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Abstract. In the Subset Odd Cycle Transversal (Subset OCT) problem, the input is a
graph G, a subset of vertices T , a positive integer k and the objective is to determine whether there
exists a k-sized vertex subset that intersects every odd cycle containing a vertex from T . Clearly,
Subset OCT is a generalization of the classic Odd Cycle Transversal problem where the objective
is to determine whether there exists a k-sized vertex subset that intersects every odd cycle in the
given graph. We remark that Subset OCT also generalizes the well known Multiway Cut problem,
as well as a parity constrained variant, the Odd Multiway Cut problem. Recently, Kakimura et al.
(SODA 2012) proposed a fixed parameter tractable (FPT) algorithm for this problem that runs in
time f(k)mn3 using the theory of graph minors, where f is some function, and n and m denote the
number of vertices and edges in the graph. However, the dependence of this function on k is at least
triple exponential.

Key words. Algorithms and Data Structures. Graph Algorithms. Parameterized Algorithms.

AMS subject classifications. 68W40. 68Q25. 68R10.

1. Introduction. In a covering or transversal problem we are given a universe of
elements U , a family F (F could be given implicitly) and an integer k and the objective
is to check whether there exists a subset of U of size at most k which intersects all
the elements of F . Several natural problems on graphs can be framed in the form
of such a problem. For instance, consider the classic Odd Cycle Transversal
(OCT) problem. Here, given a graph G and a positive integer k, the objective is
to decide whether there exists a vertex subset S (also called a transversal) of size at
most k which intersects all odd cycles, that is, G \ S is a bipartite graph. The OCT
problem is a covering problem with the vertex set V (G) being U and F being the set
of odd cycles. Similarly, (Directed) Feedback Vertex Set – given an undirected
(directed) graph G and a positive integer k decide whether there is vertex subset of
size at most k that intersects all cycles (directed cycles) – is also a covering problem.

Recently, a natural generalization of covering problems has attracted a lot of
attention from the point of view of parameterized complexity. In this generalization,
apart from U , F and k, we are also given a subset T of U and the objective is to decide
whether there is a subset of U of size at most k that intersects all the sets in F that
contain an element in T . This leads to the subset variant of classic covering problems;
typical examples include Subset Feedback Vertex Set (Subset FVS), Subset
Directed Feedback Vertex Set or Subset Odd Cycle Transversal (Subset
OCT). All these problems have received considerable attention and they have been
shown to be fixed-parameter tractable (FPT) [8, 4, 15]. Formally, a parameterization
of a problem is the assignment of an integer k to each input instance and we say that
a parameterized problem is FPT if there is an algorithm that solves the problem in
time f(k) · |I|O(1), where |I| is the size of the input instance and f is an arbitrary
computable function depending only on the parameter k. For more background, the
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reader is referred to the monographs [11, 27, 6].
In 2011, Cygan et al. [8] and Kawarabayashi et al. [16] independently showed

that Subset FVS is FPT. Following that, Chitnis et al. [4] showed that the directed
variant of the same problem, Subset Directed Feedback Vertex Set is FPT.
Kakimura et al. [15] initiated the study of Subset OCT and proposed an FPT algo-
rithm for this problem using the theory of parity version of graph minors, that runs in
time f(k)mn3 where f is some function, and n and m denote the number of vertices
and edges in the graph. The Subset OCT problem is formally defined as follows.

Subset OCT

Instance : A graph G = (V,E) on n vertices and m edges,
a subset of vertices T , and a positive integer k.

Parameter : k
Question : Is there a subset of k vertices that intersects every

odd cycle that contains a vertex of T ?

However, the dependence of the algorithm of Kakimura et al. on the parameter
k is at least triple exponential. In this paper, we give an algorithm which avoids the
use of the theory of graph minors, is self contained, and improves this dependence to
a single exponential function of a polynomial in k. Our algorithm utilizes a recursive
application of “generalized” important separators introduced in [20] to reduce the
subset version of this problem to the standard version of the problem. In particular,
we show how to reduce the given problem to a special case of the problem in time

2k
O(1)

nO(1). More precisely, we prove the following theorem.

Theorem 1.1. There is an algorithm that, given an instance (G = (V,E), T, k) of

Subset OCT runs in time 2O(k3 log k)mn2 log2 n and either returns a solution for this
instance or concludes correctly that one does not exist, where n = |V | and m = |E|.

In the statement of the theorem above, solution refers to a set of at most k vertices
that intersects every odd cycle of G that contains a vertex of T . This is the first FPT
algorithm for this problem where the exponential dependence of the running time of
the algorithm on k is polynomial. The algorithm given by Theorem 1.1 improves upon
the algorithm of Kakimura et al. with respect to both the parameter as well as the
input size. Subset OCT is central to covering, as well as graph separation problems
as Subset OCT generalizes OCT, the well known Multiway Cut problem, as
well as a parity constrained variant, the Odd Multiway Cut problem. Thus, our
approach has to build on techniques from both worlds.

Related Results on OCT.. The parameterized complexity of OCT was a well
known open problem for a long time. In 2003, in a breakthrough paper, Reed et
al. [31] showed that OCT is FPT by developing an algorithm for the problem running
in time O(3kkmn). We use n and m to denote the number of vertices and edges
of the input graph respectively. In fact this was the first time that the iterative
compression technique was used. This technique has been useful in resolving several
other open problems in the area of parameterized complexity, including Almost-2-
SAT and Directed Feedback Vertex Set. However, the algorithm for OCT
had seen no further improvements in the last 9 years, though several reinterpreta-
tions of the algorithm have been published [13, 22]. Only recently, Lokshtanov et
al. [19] obtained a faster algorithm for the problem running in time O∗(2.32k) using
a branching based on linear programming. We write O∗(f(k)) for a time complexity
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of the form O(f(k)nO(1)), where f(k) grows exponentially with k. There is another
theme of research in parameterized complexity where the objective is to minimize the
dependence of n at the cost of a slow growing function of k. It is very hard to get an
FPT algorithm which runs faster than O(n2) or O(mn), using the iterative compres-
sion method. Kawarabayashi and Reed [17] overcame this difficulty and obtained an
algorithm that runs in time O(f(k)m·α(m,n)) using tools from graph minors and odd
variants of graph minors. Here the function α(m,n) is the inverse of the Ackermann
function (see the book by Tarjan [32]). In another result Fiorini et al. [10] showed,

that there is a O(2O(k6)n) time algorithm for Odd Cycle Transversal when the
input graph is restricted to a planar graph. Other results in this direction include a
O(2O(k log k)n) algorithm for OCT on planar graphs [23] which was later improved by
the first linear time FPT algorithms for OCT on general graphs, both of which run
in time O(4kkO(1)(m+ n)) [29, 14].

Related work in graph separation problems. Marx [24] was the first to consider
cut problems in the context of parameterized complexity. He observed that Multi-
way Cut can be shown to be FPT by a simple application of graph minors, (see [24,
Section 3]). He also gave an algorithm for Multiway Cut with a running time of

O∗(4k3). The current fastest algorithm for Multiway Cut runs in time O∗(2k) [7].
The notions used in this paper have been useful in settling the parameterized com-
plexity of a number of problems including Directed Feedback vertex Set [3],
Almost 2-SAT [30] and Above Guarantee Vertex Cover [30, 28]. In addition,
Marx and Razgon [26] used these notions to show that Multicut, finding k vertices
to disconnect given pairs of terminals is FPT, which was also independently proved
by Bousquet, Daligault and Thomassé [1]. Subsequent FPT results which use these
ideas include those for Directed Multiway Cut [5], Directed Subset Feedback
Vertex Set [4], Multicut on DAGs [18], and Parity Multiway Cut [20]. Re-
cently, a randomized O(ck · (n+m)) time and a deterministic O(kO(k) · (n+m)) time
algorithms for Subset Feedback Vertex Set have also been designed [21].

2. Preliminaries. Given a path P (cycle C), we refer to the number of edges in
P (C) as the length of P (C) and denote it by |P | (respectively |C|). We call a path
(cycle) an odd (even) path if the length of the path (cycle) is odd (respectively even).
We refer to the parity of |P | (|C|) as the parity of the path P (cycle C). If P is a path
from some vertex in a set X to some vertex in a set Y such that its internal vertices are
disjoint from X ∪Y , we say that P is an X-Y path. Let λG(X,Y ) denote the number
of vertex disjoint paths between X and Y in the graph G. If X contains a single
vertex x, we say that P is an x-Y path. Given a graph G = (V,E) and T ⊆ V , paths
with only the end points in T are called T -paths and if their length is odd (even), then
odd (even) T -paths. Similarly, cycles which intersect a set T are called T -cycles and
if their length is odd (even), then odd (even) T -cycles. If a cycle intersects vertices
from two sets S and T , then it is called an S-T cycle. A set intersecting all odd cycles
is called an oct and a set intersecting all odd T -cycles is called a T -oct. A set of
paths are said to be internally vertex disjoint if they do not intersect except possibly
at their endpoints. For an instance (G,T, k) of Subset OCT, the vertices in the set
T are called terminals.

2.1. Block Decomposition. A cut vertex of a graph G is a vertex whose re-
moval leads to a graph with strictly more connected components. Similarly, a bridge
of a graph G is an edge whose removal leads to a graph with strictly more connected
components.
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Definition 2.1. ([9]) A maximal connected subgraph without a cut vertex is
called a block. Every block of a graph G is either a maximal 2-connected subgraph,
or a bridge or an isolated vertex.

By maximality, distinct blocks of G overlap in at most one vertex, which is then a
cut vertex of G. Therefore, every edge of G lies in a unique block and G is the union
of its blocks.

Definition 2.2. Let A denote the set of cut vertices of G and B the set of its
blocks. The bipartite graph on A ∪ B where a ∈ A and b ∈ B are adjacent precisely
when a ∈ b is called the block graph of G.

Proposition 2.3. ([9]) The block graph of a connected graph is a tree.

2.2. Separators and almost separators. Important Separators. The no-
tion of important separators was formally introduced in [24] to handle the Multiway
Cut problem and the same concept was used implicitly in [2] to give an improved
algorithm for the same problem. In this subsection, we recall some definitions related
to important separators and a few lemmas which will be required for our algorithm.

Definition 2.4. Let G = (V,E) be an undirected graph, let X,S ⊆ V be vertex
subsets. We denote by RG(X,S) the set of vertices of V \ S reachable from X in the
graph G \ S and we denote by NRG(X,S) the set of vertices of G \ S which are not
reachable from X in the graph G \ S. We drop the subscript G if it is clear from the
context.

Definition 2.5. Let G = (V,E) be an undirected graph and let X,Y ⊂ V be
two disjoint vertex sets. A subset S ⊆ V \ (X ∪ Y ) is called an X-Y separator
in G if RG(X,S) ∩ Y = ∅ or in other words there is no path from X to Y in the
graph G \ S. We denote by λG(X,Y ) the size of the smallest X-Y separator in G.
An X-Y separator S1 is said to cover an X-Y separator S with respect to X if
R(X,S1) ⊃ R(X,S) and S1 is said to dominate S if it covers S and |S1| ≤ |S|.
If the set X is clear from the context, we just say that S1 dominates S. An X-Y
separator is said to be inclusion wise minimal if none of its proper subsets is an X-Y
separator.

Definition 2.6. Two X-Y separators S and S1 are said to be incomparable if
neither covers the other.

Observation 2.7. Let S1 and S2 be two incomparable X-Y separators. Then,
R(X,S1) ∩ S2 6= ∅ and R(X,S2) ∩ S1 6= ∅. That is, there is a vertex of S1 reachable
from X in the graph G \ S2 and a vertex of S2 reachable from X in the graph G \ S1.
Also, NR(X,S1) ∩ S2 6= ∅ and NR(X,S2) ∩ S1 6= ∅. That is, there is a vertex of
S1 separated from X in the graph G \ S2 and a vertex of S2 separated from X in the
graph G \ S1.

Definition 2.8. Let G = (V,E) be an undirected graph, X,Y ⊂ V be vertex sets
and S ⊆ V be an X-Y separator in G. We say that S is an important X-Y separator
if it is inclusion-wise minimal and there does not exist another X-Y separator S1 such
that S1 dominates S with respect to X.

Lemma 2.9. ([24]) Let G = (V,E) be an undirected graph, X,Y ⊂ V be disjoint
vertex sets. There exists a unique important X-Y separator S∗ of size λG(X,Y ) and
it can be computed in time O(`(m+ n)) where ` = λ(X,Y ).

Lemma 2.10. ([2, 26]) The number of important X-Y separators of size at most
k is at most 4k and these can be enumerated in time O(4kk(m+n)) and any vertex v
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Fig. 1. An illustration of vertices isolated and semi-isolated from the set W in G \ S.

appears in at most 4k sets which induce a connected subgraph and whose neighborhood
is an important v-X separator of size at most k.

Definition 2.11. Given sets X and Y and a pair (S, p(S)) where S is a set of
vertices and p(S) denotes either the empty set or a vertex disjoint from S, we say
that (S, p(S)) is an almost X-Y separator if S ∪ p(S) is a minimal X-Y separator.
The size of an almost X-Y separator S ∪ p(S) is |S ∪ p(S)|.
Observe that for any minimal X-Y separator S, the pair (S, ∅) is an almost X-Y
separator. We now define a notion of isolated and semi-isolated vertices. These
notions are frequently used in our algorithms and we will describe their uses in the
subsequent subsections.

Definition 2.12. Given a graph G = (V,E) and disjoint vertex sets X and Y ,
we denote by fG(X,Y ) the maximum number of internally vertex disjoint X-Y paths
in G.

Definition 2.13. Let G = (V,E) be a graph and let S and W be disjoint vertex
sets of G (see Figure 1).

• A vertex v ∈ V \S is said to be isolated from W in G\S if v is not adjacent
to W and fG\S(v,W ) ≤ 1.

• A vertex v ∈ V \ S is said to be semi-isolated from W in G \ S if
– fG\S(v,W ) = 1 and v is adjacent to some x ∈W or
– if fG\S(v,W ) ≥ 2 and fG\(S∪{x})(v,W \ {x}) = 0 for some x ∈W .

This unique vertex of W is called the pivot between the vertex v and W in
G \ S and is denoted by pivG\S(v,W ).

Any vertex in V \ S which is neither isolated nor semi-isolated in G \ S is called
non-isolated (from W , in G \S). In the above notations, we drop the reference to the
sets S or W if it is clear from the context.

We also need the following generalization of the notion of a semi-isolated vertex
to a semi isolated set.
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Definition 2.14. Let G = (V,E) be a graph and S, X and Y be disjoint vertex
sets. If the vertices in Y occur in a single block of G \ S and every vertex in Y is
semi-isolated from X in G\S, we say that the set Y is semi-isolated from X in G\S.
The pivot between the sets Y and X is defined as the vertex of X which occurs as the
pivot between every vertex in Y and X and is denoted by pivG\S(Y,X).

3. Overview of the algorithm. In this section we give an overview of the
algorithm and briefly describe the various steps involved in the algorithm. During
this description, we state the lemmata which capture each step of our algorithm and
their proofs will appear later as part of the detailed description of our algorithm.
However, in the detailed description, for the sake of continuity, we will restate each
lemma before giving its proof. At the end of this section, the reader will find a
flowchart summarizing the sequence of high level steps executed by the algorithm.

3.1. Iterative Compression Step. Given an instance (G = (V,E), T, k) of
Subset OCT, where V = {v1, . . . , vn}, we define a graph Gi = G[Vi] where Vi =
{v1, . . . , vi}. We iterate through the instances (Gi, Ti = (T ∩ Vi), k) starting from
i = k + 1 and for the ith instance, with the help of a known solution Ŝi of size at
most k + 1 we try to find a solution Si of size at most k. Formally, the compression
problem we address is the following.

Subset OCT Compression Parameter: k

Input: (G = (V,E), T, k, Ŝ) where G is an undirected graph, T is a vertex
set, k a positive integer and Ŝ, a T -oct of size at most k + 1.
Question: Does there exist a T -oct of size at most k for this instance?

We will reduce the Subset OCT problem to at most n instances of the Subset OCT
Compression problem as follows. Let Ii = (Gi, (T ∩ Vi), k, Ŝi) be the ith instance
of Subset OCT Compression. Clearly, the set Vk+1 is a solution of size at most
k + 1 for the instance Ik+1. It is also easy to see that if Si−1 is a solution of size at
most k for instance Ii−1, then the set Si−1 ∪ {vi} is a solution of size at most k + 1
for the instance Ii. We use these two observations to start off the iteration with the
instance (Gk+1, (T ∩ Vk+1), k, Ŝk+1 = Vk+1) and try to compute a solution of size at
most k for this instance. If there is such a solution Sk+1, we set Ŝk+2 = Sk+1∪{vk+2}
and try to compute a solution of size at most k for the instance Ik+2 and so on. If,
during any iteration, the corresponding instance is found to not have a solution of the
required size, then it implies that the original instance is also a No instance. Finally
the solution for the original input instance will be Sn. Since there can be at most n
iterations, the total time taken is bounded by n times the time required to solve the
Subset OCT Compression problem.

3.2. Reduction to disjoint version. We now discuss how to solve the Subset
OCT Compression problem by reducing it to a bounded number of instances of the
following problem.

Disjoint Subset OCT Compression Parameter: k
Input: (G = (V,E), T,W, k) where G is an undirected graph, T is a vertex
set, k a positive integer and W , a T -oct of size at most k + 1.
Question: Does there exist a T -oct of size at most k for this instance disjoint
from W given that there is no T -oct of size at most k intersecting W?
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We fix a solution S for the instance of Subset OCT Compression which maximizes
the intersection with the larger solution Ŝ. We guess the set Y = S ∩ Ŝ, delete these
vertices and reduce k by |Y |. For each guess of Y , we set W = Ŝ \ Y and we solve
Disjoint Subset OCT Compression on the instance (G\Y, T \Y,W, k−|Y |), and if
for some guess the answer is Yes, we return the solution for the instance corresponding

to that guess. The number of guesses is bounded by 2|Ŝ| = 2O(k). Hence, the time
to solve Subset OCT Compression is bounded by 2O(k) times the time to solve
Disjoint Subset OCT Compression. Since we chose S such that we maximize its
intersection with Ŝ, we also include in the definition of the Disjoint Subset OCT
Compression problem that the instance (G,T,W, k) comes with a guarantee that
there is no solution of size at most k that intersects W . This assumption is used
crucially in several proofs. The rest of the paper is devoted to proving the following
lemma which, following our discussions above, proves Theorem 1.1.

Lemma 3.1. There is an algorithm that given an instance I = (G,T,W, k) of

Disjoint Subset OCT Compression, runs in time 2O(k3 log k)mn log2 n, and either
computes a solution for the given instance, or correctly concludes that no solution
exists.

3.3. Reduction to 2-Connected Case. We assume without loss of generality
that the graph G in any given instance of Disjoint Subset OCT Compression
is connected. However, this graph may not be 2-connected. Therefore, in this step,
we reduce the given instance (G,T,W, k) of Disjoint Subset OCT Compression
to an equivalent instance (G′, T ′,W ′, k′) of Disjoint Subset OCT Compression
where the graph G′ is 2-connected. This property of G′ will be used crucially in latter
parts of our algorithm. This reduction can be found in Section 4.

3.4. Break up into special and non-special instances. Let I = (G =
(V,E), T,W, k) be an instance of Disjoint Subset OCT Compression where G
is a 2-connected graph and let S be a hypothetical solution. Recall that the vertices
in the set T are called terminals. Our algorithm is based on “guessing” the structure
of W in G \ S. More precisely, we split our algorithm based on the following cases:

• The vertices of W belong to the same block in G \ S, for some solution S.
We call such an S a special solution and instances having a special solution,
special instances.

• The vertices of W do not belong to the same block in G \ S, for any solution
S. We call such an S a non-special solution and instances haveing only a
non-special solution, non-special instances

3.4.1. Handling special instances. In this case we try to find a special solu-
tion S (if exists). That is, a solution S such that the vertices of W belong to a unique
block of G \ S. Again special instances can be of two types. We say that S (I) is
a special solution (respectively instance) of Type 1 if the block of G \ S containing
W does not contain a terminal. Similarly, we say that S (respectively I) is a special
solution (respectively instance) of Type 2 if the block of G\S containing W contains
a terminal.

Type 1:. Observe that we can assume that |T | ≥ k + 1. This is because if the
number of terminals is at most k then we can return the terminal set itself as a
solution. As a result, any set of k + 1 terminals contains a terminal vertex u which
is not in S and is isolated or semi-isolated from W in G \ S. We will later show
(Lemma 5.1 and Lemma 5.17) that, given any vertex which we know to be isolated or

semi-isolated from W in G \S, one can always, in time 2O(k2 log k)mn log n compute a



8 D. LOKSHTANOV, P. MISRA, M. S. RAMANUJAN, S. SAURABH

set of 2O(k2) vertices which intersect a special solution for this instance. Hence, once
we locate the vertex u, we will employ these algorithms to compute a set of 2O(k2)

vertices and recurse by branching on this set. This gives us the following lemma.

Lemma 3.2. There is an algorithm that, given an instance (G,T,W, k) of Dis-

joint Subset OCT Compression, runs in time 2O(k3)m log n and either returns a
solution for the given instance or correctly concludes that no Type 1 solution exists.

Type 2:. In this case, we show that if S is not already an odd cycle transversal
of G, then in time 2O(k2 log k)mn log n, we can locate a vertex which is isolated or
semi-isolated from W in G \ S, on which we then use the same procedure as that
described for the Type 1 case.

We show this by first observing that any odd cycle disjoint from S has at most
one vertex in common with the block of G \ S containing W and the rest of the
vertices must therefore be isolated or semi-isolated from W . Therefore, locating any
odd cycle disjoint from S is sufficient to find an isolated or a semi-isolated vertex.
However, finding such an odd cycle is not easy and for this, we revisit the notion of
generalized important separators and using this, show that we can enumerate a set
of 2O(k2 log k) connected subgraphs and 2-connected subgraphs each of which contains
an odd cycle such that at least one of these odd cycles is disjoint from S and at this
point, we simply return an arbitrary pair of vertices from an odd cycle from each
of these subgraphs and conclude that the set thus returned contains an isolated or
semi-isolated vertex. Observe that if we cannot find such a set, then it must be the
case that either there is no solution for the given instance or that there is a solution
which is an odd cycle transversal for the graph G. This leads us to the following
lemma.

Lemma 3.3. There is an algorithm that, given an instance (G,T,W, k) of Dis-

joint Subset OCT Compression, runs in time 2O(k2 log k)mn log n and returns
a set of 2O(k2 log k) vertices which contain an isolated or semi-isolated with respect
to some solution or concludes correctly either that the given instance has a solution
which is also an odd cycle transversal for G or that the given instance has no solution.

Finally, the fact that testing for the presence of an odd cycle transversal of size at
most k can be done in time O(4k+O(log k)(m+ n)) [29, 14] combined with Lemma 3.3
leads to the following lemma handling all special instances of Type 2.

Lemma 3.4. There is an algorithm that, given an instance (G,T,W, k) of Dis-

joint Subset OCT Compression, runs in time 2O(k3 log k)mn log n and either re-
turns a solution for the given instance or correctly concludes that no Type 2 solution
exists.

3.4.2. Handling non-special instances. We now consider the case when the
given instance (G,T,W, k) of Disjoint Subset OCT Compression has a solution
S such that there is no block in G \ S which contains all the vertices in W . In this
case, we first guess a partition W = W1 ] W2 such that the vertices in W1 occur
in a block, say B in G \ S. For a correct choice of the block and the set W1, we
will be able to show that there is a set X ⊆ S which, along with at most one other
vertex in G, say p, separates W1 from W2, that is, there is no path from W1 to W2 in
G \ (X ∪ {p}). Observe that this is the same as saying that W1 is semi-isolated from
W2 ∪ p if p /∈W1 and W1 \ p is semi-isolated from W2 ∪ p otherwise. Furthermore, we
will also distinguish between the case when the vertex p is known to us and the case
when it is unknown. As a result, we now consider the following exhaustive cases.
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Case (a): p is known. In this case, we show that the the following lemma holds.

Lemma 3.5. Given a Yes instance (G,T,W, k) of Disjoint Subset OCT Com-
pression, let S be a solution for this instance. Let W1]W2 be a partition of W such
that W1 occurs in a block and there is a set X ⊆ S which, along with at most one
other vertex which is disjoint from S ∪W , say p, separates W1 from W2. There is an
algorithm that, given W1, p and W2, runs in time 2O(k3 log k)mn log2 n and returns a
set of 2O(k2) vertices which intersects a solution for the given instance.

The above lemma says that if, along with the information that some vertex inter-
sects all W1-W2 paths in G \ S, we also know precisely which vertex this is, then we

can find a set of 2O(k2) vertices to branch on. However, this need not always be the
case. It is possible that we only know that some vertex intersects all W1-W2 paths in
G \S but do not know which vertex this is. Guessing this vertex would be too costly.
As a result, we need to come up with another subroutine to handle this next case.

Case (b): Suppose that p is unknown. In this case, we will closely follow the strategy
of Lemma 3.5 but with minor modifications, to prove the following lemma.

Lemma 3.6. Given a Yes instance (G,T,W, k) of Disjoint Subset OCT Com-
pression, let S be a solution for this instance. Let W1]W2 be a partition of W such
that W1 occurs in a block in G\S and there is a set X ⊆ S which, along with at most
one other vertex which is disjoint from S ∪W , say p, separates W1 from W2. There
is an algorithm that, given W1 and W2, runs in time 2O(k3 log k)mn log2 n and returns
a set of 2O(k2) vertices which

• intersects some solution for the given instance, or
• contains p or
• contains a vertex v which is isolated or semi-isolated with respect to some

solution for the given instance.

Now, this lemma contains in its output a vertex from which we can find a set to
branch on using a previously stated lemma or, the previously unknown vertex which
intersects all W1-W2 paths in G \ S. Though guessing this vertex from the entire
vertex set of G is too costly, we can indeed guess this vertex from the set of bounded
size returned by this lemma. As a result, we will then fall into the earlier case. To
sum up, we combine Lemma 3.6 and Lemma 3.5 with (the yet to be formally stated
lemmas) Lemma 5.1 and Lemma 5.17 to get the following lemma, using which one
can solve non-special instances of Disjoint Subset OCT Compression.

Lemma 3.7. Given a Yes instance (G,T,W, k) of Disjoint Subset OCT Com-
pression, let S be a solution for this instance. Let W1]W2 be a partition of W such
that W1 occurs in a block in G\S and there is a set X ⊆ S which, along with at most
one other vertex which is disjoint from S ∪W , say p, separates W1 from W2. There
is an algorithm that, given W1 and W2, runs in time 2O(k3 log k)mn log2 n and returns
a set of 2O(k2) vertices which intersects a solution for the given instance.

3.5. Proof of Lemma 3.1. We are now ready to give the complete algorithm
to solve Disjoint Subset OCT Compression on general instances using the results
described above.

Proof of Lemma 3.1. In the base case, if there is a special solution for the given
instance, then we can apply Lemma 3.2 or Lemma 3.4 to compute such a solution.
Therefore, we assume that there is no special solution for the given instance.
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Start

Reduce to at most n instances
of Subset OCT Compression.

Reduce to 2O(k) instances of Dis-
joint Subset OCT Compression.

Reduce to 2O(k2) instances of Disjoint
Subset OCT Compression where

each graph is 2-connected (Lemma 4.4).

Test for Type 1 special
solution (Lemma 3.2).

If no Type 1 special solution, then Test
for Type 2 special solution (Lemma 3.4).

If no special solution, then test for non-
special solution (using Lemma 3.7).

Fig. 2. A summary of the main steps of our algorithm.

Let S be a solution for this instance. Let W1 ]W2 be a partition of W such that
W1 occurs in a block in G \ S and let W2 = W \W1. We guess W1 and W2 by a
2O(k)-way branching. Furthermore, suppose that there is a vertex p such that W1 is
semi-isolated from W2 ∪ p in G \S. If p ∈W1, then we simply guess p and now, since
p is known, we run the algorithm of Lemma 3.5 and to account for the case when
p /∈W1, we also run the algorithm of Lemma 3.7. In either case, we compute a set of
2O(k2) vertices which intersects a solution. We branch on the set thus computed and
recurse on each instance obtained by deleting a vertex of this set from the instance
and reducing the parameter k by 1.

The fact that the resulting search tree has a 2O(k2)-way branching with the budget
k dropping by 1 in each branch, along with the fact that the time spent at each node is
bounded by 2O(k3)mn log2 n, implies the bound on the running time. This completes
the description of our algorithm for Disjoint Subset OCT Compression.

We conclude this section by summarizing all the steps in our algorithm for Subset
OCT (Figure 2). We present the remaining details of our algorithm starting with the
next section.
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4. Reduction to 2-connected case. This reduction is achieved in the following
way. We first remove vertices which do not occur in a cycle along with a vertex of W ,
as well as bridges from the graph G. Then, every maximal 2-connected component
(or block) of G contains a vertex of W and using the fact that the number of vertices
in W is at most k + 1 along with the fact that the block graph of G is a tree, we
conclude that the number of cut vertices in G is bounded by 2k + 2. Following this,
we branch into 22k+2 cases by guessing the cut vertices of G which are part of some
solution for the given instance and recurse whenever the guess is non-empty. When
the guess is empty, we simply solve the problem independently on each block, which
we show is equivalent to solving the problem on the given instance. We now proceed
to the formal description of this reduction.

We begin by performing the following preprocessing step on the given instance
(G,T,W, k) of Disjoint Subset OCT Compression.

Reduction Rule 4.1. Given an instance (G,T,W, k) of Disjoint Subset OCT
Compression, if there is a vertex v which does not lie on a T -cycle or a W -cycle,
then return the instance (G \ {v}, T,W, k). Similarly, if there is a bridge e in G, then
return the instance (G \ {e}, T,W, k).

It is clear that the instance returned by an application of the above rule is equivalent
to the original instance and the rule can be applied in time O(m + n) by simply
computing the block decomposition of G using the algorithm of [12] and deleting
every bridge of G and all vertices which occur in a block disjoint from T or disjoint
from W . We now show that this reduction rule bounds the number of cut vertices
in G. An instance on which the above reduction rule cannot be applied is called
irreducible.

Lemma 4.2. Let (G,T,W, k) be an instance of Disjoint Subset OCT Com-
pression which is irreducible. Then, the number of cut vertices in G is at most
2k + 2.

Proof. Since the reduction rule does not apply, it must be the case that every
block contains a vertex of W . We also know that the block graph is a tree and the
leaves of the tree are all vertices corresponding to blocks. We now root the block tree
at an arbitrary cut vertex and also fix a total ordering of the vertices in W . Now, for
every cut vertex v which is not in W , we charge v to the smallest vertex (in the total
ordering) of W which appears in a block which is a child of this cut vertex. Since
every block vertex in the block graph has a unique cut vertex as its parent, we will
never charge the same vertex of W to 2 distinct cut vertices, which implies that the
number of cut vertices disjoint from W is bounded by k + 1. Therefore, we conclude
that the number of cut vertices in G is at most 2k + 2.

Lemma 4.3. Let I = (G,T,W, k) be an irreducible instance of Disjoint Subset
OCT Compression. Let B1, . . . , B` be the blocks of G. Consider the graph G′

obtained by taking the disjoint union of the graphs B1, . . . , B`. Let T ′ be the set of
copies of all the terminals (which now occur in different connected components) and
let W ′ be the set of copies of all vertices of W . If I has a solution disjoint from the
cut vertices of G then I ′ = (G′, T ′,W ′, k) is a Yes instance of Disjoint Subset
OCT Compression and if I ′ is a Yes instance then I is a Yes instance as well.

Proof. Let S be a solution for the instance I disjoint from the cut vertices of G.
Then, the restriction of S to each block gives a partition of S among the blocks of G
and since every cycle lies within a block of G, S is also a solution for I ′. The converse
direction of the statement is straightforward.
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We should note here that there is a slight abuse of definition in the statement of
the previous lemma since the set W ′ could be much larger than W if some vertices
of W occur in many blocks and therefore the instance (G′, T ′,W ′, k) does not fit
the definition of instances of the Disjoint Subset OCT Compression problem.
However, we ignore this abuse since we will finally work on each connected component
separately, which allows us to construct valid instances for each connected component.

By combining Lemma 4.2 and Lemma 4.3, we show how to reduce the given
instance of Disjoint Subset OCT Compression to 2O(k2) instances where the
graph in each instance is 2-connected and the given input instance is a Yes instance
if and only if at least one of the reduced instances is a Yes instance. More formally,
we have the following lemma.

Lemma 4.4. There is an algorithm that, when given an irreducible instance I =
(G,T,W, k) of Disjoint Subset OCT Compression, runs in time 2O(k2)m and

returns ` = 2O(k2) instances {(Gi, Ti,Wi, ki)}1≤i≤` of Disjoint Subset OCT Com-
pression such that every connected component of every Gi is 2-connected and fur-
thermore, (G,T,W, k) is a Yes instance if and only if there is an 1 ≤ i ≤ ` such that
the instance (Gi, Ti,Wi, ki) is a Yes instance.

Proof. By Lemma 4.2, we know that G has at most 2k + 2 cut vertices. Let
Z be the set of cut vertices of G. For each Z ′ ⊆ Z, we construct an instance IZ′ =
(G\Z ′, T \Z ′,W \Z ′, k−|Z ′|) and recursively apply the same procedure on it. Clearly,
I is a Yes instance if and only if there is a Z ′ ⊆ Z such that IZ′ is a Yes instance. For
every non-empty choice of Z ′, we have reduced the parameter by at least 1. However,
when Z ′ = ∅, we apply Lemma 4.3 to construct an instance I ′ = (G′, T ′,W ′, k) where
every connected component is 2-connected. Therefore, this branching algorithm is
a 22k+2-way branching with one branch being a leaf and the remaining branches
achieving a reduction in the parameter by at least 1. Therefore, the algorithm returns
2O(k2) instances such the original instance is a Yes instance if and only if one of these
instances is a Yes instance and furthermore, every connected component of every
returned instance is 2-connected. The running time of the algorithm follows from the
fact that the time required to construct each returned instance is O(m).

Since we can work on each connected component of a given instance indepen-
dently, we will assume (at a multiplicative cost of a factor of k to the number of
returned instances) that the graph in each instance returned by the algorithm of
Lemma 4.4 is 2-connected. Furthermore, in order to avoid even more cumbersome
problem names, we will henceforth only consider instances of Disjoint Subset OCT
Compression where the graph is 2-connected and avoid framing yet another problem
to denote the ‘2-connected’ version of Disjoint Subset OCT Compression.

5. Isolated and Semi-isolated vertices. In this section, we show that given
a vertex which is isolated (Lemma 5.1) or semi-isolated (Lemma 5.16) from W in the
graph obtained by removing a solution for the given instance, we can always compute
a bounded set of vertices which intersects some solution for the same instance.

5.1. Computing a solution vertex using an isolated vertex.

Lemma 5.1. Let (G,T,W, k) be an instance of Disjoint Subset OCT Com-
pression and let S be a solution for this instance. Let v be a vertex isolated from W
in G\S. Given v, in time O(4kkm), we can find a set of at most 4k+1(k+ 1) vertices
which has a non-empty intersection with some solution for this instance.

Proof. We first show that there is a solution for the given instance which intersects
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an important v-W separator of size at most k + 1. Due to Preprocessing Rule 4.1, v
lies on a W -cycle in G. Since v is isolated from W in G\S, it must be case that there
is a non-empty subset K ⊆ S and a set p(K) which is either empty or a singleton,
such that A = K ∪ p(K) is a minimal v-W separator.

If A is an important v-W separator, then S itself is a solution of the claimed
type. Suppose that A is not an important v-W separator and let B be an important
v-W separator dominating A. We now select a vertex in B denoted by q as follows. If
p(K) = ∅, then set q = ∅ and if p(K) ∈ B, then set q = p(K) and if p(K) /∈ B, then set
as q an arbitrary vertex of B \A and let J = B \ {q}. Define S′ as S′ = (S \K) ∪ J .
It is clear that S′ is no larger than S. We claim that S′ is also a solution for the
instance.

If this were not the case, then there is an odd T -cycle C which intersects S′ \S =
K \ J in G \ S′. Since W is a T -oct for the given instance, C also intersects W in
G \S′ . Since K \J is a subset of R(v,B), any cycle containing a vertex of K \J and
a vertex of W must intersect B in at least 2 vertices. Since all but at most 1 vertex
of B are contained in S′, the cycle C must intersect S′, a contradiction. Therefore,
we conclude that S′ is a solution for the given instance which intersects an important
v-W separator of size at most k + 1.

Hence, the union of the vertices in the set of important v-W separators of size at
most k + 1, intersects some solution for the given instance. By Lemma 2.10 we know
that the number of important v-W separators of size at most k + 1 is at most 4k+1

and these can be enumerated in time O(4k(m+n)). Therefore, we simply enumerate
all important v-W separators of size at most k+1 and return the vertices in the union
of these separators. This completes the proof of the lemma.

5.2. Computing a solution vertex using a semi-isolated vertex. In this
subsection, the objective is to prove a lemma analogous to Lemma 5.1, but for semi-
isolated vertices. However, the proof of this lemma, while similar in spirit to the
previous one, is much more involved due to the fact that such vertices occur in the
same block as some vertex of W when the solution is removed. In this case it is
not necessary that some solution intersects a set of important separators. Hence, we
require the idea of the generalization of important separators introduced in [20] to
design an algorithm for semi-isolated vertices. We will prove a much more general
lemma and show how one can plug in the appropriate values to obtain the required
analogous lemma for semi-isolated vertices. We begin with the following structural
lemma.

Lemma 5.2. Let G = (V,E) be a 2-connected graph and T ⊆ V be a set of vertices.
Then, G does not contain odd T -cycles if and only if G is bipartite.

Proof. Suppose that G contains an odd cycle C. Let t1 ∈ T be a terminal.
Clearly, C cannot intersect t1. Since the graph is 2-connected, there are 2 vertex
disjoint paths from t1 to C. Let c1, c2 ∈ C be such that there are vertex disjoint
paths P1 and P2 from t1 to c1 and c2 respectively such that these paths each intersect
exactly one vertex of C. Let A1 and A2 be the two paths between c1 and c2 along C.
Since C is an odd cycle, A1 and A2 are paths of opposite parity. Hence, depending
on the parity of the paths P1 and P2, we can chose either A1 or A2 and construct
an odd cycle passing through t1, which is a contradiction. The other direction of the
statement is obvious. This completes the proof of the lemma.

The following observation is a consequence of Lemma 5.2.

Observation 5.3. Consider an instance I = (G,T,W, k) of Disjoint Subset
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OCT Compression and a solution S for this instance. Let D be a block in G \ S.
If V (D) contains a terminal, then D is bipartite.

Definition 5.4. Given a graph G = (V,E) two vertices u and v, if there is a
block in G containing both vertices, then we denote by BG[u, v] this unique block. For
a vertex set X with at least 2 vertices if there is a block in G containing X, then we
denote this unique block by BG[X] with the subscript dropped if it is clear from the
context.

We now introduce the notion of ‘well domination’. This is one of the central
notions used in the paper. For a pair of sets Q1, Q2, we use the notion of well
domination to define (when possible) a relation between pairs of Q1-Q2 separators.
We will state the definition first and then prove a lemma which will provide a clearer
idea of the reason behind introducing this notion.

Definition 5.5. Let (G,T,W, k) be the given instance of Disjoint Subset OCT
Compression. Let Q1 and Q2 be disjoint vertex sets and piv a vertex. Let X be a
vertex set disjoint from Q1 ∪Q2 ∪ piv and ` ≤ k such that,

• |Q1| ≤ k.
• (X, piv) is a minimal Q1 - (Q2 \ piv) almost separator in G.
• The size of the smallest T -oct in the graph G[R(Q1, X ∪ piv) ∪ piv] is `.

Suppose that (X̂, piv) is a Q1-(Q2 ∪ piv) almost separator such that,
• The separator X̂ ∪ piv dominates the separator X ∪ piv in G.
• There is a T -oct of size at most ` in the graph G[R(Q1, X̂ ∪ piv) ∪ piv].

Then, we say that (X̂, piv) well dominates (X, piv).

The above definition is motivated by the following lemma.

Lemma 5.6. Let (G,T,W, k) be an instance of Disjoint Subset OCT Com-
pression and let S be a solution for this instance. Let Q1, Q2, piv and X ⊆ S be
such that they satisfy the conditions of Definition 5.5. Let X be inclusion-wise mini-
mal subject to it satisfying these conditions. If (X̂, piv) is a Q1-Q2 almost separator
which well dominates (X, piv), then there is a solution for the given instance which
contains X̂.

Proof. Let K be a smallest T -oct for the sub-instance I induced on the graph
G[R(Q1, X ∪piv)∪piv)] and let K̂ be a smallest T -oct for the sub-instance I ′ induced
on the graph G[R(Q1, X̂∪piv)∪piv)]. We claim that the set S′ = (S\(X∪K))∪(X̂∪K̂)
is also a solution for the given instance. If this were not the case then there is an
odd T -cycle C in G \ S′. Observe that C must intersect (X ∪ K) \ (X̂ ∪ K̂). Let
x ∈ (X ∪K) \ (X̂ ∪ K̂) such a vertex in C.

Since (X̂ ∪ piv) dominates (X ∪ piv) in G, x ∈ RG(Q1, X̂ ∪ piv). Therefore, C
cannot intersect a vertex in NR(Q1, X̂ ∪ piv), which implies that C is an odd T -cycle
in the graph G[R(Q1, X̂∪piv)∪piv)]. However, by our assumption, K̂ intersects every
such odd T -cycle, and since K̂ ⊆ S′, we have a contradiction. This completes the
proof of the lemma.

5.2.1. Tight Separator Sequences. In this part of the paper, we present the
definition of tight separator sequences, which provide a starting point for our gener-
alization of important separators.

Definition 5.7. Let G = (V,E) be a graph and let X,Y ⊆ V be disjoint vertex
sets. We define an important X-Y separator of order i, Si to be the unique smallest
important X-Si−1 separator in G, where S0 = Y .
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Definition 5.8. We define a tight X-Y separator sequence I to be a set I =
{Si|1 ≤ i ≤ l}, where Si is an important X-Y separator of order i, for every 1 ≤
i, j ≤ l, |Si| = |Sj |, and λ(X,Sl) > λ(X,Y ), that is there is no X-Sl cut of size |Sl|.

Observation 5.9. Given two X-Y separators S1 and S2, we say that S1 � S2 if
S2 covers S1 with respect to X. Then, (I,�) forms a total order where I is a tight
X-Y separator sequence.

By Lemma 2.9, for every i, an important X-Y separator of order i is unique and
can be computed in polynomial time and therefore, a tight X-Y separator sequence
is unique and can be computed in polynomial time. In fact, by using the algorithm
of Lemma 2.4 from [25], we can compute the tight X-Y separator sequence in linear
time.

Lemma 5.10. There is an algorithm that, given a graph G = (V,E), vertex sets
X and Y , runs in time O(`(m + n)) and returns the tight X-Y separator sequence
where ` is the size of a minimum X-Y separator, v = |V | and m = |E|.

Lemma 5.11. Let P1 and P2 be two separators in I such that P1 ≺ P2 and there
is no P3 in I such that P1 ≺ P3 ≺ P2. Then, the size of a minimum X-Y separator
which lies in the set NR(X,P1) ∩R(X,P2) is at least |P1|+ 1.

We now move on to the main lemma of this subsection which, as we will argue
immediately after the proof, implies an algorithm to compute a solution vertex starting
from a semi-isolated vertex. Essentially, given a vertex v, which is semi-isolated from
W in G \S for some solution S with the pivot being w ∈W , we will (in the following
lemma) set Q1 = {v}, Q2 = W , piv = w. The output of the algorithm of this lemma
will contain either a solution vertex or an isolated vertex, from which we already know
how to compute a solution vertex.

Lemma 5.12. Let (G,T,W, k) be an instance of Disjoint Subset OCT Com-
pression, S be a solution for this instance, let Q1 and Q2 be disjoint vertex sets and
let piv denote a vertex such that

• |Q1| ≤ k
• Q1 is semi-isolated from Q2 ∪ piv with piv being the pivot between Q1 and
Q2 ∪ piv in G \S. Furthermore, the vertices of Q1 occur in the same block of
G \ S, which we denote by B[Q1].

• there is a set X ⊆ S of size at most k such that (X, piv) is a minimal Q1-Q2

almost separator.
Let ` be the size of the smallest T -oct for the graph G[R(Q1, X ∪ piv)∪ piv] and let A
be an algorithm that, on input Q1, Q2 and an almost Q1-Q2 separator (X ′, piv), runs
in time T (`,m, n) and decides whether there is a T -oct of size at most ` for the graph
G[R(Q1, X

′∪piv)∪piv]. Then, there is an algorithm that on input G,T,W, k,Q1, Q2,A
and piv, runs in time 2O(k2)T (`,m, n) log n and returns a set R of 2O(k2) vertices such
that

• R intersects some solution for the given instance or
• R contains a vertex which is isolated or semi-isolated from Q1 ∪Q2 ∪ piv in
G \ S′ where S′ is a solution (possibly distinct from S). In this case, it also
contains a vertex which is isolated from Q2 ∪ piv in G \ S′

Proof. We first perform the following edit on the given instance to make future
steps of the algorithm easier. We first guess whether the block B[Q1] in the graph
G \ S contains a terminal or not. In the case where we assume that this block does
not contain a terminal, we make a clique on Q1 ∪ piv. In the case when we assume
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that this block contains a terminal, Lemma 5.2 implies that this block is bipartite.
Then, we guess a bipartition of Q1 ∪ piv which is “consistent” with a bipartition of
the block B[Q1] in G \S. After this, we add edges (if it is not already there) between
every pair of vertices guessed to be in different partitions and add subdivided edges
between every pair of vertices guessed to be in the same partition. This edit is done
simply to ensure that henceforth, there is always a block containing Q1 ∪ piv in any
recursive step of the algorithm (conserving the parities of the paths between them
appropriately). Furthermore, since the size of Q1 is at most k, we can perform this
edit in time O(k2(m+n)) and we will add O(k2) new vertices to the graph. Note that
the vertices added to the graph during the subdivision will be considered undeletable.
The notion of vertices being undeletable will be formalized later.

Note that the algorithm we describe depends on the structure of the block B[Q1]
in G \X, resulting in two cases (based on whether this block contains a terminal or
not). While executing the algorithm, we simply execute the steps of the algorithm
corresponding to both cases.

Objective of the algorithm.. Formally, given I = (G,Q1, piv, Q2, Z, T, k), where
Z ⊆ V is disjoint from (Q1 ∪Q2 ∪ piv), the algorithm returns a set R ⊆ Z of vertices
such that for any Q1-Q2 almost separator (X, piv) in the graph G

• Either R intersects an almost separator (X̂, piv) well dominating (X, piv).
• Or there is a vertex in R which is isolated or semi-isolated from Q1∪Q2∪piv

in G \ (X̂ ∪ K̂) where (X̂, piv) is a Q1-Q2 almost separator well dominating
(X, piv). Further there is a vertex in R which is isolated from Q2 ∪ piv in
G \ (X̂ ∪ K̂).

Therefore, if R satisfies the first condition above, then by Claim 5.6 there is a
solution S′ containing X̂ and so R intersects some solution S′. Or else R satisfies the
second condition. So there is a vertex in R which is isolated or semi-isolated from
Q1 ∪ Q2 ∪ piv in G \ S′. Furthermore, there is a vertex in R which is isolated from
Q2 ∪ piv in G \ S′. Thus the set R satisfies all the conditions required by the lemma.

In the above, Z denotes the set of deletable vertices in the instance I. As we shall
see shortly, in the recursive calls to our algorithm, Z will be narrowed down further.
For the sake of a cleaner presentation, for the rest of the proof of this lemma, we
adopt the convention that whenever we refer to a set being an s-t separator without
explicitly mentioning a graph, we mean that the set is a s-t separator in the graph
G\piv and whenever we refer to a pair being an almost s-t separator, we are referring
to separation in the graph G.

Part I: The algorithm.. We first check whether there is a Q1-Q2 separator of size
at most k contained in the given subset Z. If not, then we conclude that the input
is invalid (the bound on the size of X in the premise is violated). If there is no path
from Q1 to Q2 in G \ piv, then we return ∅. Otherwise, we compute the tight Q1-Q2

separator sequence in the graph G \piv, comprising only the vertices in Z. This takes
time O(k(m + n)) by Lemma 5.10. Let K = S ∩ R(Q1, X ∪ piv) and |K| = `. We
iterate over all choices of ` in [1, k].

We call a Q1-Q2 separator P good if there is a T -oct of size at most ` for the
instance induced on the graph G[R(Q1, P ∪ piv) ∪ piv] and we call it bad otherwise.
The following observation plays a crucial role in allowing us to ignore (potentially)
large parts of the graph during our search.

Observation 5.13. If a Q1-Q2 separator is good, all Q1-Q2 separators covered
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Input : (G,Q1, piv, Q2, Z, T, k)
Output: A subset of Z which, for every Q1-Q2 almost separator (X, piv),

either intersects a Q1-Q2 almost separator (X ′, piv) well dominating
(X, piv) or contains a vertex isolated or semi-isolated from
Q1 ∪Q2 ∪ piv in G \X and No if no such Q1-Q2 almost separator
exists

1 if k < 0 then return No
2 Check if there is a Q1-Q2 separator of size at most k in the graph G \ piv

which is contained in Z
3 if there is no such separator then return No
4 if there is no Q1-Q2 path in G \ piv then return ∅
5 I =TIGHT-SEPARATOR-SEQUENCE(G \ piv, Q1, Q2, k)
6 for each ` < k do
7 P1 ← maximal good separator (depends on `)
8 P2 ← minimal bad separator (depends on `)
9 R ← (P1) ∪ (P2 \Q2)

10 Z ′ = Z ∩ (RG\piv(Q1, P2) ∩NRG\piv(Q1, P1))
11 R ← R∪ SEMI-ISO(G,Q1, piv, Q2, Z

′, T, k)
12 for each ordered 3-partition J = (Pnr1 , P e1 , P

o
1 ) of P1 do

13 R ← R
⋃
∪k′≤k−1 SEMI-ISO(GJ , Q1, piv, P

nr
1 , Z ∩GJ , T ∪ (P \Pnr1 ), k′)

14 R ← R
⋃
∪k′≤k−1 SEMI-ISO(GJ , Q1, piv, P

nr
1 , Z ∩GJ , T, k′)

15 end
16 for each ordered 3-partition J = (Pnr2 , P e2 , P

o
2 ) of P2 do

17 R ← R
⋃
∪k′≤k−1 SEMI-ISO(GJ , Q1, piv, P

nr
2 , Z ∩GJ , T ∪ (P \Pnr2 ), k′)

18 R ← R
⋃
∪k′≤k−1 SEMI-ISO(GJ , Q1, piv, P

nr
2 , Z ∩GJ , T, k′)

19 end

20 end
21 return R

Algorithm 5.1: Algorithm SEMI-ISO

by this separator are also good and if a Q1-Q2 separator is bad, all Q1-Q2 separators
which cover this separator are bad.

We now compute the maximal element of I which is good. We can do this by
solving Subset OCT on the sub-instances corresponding to each separator in I. Each
of these tests takes time T (`,m, n). Since we need to run this test for each separator
in I, this takes time T (`,m, n)n.1

Let P1 be the maximal element of I which is good and let P2 be the minimal
element of I, which is bad. That is, P1 is good and every separator in I \ {P1} which
covers P1 is bad, P2 is bad and every separator in I \ {P2} covered by P2 is good. If
all the separators in I are good, then P2 is set as Q2 and if all separators in I are
bad, then P1 is set as Q1. We now describe the rest of the algorithm. This is broken
up into 4 cases depending on the interaction between X, P1 and P2 in G.

1 However, in order to find the maximal element of I which is good, we perform these tests in the
form of a binary search over the separators in I which are by definition in a “sorted” form. Though
we do not give the details of implementation of this step, it should be fairly obvious that finding the
maximal good separator of I can be done in time T (`,m, n) logn.
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1. P1 well dominates the separator X or (P1 ∪P2)∩X 6= ∅.. We add the vertices
in P1 and P2 \Q2 into the set R.

2. The separator X covers P1, and X is covered by P2.. We set Z ′ = Z ∩
(RG\piv(Q1, P2) ∩ NRG\piv(Q1, P1)) and then add to R the vertices returned by the
recursive call SEMI-ISO (G,Q1, piv, Q2, Z

′, T, k) (see Algorithm 5.1). This step is
intended for the case when the set X covers P1 but X is in turn covered by P2 in
G \ piv.

3. X and P1 are incomparable in G \piv.. We consider all ordered 3-partitions of
P1, J = (Pnr1 , P e1 , P

o
1 ) where the set Pnr1 denotes the guess of those vertices of P1 which

are not reachable from Q1 in the graph G\(X∪piv), the set P1\Pnr1 denotes the guess
of those vertices of P1 which are reachable from Q1 in G \ (X ∪ piv). We also assume
that the vertices in P r1 lie in the same block of G\S as Q1. The correctness behind this
assumption will be argued later. Now, for each such 3-partition J = (Pnr1 , P e1 , P

o
1 ),

we construct a graph GJ as follows. Initially, we set GJ = G[R(Q1, P1) ∪ P1 ∪ piv].
Let P r1 = P1 \ Pnr1 . We now have one of the following two cases,

(a) The block B[Q1] in G \ S is bipartite. Then for every pair in P e1 ×P o1 , we add an

edge between the vertices and for every pair in
(
P e

1
2

)
and

(
P o

1
2

)
we add a subdivided

edge between the vertices. This completes the construction of GJ .

(b) The block B[Q1] in G \ S is T -cycle free. Then we add an edge and a subdivided
edge (if one does not already exist) between every pair of vertices in Q1 ∪ (P1 \Pnr1 ).
This completes the construction of GJ . Now, for each GJ , for each 1 ≤ k′ ≤ k − 1,
we recurse on the instance (GJ , Q1, piv, P

nr
1 , Z ∩GJ , T, k′) and add the vertices in the

sets returned, to R.
4. X and P2 are incomparable.. We do the same for P2 as we did for P1.

Finally we return R.

This completes the description of the algorithm. We now prove the correctness of the
algorithm.

Part II: Correctness.. For each tuple I = (G,Q1, piv, Q2, Z, T, k) on which the
algorithm is invoked, we define a measure µ(I) = 2k − λ where λ is the size of the
smallest Q1-Q2 separator in the graph G\piv which is completely contained in Z. We
prove the correctness of the algorithm by induction on the measure µ(I).

In the base case, if λ > k, then the algorithm returns NO, which is clearly correct.
Similarly, if λ = 0, then there is no path between Q1 and W2 in the graph G \ piv
and hence the algorithm simply returns ∅ as the separator, which is also correct. This
completes the correctness of the base cases and we now assume that the algorithm
is correct on all instances I with µ(I) < µ. Now, consider an instance I such that
µ(I) = µ.

1. P1 well dominates the separator X or (P1∪P2)∩X 6= ∅.. We add P1∪(P2\Q2)
to R. In the first case, by Claim 5.6 there is a solution containing P1 and R contains
it. In the second case, the set R intersects X by our assumption. From now on,
we shall assume that X is disjoint from P1 ∪ P2, as there is no reason to proceed
otherwise.
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2. The separator X covers P1, and X is covered by P2.. In this case we re-
strict Z to the subset Z ′, which contains only those vertices which lie between the
separators P1 and P2. Let I ′ be the instance on which the algorithm is invoked recur-
sively. By Lemma 5.11, any Q1-Q2 separator which lies in the set NRG\piv(Q1, P1) ∩
RG\piv(Q1, P2) has size at least |P1|+ 1 = λ+ 1. Hence, µ(I ′) ≤ µ− 1. Let R′ be the
set returned by the recursive call on I ′ which we add to R. Then R satisfies all the
required conditions, in this case.

3. The separator X is incomparable with P1.. Let P r1 be the intersection of P1

and R(Q1, (X ∪ piv)) and Pnr1 = P1 \ P r1 . Also, let Xr be the intersection of X with
RG\piv(Q1, P1) and let Xnr be the rest of X. Since X is incomparable with P1, by
Observation 2.7, P r1 , Xr, Pnr1 and Xnr are non empty. Recall that K = S∩R(Q1, X∪
piv) and let Kr be the vertices of K in R(Q1, (P1 ∪ piv)) and Knr = K \Kr.

Suppose that there is some vertex u ∈ P r1 which is not in the block B[Q1] of
G \S. Equivalently, u does not lie in the block B[Q1] of the graph G′ = G \ (X ∪K).
Then there is some cut vertex q which separates u and Q1∪piv. Note that piv and Q1

always lie in the block B[Q1] of G′ because of the edit we made to the graph at the
beginning. Since every path from u to Q2 must intersect piv, it must also intersect q.
Hence u is either isolated or semi-isolated from Q1 ∪ Q2 ∪ piv in G′ (and in G \ S).
Furthermore, recall that u remains connected to Q1 in G \ (X ∪ piv). Therefore q is
different from piv. Hence u is also isolated from Q2 ∪ piv in G′ (and in G \ S).

Recall that we have already added the vertices of P1 to R. Hence if there were
such an u ∈ P r1 , R satisfies all the required conditions. So we shall assume that, P r1
lies in the block B[Q1]. We now have two cases depending on the presence or absence
of a terminal vertex in B[Q1].
Case 1: The block B[Q1] contains a terminal in G \ X. Therefore this block must

be bipartite. Let P e1 and P o1 be the partition of P r1 induced by some fixed
bipartition of B[Q1] and consider the graph GJ corresponding to the partition
J = (Pnr1 , P e1 , P

o
1 ). Recall that an edge (x, y) (or a subdivided edge between

x and y) in GJ where x, y ∈ P r1 is either present in G or corresponds to an
x-y odd path (respectively even path) in the block B[Q1] of G \ S. Any edge
(subdivided edge) which is present in GJ but not in G is called a torso edge
(subdivided edge).

Case 2: The block B[Q1] does not contain a terminal in G \ X. Therefore it also
does not contain any T -cycles. Let GJ be the graph corresponding to the
partition J = (Pnr1 , P11, P12) where (P11, P12) is an arbitrary partition of P r1 .
Recall that in this case, an edge (x, y) in GJ where x, y ∈ P r1 is either present
in G or corresponds to an x-y path in G \ S.

Let I ′ be the instance constructed in this step. Recall that the set returned by
the invocation SEMI-ISO(I) contains the vertices in the set returned by the invocation
SEMI-ISO(I ′). We now prove the following claim which will be used along with the
induction hypothesis to prove the correctness of the algorithm on I.

Claim 5.14. (a) If the block B[Q1] in G \X does not contain T -cycles (is bipar-
tite), then B[Q1] in GJ\(Xr∪Kr) does not contain T -cycles (respectively, is bipartite).

(b) Let Y r be a v-Pnr1 separator in GJ such that (Y r, piv) well dominates (Xr, piv)
in GJ . Then, the set X ′ = (X \ Xr) ∪ Y r is such that (X ′, piv) is a Q1-Q2 almost
separator well dominating (X, piv) in G.

(c) Let Y r be a Q1-Pnr1 separator in GJ such that (Y r, piv) well dominates (Xr, piv)
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in GJ . Let X ′ = (X \ Xr) ∪ Y r. If a vertex u is isolated from or semi-isolated
from Q1 ∪ Pnr1 ∪ piv in GJ \ (Y r ∪ Kr

Y ) where Kr
Y is a subset oct for the instance

GJ \Y r, then u is isolated or semi-isolated from Q1 ∪Q2 ∪ piv in G \ (X ′ ∪K ′) where
K ′ = Kr

Y ∪Knr. Similarly, if u is isolated from Pnr1 ∪ piv in GJ \ (Y r ∪Kr
Y ), then u

is isolated from Q2 ∪ piv in G \ (X ′ ∪K ′).

Proof. (a) We first consider the case when B[Q1] in G \ S does not contain T -
cycles. Suppose that B[Q1] in GJ \ (Xr ∪ Kr) contains a T -cycle C. We replace
every torso edge in C with the corresponding path between two vertices in P r1 , which
we have already concluded lie in the block B[Q1] in G \ S. This operation results
in a 2-connected subgraph of G \ S which contains Q1, piv, and a vertex in T , a
contradiction.

We now consider the case when B[Q1] in G \ S is bipartite. Suppose that B[Q1]
in GJ \ Xr contains an odd cycle C. If C does not contain torso edges, then C is
an odd T -cycle in the block B[Q1] in G \X, a contradiction. Hence, C must contain
torso edges. We replace each torso edge (or subdivided edge) by the corresponding
paths of the same parity which we know exist in G \X, to obtain a closed odd walk
C ′ in G \X. Since the vertices of P r1 are in B[Q1] in G \X, C ′ is actually a closed
odd walk in the block B[Q1] in G \ X. Hence, C ′ contains an odd cycle which also
lies in B[Q1] in G \X, a contradiction.

(b) Let Kr
Y be a subset oct for the sub-instance I ′ induced on GJ such that |Kr

Y | ≤
Kr. Suppose that (X ′, piv) does not well dominate (X, piv) in G. This implies
that the set K ′ = Kr

Y ∪ Knr is not a subset oct for the sub-instance induced on
G′ = G[R(Q1, X

′ ∪ piv) ∪ piv]. Consider an odd T -cycle in G′ disjoint from K ′.
Clearly, this cycle must contain vertices of P r1 . If there is a subpath of this cycle
between vertices of P r1 with the internal vertices disjoint from the vertices of GJ , then
we can replace this path with a corresponding torso edge or sub-divided edge to get
either a odd T -cycle in the block BQ1 in GJ \ (Y r ∪Kr

Y ) or an odd (T ∪ Pnr1 )-cycle
in the block BQ1 in GJ \ (Y r ∪Kr

Y ), which is a contradiction.

(c) The first part follows from the fact that if u has 2 vertex disjoint paths to Q1∪Q2∪
piv in the graph G \ (X ′ ∪K ′), then we can replace the subpaths of these paths which
are not present in GJ with the corresponding torso edges or subdivided edges (which
are also clearly vertex disjoint) to get 1 vertex disjoint paths from u to Q1 ∪Pnr1 ∪piv
in GJ \ (Y r ∪Kr

Y ). We can similarly prove the second part. This completes the proof
of the claim.

Now, let Y r be a Q1-Pnr1 separator in GJ such that (Y r, piv) well dominates (Xr, piv)
in GJ . Then, due to Claim 5.14, Y r ∪Xnr is a Q1-Q2 separator which well dominates
X in the graph G. Therefore, a set intersecting a Q1-Pnr1 separator which well dom-
inates Xr in the graph GJ also intersects a Q1-Q2 separator which well dominates
X in the graph G. Furthermore, due to Claim 5.14, a vertex which is isolated or
semi-isolated from piv in GJ \ Y r is also isolated or semi-isolated from Q1 ∪Q2 ∪ piv
in G \ ((X \ Xr) ∪ Y r). Therefore, if the algorithm is correct on I ′, then it is also
correct on I and hence it only remains to prove that the algorithm is correct on I ′.
In order to prove that the algorithm is correct on I ′, it is sufficient to prove that
µ(I ′) < µ(I) = µ since the correctness then follows from the induction hypothesis.

By Menger’s theorem, since P1 is a minimum size Q1-Q2 separator, we know that
there are Pnr1 vertex disjoint paths from Q1 to Pnr1 , which is also a lower bound on the
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size of the smallest Q1-Pnr1 separator in GJ . Now, µ(I) = 2(|Xr|+ |Xnr|)− (|Pnr1 |+
|P r1 |) and µ(I ′) = 2|Xr| − |Pnr1 |, which implies that µ(I ′) = µ(I) − (2|Xnr| − |P r1 |).
Since |Xnr| ≥ |P r1 |, we have that µ(I) − µ(I ′) ≥ |Xnr|. Since Xnr is non empty, we
conclude that µ(I ′) < µ(I), which completes the proof of correctness of this case.

4. The separator X is incomparable with P2. This correctness of this case is analo-
gous to the correctness of the previous case.

We note that the separator X is a good separator by definition and therefore cannot
cover P2 due to Observation 5.13. Therefore the case that X covers P2 need not
be taken into consideration and the cases we have considered are exhaustive. This
completes the proof of correctness of the algorithm.

Part III: Running time analysis. We show by induction on µ(I) that the number
of vertices in the set returned by SEMI-ISO(I), denoted by N(µ(I)), is bounded by

26µ(I)
2

. In each of the base cases of the algorithm, we either return a single vertex or
say NO, and hence the bound clearly holds. We assume that the claimed bound is
true for all instances with µ(I) < µ. Now, consider an instance I such that µ(I) = µ.
Moreover, k > 1.

1. The number of vertices added in Line 8 is bounded by 2k.

2. The number of vertices added in Line 10 is bounded by 26(µ−1)
2

by the induction
hypothesis.

3. Consider the vertices added in Line 12. There are at most 3k ordered 3-partitions
of P1 and k choices for k′. For each of these choices, we return a set of size at most
N(µ− 1), which, by the induction hypothesis is at most 26(µ−1)

2

. Hence, the number

of vertices added in this step is bounded by 3k · k · 26(µ−1)2 .

4. Similarly, the number of vertices added in Line 15 is bounded by 3k · k · 26(µ−1)2 .

Using the fact that k ≤ µ and k ≥ 1, we note that the total number of vertices
returned by SEMI-ISO(I) is at most 26(µ)

2

, which yields the required bound. The
number of leaves of the recursion tree is clearly bounded by the size of the set returned
by the algorithm, which is 2O(k2), which is also a bound on the number of internal
nodes of the recursion tree. Since the algorithm spends 2O(k)(m+ n) +O(m log n) +
O(k(m+n)) time at each node of the search tree, the total time taken by the algorithm

on the given input is 2O(k2)m log n. Since we invoke the Algorithm SEMI-ISO for every
1 ≤ k′ ≤ k, the total number of vertices returned is 2O(k2). This completes the proof
of the lemma.

We now use a special case of the above lemma to show that given a vertex semi-
isolated from W , we can compute a set of 2O(k2) vertices which intersects some solu-
tion. We begin with the following observation.

Observation 5.15. Let (G,T,W, k) be an instance of Disjoint Subset OCT
Compression and let S be a solution for this instance. Let v be a vertex semi-isolated
from W in G \ S, w = piv(v,W ) and let W2 = W \w. Let X be a minimal part of S
separating v from W2 in the graph G \ w. Then, the graph G[R(v,X ∪ w) ∪ w] does
not contain odd T -cycles.
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Proof. Suppose that there is an odd T -cycle C in the graph G′ = G[R(v,X∪w)∪
w]. Let X ′ ⊆ S \X be the set of vertices of S in R(v,X ∪w). By our assumption, X ′

is non-empty and X ′ is separated from W2 by X ∪w. We claim that S′ = (S \X ′)∪w
is also a T -oct of size at most k for the given instance. Since X ′ is non-empty, we
have that |S′| ≤ k. If S′ is not a T -oct, then there is an odd T -cycle intersecting
a vertex in X ′ and a vertex in W2 (since W is a T -oct) which is not possible since
X ∪ w is an X ′-W2 separator in G. Therefore, S′ is a solution for the given instance
which intersects W , contradicting our assumption that all input instances have the
property that there is no T -oct of size at most k which intersects W .

The above observation implies that if we take Q1 as a vertex semi-isolated from
W with respect to a solution S, w = pivG\S(v,W ) and Q2 = W \ w then the size of
the smallest T -oct in the graph G[R(v,X ∪ w) ∪ w] is 0, where X ⊆ S is a minimal
v-W \ w separator in G \ w. Therefore, algorithm A only has to test if there is an
odd T -cycle in a particular subgraph and this can clearly be done in time O(m+ n).
This leads to the following special case of Lemma 5.12.

Lemma 5.16. Let (G,T,W, k) be an instance of Disjoint Subset OCT Com-
pression, S be a solution for this instance and let v be a vertex semi-isolated from W
in G \ S such that v lies in the same block as w ∈W . There is an algorithm running

in time 2O(k2)m log n which returns a set of 2O(k2) vertices such that this set either
intersects some solution for the given instance or contains a vertex which is isolated
from W after the removal of some solution for the given instance.

By combining this lemma with Lemma 5.1, we have the following lemma on
computing a solution vertex when we are given a semi-isolated vertex.

Lemma 5.17. Let I = (G,T,W, k) be an instance of Disjoint Subset OCT
Compression, S be a solution for this instance and let v be a vertex semi-isolated
from W in G\S. There is an algorithm that, given I and v, runs in time 2O(k2)m log n

and returns a set of 2O(k2) vertices such that this set intersects some solution for the
given instance.

6. Solving special instances of type 1. This section is devoted to our algo-
rithm for Disjoint Subset OCT Compression in the case when we are interested
in finding a special solution of Type 1. We restate this lemma for the sake of com-
pleteness.

Lemma 6.1. There is an algorithm that, given an instance (G,T,W, k) of Dis-

joint Subset OCT Compression, runs in time 2O(k3)m log n and either returns a
solution for the given instance or correctly concludes that no Type 1 solution exists.

Proof. We first perform the following operation on the vertices of W which we
show does not affect the fact that S is a special solution of type 1, and plays a part
in simplifying future arguments. We make W a clique to obtain another instance I ′.

Claim 6.2. S is also a special solution of type 1 for I ′ and any type 1 solution
for I ′ is a solution for I.

Proof. It is clear that S is also a special solution of type 1 for I ′ since adding
the clique edges between the vertices of W does not create new T -odd cycles disjoint
from S. Similarly, any type 1 solution for I ′ is also a solution for I since removing
edges from I ′ cannot create new T -odd cycles.

Given the above claim, it is enough for us to compute a solution for the instance I ′.
For the sake of notational convenience, we will refer to the instance I ′ as I. Consider
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the set of terminals T . If this set has at most k terminals, then the set T itself is a
solution for the given instance. Therefore, we may assume that |T | > k + 1. In this
case, for any set T ′ of k + 1 terminals, at least one of the terminals in T ′ is in the
isolated or semi-isolated part of G \ S. Hence, we simply guess a terminal t1 ∈ T ′
which lies in the semi-isolated or isolated part of G \ S and then apply Lemma 5.1
and Lemma 5.17 on t1.

The fact that G[W ] is a clique and the definition of “domination” and “well
domination” in Lemma 5.1 and Lemma 5.16 together imply that the resulting instance
is also a special instance of type 1, allowing us to recurse on this instance.

The correctness of this algorithm follows from the correctness of Lemma 5.1,
Lemma 5.17 and the fact that the branching is exhaustive. The bound on the running
time follows from that of Lemma 5.1 and Lemma 5.17 and the bound on the sets
returned by their respective algorithms.

7. Solving special instances of type 2. In this section, we design an algorithm
to solve special instances of Type 2.

7.1. Generalized important blocks.

Definition 7.1. Given a connected graph G = (V,E), and a set B = B1, . . . ,B`

of blocks of G, let b1, . . . , b` be the vertices in the block tree T which correspond to
these blocks. Furthermore, assume that the block tree is rooted at a particular block.
We now remove all vertices from T except those that participate in a bi-bj path in the
tree T . Consider the tree T ′ obtained by repeatedly applying the following procedure.

• If there is a non-root vertex b which does not correspond to a block in B, then
identify b with its parent.

This tree is called the relative topology of the blocks in B.

The notion of relative topology is introduced in order to serve as a succint way of
encoding relevant information crossing a small set of vertices. For instance, let X be
a v-W \w separator of size at most k for some v ∈ V \W and w ∈W . When we focus
on the graph induced on R(v,X) ∪ w, we will need to remember certain information
about how the rest of the graph interacts with this subgraph. Since we will be mainly
interested in the structure of the blocks of G \ S (S is a solution) and the relevant
information only interacts with this subgraph through w ∪X, the notion of relative
topologies gives us a way to encode this interaction using only f(k) bits, for some
function f . Note that since all but one block of the relative topology are from the
given set, the next observation follows.

Observation 7.2. The number of nodes in the relative topology of ` blocks is
bounded by 2`+ 1.

We now redefine the notion of well domination but in the context of blocks. This
will be crucial for our next step.

Definition 7.3. Let (G,T,W, k) be a special instance of Disjoint Subset OCT
Compression. Let X ⊂ V \W , w ∈W and v be a vertex disjoint from W ∪X such
that,

• (X,w) is a minimal v - W \ w almost separator in G.
• v and w lie in the same block of G \X (which we denote by BX [v, w]) such

that BX [v, w] is disjoint from T
Let (X̂, w) be another almost separator that covers (X,w) and BX̂ [v, w] is disjoint

from T . Then we say that (X̂, w) well dominates (X,w).



24 D. LOKSHTANOV, P. MISRA, M. S. RAMANUJAN, S. SAURABH

The purpose of the following lemma is to start from a semi-isolated vertex and
eventually compute an odd cycle disjoint from a solution or conclude that there is a
solution which also happens to be an oct.

Lemma 7.4. Consider an instance (G = (V,E), T,W, k) of Disjoint Subset
OCT Compression. Let X ⊂ V \W , w ∈W and v be a vertex disjoint from W ∪X
such that,

• (X,w) is a minimal v-W \ w almost separator
• v is semi-isolated from W in G \X.
• v and w lie in the same block of G \ X (denoted by BX [v, w]) such that

BX [v, w] is disjoint from T .

Then there is an algorithm running in time 2O(k2 log k)m log n which returns a set
R of v-W \ w almost separators, such that,

• s = 2O(k2 log k) and every Yi has size size at most k,
• Then there is a Y ∈ R such that (Y,w) well dominates (X,w).

Proof. Let W2 = W \ w. Formally, given an instance I = (G, v,w,W2, Z, T, k),
the algorithm returns a set R of v-W2 separators of G \ w such that,

• Yi ⊆ Z for every (Yi, w) ∈ R.
• Let (X,w) be a v-W2 almost separator in G, such that BX [v, w] is T -cycle free

in G \X. Then R contains a Y such that (Y,w) is a v-W2 almost separator
in G which well dominates (X,w).

It is clear that the set R satisfies all the conditions required by the lemma. Here the
set Z denotes the set of deletable vertices. We shall narrow down this set as we make
recursive calls to the algorithm.

For the sake of a cleaner presentation for the rest of the proof of this lemma, we
adopt the convention that whenever we refer to a set being an s-t separator without
explicitly mentioning a graph, we mean that the set is an s-t separator in the graph
G \w and whenever we refer to a pair being an almost s-t separator, we are referring
to separation in the graph G. Furthermore, for ease of presentation, we have split up
the algorithm and the proof of its correctness and running time into three parts.

Part I: Description of the algorithm.. We first check if there is a v-W2 separator
of size at most k contained in the given subset Z. If not, then we return NO. If there
is no path from v to W2 in G \w, then we return ∅. Otherwise, we compute the tight
v-W2 separator sequence in the graph G\w, I, comprising only the vertices in Z. We
call a v-W2 separator P good if there is no T -cycle in the block B[v, w] in the graph
G \ P and we call it bad otherwise. We have the following observation.

Observation 7.5. If a v-W2 separator is good, all v-W2 separators covered by
this separator are also good and if a v-W2 separator is bad, all v-W2 separators which
cover this separator are bad.

Let P1 be the maximal element of I which is good and let P2 be the minimal element
of I, which is bad. That is, P1 is good and every separator in I \ {P1} which covers
P1 is bad, P2 is bad and every separator in I \ {P2} covered by P2 is good. If all the
separators in I are good, P2 is defined as W2 and if all separators in I are bad, then
P1 is defined as v. We can compute P1 and P2 in time O(m+ n) log n.2

2We simply need to check for the presence of a terminal in a particular block of a subgraph of
G for each separator in I and we can perform these tests in the form of a binary search over the
sequence I.
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We now move on to the description of the rest of the algorithm. We have four
cases depending on the interaction between X,P1 and P2.

1. P1 covers X in G \ w.. We add the separator P1 into the set R.

2. X intersects P1 or P2.. For every non-empty S̃1 ⊆ P1, we add S̃1 to each of
the separators returned by the recursion on the instance (G \ S̃1, v, w,W2, Z \ S̃1, T \
S̃1, k − |S̃1|) and add the resulting set of separators to R.

Similarly, for every non-empty S̃2 ⊆ P2, we add S̃2 to each of the separators returned
by the recursion on (G \ S̃2, v, w,W2, Z \ S̃2, T \ S̃2, k−|S̃2|) and add the resulting set
of separators to R.

3. X covers P1 and P2 covers X.. We set Z ′ = Z∩(RG\w(v, P2)∩NRG\w(v, P1))
and add the separators returned by the recursion on (G, v,w,W2, Z

′, T, k) to R.

4. X is incomparable with P1.. Let G′ = G[R(v, P1) ∪ P1 ∪ w]. Let P r1 =
P1 ∩ R(v,X ∪ w) and Pnr1 = P1 \ P r1 . We guess how the vertices of P r1 are divided
among the blocks ofG\X 3. Let the blocks which contain a vertex of P r1 be B1, . . . ,Br.
We then make cliques on vertices guessed to be in the same block. We also guess the
relative topology of these blocks within the block tree of G[RG\w(v,X) ∪ w] rooted
at block B[v, w]. Let M ′ be the relative topology and let M be the block tree of
G[RG\w(v,X) ∪ w] rooted at block B[v, w].

We add all edges between v, w and the vertices of P r1 guessed to be in block
B[v, w] in G \ X. In other words, we make them a clique. Furthermore, for every
block Bi, we guess whether or not the cut vertex in H which is the parent of Bi occurs
in the set U = R(v, P1∪w)∪w. If the parent cut vertex of Bi in M does not occur in
U , then we add a vertex corresponding to the parent cut vertex of Bi in M ′ (unless
we have already added it while guessing for another Bi) and make it adjacent to all
vertices in Bi. Finally, if a block Bi has a child cut vertex in M ′ which corresponds
to a newly added vertex, then we make all the vertices of this block adjacent to this
cut vertex. The newly added edges are referred to as torso edges. For convenience,
we use G′ to refer to the constructed graph.4

Finally, we construct a new terminal set T ′ by taking the union of the current
terminal set T with the vertices of P r1 not guessed to be in the block B[v, w] and all
the newly added vertices except the vertices which are the children cut vertices of
B[v, w] to create a new terminal set T ′.5

Formally, for every possible graph H on the vertices of P r1 , for every possible
rooted block tree M ′ of H, for every choice (possibly none) of a root block in this
block decomposition to be from B[v, w], we obtain a graph GH,M ′ and a terminal set
T ′ described as above by considering the chosen rooted block decomposition of H as
the relative topology of the corresponding blocks.

Now, for each GH,M ′ , for each 1 ≤ k′ ≤ k − 1, we recurse on the instance

3It is not necessarily a partition as the same vertex can occur in many different blocks.
4These constructions are done simply so that we may remember in future recursions, the flow

between vertices of P r
1 which is disjoint from the set U .

5The intuition behind this modification of the terminal set is that if our guesses were correct,
then we are correct to force the newly added vertices (except the children cut vertices of B[v, w])
and the vertices of P r

1 which are in blocks other than B[v, w] in G[R(v,X ∪w)∪w] be disjoint from
the block containing B[v, w] at any subsequent point in the recursion.
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(GH,M ′ , v, w, Pnr1 , Z ∩GH,M ′ , T ′, k′). For each separator Y r returned by this invoca-
tion, and for each separator Y nr returned by the invocation (G\Y r, v, w,W2, Z, T, k−
|Y r|), add the separator Y r ∪ Y nr, to R.

5. X is incomparable with P2.. We do the same for P2 as we did for P1.

Finally, we return the set R.
This completes the description of the algorithm. We now prove the correctness of the
algorithm.

Part II: Correctness of the algorithm.. For each tuple I = (G, v, w,W2, Z, T, k)
on which the algorithm is invoked, we define a measure µ(I) = 2k − λ where λ is the
size of the smallest v-W2 separator in the graph G \ w which is contained in Z. We
prove the correctness of the algorithm by induction on the measure µ(I).

In the base case, if λ > k, then the algorithm returns NO, which is clearly correct.
Similarly, if λ = 0, then there is no path between v and W2 in the graph G \ w and
hence the algorithm simply returns ∅ as the separator, which is also correct. This
completes the correctness of the base cases and we now assume that the algorithm
is correct on all instances I with µ(I) < µ. Now, consider an instance I such that
µ(I) = µ.

1. P1 covers the separator X in G \ w.. Then, the algorithm is correct on the
instance I since (P1, w) itself is a v-W2 almost separator well dominating (X,w) and
the set returned by the algorithm on I contains P1.

2. X intersects P1 or P2.. First we consider the case where X intersects P1.
Let S̃1 = P1 ∩ X. Let I ′ = (G \ S̃1, v, w,W2, Z \ S̃1, T \ S̃1, k − |S̃1|). Since P1 is a
minimum v-W2 separator, we have that the size of the minimum v-W2 separator in
G\ S̃1 is |P1|− |S̃1|. Therefore, we have that µ(I ′) = µ(I)−|S̃1| < µ(I). Therefore by
the induction hypothesis, the algorithm is correct on I ′ and hence adding S̃1 to each
separator returned by the invocation on I ′ returns a set with with required properties
with respect to the instance I. The argument for the case when P1 is disjoint from
X but P2 intersects X is analogous.

3. X covers P1 and X is covered by P2.. Let I ′ be the instance on which the
algorithm is recursively invoked in this step. By Lemma 5.11, any v-W2 separator
which lies in the set NRG\w(v, P1) ∩ RG\w(v, P2) has size at least |P1| + 1 = λ + 1.
Hence, µ(I ′) ≤ µ− 1 and by the induction hypothesis, the algorithm on I ′ returns a
set containing a v-W2 almost separator (X ′, w) which well dominates (X,w), proving
the correctness of the algorithm on the instance I.

4. The separator X is incomparable with P1.. Let P r1 be the intersection of P1

and RG(v, (X ∪ w)) and Pnr1 = P1 \ P r1 . Also, let Xr be the intersection of X with
RG\w(v, P1) and let Xnr be the rest of X. Since X is incomparable with P1, by
Observation 2.7, P r1 , Xr, Pnr1 and Xnr are non empty.

Let I ′ be the instance (GH,M ′ , v, w, Z∩GH , T ′, |Xr|) where GH,M ′ is as described
in the construction. For convenience we denote GH,M ′ by GH . We now prove the
following claim which will be used along with the induction hypothesis to prove the
correctness of the algorithm on I.

Claim 7.6. (a) The block B[v, w] in GH \Xr does not contain T ′-cycles.
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(b) Let Y r be a v-Pnr1 separator in GH such that (Y r, w) well dominates (Xr, w) in
GH . Then, the set X ′ = (X \Xr)∪ Y r is a v-W2 separator well dominating X in G.

Proof. For the first statement, suppose that B[v, w] in GH \ Xr contains a T ′-
cycle. Consider the T ′ cycle C which contains v, w and a vertex in T ′. If C does not
intersect P r1 , or if it only intersects P r1 in vertices from the block B[v, w] in G \ X,
then we can replace the torso edges in C by the corresponding paths in G \ X to
obtain a closed T -walk C ′ in G \X. But this walk lies in B[v, w] in G \X, which is
a contradiction. Hence, C must intersect a vertex of P r1 which lies outside the block
B[v, w] in G \X, that is, C intersects T ′ in a vertex t′ ∈ T ′ \ T . Let t1, . . . , tr be the
consecutive vertices of T ′ \T which appear in C while traversing from t′ to v to w and
back to t′. We can replace the torso edges of C between each consecutive pair (if the
sub-path of C between the pair comprises torso edges) with the corresponding paths
which we know are present in G \X, to obtain a T ′-walk in G \X which contains v
and w as well. However, by assumption, the vertices in T ′ are not in the block B[v, w]
in G \X, which is a contradiction. This completes the proof of the first statement.

For the second statement, it is sufficient to show that B[v, w] in G \X ′ is T -cycle
free. Suppose that B[v, w] in G \X ′ contains a T -cycle C, that is, there is a terminal
t ∈ T in the block B[v, w] in G \X ′. This implies that there are 2 internally vertex
disjoint paths Q1 and Q2 in G \ X ′, where Q1 is a t-v path and Q2 is a t-w path.
Since there is an edge between v and w, we have a T -cycle C containing t, v and w.
This cycle cannot intersect Pnr1 since X ′ by definition is a v-Pnr1 separator in G\w. If
C does not contain as sub-paths P r1 -paths which lie in NRG\w(v, P1), then C is also
present in B[v, w] in GH \ Y r, a contradiction. Hence, we conclude that C contains
P r1 -paths which lie in NRG\w(v, P1). However, we can replace these paths by the
corresponding torso edges in GH to get a cycle C ′ in GH \Y r which contains v,w and
at least one vertex in T ′, which is a contradiction.

Now, let Y r be a v-Pnr1 separator in GJ such that (Y r, w) well dominates (Xr, w) in
GJ . Then, due to Claim 7.6, Y r ∪Xnr is a v-W2 separator which well dominates X
in the graph G. Therefore, a set intersecting a v-Pnr1 separator which well dominates
Xr in the graph GJ also intersects a v-W2 separator which well dominates X in the
graph G. Therefore, if the algorithm is correct on I ′ and I ′′, then it is also correct
on I and hence it only remains to prove that the algorithm is correct on I ′ and I ′′.
In order to prove that the algorithm is correct on I ′ and I ′′, it is sufficient to prove
that µ(I ′), µ(I ′′) < µ(I) = µ since the correctness then follows from the induction
hypothesis.

By Menger’s theorem, since P1 is a minimum size v-W2 separator, we know that
there are Pnr1 vertex disjoint paths from v to Pnr1 , which is also a lower bound on the
size of the smallest v-Pnr1 separator in GJ . Now, µ(I) = 2(|Xr|+|Xnr|)−(|Pnr1 |+|P r1 |)
and µ(I ′) = 2|Xr| − |Pnr1 |, which implies that µ(I ′) = µ(I) − (2|Xnr| − |P r1 |). Since
|Xnr| ≥ |P r1 |, we have that µ(I)−µ(I ′) ≥ |Xnr|. Since Xnr is non empty, we conclude
that µ(I ′) < µ(I), which completes the proof of correctness of this case.

5. The separator X is incomparable with P2. This correctness of this case is analo-
gous to the correctness of the previous case.

We note that the separator X is a good separator by definition and therefore cannot
cover P2 due to Observation 7.5. Therefore the case that X covers P2 need not
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be taken into consideration and the cases we have considered are exhaustive. This
completes the proof of correctness of the algorithm.

Part III: Running time analysis. We will show by induction on the measure µ(I)
that the number of separators returned by an execution of the algorithm on instance
I, F (µ(I)), is bounded by 210µ(I)

2 log k. In each of the base cases of the algorithm,
we either return a single separator of the required kind or say NO. The number of
vertices returned in the base case is at most 1, and the claim clearly holds. We now
assume that the claimed bound is true for all instances with µ(I) < µ. Now, consider
an instance I such that µ(I) = µ.

1. The number of separators returned is just 1.

2. There are at most 4k choices for the sets S̃1 and S̃2 and applying the induction
hypothesis and summing the number of separators returned in either sub case, the
number of separators returned due to Case 1 is bounded by 4k · 210(µ−1)2 log k.

3. By the induction hypothesis, we conclude that the number of separators returned
is at most 210(µ−1)

2 log k.

4. There are at most at most 5kk4k possible graphs we construct and at most k choices
for |Xnr|, and for each of these choices, we return at most F (µ1) · F (µ2) separators,
where µ1 + µ2 = µ, and hence, applying the induction hypothesis gives us that the
number of separators returned is at most 210(µ−1)

2 log k · 210 log k. Hence, the number
of separators returned due to case 4 is bounded by k ·5k ·k4k ·2k ·210(µ−1)2 log k ·210 log k.

5. Similarly, the number of separators returned due to case 5 is bounded by k · 5k ·
k4k · 210(µ−1)2 log k · 210 log k.

Using the fact that k ≤ µ < 2k and k ≥ 2, we note that the number of sep-
arators returned by each case is at most 1

8 · 210µ
2 log k which yields the required

bound. The number of separators returned is hence 2O(k2 log k). The algorithm spends
2O(k log k)(m+ n) +O((m+ n) log n) time at each node of the search tree and hence,

the total time taken by the algorithm is 2O(k2 log k)m log n. This completes the proof
of the lemma.

Definition 7.7. The set of almost v-W \w separators returned by the algorithm
of Lemma 7.4 are called generalized important v-W \w almost separators. Let (X,w)
be a generalized important v-W \ w almost separator. The block B[v, w] in the graph
G\X is called an important block. We also denote by g(k) the upper bound on the size
of the set of generalized important v-W \ w almost separators given by Lemma 7.4.

We also have the following lemma bounding the number of important blocks con-
taining vertices of a set of bounded size, which also implies the number of important
blocks intersecting a particular solution for a given instance of Disjoint Subset
OCT Compression.

Lemma 7.8. The number of important blocks intersecting a set S of size at most
k is 2O(k2 log k) .

Proof. Consider a vertex v and a generalized important v-W \w almost separator
(X,w). We claim that for any vertex u in the block B[v, w] in G \X, (X,w) is also a
generalized u-W2 important almost separator. If this were not the case, then there is
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a u-W2 generalized separator (X ′, w) well dominating (X,w). We claim that (X ′, w)
is also a generalized v-W2 separator well dominating (X,w). If this were not the case,
then there is a T -cycle in the block B[v, w] in the graph G \ X ′. However, v and u
are in the same block as w in G \X, implying that they are in the same block as w in
G\X ′. By the definition of (X ′, w), there is no T -cycle in this block, a contradiction.

Since every vertex occurs in at most g(k) important blocks for a fixed w, the set

S intersects at most k(k + 1)g(k) important blocks in total, where g(k) = 2O(k2 log k)

(by Lemma 7.4). This completes the proof of the lemma.

7.2. Structure of important components and blocks. We now make a
structural observation regarding the solution which will be used to simplify the in-
stance further.

Definition 7.9. Consider an instance (G = (V,E), T,W, k) of Disjoint Subset
OCT Compression. We call J ⊆ V an important component if G[J ] is connected
and N(J) is an important J-W separator of size at most k + 1.

Lemma 7.10. Let (G,T,W, k) be a Yes instance of Disjoint Subset OCT
Compression. Then, there is a solution S, such that

• for any isolated vertex v with a minimal almost v-W separator (X, p(X))
where X ⊆ S, X ∪ p(X) is an important v-W separator.

• for any semi-isolated vertex v with a minimal almost v-W \w separator (X,w)
where X ∈ S and w ∈W , if B[v, w] in G \ S does not contain T -cycles, then
(X,w) is a generalized important v-W \ w almost separator.

Proof. Let S be a T -oct of minimum size which minimizes the number of non-
isolated vertices or equivalently, maximizes the number of vertices in G \ S which
are isolated or semi-isolated. We claim that S satisfies the statement of the lemma.
Assume to the contrary that this is not the case.

We now prove the first statement of the lemma. Consider an isolated vertex v
such that the set A = X ∪ p(X) is not an important v-W separator. Let B be an
important v-W separator dominating X ∪ P (X). If p(X) = ∅, then set p(Y ) = ∅
else set p(Y ) as any arbitrary vertex of B. Finally, set Y = B \ p(Y ). We claim
that S′ = (S \X)∪Y is a solution with fewer non-isolated vertices, contradicting the
minimality of S. Clearly, |S′| ≤ |S|. Therefore, if S′ were not a T -oct, then there is an
odd T -cycle in G \S′ which intersects a vertex in X \Y . But X \Y is separated from
W by Y ∪p(Y ). Hence, any vertex in X \Y can have at most one vertex disjoint path
to W in G \ S′, a contradiction. It remains to show that the number of non-isolated
vertices of S′ is strictly less than that of S. Suppose that this is not the case. We
first observe that every vertex in RG(v, Y ∪p(Y )) is isolated or semi-isolated in G\S′
(follows from the argument which proved that S′ is a solution). Now, we show that
for any a /∈ Y , if a is isolated or semi-isolated in G \ S, it is isolated or semi-isolated
in G \ S′.

Consider a vertex a /∈ Y such that a was isolated or semi-isolated in G\S. Suppose
that a is non-isolated in G \ S′ and hence has vertex disjoint paths to w1 and w2 in
G \ S′. Clearly, one of the two paths must intersect a vertex u ∈ X \ Y . This implies
that u itself is neither isolated nor semi-isolated. But, u ∈ R(v, Y ∪ p(Y )), which is a
contradiction since there can be at most 1 vertex disjoint path from u to W . Thus we
conclude that the number of non-isolated vertices of S′ is at most that of S and since
S minimizes the number of non-isolated vertices, the number of non-isolated vertices
of S′ is equal to that of S.

Observe that if Y contained a non-isolated vertex of S, it implies that S′ has
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strictly less non-isolated vertices. Hence, we assume that Y is disjoint from the set of
non-isolated vertices of S. Consider a vertex z ∈ Y .

We first consider the case when fG\S(z,W ) = 0. In this case, consider the set
S′′ = S′ \ z. We claim that S′′ is also a solution for the given instance. If this were
not the case, then there is an odd T -cycle intersecting z. We know that this cycle
also intersects a vertex w ∈ W and a vertex x ∈ X \ Y . This implies that x has two
vertex disjoint paths to w in G \ S′′. Since Y ∪ p(Y ) is an x-W separator and the
only vertices of Y ∪ p(Y ) not present in S′′ are z and p(Y ), it must be the case that
the each of the two vertex disjoint x-w paths intersect z and p(Y ) respectively. This
implies the presence of a z-w path disjoint from G\S′′. Since this path also avoids X,
it is also contained in G \ S, a contradiction to the assumption that fG\S(z,W ) = 0.
Hence, we conclude that S′′ is indeed a solution. However, S′′ is a solution which is
smaller than S, which is a contradiction to the optimality of S.

We now consider the case where fG\S(z,W ) ≥ 1. Then, there is a vertex u in
the block BW in G \ S such that fG\(S∪u)(z,W \ u) = 0, that is every path from z
to W intersects u and u is a non-isolated vertex with respect to S. Consider the set
S′′ = (S′ \ z) ∪ u. We claim that S′′ is also a solution for the given instance. If this
were not the case, then there is an odd T -cycle intersecting z. We know that this
cycle also intersects a vertex w ∈W and a vertex x ∈ X \ Y . This implies that x has
two vertex disjoint paths to w in G \S′′. Since Y ∪ p(Y ) is an x-W separator and the
only vertices of Y ∪ p(Y ) not present in S′′ are z and p(Y ), it must be the case that
the each of the two vertex disjoint x-w paths intersect z and p(Y ) respectively. This
implies the presence of a z-w path disjoint from G \ S′′. Since this path also avoids
X, it is also contained in G\S, in which case it intersects u, which is contained in S′′.
Hence, we conclude that S′′ is indeed a solution. However, since S′′ is an optimum
solution which intersects the non-isolated set of S, S′′ has fewer non-isolated vertices,
a contradiction. This completes the proof of the first statement of the lemma.

We now move on to the second statement. Consider a semi-isolated vertex v such
that the set X ∪ w is not a generalized important v-W2 separator. Let (Y,w) be a
generalized important v-W2 separator well dominating (X,w). Let z be any vertex of
Y \X. We claim that the set S′ = (S \X) ∪ (Y \ z) ∪ w is also a solution.

If S′ were not a solution, then there is an odd T -cycle intersecting a vertex in
X \Y . But, X \Y is separated from W2 by Y ∪w. Hence, any vertex in X \Y can have
at most 1 vertex disjoint path to W2 in (Y \ z) ∪ w, which implies the presence of at
most 1 vertex disjoint X \Y -W2 path in G\S′. This contradicts our assumption that
there was an odd T -cycle in G \ S′ intersecting W2 and X \ Y . Hence, we conclude
that S′ is also a solution. However, S′ is an optimum solution which intersects W a
contradiction to the definition of the Disjoint Subset OCT Compression problem,
which promises that there are no optimum solutions intersecting W . This completes
the proof of the lemma.

Unless explicitly mentioned otherwise, we assume any solution we consider henceforth
to any given instance of Disjoint Subset OCT Compression to be of the kind
described in the proof of Lemma 7.10.

7.3. Reducing the subset variant to the standard variant.

Lemma 7.11. There is an algorithm that, given an instance (G,T,W, k) of Dis-

joint Subset OCT Compression, runs in time 2O(k2 log k)mn log n and returns
a set of 2O(k2 log k) vertices which contain an isolated or semi-isolated with respect
to some solution or concludes correctly either that the given instance has a solution
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which is also an odd cycle transversal for G or that the given instance has no solution.

Proof. Let Z be the union of the set Z1 of all important components J in G
and the set Z2 of all generalized important blocks which correspond to a generalized
important separator of size at most k+1. Let Zo be the set of all components J in Z1

such that G[J ∪ v] contains an odd cycle for some v ∈ N(J) and the set of all blocks
J in Z2 such that G[J ] contains an odd cycle. By Lemma 2.10 and Lemma 7.4, Z
and Zo can be computed in time 2O(k2 log k)mn log n. If |Zo| > k4k+1 + k(k + 1)g(k),
then we set Z ′o as any subset of Zo of size k4k+1 + k(k + 1)g(k) + 1 and set Z ′o = Zo
otherwise.

We now construct a set R as follows. For each component or block J ∈ Z ′o, add
N(J) to R. Since the neighborhood of each component or block in Z ′o is bounded

by k + 1, we will add 2O(k2 log k) vertices to R. Now, for each J ∈ Z ′o, we pick an
arbitrary cycle in G[J ∪N(J)] and pick two arbitrary vertices of this cycle which lies
in J and add it to R. Since we add a single vertex for each element of Z ′o, the size of

R is still 2O(k2 log k). Finally we return R. Observe that the size of the set R and the
time taken to construct it follow from Lemma 2.10 and Lemma 7.4. It only remains
for us to to show that R has the requisite properties. Suppose that the given instance
is a Yes instance of Type 2, R is disjoint from any solution and there is no solution
for the given instance which is also an odd cycle transversal in G.

Consider any solution S of Type 2 and consider the graph G \ S. Since S is not
an odd cycle transversal, there is an odd cycle in G \ S. Furthermore, since S is a
solution of Type 2, we have by Lemma 5.2 that the block B[W ] in G \ S is bipartite.
Therefore, we conclude that any odd cycle in G \ S has at most one vertex in the
block B[W ].
Case 1: |Zo| > k4k+1+k(k+1)g(k). In this case, by Lemma 2.10 and Lemma 7.8, the
number of components or blocks of Zo intersecting S is at most k4k+1 +k(k+ 1)g(k),
implying that at least one of the components or blocks in Z ′o, say J , must be disjoint
from S. Now, consider any odd cycle C in G[J ∪ v] or G[J ] depending on whether
J is an important component or a block, where v ∈ N(J). Since R is disjoint from
any solution, N(J) is disjoint from any solution, implying that C is an odd cycle in
G \S. Since at most one vertex of C can be in B[W ], of any arbitrary pair of vertices
of C, at least one vertex is isolated or semi-isolated with respect to S and hence R
contains an isolated or semi-isolated vertex with respect to some solution.
Case 2: |Zo| ≤ k4k+1 + k(k + 1)g(k). In this case, if there is an odd cycle disjoint
from S, it occurs in an important component or block and hence it occurs in Zo.
However, we have that Z ′o = Zo. Therefore, this component or block also occurs in
Zo. The rest of the argument for this case is identical to that of the previous case,
thus proving that R indeed has the properties claimed in the statement of the lemma.
This completes the proof of Lemma 3.3.

7.4. Algorithm for special instances of Type 2. We are now ready to
present the full algorithm to detect special solutions of Type 2. We begin by re-
calling the following algorithm for solving odd cycle transversal.

Lemma 7.12. Let (G,T,W, k) be an instance Disjoint Subset OCT Compres-
sion. Then, there is an algorithm running in time (4k+O(log k)(m+n)) which returns
a solution or concludes correctly that there is no solution which is also an odd cycle
transversal of G.

Proof. The lemma follows from the observation that (G,T,W, k) is a Yes instance
of Subset OCT if and only if (G, k) is a Yes instance of OCT and the OCT
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algorithm of [29, 14].

We are now ready to summarize our algorithm for special instances of Type 2.

Lemma 7.13. There is an algorithm that, given an instance (G,T,W, k) of Dis-

joint Subset OCT Compression, runs in time 2O(k3 log k)mn log n and either re-
turns a solution for the given instance or correctly concludes that no Type 2 solution
exists.

Proof. We first make a complete bipartite graph on a bipartition of W which is
consistent with that of the block B[W ] in the graph G \ S where S is some solution
of Type 2. There are 2|W | such possible bipartitions and we apply the steps below
for each such bipartition after making a complete bipartite graph on W based on the
chosen bipartition.

We then apply the algorithm given by Lemma 3.3 on the given instance I. If this
algorithm returns a non-empty set R, then we know that it either intersects a solution
or contains an isolated or a semi-isolated vertex, in which case, for each vertex, we
either directly branch on it, or run the algorithms of Lemma 5.1 and Lemma 5.17 and
branch on the vertices returned by the algorithm of each lemma. Since we have made
a complete biparition on W , the resulting instances will remain special instances of
Type 2, allowing further recursion.

Otherwise, if the algorithm of Lemma 3.3 concludes that either there is no solution
or there is a solution for the given instance which is also an odd cycle transversal,
then we apply Lemma 7.12 to find a solution for the instance.

The correctness as well as claimed the running time of this algorithm is implied
by those of Lemmas 5.1, 5.17, 3.3, and 7.12. This concludes the algorithm to solve
special instances of Disjoint Subset OCT Compression of Type 2.

8. Solving Disjoint Subset OCT Compression on general instances. We
now consider the case that for the given instance (G,T,W, k) of Disjoint Subset
OCT Compression, any solution S is such that there is no block in G \ S which
contains all the vertices in W . In this case, let W = W1]W2 be a partition such that
the vertices in W1 occur in a block, say B in G \ S and there is at most one vertex,
say p in V \ S which separates W1 from W2 in G \ S. Observe that this is the same
as saying that W1 is semi-isolated from W2 ∪ p if p /∈ W1 and W1 \ p is semi-isolated
from W2 ∪ p otherwise.

8.1. Algorithm for the case when p is known.

Observation 8.1. Given a Yes instance (G,T,W, k) of Disjoint Subset OCT
Compression, let S be a solution for this instance. Let W1 ]W2 be a partition of
W such that W1 occurs in a block and there is a set X ⊆ S which, along with at most
one other vertex which is disjoint from S ∪W , say p, separates W1 from W2 in G\S.
Let U = R(W1, X ∪ p)∪ p, G′ = G[U ] and T ′ = T ∩U . Then, S′ = S ∩U is a special
solution for the instance (G′, T ′,W1, |S ∩ U |).

In this case, we can apply Lemma 5.12 by setting Q1 = W1 \ p and Q2 = W2

and piv = p. Recall that we also need the algorithm A to find a minimum T -oct
in the graph G′ = G[R(Q1, X̂ ∪ piv) ∪ piv] for any Q1-Q2 almost separator (X̂, piv).
However, by Observation 8.1, there is a special solution for the instance induced on
the G′, which implies that the algorithm A only has to look for special solutions,
hence allowing us to use the algorithms of Lemma 3.2 or Lemma 3.4 as the algorithm
A. Therefore, we infer the following lemma.



HITTING SELECTED (ODD) CYCLES 33

Lemma 8.2. Given a Yes instance (G,T,W, k) of Disjoint Subset OCT Com-
pression, let S be a solution for this instance. Let W1]W2 be a partition of W such
that W1 occurs in a block and there is a set X ⊆ S which, along with at most one
other vertex which is disjoint from S ∪W , say p, separates W1 from W2 in G \ S.

There is an algorithm that, given W1, p and W2, runs in time 2O(k3 log k)mn log2 n
and returns a set of 2O(k2) vertices which

• intersects some solution for the given instance, or
• contains a vertex v which is isolated or semi-isolated with respect to some

solution for the given instance.

By combining this lemma with the algorithms of Lemma 5.1 and Lemma 5.17,
we get Lemma 3.5.

Lemma 8.3. Given a Yes instance (G,T,W, k) of Disjoint Subset OCT Com-
pression, let S be a solution for this instance. Let W1]W2 be a partition of W such
that W1 occurs in a block and there is a set X ⊆ S which, along with at most one
other vertex which is disjoint from S ∪W , say p, separates W1 from W2. There is an
algorithm that, given W1, p and W2, runs in time 2O(k3 log k)mn log2 n and returns a
set of 2O(k2) vertices which intersects a solution for the given instance.

8.2. Algorithm for the case when p is unknown. In this case, our strategy
is to modify the algorithm of Lemma 5.12 to also account for the fact that the vertex
piv in the statement of the lemma is not given to the algorithm. The proof of this
lemma is identical to that of Lemma 5.12 except for 2 minor differences, which we
mention.

Lemma 8.4. Given a Yes instance (G,T,W, k) of Disjoint Subset OCT Com-
pression, let S be a solution for this instance. Let W1]W2 be a partition of W such
that W1 occurs in a block in G\S and there is a set X ⊆ S which, along with at most
one other vertex which is disjoint from S ∪W , say p, separates W1 from W2. There
is an algorithm that, given W1 and W2, runs in time 2O(k3 log k)mn log2 n and returns
a set of 2O(k2) vertices which

• intersects some solution for the given instance, or
• contains p or
• contains a vertex v which is isolated or semi-isolated with respect to some

solution for the given instance.

Proof. (sketch) After we compute a tight sequence I of W1-W2 separators of size
at most k + 1, we need a notion of good and bad separators. In this case, we define
a good separator as a separator P ∈ I which has the property that there is a vertex
x ∈ P such that there is a T -oct of size at most ` in the graph G[R(W1, P ) ∪ x] and
bad separators are separators which do not possess this property. As before we iterate
over all choices of ` ∈ [1, k].

The second difference is when we construct sub-instances and recurse on them
(see Step 3 in the algorithm of Lemma 5.12). We give a brief description of this step
for the current algorithm. Suppose that P1 is the maximal good separator in I. Let
P r1 = P1 ∩ (R(W1, X ∪ p)) and Pnr1 = P1 \ P r1 . Let Xr = X ∩ R(W1, P ). As before
we can assume that P r1 lies in the same block as Q1 in G \ S. We now consider the
following 2 cases.
p /∈ R(W1, P ): In this case, we build the graph G′ by taking the graph G[R(W1, P )∪

P ] and making a clique or a (appropriately guessed) bipartition on the set
W1 ∪ P r1 since these vertices are guessed to be part of the block B[W1] in
G \ S. We then run the algorithm of Lemma 3.5 on the graph G′ with the
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set W1 being the same as our “current” W1, W2 set to Pnr1 , p as the empty
set and Xr considered as X for G′, and return the set of vertices returned by
this algorithm.

p ∈ R(W1, P ): In this case, we build the graph G′ as above and recurse on this graph
with W2 now set as Pnr1 (with Xr considered as X) while p remains unknown.

We note that in both cases |Xr| < |X| as Xnr is non-empty. Thus k decreases in
each sub-instance. Thus the measure µ = 2k−λ also drops. The proof of correctness
and running time are both the same as that of Lemma 5.12.

Finally, we combine Lemma 3.6 with Lemma 3.5, Lemma 5.1 and Lemma 5.17 to
get Lemma 3.7.

Lemma 8.5. Given a Yes instance (G,T,W, k) of Disjoint Subset OCT Com-
pression, let S be a solution for this instance. Let W1]W2 be a partition of W such
that W1 occurs in a block in G\S and there is a set X ⊆ S which, along with at most
one other vertex which is disjoint from S ∪W , say p, separates W1 from W2. There
is an algorithm that, given W1 and W2, runs in time 2O(k3 log k)mn log2 n and returns
a set of 2O(k2) vertices which intersects a solution for the given instance.

Since the above lemma can be used along with the other subroutines to solve
general instances of Disjoint Subset OCT Compression, this completes the de-
scription of our algorithm for Disjoint Subset OCT Compression and by our
discussion in Section 3, the proof of Lemma 3.1.

9. Conclusion. In this paper, we gave the first FPT algorithm for the Subset
OCT problem where the exponential dependence of the running time of the algorithm
on k is polynomial. Our algorithm avoids the machinery of graphs minors and is based
entirely on separation and flow based arguments and improves upon the algorithm of
Kakimura et al. with respect to both the parameter as well as the input size.

Interesting problems in this direction include obtaining an algorithm for the above
problem where the function of the parameter is 2O(k) as well as an improved algorithm
for the subset version of Even Cycle Transversal. Finally, we leave open the
question of obtaining an FPT algorithm with a linear dependence on the input size.
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[13] F. Hüffner, Algorithm engineering for optimal graph bipartization, J. Graph Algorithms
Appl., 13 (2009), pp. 77–98.

[14] Y. Iwata, K. Oka, and Y. Yoshida, Linear-time fpt algorithms via network flow, in SODA,
2014, pp. 1749–1761.

[15] N. Kakimura, K. Kawarabayashi, and Y. Kobayashi, Erdös-pósa property and its algorith-
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