nO(1) + 2O(

√
k log k)n) time when the

input graph is planar. As a byproduct we also obtain a linear time algorithm for OCT on planar
graphs with running time O(2O(k log k)n) time. This improves over an algorithm of Fiorini et
al. [Disc. Appl. Math., 2008].
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1 Introduction

We consider the Odd Cycle Transversal (OCT) problem where we are given as input a
graph G with n vertices andm edges, together with an integer k. The objective is to determine
whether there exists a vertex set O of size at most k such that G\O is bipartite. This classical
optimization problem was proven NP-complete already in 1978 by Yannakakis [28] and has
been studied extensively both within approximation algorithms [1, 16] and parameterized
algorithms [12, 17, 20, 22, 24, 26].

It was a long-standing open problem whether OCT is fixed-parameter tractable (FPT),
that is solvable in time f(k)nO(1) for some function f depending only on k. In 2004 Reed,
Smith and Vetta [26] resolved the question positively, by giving an O(4kkmn) time algorithm
for the problem. It was later observed by Hüffner [17] that the running time of the algorithm
of Reed et al. is actually O(3kkmn).

Improving over the algorithm of Reed et al. [26], both in terms of the dependence on k
and in terms of the dependence on input size, remain interesting research directions. For the
dependence on input size, Reed et al. [26] point out that using techniques from the Graph
Minors project of Robertson and Seymour one could improve the nm factor in the running
time of their algorithm to n2, at the cost of worsening the dependence on k. They pose the
existence of a linear time algorithm for OCT for every fixed value of k as an open problem.
Fiorini et al [12] showed that if the input graph is required to be planar, then OCT has a
2O(k6)n time algorithm. Later Kawarabayashi and Reed [20] gave an “almost” linear time
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algorithm for OCT, that is an algorithm with running time f(k)nα(n) where α(n) is the
inverse Ackermann function and f is some computable function of k.

When it comes to the dependence of the running time on k, the O(3knm) algorithm of
Reed et al. [26] remained the best known until a recent manuscript of Lokshtanov et al. [24]
(see also Narayanaswamy et al. [25]) giving an algorithm with running time O(2.32knO(1))
using linear programming techniques. It is tempting to ask how far down one may push the
dependence of the running time on k. Should we settle for ck for a reasonably small constant
c, or does there exist a subexponential parameterized algorithm for OCT, that is an algorithm
with running time 2o(k)nO(1)? It turns out that assuming the Exponential Time Hypothesis of
Impagliazzo, Paturi and Zane [18] there cannot be a subexponential parameterized algorithm
for OCT. In this paper we show that restricting the input to planar graphs circumvents
this obstacle – in particular we give an O(nO(1) + 2O(

√
k log k)n) time algorithm for OCT

on planar graphs (we will refer to OCT on planar graphs as Pl-OCT). As a corollary of
our main result we also obtain a simple O(kO(k)n) time algorithm for Pl-OCT, improving
over the dependence on k in the algorithm of Fiorini et al. [12] while keeping the linear
dependence on n.

Methods. There are many NP-complete graph problems that remain NP-complete even when
restricted to planar graphs [15] but admit much better approximation algorithms and faster
parameterized algorithms on planar graphs than on general graphs. The bidimensionality
theory of Demaine et al. [7, 10] aims to explain this phenomenon. Specifically, using
bidimensionality one can give fast parameterized algorithms [6], approximation schemes [8, 13]
and efficient polynomial time pre-processing algorithms [14], called kernelization algorithms,
for a host of problems on planar graphs, and more generally on classes excluding a forbidden
minor. The main driving force behind bidimensionality is that for many parameterized
problems on planar graphs one can bound the treewidth of the input graph as a sublinear
function of the parameter k. For some problems, including OCT, this approach seems not to
be amenable as there is no apparent connection between the parameter k and the treewidth
of the input graph. Nevertheless, a variant of this idea is still the engine of the subexponential
time parameterized algorithms of Dorn et al. [9] and Tazari [27], the linear time algorithm of
Fiorini et al. [12] and also of our algorithm.

Fiorini et al. show that after a linear time pre-processing step, the treewidth of the input
graph is bounded by O(k2). Well-known algorithms for finding tree decompositions [3] and
an algorithm for OCT on graphs of bounded treewidth then do the job. To obtain our
O(kO(k)n) time algorithm for Pl-OCT, we give a linear time branching step inspired by
Baker’s layering approach [2] that produces O(k) instances, each of treewidth O(k), such
that the input instance is a “yes” instance if and only if at least one of the output instances is
a “yes” instance. We then show that one can make a trade-off between the number of output
instances of the branching process and the treewidth of the output graphs. In particular we
show that we can output kO(

√
k) instances, each of treewidth O(

√
k), such that the input

instance is a “yes” instance if and only if at least one of the output instances is a “yes”
instance. The parameters involved in this trade-off are rather delicate, and to make the
trade-off go through we need to first pre-process the graph using the recent sophisticated
methods of Kratsch and Wahlström [22, 23]. This pre-processing step is the only part of
our algorithm which takes superlinear time, and so we obtain an algorithm with running
time O(nO(1) + 2O(

√
k log k)n). It remains an interesting open problem whether there is a

subexponential parameterized algorithm for Pl-OCT with linear dependence on n.
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2 Preliminaries

Throughout this paper we use n to denote the size of the vertex set of the input graph
G. For a graph G we denote its vertex set by V (G) and the edge set by E(G). An edge
between vertices u and v is denoted by uv, and is identical to the edge vu. We use G[V ′]
to denote the subgraph of G induced by V ′, i.e., the graph on vertex set V ′ and edge
set {uv ∈ E(G) | u, v ∈ V ′}. We use G \ Z as an abbreviation for G[V (G) \ Z]. The open
neighborhood of a vertex v in graph G contains the vertices adjacent to v, and is written
as NG(v). The open neighborhood of a set S ⊆ V (G) is defined as

⋃
v∈S NG(v) \S. We omit

the subscript G when it is clear from the context. A graph G is bipartite if there exists a
partition of V (G) into two sets A and B such that every edge of G has one endpoint in A
and one in B. The sets A and B are called bipartitions of G. A subset W of V (G) is called
an odd cycle transversal of G if G \W is bipartite. A plane embedding of a graph G is an
embedding of G in the plane with no edge crossings. A graph G that has a plane embedding
is called planar. A plane graph is a graph G together with a plane embedding of it. For a
plane graph G, F (G) is the set of faces of G.

2.1 Treewidth

Let G be a graph. A tree decomposition of a graph G is a pair (T,X = {Xt}t∈V (T )) (here T
is a tree) such that
1.

⋃
t∈V (T ) Xt = V (G),

2. for every edge xy ∈ E(G) there is a t ∈ V (T ) such that {x, y} ⊆ Xt, and
3. for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt} is connected.
The width of a tree decomposition is maxt∈V (T ) |Xt|−1 and the treewidth of G is the minimum
width over all tree decompositions of G. We use tw(G) to denote the treewidth of the input
graph G.

A tree decomposition (T,X ) is called a nice tree decomposition if T is a tree rooted at
some node r where Xr = ∅, each node of T has at most two children, and each node is of
one of the following kinds:
1. Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and |Xt| = |Xt′ |+ 1.
2. Forget node: a node t that has only one child t′ where Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1.
3. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .
4. Leaf node: a node t that is a leaf of t, is different than the root, and Xt = ∅.
Notice that, according to the above definition, the root r of T is either a forget node or a
join node. It is well-known that any tree decomposition of G can be transformed into a nice
tree decomposition in time O(|V (G)|+ |E(G)|) maintaining the same width [21]. We use Gt

to denote the graph induced on the vertices
⋃

t′ X ′t, where t′ ranges over all descendants of t,
including t. We use Ht to denote Gt[V (Gt) \Xt].

3 Subexponential Time FPT Algorithm for Pl-OCT

In this section we outline our algorithms for Pl-OCT – (a) an algorithm running in time
O(kO(k)n) and (b) an algorithm running in time O(nO(1) + 2O(

√
k log k)n). To do so we reduce

the problem to a “Steiner tree-like” problem on graphs of small treewidth and then use an
algorithm for this Steiner tree-like problem on graphs of bounded treewidth to obtain our
results.
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3.1 Reducting Pl-OCT to a “Steiner tree-like” problem
It is well-known that a plane graph is bipartite if and only if every face is even. Here we say
that a face is even if the cyclic walk enclosing the face has even length. This fact allows us to
interpret the OCT problem on a plane graph G as the “Steiner tree-like” L-Join problem on
the face-vertex incidence graph of G. The face-vertex incidence graph of a plane graph G is
the graph G+ with vertex set V (G+) = V (G) ∪ F (G) and an edge between a face f ∈ F (G)
and vertex v ∈ V (G) if v is incident to f in the embedding of G. Clearly G+ is planar, and
also it is bipartite with bipartitions V (G) and F (G). For subsets L ⊆ F (G) and O ⊆ V (G)
we will say that O is an L-join in G+ if every connected component of G+[F (G)∪O] contains
an even number of vertices from L. The following observation plays a crucial role in our
algorithm.

I Proposition 1 ([12]). A subset O of V (G) is an odd cycle transversal of G if and only if
every connected component of G+[F (G) ∪O] has an even number of vertices of L, where L
is the set of odd faces of G.

Observe that the notion of an L-join can be defined for any bipartite graph H with
bipartitions A and B. Specifically for subsets L ⊆ A and O ⊆ B we say that O is an L-join
in H if every connected component of H[A ∪O] contains an even number of vertices from L.
In the L-Join problem we are given a bipartite graph H with bipartitions A and B, together
with a subset L ⊆ A and an integer k. The task is to determine whether there is an L-join
W ⊆ B in H of size at most k. The Pl-L-Join problem is just L-Join, but with the input
graph H required to be planar. Proposition 1 directly implies the following lemma.

I Lemma 2. If there is an algorithm for Pl-L-Join with running time O(f(k)nc) for a
function f and constant c ≥ 1 then there is an algorithm for Pl-OCT with running time
O(f(k)nc).

In Section 3.2 we will give an algorithm for Pl-L-Join with running time O(2O(k log k)n),
yielding an algorithm for Pl-OCT with the same running time. To get a subexponential
time algorithm for Pl-OCT we will reduce to a promise variant of Pl-L-Join where we
additionally are given a set S of size kO(1) with the promise that an optimal solution can
be found inside S. We now formally define the promise variant of Pl-L-Join that we will
reduce to.

Promise Planar-L-Join (PrPl-L-Join)

Input: A bipartite planar graph H with bipartitions A and B, a set of terminals
L ⊆ A, a set of annotated vertices S ⊆ B and an integer k

Parameter: |S|, k
Question: Is there an L-join O ⊆ B of size at most k?
Promise: If an L-join O ⊆ B of size at most k exists then there is an L-join O′ ⊆ S

of size at most |O|.

In order to be able to reduce Pl-OCT to PrPl-L-Join we show the following lemma.

I Lemma 3 (Small Relevant Set Lemma). Let (G, k) be a yes instance to Pl-OCT. Then in
polynomial time we can find a set S such that
|S| = kO(1); and
with probability (1− 1

2n ), G has an odd cycle transversal of size k if and only if there is
an odd cycle transversal contained in S of size k.



D. Lokshtanov, S. Saurabh, and M. Wahlström 5

Here n = |V (G)|.

Proof. This follows from [22, 23], but for completeness we sketch the proof here. First,
we find in polynomial time an approximate solution of size at most 9

4k by applying the
9
4 -approximation algorithm for Pl-OCT by Goemans and Williamson [16]. Let X be such
an approximate solution. Next, we create an auxiliary graph G′ from G and X as in the
algorithm of Reed, Smith, and Vetta [26]; the vertex set of G′ is (V \X) ∪X ′, where X ′
is a set of 2|X| terminals corresponding to X. It is a consequence of [26], made explicit
in [22, Lemma 4.1], that a minimum odd cycle transversal can be found by taking the union
of a subset of X and a minimum S-T vertex cut in G′ \ R for some S, T,R ⊆ X ′ (and by
the right choice of R, the cut will be disjoint from X ′). By [23, Corollary 1], there exists a
set Z ⊆ V (G′) with |Z| = O(|X|3) which includes such a min-cut for all choices of S, T,R,
and we can find it in polynomial time, with success probability as stated, using the tools of
representative sets from matroid theory; see [23]. The set X ∪ Z then contains a minimum
odd cycle transversal. J

Proposition 1 together with Lemma 3 directly imply the following lemma.

I Lemma 4. If there is an algorithm for PrPl-L-Join with running time O(f(k)nc) for
a function f and constant c ≥ 1 then there is a randomized algorithm for Pl-OCT with
running time O(nO(1) + f(k)nc) and success probability at least (1− 1

2n ).

At this point we make a remark about results in [22, 23]. In [22, 23], Kratsch and
Wahlström obtain a polynomial kernel for OCT. That is, given an input (G, k) they output
an equivalent instance (G′, k′) such that G has an odd cycle transversal of size k if and only
if G′ has and k′ ≤ k. It is very tempting to use this result directly at the place of Lemma 3.
However, for our subexponential algorithm for Pl-OCT we not only need that k′ ≤ k and
that G′ has small size, but also that G′ is a planar graph. However, it is not clear that the
algorithms described in [22, 23] could be easily modified to get both k′ ≤ k and G′ is planar.
Thus we resort to Lemma 3 which is sufficient for our purpose.

3.2 Algorithms for Pl-L-Join, PrPl-L-Join and Pl-OCT
In this section we will give fast parameterized algorithms for Pl-L-Join and PrPl-L-Join.
The algorithms are based on the following decomposition lemma.

I Lemma 5. There is an algorithm that given a planar bipartite graph H with bipartitions
A and B and an integer t, runs in time O(n) and computes a partition of B into B =
B1 ∪B2 . . .∪Bt such that tw(G \Bi) = O(t) for every i ≤ t. Furthermore, for every i ≤ t a
tree-decomposition of G \Bi of width O(t) can be computed in time O(tn).

Proof. Select a vertex r ∈ A and do a breadth first search in H starting from r. We call {r}
the first BFS layer, N(r) the second BFS layer, N(N(r)) \ {r} the third BFS layer etc. Let
L1, L2, . . . , L` be the BFS layers of H. Since H is bipartite we have that for every odd i,
Li ⊆ A while for every even i we have Li ⊆ B. For every i from 1 to t set Bi =

⋃
j≥0 L2i+2tj .

It is easy to see that B1, . . . , Bt indeed form a partition of B. Furthermore, for every i, every
connected component C of H \ Bi is a subset of at most 2t consecutive BFS layers of H.
Contracting all of the BFS layers preceeding C in H into a single vertex shows that C is an
induced subgraph of a planar graph of diameter O(t). Thus it follows from [4, 11] that a
tree decomposition of C of width O(t) can be computed in time O(t|C|). Hence for every
i ≤ t a tree-decomposition of G \Bi of width O(t) can be computed in time O(tn). J
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In Section 4 we will prove the following lemma.

I Lemma 6. There is an algorithm that given an bipartite graph H with bipartitions A
and B, together with a set L ⊆ A, an integer k and a tree-decomposition of H of width w,
determines whether there is an L-join W ⊆ B of size at most k in time O(wO(w)n).

Lemmata 5 and 6 yield the O(2O(k log k)n) time algorithm for Pl-L-Join.

I Lemma 7. There is a O(2O(k log k)n) time algorithm for Pl-L-Join.

Proof. Given as input a planar bipartite graph H with bipartitions A and B, a set L ⊆ A
and an integer k the algorithm applies Lemma 5 with t = k + 1. Now, if H has an L-join
W of size at most k then there is an i ≤ t such that W ∩Bi = ∅, and so W is an L-join in
H \ Bi. Furthermore, for any j an L-join in H \ Bj is also an L-join in H. We loop over
every i and return the smallest L-join of H \Bi. By Lemma 5, for each i we can compute
a tree-decomposition of H \ Bi of width O(t) in O(tn) time. By Lemma 6 we can find a
smallest L-join of H \Bi in time O(2O(k log k)n). J

The algorithm for PrPl-L-Join goes along the same lines as the algorithm in Lemma 7,
but is slightly more involved.

I Lemma 8. There is an O(|S|
√

k · 2O(
√

k log k) · n) time algorithm for PrPl-L-Join.

Proof. Given as input a planar bipartite graph H with bipartitions A and B, a set L ⊆ A
of terminals and a set S ⊆ B of annotated vertices together with an integer k the algorithm
applies Lemma 5 with t =

√
k. For every i ≤ t define Wi = W ∩Bi. Now, if H has an L-join

W of size at most k then without loss of generality W ⊆ S. Furthermore there is an i ≤ t
such that |Wi| ≤

√
k. Observe that W is also an L-join in H \ (Bi \Wi). Furthermore, for

any subset B′ of B, an L-join in H \ B′ is also an L-join in H. The algorithm loops over
every i, and every choice of W ∗i ⊆ Bi ∩ S with |W ∗i | ≤

√
k. There are

√
k choices for i and

at most |S|
√

k choices for W ∗i . For each choice of i and W ∗i the algorithm finds the smallest
L-join of H \ (Bi \W ∗i ). Correctness follows from the fact that we will loop over the choice
W ∗i = Wi.

In order to find the smallest L-join of H \ (Bi \W ∗i ) we will apply Lemma 6, but in
order to do that we need a tree decomposition of H \ (Bi \W ∗i ) of small width. However,
by Lemma 5 we can find a tree decomposition of H \Bi of width O(

√
k) in linear time for

every i. Adding W ∗i to every bag of this tree decomposition yields a tree decomposition of
H \ (Bi \W ∗i ) of width O(

√
k) + |W ∗i | = O(

√
k). Thus, by Lemma 6 we can find the smallest

L-join of H \ (Bi \W ∗i ) in time O(2O(
√

k log k) · n) for every choice of i and W ∗i . Since there
are |S|

√
k choices for Wi and

√
k choices for i this concludes the proof. J

We are now ready to prove our main theorems. In particular, Lemmata 2 and 7 imply
our linear time parameterized algorithm for Pl-OCT.

I Theorem 9. There is a O(2O(k log k)n) time algorithm for Pl-OCT.

Similarly, Lemmata 4 and 8 imply our subexponential parameterized algorithm for Pl-OCT.

I Theorem 10. There is an O(nO(1)+2O(
√

k log k)n) time randomized algorithm for Pl-OCT.
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4 An algorithm for Minimum L-Join on graphs of bounded treewidth

In this section we give a dynamic programming algorithm on graphs of bounded treewidth
for the following problem.

Minimum L-Join

Input: A bipartite graph G with bipartitions C and D and a set L ⊆ C.
Parameter: tw(G)
Question: Find a minimum sized set W ⊆ D (if it exists) such that every connected

component of G[C ∪W ] has an even number of vertices of L.

Observe that finding W is equivalent to finding a forest F of G such that L ⊆ V (F ) and
each tree of F contains an even number of vertices of L.

4.1 Description of the Algorithm
The idea of our algorithm is to do dynamic programming starting from leaf to root. We set

|Xt| = w Lt = L ∩ V (Gt) Ct = C ∩ V (Gt)

For a node t and any solution F , the intersection of F with Gt and Xt (a partial solution)
could be described as follows:

There may be trees Fi of F which do not contain any vertex of V (Gt).
For a tree Fi of F contained inside V (Gt) (or even inside V (Gt) \ Xt), we have that
|V (Fi) ∩ L| is even.
For a tree Fi of F which contains vertices from both V (Gt) and V (G) \ V (Gt), we have
that Fi contains vertices from Xt and either contains an even or an odd number of vertices
from Lt.

We would like to keep representatives for all partial solutions for the graph Gt. Towards
this we first introduce the following definition.

I Definition 11. A set P is a partition of X if it does not contain the empty set unless
X = ∅ and: (a) the union of the elements of P is equal to X; and (b) the intersection of any
two elements of P is empty. (We say the elements of P are pairwise disjoint.) We call an
element of P as piece. A partition is called a signed partition if for every piece A ∈ P , we
assign either 0 or 1. The sign of a piece A is denoted by sign(A). That is, sign is a function
from P to {0, 1}. A signed partition is denoted by (P, sign), that is, a pair consisting of the
partition P and a function sign : P → {0, 1}.

For each node t ∈ V (T ) we compute a tableAt, the rows of which are 3-tuples [S, (P, sign), val].
Table At contains one row for each combination of the first two components which denote
the following:

S is a subset of Xt.
(P, sign), where P is a partition of S into at most |S| labelled pieces.

We use P (v) to denote the piece of the partition P that contains the vertex v. We let |P |
denote the number of pieces in the partition P . The set S denotes the intersection of our
solution with the vertices in the bag Xt.

The last component val, also denoted as At [S, (P, sign)], is the size of a smallest forest
Ft(S, (P, sign)) of Gt which satisfies the following properties:
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Ct ⊆ V (Ft(S, (P, sign))) – all the vertices of C lying in Gt are contained in the forest;
(Xt \S)∩V (Ft(S, (P, sign))) = ∅ – only vertices in S from Xt are contained in the forest;
for every non-empty part A of P there exists a tree, say FA in Ft(S, (P, sign)), such that
A ⊆ V (FA) and |Lt ∩ V (FA)| mod 2 = sign(A) and for every A 6= B, FA 6= FB (that is,
trees associated with distinct parts are distinct); and
if there exists a tree F ′ in Ft(S, (P, sign)) such that V (F ′)∩Xt = ∅ then |Lt∩V (F ′′)| mod
2 = 0.

If there is no such forest Ft(S, (P, sign)), then the last component of the row is set to ∞.
Given a node t of the tree T and a pair (S, (P, sign)) of Xt, a forest F in Gt satisfying the
above properties is called consistent with (S, (P, sign)).

We compute the tables At starting from the leaf nodes of the tree decomposition and
going up to the root.

Leaf Nodes. Let t be a leaf node of the tree decomposition. We compute the table At as
follows. We set At[∅, (∅, 0)] = 0 and At[∅, (∅, 1)] = 0.

Introduce Nodes. Let t be an introduce node and t′ its unique child. Let x ∈ Xt \Xt′ be
the introduced vertex. For each pair (S, (P, sign)), we compute the entry At[S, (P, sign)]
as follows.

Case 1. x ∈ S. Check whether N(x) ∩ S ⊆ P (x); if not, set At[S, (P, sign)] =∞.

Subcase 1: P (x) = {x}. If (x ∈ Lt and sign(P (x)) = 0) or (x /∈ Lt and sign(P (x)) = 1)
then set At[S, (P, sign)] =∞.
Else, we set At[S, (P, sign)] = At′ [S \ {x}, (P \ P (x), sign′)] + 1. Here sign′ is the
restriction of sign to P \ P (x).

Subcase 2: |P (x)| ≥ 2 and N(x) ∩ P (x) = ∅. Set At[S, (P, sign)] =∞, as no extension
of P (x) in Gt is connected.

Subcase 3: |P (x)| ≥ 2 and N(x)∩P (x) 6= ∅. Let A be the set of all rows [S′, (P ′, sign′)]
of the table At′ that satisfy the following conditions:
S′ = S \ {x}.
P ′ = (P \P (x))∪Q, where Q is a partition of P (x) \ {x} such that each piece of Q
contains an element of N(x) ∩ P (x).
sign′ is such that it agrees with sign on P \ P (x) and if x ∈ Lt then1 +

∑
Q`∈Q

sign′(Q`)

 mod 2 = sign(P (x),

else ∑
Q`∈Q

sign′(Q`)

 mod 2 = sign(P (x)).

Set At[S, (P, sign)] = min[S′,(P ′,sign′)]∈A

{
At′ [S′, (P ′, sign′)]

}
+ 1.

Case 2. x /∈ S. If x ∈ Ct then set At[S, (P, sign)] = ∞. Else set At[S, (P, sign)] =
At′ [S, (P, sign)].

Forget Nodes. Let t be a forget node and t′ its unique child node. Let x ∈ Xt′ \Xt be the
forgotten vertex. For each pair (S, (P, sign)) in the table At, let A be the set of all rows
[S′, (P ′, sign′)] of the table At′ that satisfy the following conditions:



D. Lokshtanov, S. Saurabh, and M. Wahlström 9

S′ = S ∪ {x}, and
P ′(x) = P (y) ∪ {x} for some y ∈ S and all other parts remain the same. Essentially,
P ′ has been obtained by adding x to some part of P .
sign′ is same as sign on all other parts of P ′ but P ′(x) and sign(P ′(x)) = sign(P (y)).

Set

At[S, (P, sign)] = min
[S′,(P ′,sign′)]∈A

{
At′ [S′, (P ′, sign′)]

}
.

Join Nodes. Let t be a join node and t1 and t2 its children. For each triple (S, (P, sign))
we compute At[S, (P, sign)] as follows.
LetA denote the set of all pairs 〈(S, (P1, sign1)), (S, (P2, sign2))〉, where (S, (P1, sign1)) ∈
At1 and (S, (P2, sign2)) ∈ At2 with the following property:

Starting with the partitions Qp = P1 and the sign function signp = sign1 and repeatedly
applying the following operation, we reach the stable partition that is identical to (P, sign).
The operation that we apply is:

If there exist vertices u, v ∈ S such that they are in different pieces of Qp but are
in the same piece of P2, delete Qp(u) and Qp(v) from Qp and add Qp(u) ∪ Qp(v).
Furthermore make signp(Qp(u) ∪Qp(v)) := (signp(P (u)) + signp(P (v))) mod 2.

Set

At[S, (P, sign)] = min
〈(S,(P1,sign1)),(S,(P2,sign2))〉∈A

{
At1 [S, (P1, sign1)]+At2 [S, (P2, sign2)]−|S|

}
.

The stated conditions ensure that u, v ∈ S are in the same piece of P if and only if for
each 〈(S, (P1, sign1)), (S, (P2, sign2))〉 ∈ A, they are in the same piece of P1 or of P2 (or
both). Given this, it is easy to verify that the above computation correctly determines
At [S, (P, sign)].

Root Node. We obtain the size of a smallest L-join of G from any row of the table Ar for
the root node r. That is, if the size of the forest we have stored is η, then the size of the
smallest L-join of G is η − |C|.

Extracting the solution at the root node. We can compute the optimum solution, that
is the set W , by standard backtracking or by storing a set of vertices for each row and each
bag.

4.2 Correctness and the Time analysis of the algorithm
We are now ready to discuss the algorithm’s running time and prove that it correctly computes
an optimal solution.

Proof. (of Lemma 6) We first upper-bound the running time of the algorithm we described
earlier. The running time mainly depends on the size of the tables and the combination
of tables during the bottom-up traversal of the decomposition tree. Let ζ be the size of
the number of signed partitions of size at most w + 1. The number ζ is upper bounded
by (w + 1)w+1 × 2w+1. Thus the size of the table at any node is upper bounded by
2w+1 × ζ = 4w+1(w + 1)w+1 = wO(w). Furthermore time taken to compute the value for
any row is upper bounded by wO(w). Thus the total time taken by the algorithm is upper
bounded by wO(w) · n = 2O(w log w) · n.

The algorithm’s correctness can be shown by a standard inductive proof on the decom-
position tree. This completes the proof. For an example see [5] for similar proof for the
Steiner tree problem parameterized by treewidth of the input graph. J
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5 Open Problems and Conclusions

In this paper we gave the first subexponential time algorithm for Pl-OCT combining the
recent matroid based kernelization for OCT and a reformulation of Pl-OCT in terms of
T -joins. On the way we also obtained an algorithm for Pl-OCT running in time O(kO(k)n),
improving over the previous linear time FPT algorithm for Pl-OCT by Fiorini et al. [12].
Let us remark that Fiorini et al. [12] do not compute the dependence of the running time on
k of their algorithm, and the running time of their algorithm depends on how one implements
a particular step, where one needs to compute a tree-decomposition of width O(k2) of a
particular planar graph. Naively using Bodlaender’s algorithm [3] gives an O(2O(k6)n) time
algorithm. By using more clever tricks, such as using Kammer and Tholey’s [19] recent linear
time constant factor approximation algorithm for treewidth of planar graphs, one may get an
O(2O(k2)n) time algorithm. This is still quite a bit slower than our O(kO(k)n) running time.

We conclude with two interesting problems that remain open. First, is there a subexpo-
nential parameterized algorithm for Pl-OCT with linear dependence on n? Second, is there
an algorithm for Pl-OCT running in time 2O(

√
k)nO(1)?
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