
Lower bounds based on the
Exponential Time Hypothesis

Daniel Lokshtanov∗ Dániel Marx† Saket Saurabh‡

Abstract

In this article we survey algorithmic lower bound results that have
been obtained in the field of exact exponential time algorithms and pa-
rameterized complexity under certain assumptions on the running time
of algorithms solving CNF-Sat, namely Exponential time hypothesis
(ETH) and Strong Exponential time hypothesis (SETH).

1 Introduction
The theory of NP-hardness gives us strong evidence that certain fundamen-
tal combinatorial problems, such as 3SAT or 3-Coloring, are unlikely to
be polynomial-time solvable. However, NP-hardness does not give us any
information on what kind of super-polynomial running time is possible for
NP-hard problems. For example, according to our current knowledge, the
complexity assumption P 6= NP does not rule out the possibility of having
an nO(logn) time algorithm for 3SAT or an nO(log log k) time algorithm for k-
Clique, but such incredibly efficient super-polynomial algorithms would be
still highly surprising. Therefore, in order to obtain qualitative lower bounds
that rule out such algorithms, we need a complexity assumption stronger
than P 6= NP.

Impagliazzo, Paturi, and Zane [38, 37] introduced the Exponential Time
Hypothesis (ETH) and the stronger variant, the Strong Exponential Time
Hypothesis (SETH). These complexity assumptions state lower bounds on
how fast satisfiability problems can be solved. These assumptions can be
used as a basis for qualitative lower bounds for other concrete computational
problems.
∗Dept. of Comp. Sc. and Engineering, University of California, USA.

dlokshtanov@ucsd.edu
†Institut für Informatik, Humboldt-Universiät , Berlin, Germany. dmarx@cs.bme.hu
‡The Institute of Mathematical Sciences, Chennai, India. saket@imsc.res.in

1

The goal of this paper is to survey lower bounds that can be obtained by
assuming ETH or SETH. We consider questions of the following form (we
employ the O∗ notation which suppresses factors polynomials in input size):

• Chromatic Number on an n-vertex graph can be solved in time
O∗(2n).
Can this be improved to 2o(n) or to (2− ε)n?

• k-Independent Set on an n-vertex graph can be solved in time nO(k).
Can this be improved to no(k)?

• k-Independent Set on an n-vertex planar graph can be solved in
time O∗(2O(

√
k)).

Can this be improved to 2o(
√
k)?

• Dominating Set on a graph with treewidth w can be solved in time
O∗(3w).
Can this be improved to O∗((3− ε)w)?

• Hitting Set over an n-element universe is solvable in time O∗(2n).
Can this be improved to 2o(n) or to (2− ε)n?

As we shall see, if ETH or SETH hold then many of these questions can
be answered negatively. In many cases, these lower bounds are tight: they
match (in some sense) the running time of the best known algorithm for.
Such results provide evidence that the current best algorithms are indeed
the best possible.

The main focus of this survey is to state consequences of ETH and
SETH for concrete computational problems. We avoid in-depth discussions
of how believable these conjectures are, what complexity-theoretic conse-
quences they have, or what other techniques could be used to obtain similar
results. In the conclusions, we briefly argue that the lower bounds follow-
ing from ETH or SETH are important even if one is not fully accepting
these conjectures: the very least, these results show that breaking the lower
bounds requires fundamental advances in satisfiability algorithms, and there-
fore problem-specific ideas related to the particular problem are probably not
of any help.

Parameterized complexity. Many of the questions raised above can be
treated naturally in the framework of parameterized complexity introduced
by Downey and Fellows [24]. The goal of parameterized complexity is to
find ways of solving NP-hard problems more efficiently than brute force, by

2

restricting the “combinatorial explosion” in the running time to a parameter
that for reasonable inputs is much smaller than the input size. Parameterized
complexity is basically a two-dimensional generalization of “P vs. NP” where
in addition to the overall input size n, one studies how a relevant secondary
measurement affects the computational complexity of problem instances.

This additional information can be the size or quality of the output solu-
tion sought for, or a structural restriction on the input instances considered,
such as a bound on the treewidth of the input graph. Parameterization can
be employed in many different ways; for general background on the theory,
the reader is referred to the monographs [24, 27, 50].

The two-dimensional analogue (or generalization) of P, is solvability within
a time bound of O(f(k)nc), where n is the total input size, k is the parameter,
f is some (usually computable) function, and c is a constant that does not
depend on k or n. Parameterized decision problems are defined by specifying
the input, the parameter, and the question to be answered. A parameterized
problem that can be solved in O(f(k)nc) time is said to be fixed-parameter
tractable (FPT). Just as NP-hardness is used as evidence that a problem
probably is not polynomial time solvable, there exists a hierarchy of com-
plexity classes above FPT, and showing that a parameterized problem is
hard for one of these classes gives evidence that the problem is unlikely to
be fixed-parameter tractable. The main classes in this hierarchy are:

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P] ⊆ XP

The principal analogue of the classical intractability class NP is W [1], which
is a strong analogue, because a fundamental problem complete forW [1] is the
k-Step Halting Problem for Nondeterministic Turing Machines
(with unlimited nondeterminism and alphabet size) — this completeness re-
sult provides an analogue of Cook’s Theorem in classical complexity. In par-
ticular this means that an FPT algorithm for any W [1] hard problem would
yield a O(f(k)nc) time algorithm for k-Step Halting Problem for Non-
deterministic Turing Machines. A convenient source of W [1]-hardness
reductions is provided by the result that k-Clique is complete for W [1].
Other highlights of the theory include that k-Dominating Set, by con-
trast, is complete for W [2]. XP is the class of all problems that are solvable
in time O(ng(k)).

There is also a long list of NP-hard problems that are FPT under various
parameterizations: finding a vertex cover of size k, finding a cycle of length
k, finding a maximum independent set in a graph of treewidth at most k,
etc. The form of the function f(k) in the running time of these algorithms
vary drastically. In some cases, for example in results obtained from Graph

3

Minors theory, the function f(k) is truly humongous (a tower of exponen-
tials), making the result purely of theoretical interest. In the case of the
model checking problem for monadic second-order logic, the function f(k) is
provably not even elmentary (assuming P 6= NP) [31]. On the other hand, in
many cases f(k) is a moderately growing exponential function: for example,
f(k) is 1.2738k in the current fastest algorithm for finding a vertex cover of
size k [15], which can be further improved to 1.1616k in the special case of
graphs with maximum degree 3 [57]. For some problems, f(k) can be even
subexponential (e.g., c

√
k) [22, 21, 20, 2]. For more background on parame-

terized algorithms, the reader is referred to the monographs [24, 27, 50].

Exact algorithms. At this point we take a slight detour and talk about
the exact exponential algorithms, which will be central to this survey. Every
problem in NP can be solved in time 2n

O(1) by brute force - i.e by enumerat-
ing all candidates for the witness. While we do not believe that polynomial
time algorithms for NP-complete problems exist, many NP-complete prob-
lems admit exponential time algorithms that are dramatically faster than the
brute force algorithms. For some classical problems, such as Subset Sum,
Graph Coloring or Hamiltonian Cycle such algorithms [34, 42, 3]
were known even before the discovery of NP-completeness. Over the last
decade, a subfield of algorithms devoted to developing faster exponential
time algorithms for NP-hard problems has emerged. A myriad of problems
have been shown to be solvable much faster than by brute force, and a vari-
ety of algorithm design techniques for exponential time algorithms has been
developed. Some problems, such as Independent Set and Dominating
Set have seen a chain of improvements [29, 55, 52, 41], each new improve-
ment being smaller than the previous. For these problems the running time
of the algorithms on graphs on n vertices seems to converge towards O(cn)
for some unknown c. For other problems, such as Graph Coloring or
Travelling Salesman, non-trivial solutions have been found, but improv-
ing these algorithms further seems to be out of reach [5]. For other problems
yet, such as CNF-Sat or Hitting Set, no algorithms faster than brute force
have been discovered. We would refer to the book of Fomin and Kratsch for
more information on exact exponential time algorithms [30].

For the purpose of this survey we will not distinguish between exact and
parameterized algorithms. Instead we will each time explicitly specify in
terms of which parameter the running time is measured. For an example an
exact exponential time algorithm for Independent Set could be viewed as
parameterized algorithm where the parameter is the number of vertices in
the input graph. Such a perspective allows us to discuss complexity theory

4

for both exact and parameterized algorithms in one go.

Organization. The survey is organized as follows. In Section 2, we give all
the necessary definitions and introduce our complexity theory assumptions.
We have organized the results topic wise. In Sections 3 and 4 we give
various algorithmic lower bounds on problems in the field of exact algorithms
and parameterized algorithms, respectively. We look at lower bounds for
problems that are known to be W[1]-hard in Section 5. Section 6 deals
with structural parameterizations. More precisely, in this section we give
lower bounds results on problems parameterized by the treewidth of the
input graph. Finally, we conclude with some remarks and open problems in
Section 7.

Notation. We use G = (V,E) to denote a graph on vertex set V and the
edge set E. For a subset S of V , the subgraph of G induced by S is denoted
by G[S] and it is defined as the subgraph of G with vertex set S and edge
set {(u, v) : u, v ∈ S}. By NG(u) we denote the (open) neighborhood of u,
that is, the set of all vertices adjacent to u. Similarly, for a subset T ⊆ V ,
we define NG(T) = (∪v∈TNG(v)) \ T . A r-CNF formula φ = c1 ∧ · · · ∧ cm is
a boolean formula where each clause is a disjunction of literals and has size
at most r. By [k] we denote the set {1, 2, . . . , k}.

2 Complexity Theory Assumptions

In this section we outline the complexity theory assumptions that is central
to this survey. We start with a few definitions from parametrized complexity.
We mainly follow the notation of Flum and Grohe [27]. We describe decision
problems as languages over a finite alphabet Σ.

Definition 2.1. Let Σ be a finite alphabet.

(1) A parameterization of Σ∗ is a polynomial time computable mapping
κ : Σ∗ → N.

(2) A parameterized problem (over Σ) is a pair (Q, κ) consisting of a set
Q ⊆ Σ∗ of strings over Σ and a parameterization κ of Σ∗.

For a parameterized problem (Q, κ) over alphabet Σ, we call the strings
x ∈ Σ∗ the instances of Q or (Q, κ) and the number of κ(x) the corresponding
parameters. We usually represent a parameterized problem on the form

5

Instance: x ∈ Σ∗.
Parameter: κ(x).
Problem: Decide whether x ∈ Q.

Very often the parameter is also a part of the instance. For example,
consider the following parameterized version of the minimum feedback vertex
set problem, where the instance consists of a graph G and a positive integer
k, the problem is to decide whether G has a feedback vertex set, a set of
vertices whose removal destroys all cycles in the graph, of k elements.

Feedback Vertex Set
Instance: A graph G, and a non-negative integer k.

Parameter: k.
Problem: Decide whether G has a feedback vertex set

with at most k elements.

In this problem the instance is the string (G, k) and κ(G, k) = k. When the
parameterization κ is defined as κ(x, k) = k, the parameterized problem can
be defined as subsets of Σ∗×N. Here the parameter is the second component
of the instance. In this survey we use both notations for parameterized
problems.

Definition 2.2. A parameterized problem (Q, κ) is fixed-parameter tractable
if there exists an algorithm that decides in f (κ(x))·nO(1) time whether x ∈ Q,
where n := |x| and f is a computable function that does not depend on n.
The algorithm is called a fixed-parameter algorithm for the problem. The
complexity class containing all fixed-parameter tractable problems is called
FPT.

A common way to obtain lower bounds is by reductions. A reduction from
one problem to another is just a proof that a “too fast” solution for the latter
problem would transfer to a too fast solution for the former. The specifics of
the reduction varies based on what we mean by “too fast”. The next definition
is of a kind of reductions that preserves fixed-parameter tractability.

Definition 2.3. Let (Q, κ) and (Q′, κ′) be two parameterized problems over
the alphabet Σ and Σ′, respectively. An fpt reduction (more precisely fpt
many-one reduction) from (Q, κ) to (Q′, κ′) is a mapping R : Σ∗ → (Σ′)∗

such that:

1. For all x ∈ Σ∗ we have x ∈ Q if and only if R(x) ∈ Q′.

2. R is computable by an fpt-algorithm (with respect to κ).

6

3. There is a computable function g : N → N such that κ′(R(x)) ≤
g(κ(x)) for all x ∈ Σ∗.

It can be verified that fpt reductions work as expected: if there is an fpt
reduction from (Q, κ) to (Q′, κ′) and (Q′, κ′) ∈ FPT, then (Q, κ) ∈ FPT as
well. We now define the notion of subexponential time algorithms.

Definition 2.4. SUBEPT is the class of parameterized problems (P, κ)

where P can be solved in time 2
κ(x)
s(κ(x)) |x|O(1) = 2o(κ(x))|x|O(1). Here, s(k) is a

monotonically increasing unbounded function. A problem P in SUBEPT is
said to have subexponential algorithms.

A useful observation is that an "arbitrarily good" exponential time algo-
rithm implies a subexponential time algorithm and vice versa.

Proposition 2.5 ([27]). A parameterized problem (P, κ) is in SUBEPT if
and only if there is an algorithm that for every fixed ε > 0 solves instances x
of P in time 2εκ(x)|x|c where c is independent of x and ε.

The r-CNF-Sat problem is a central problem in computational complex-
ity, as it is the canonical NP-complete problem. We will use this problem as
a basis for our complexity assumptions.

r-CNF-Sat
Instance: A r-CNF formula F on n variables and m clauses.

Parameter 1: n.
Parameter 2: m.

Problem: Decide whether there exists a {0, 1} assignment to the
variables of F such that it is satisfiable?.

It is trivial to solve 3-CNF-Sat it time 2n · (n + m)O(1). There are
better algorithms for 3-CNF-Sat, but all of them have running time of the
form cn · (n + m)O(1) for some constant c > 1 (the current best algorithm
runs in time O(1.30704n) [35]). Our first complexity hypothesis, formulated
by Impagliazzo, Paturi and Zane [39], states that every algorithm for 3-
CNF-Sat has this running time, that is, the problem has no subexponential
time algorithms.

Exponential Time Hypothesis (ETH) [39]: There is a pos-
itive real s such that 3-CNF-Sat with parameter n cannot be
solved in time 2sn(n+m)O(1).

7

In particular, ETH states that 3-CNF-Sat with parameter n cannot be
solved in 2o(n)(n + m)O(1) time. We will use this assumption to show that
several other problems do not have subexponential-time algorithms either.
To transfer this hardness assumption to other problems, we need a notion
of reduction that preserves solvability in subexponential time. It is easy to
see that a polynomial-time fpt-reduction that increases the parameter only
linearly (that is, κ′(R(x)) = O(κ(x)) holds for every instance x) preserves
subexponential-time solvability: if the target problem (Q′, κ′) is in SUBEPT,
then so is the source problem (Q, κ). Most of the reductions in this survey
are on this form. However, it turns out that sometimes a more general
form of subexponential time reductions, introduced by Impagliazzo, Paturi,
and Zane [39], are required. Essentially, we allow the running time of the
reduction to be subexponential and the reduction to be a Turing reduction
rather than a many-one reduction:

Definition 2.6. A SERF-T reduction from parameterized problem (A1, κ1)
to a parameterized problem (A2, κ2) is a Turing reduction M from A1 to A2

that has the following properties.

1. Given an ε > 0 and an instance x of A1,M runs in time O(2εκ1(x)|x|O(1)).

2. For any query M(x) makes to A2 with the input x′,

(a) |x′| = |x|O(1),

(b) κ2(x′) = ακ1(x).

The constant α may depend on ε while the constant hidden in the O()-
notation in the bound for |x′| may not.

It can easily be shown that SERF-T reductions are transitive. We now
prove that SERF-T reductions work as expected and indeed preserve solv-
ability in subexponential time.

Proposition 2.7. If there is a SERF-T reduction from (A1, κ1) to (A2, κ2)
and A2 has a subexponential time algorithm then so does A1.

Proof. By Proposition 2.5 there is an algorithm for (A2, κ2) that for every
ε > 0 can solve an instance x in time O(2εκ2(x)|x|c) for some c independent
of x and ε. We show that such an algorithm also exists for (A1, κ1).

Given an ε > 0 we need to make an algorithm running in timeO(2εκ1(x)|x|c′)
for some c′ independent of x and ε. We choose ε′ = ε/2 and run the
SERF-T reduction from (A1, κ1) to (A2, κ2) with parameter ε′. This re-
duction makes at most O(2ε

′κ1(x)|x|O(1)) calls to instances x′ of A2, each with

8

|x′| ≤ |x|O(1) and κ2(x′) ≤ ακ1(x). Each such instance can be solved in time
2εκ1(x)/2|x|O(1). Hence the total running time for solving x is 2εκ1(x)|x|c′ for
some c′ independent of x and ε. By Proposition 2.5 this means that (A1, κ1)
is in SUBEPT.

Since every variable appears in some clause it follows that n ≤ rm, and
hence r-CNF-Sat with parameter m (the number of clauses) is SERF-T
reducible to r-CNF-Sat with parameter n. However, there is no equally ob-
vious SERF-T reduction from r-CNF-Sat with parameter n to r-CNF-Sat
with parameter m. Nevertheless, Impagliazzo, Paturi and Zane [39] estab-
lished such a reduction, whose core argument is called the sparsification
lemma stated below.

Lemma 2.8 ([10]). (Sparsification Lemma) For every ε > 0 and positive
integer r, there is a constant C = O((r

ε
)3r) so that any r-CNF formula F

with n variables, can be expressed as F = ∨ti=1Yi, where t ≤ 2εn and each Yi
is an r-CNF formula with every variables appearing in at most C clauses.
Moreover, this disjunction can be computed by an algorithm running in time
2εnnO(1).

Lemma 2.8 directly gives a SERF-T reduction from r-CNF-Sat with pa-
rameter n to r-CNF-Sat with parameter m. Thus the following proposition
is a direct consequence of the sparsification lemma.

Proposition 2.9 ([39]). Assuming ETH, there is a positive real s′ such that
3-CNF-Sat with parameter m cannot be solved in time O(2s

′m). That is,
there is no 2o(m) algorithm for 3-CNF-Sat with parameter m.

Proposition 2.9 has far-reaching consequences: as we shall see, by reduc-
tions from from 3-CNF-Sat with parameter m, we can show lower bounds
for a wide range of problems. Moreover, we can even show that several
NP-complete problems are equivalent with respect to solvability in subexpo-
nential time. For an example, every problem in SNP and size-constrained
SNP (see [39] for definitions of these classes) can be shown to have SERF-T
reductions to r-CNF-Sat with parameter n for some r ≥ 3. The SNP and
size-constrained SNP problem classes contain several important problems
such as r-CNF-Sat with parameter n and Independent Set, Vertex
Cover and Clique parameterized by the number of vertices in the input
graph. This gives some evidence that a subexponential time algorithm for
r-CNF-Sat with parameter n is unlikely to exist, giving some credibility to
ETH.

9

It is natural to ask how the complexity of r-CNF-Sat evolves as r grows.
For all r ≥ 3, define,

sr = inf
{
δ : there exists an O∗(2δn) algorithm solving r-CNF-Sat

with parameter n
}
.

s∞ = lim
r→∞

sr.

Since r-CNF-Sat easily reduces to (r + 1)-SAT it follows that sr ≤ sr+1.
However, saying anything else non-trivial about this sequence is difficult.
ETH is equivalent to conjecturing that s3 > 0. Impagliazzo, Paturi and
Zane [39] present the following relationships between the sr’s and the solv-
ability of problems in SNP in subexponential time. The theorem below is
essentially a direct consequence of Lemma 2.8

Theorem 2.10 ([39]). The following statements are equivalent

1. For all r ≥ 3, sr > 0.
2. For some r, sr > 0.
3. s3 > 0.
4. SNP * SUBEPT.

The equivalence above offers some intuition that r-CNF-Sat with param-
eter n may not have a subexponential time algorithm and thus strengthens
the credibility of ETH. Impagliazzo and Paturi [39, 11] studied the sequence
of sr’s and obtained the following results.

Theorem 2.11 ([39, 11]). Assuming ETH, the sequence {sr}r≥3 is increasing
infinitely often. Furthermore, sr ≤ s∞(1− d

r
) for some constant d > 0

A natural question to ask is what is s∞? As of today the best algorithms
for r-CNF-Sat all use time O(2n(1− c

r
)) for some constant c independent of

r and n. This, together with Theorem 2.11 hints at s∞ = 1. The conjec-
ture that this is indeed the case is known as the Strong Exponential Time
Hypothesis.

Strong Exponential Time Hypothesis (SETH) [39, 11]:
s∞ = 1.

An immediate consequence of SETH is that that SAT with parameter
n (here the input formula F could have arbitrary size clauses) cannot be

10

solved in time (2 − ε)n(n + m)O(1). In order to justify SETH one needs to
link the existence of a faster satisfiability algorithm to known complexity
assumptions, or at least give an analogy of Theorem 2.10 for SETH. In a
recent manuscript, Cygan et al. [18] show that for several basic problems
their brute force algorithm can be improved if and only if SETH fails. Thus
there is at least a small class of problems whose exponential time complexity
stands and falls with SETH.

Theorem 2.12 ([18]). The following are equivalent.

• ∃δ < 1 such that r-CNF-Sat with parameter n is solvable in O(2δn)
time for all r.
• ∃δ < 1 such that Hitting Set for set systems with sets of size at most
k is solvable in O(2δn) time for all k. Here n is the size of the universe.
• ∃δ < 1 such that Set Splitting for set systems with sets of size at
most k is solvable in O(2δn) time for all k,. Here n is the size of the
universe.
• ∃δ < 1 such that k-NAE-Sat is solvable in O(2δn) time for all k. Here
n is the number of variables.
• ∃δ < 1 such that satisfiability of cn size series-parallel circuits is solv-
able in O(2δn) time for all c.

This immediately implies that a 2δn time algorithm for any of the above
problems without the restrictions on clause width or set size would violate
SETH. All of the problems above have O(2n) time brute force algorithms,
and hence these bounds are tight.

It is tempting to ask whether it is possible to show a “strong” version of the
Sparsification Lemma, implying that under SETH there is no algorithm for
r-CNF-Sat with running time O((2 − ε)m) for any ε > 0. However, faster
algorithms for SAT parameterized by the number of clauses do exist. In
particular, the currently fastest known algorithm [36] for SAT parameterized
by the number of clauses runs in time O(1.239m).

3 Lower Bounds for Exact Algorithms

In this section we outline algorithmic lower bounds obtained using ETH and
SETH on the running time of exact exponential time algorithms.

In order to prove that a too fast algorithm for a certain problem P con-
tradicts ETH, one can give a reduction from 3-CNF-Sat to P and argue
that a too fast algorithm for P would solve 3-CNF-Sat in time 2o(m). This

11

together with Proposition 2.9 would imply that 3-CNF-Sat can be solved in
time 2o(n), contradicting ETH. Quite often the known NP-completeness re-
duction from 3-CNF-Sat to the problem in question give the desired running
time bounds. We illustrate this for the case of 3-Coloring. We use the
well-known fact that there is a polynomial-time reduction from 3-CNF-Sat
to 3-Coloring where the number of vertices of the graph is linear in the
size of the formula.

Proposition 3.1 ([53]). Given a 3SAT formula φ with n-variables and m-
clauses, it is possible to construct a graph G with O(n+m) vertices in poly-
nomial time such that G is 3-colorable if and only if φ is satisfiable.

Proposition 3.1 implies that the number of vertices in the graphG is linear
in the number of variables and clauses. Thus, an algorithm for 3-Coloring
with running time subexponential in the number of vertices would gives a
2o(m) time algorithm for 3-CNF-Sat. This together with Proposition 2.9
imply the following.

Theorem 3.2. Assuming ETH, there is no 2o(n) time algorithm for
3-Coloring.

Similarly, one can show that various graph problems such as Dominating
Set, Independent Set, Vertex Cover and Hamiltonian Path do not
have 2o(n) time algorithms unless ETH fails.

Theorem 3.3. Assuming ETH, there is no 2o(n) time algorithm for Domi-
nating Set, Independent Set, Vertex Cover or Hamiltonian Path.

The essential feature of the reductions above is that the number of vertices
is linear in the number of clauses of the original 3SAT formula. If the reduc-
tion introduces some blow up, that is, the number of vertices is more than
linear, then we still get lower bounds, but weaker than 2o(n). For example,
such blow up is very common in reductions to planar problems. We outline
one such lower bound result for Planar Hamiltonian Cycle. Here, the
input consists of planar graph G on n vertices and the objective to check
whether there is a hamiltonian cycle in G.

Proposition 3.4 ([32]). Given a 3SAT formula φ with n-variables and m-
clauses, it is possible to construct a planar graph G with O(m2) vertices and
edges in polynomial time such that G has a hamiltonian cycle if and only if
φ is satisfiable.

Proposition 3.4 implies that the number of vertices in the graph G is
quadratic in the number of clauses. Thus, an algorithm for Planar Hamil-
tonian Cycle with running time 2o(

√
n) would gives a 2o(m) time algorithm

for 3-CNF-Sat. This together with Proposition 2.9 imply the following.

12

Theorem 3.5. Assuming ETH, there is no 2o(
√
n) time algorithm for Pla-

nar Hamiltonian Cycle.

One can prove similar lower bounds for Planar Vertex Cover, Pla-
nar Dominating Set and various other problems on planar graphs and
other kind of geometric graphs. Note that many of these results are tight:
for example, Planar Hamiltonian Cycle can be solved in time 2O(

√
n).

While reductions from SAT can be used to prove many interesting bounds
under ETH, such an approach has an inherent limitation; the obtained
bounds can only distinguish between the asymptotic behaviour, and not be-
tween different constants in the exponents. Most efforts in Exact Exponential
time algorithms have concentrated exactly on decreasing the constants in the
exponents of the running times, and hence, in order to have a good complex-
ity theory for Exact Exponential Time Algorithms one needs a tool to rule
out O(cn) time algorithms for problems for concrete constants c. Assuming
that SETH holds and reducing from r-CNF-Sat allows us to rule out O(cn)
time algorithms for at least some problems (see Theorem 2.10). However,
the complexity theory of Exact Exponential Time Algorithms is still at a
nascent stage, with much left unexplored.

4 Lower Bounds for FPT Algorithms

Once it is established that a parameterized problem is FPT, that is, can be
solved in time f(κ(x)) · |x|O(1), the next obvious goal is to design algorithms
where the function f is as slowly growing as possible. Depending on the
type of problem considered and the algorithmic technique employed, the
function f comes in all sizes and shapes. It can be an astronomical tower of
exponentials for algorithms using Robertson and Seymour’s Graph Minors
theory; it can be ck for some nice small constant c (e.g., 1.2738k for vertex
cover [15]); it can be even subexponential (e.g., 2

√
k). It happens very often

that by understanding a problem better or by using more suitable techniques,
better and better fpt algorithms are developed for the same problem and a
kind of “race” is established to make f as small as possible. Clearly, it
would be very useful to know if the current best algorithm can be improved
further or it has already hit some fundamental barrier. Cai and Juedes [9]
were first to examine the existence of 2o(k) or 2o(

√
k) algorithms for various

parameterized problems solvable in time 2O(k) or 2O(
√
k), respectively. They

showed that for variety of problems assuming ETH, there is no 2o(k) or 2o(
√
k)

algorithms possible. In this section, we survey how ETH can be used to
obtain lower bounds on the function f for various FPT problems.

13

We start with a simple example. We first define the Vertex Cover
problem.

Vertex Cover
Instance: A graph G, and a non-negative integer k.

Parameter: k.
Problem: Decide whether G has a vertex cover

with at most k elements.

Since k ≤ n, a 2o(k)nc time algorithm directly implies a 2o(n) time algo-
rithm for Vertex Cover. However, by Theorem 3.3 we know that Vertex
Cover does not have an algorithm with running time 2o(n) unless ETH fails.
This immediately implies the following theorem.

Theorem 4.1 ([9]). Assuming ETH, there is no 2o(k)nO(1) time algorithm
for Vertex Cover.

Similarly, assuming ETH, we can show that several other problems pa-
rameterized by the solution size, such as Feedback Vertex Set or Longest
Path do not have 2o(k)nO(1) time algorithms.

Theorem 4.2 ([9]). Assuming ETH, there is no 2o(k)nO(1) time algorithm
for Feedback Vertex Set or Longest Path.

Similar arguments yield tight lower bounds for parameterized problems on
special graph classes, such as planar graphs. As we have seen in the previous
section, for many problems we can rule out algorithms with running time
2o(
√
n) even when the input graph is restricted to be planar. If the solution

to such a problem is a subset of the vertices (or edges), then the problem
parameterized by solution size cannot be solved in time 2o(

√
k)nO(1) on planar

graphs, unless ETH fails.

Theorem 4.3 ([9]). Assuming ETH, there is no 2o(
√
k)nO(1) time algorithm

for Planar Vertex Cover.

Results similar to Theorem 4.3 are possible for several other graph prob-
lems on planar graphs. It is worth to mention that many of these lower
bounds on these problems are tight. That is, many of the mentioned prob-
lems admit both 2O(k)nO(1) time algorithms on general graphs and 2O(

√
k)nO(1)

time algorithms on planar graphs.
Obtaining lower bounds of the form 2o(k)nO(1) or 2o(

√
k)nO(1) on parame-

terized problems generally follows from the known NP-hardness reduction.
However, there are several parameterized problems where f(k) is “slightly

14

superexponential” in the best known running time: f(k) is of the form
kO(k) = 2O(k log k). Algorithms with this running time naturally occur when a
search tree of height at most k and branching factor at most k is explored, or
when all possible permutations, partitions, or matchings of a k element set
are enumerated. Recently, for a number of such problems lower bounds of
the form 2o(k log k) were obtained under ETH [45]. We show how such a lower
bound can be obtained for an artificial variant of the Clique problem. In
this problem the vertices are the elements of a k× k table, and the clique we
are looking for has to contain exactly one element from each row.

k × k Clique
Input: A graph G over the vertex set [k]× [k]

Parameter: k
Question: Is there a k-clique in G with exactly one element from

each row?

Note that the graph G in the k × k Clique instance has O(k2) vertices at
most O(k4) edges, thus the size of the instance is O(k4).

Theorem 4.4 ([45]). Assuming ETH, there is no 2o(k log k) time algorithm
for k × k Clique.

Proof. Suppose that there is an algorithm A that solves k × k Clique in
2o(k log k) time. We show that this implies that 3-Coloring on a graph with
n vertices can be solved in time 2o(n), which contradicts ETH by Theorem 3.2.

Let H be a graph with n vertices. Let k be the smallest integer such that
3n/k+1 ≤ k, or equivalently, n ≤ k log3 k − k. Note that such a finite k exists
for every n and it is easy to see that k log k = O(n) for the smallest such k.
Intuitively, it will be useful to think of k as a value somewhat larger than
n/ log n (and hence n/k is somewhat less than log n).

Let us partition the vertices of H into k groups X1, . . . , Xk, each of size
at most dn/ke. For every 1 ≤ i ≤ k, let us fix an enumeration of all the
proper 3-colorings of H[Xi]. Note that there are most 3dn/ke ≤ 3n/k+1 ≤ k
such 3-colorings for every i. We say that a proper 3-coloring ci of H[Xi]
and a proper 3-coloring cj of H[Xj] are compatible if together they form a
proper coloring of H[Xi∪Xj]: for every edge uv with u ∈ Xi and v ∈ Xj, we
have ci(u) 6= cj(v). Let us construct a graph G over the vertex set [k] × [k]
where vertices (i1, j1) and (i2, j2) with i1 6= i2 are adjacent if and only if the
j1-th proper coloring of H[Xi1] and the j2-th proper coloring of H[Xi2] are
compatible (this means that if, say, H[Xi1] has less than j1 proper colorings,
then (i1, j1) is an isolated vertex).

15

We claim that G has a k-clique having exactly one vertex from each row
if and only if H is 3-colorable. Indeed, a proper 3-coloring of H induces a
proper 3-coloring for each of H[X1], . . . , H[Xk]. Let us select vertex (i, j)
if and only if the proper coloring of H[Xi] induced by c is the j-th proper
coloring of H[Xi]. It is clear that we select exactly one vertex from each row
and they form a clique: the proper colorings of H[Xi] and H[Xj] induced
by c are clearly compatible. For the other direction, suppose that (1, ρ(1)),
. . . , (k, ρ(k)) form a k-clique for some mapping ρ : [k] → [k]. Let ci be the
ρ(i)-th proper 3-coloring of H[Xi]. The colorings c1, . . . , ck together define
a coloring c of H. This coloring c is a proper 3-coloring: for every edge uv
with u ∈ Xi1 and v ∈ Xi2 , the fact that (i1, ρ(i1)) and (i2, ρ(i2)) are adjacent
means that ci1 and ci2 are compatible, and hence ci1(u) 6= ci2(v).

Running the assumed algorithm A on G decides the 3-colorability of H.
Let us estimate the running time of constructing G and running algorithm
A on G. The graph G has k2 vertices and the time required to construct G
is polynomial in k: for each Xi, we need to enumerate at most k proper 3-
colorings of G[Xi]. Therefore, the total running time is 2o(k log k) ·kO(1) = 2o(n)

(using that k log k = O(n)). It follows that we have a 2o(n) time algorithm
for 3-Coloring, contradicting ETH.

In [45], Lokshtanov et al. first define other problems similar in flavor
to k × k Clique: basic problems artificially modified in such a way that
they can be solved by brute force in time 2O(k log k)|I|O(1). It is then shown
that assuming ETH, these problems do not admit a 2o(k log k) time algorithm.
Finally, combining the lower bounds on the variants of basic problems with
suitable reductions one can obtain lower bounds for natural problems. One
example is the bound for the Closest String problem.

Closest String
Input: Strings s1, . . . , st over an alphabet Σ of length L

each, an integer d
Parameter: d
Question: Is there a string s of length L such d(s, si) ≤ d for

every 1 ≤ i ≤ t?

Here d(s, si) is the Hamming distance between the strings s and si, that
is, the number of positions where s and si differ. Gramm et al. [33] showed
that Closest String is fixed-parameter tractable parameterized by d: they
gave an algorithm with running time O(dd · |I|). The algorithm works over
an arbitrary alphabet Σ (i.e., the size of the alphabet is part of the input).
For fixed alphabet size, single-exponential dependence on d can be achieved:
algorithms with running time of the form |Σ|O(d) · |I|O(1) were presented in

16

[46, 56, 16]. It is an obvious question if the running time can be improved
to 2O(d) · |I|O(1), i.e., single-exponential in d, even for arbitrary alphabet
size. However, the following result shows that the running times of the cited
algorithms have the best possible form:

Theorem 4.5 ([45]). Assuming ETH, there is no 2o(d log d)·|I|O(1) or 2o(d log |Σ|)·
|I|O(1) time algorithm for Closest String.

Using similar methods one can also give tight running time lower bounds
for the Distortion problem. Here we are given a graph G and parameter d.
The objective is to determine whether there exists a map f from the vertices
of G to N such that for every pair of vertices u and v in G, if the distance
between u and v in G is δ then δ ≤ |f(u)−f(v)| ≤ dδ. This problem belongs
to a broader range of “metric embedding” problems where one is looking for a
map from a complicated distance metric into a simple metric while preserving
as many properties of the original metric as possible. Fellows et al. [25] give
a O(ddnO(1)) time algorithm for Distortion. The following theorem shows
that under ETH the dependence on d of this algorithm cannot be significantly
improved.

Theorem 4.6 ([45]). Assuming ETH, there is no 2o(d log d) · nO(1) time algo-
rithm for Distortion.

5 W[1]-Hard problems

The complexity assumption ETH can be used not only to obtain running
time lower bounds on problems that are FPT, but also on problems that are
known to be W[1]-hard in parameterized complexity. For an example Inde-
pendent Set and Dominating Set are known to be W[1]-complete and
W[2]-complete, respectively. Under the standard parameterized complexity
assumption that FPT 6= W [1], this immediately rules out the possibility of
having an fpt algorithm for Clique, Independent Set and Dominating
Set. However, knowing that no algorithm of the form f(k)nO(1) exists, that
these results do not rule out the possibility of an algorithm with running
time, say, nO(log log k). As the best known algorithms for these problems take
nO(k) time, there is huge gap between the upper and lower bounds obtained
this way.

Chen et al. [12] were the first to consider the possibility of showing sharper
running time lower bounds for W[1]-hard problems. They show that lower
bounds of the form no(k) can be achieved for several W[2]-hard problems such
as Dominating Set, under the assumption that FPT 6= W [1]. However, for

17

problems that are W[1]-hard rather than W[2]-hard, such as Independent
Set, we need ETH in order to show lower bounds. Later, Chen et al. [14, 13]
strengthened their lower bounds to also rule out f(k)no(k) time algorithms
(rather than just no(k) time algorithms). We outline one such lower bound
result here and then transfer it to other problems using reductions.

Theorem 5.1 ([12, 14]). Assuming ETH, there is no f(k)no(k) time algo-
rithm for Clique or Independent Set.

Proof. We give a proof sketch. We will show that if there is an f(k)no(k) time
algorithm for Clique, then ETH fails. Suppose that Clique can be solved
in time f(k)nk/s(k), where s(k) is a monotone increasing unbounded function.
We use this algorithm to solve 3-Coloring on an n-vertex graph G in time
2o(n). Let f−1(n) be the largest integer i such that f(i) ≤ n. Function f−1(n)
is monotone increasing and unbounded. Let k := f−1(n). Split the vertices
of G into k groups. Let us build a graph H where each vertex corresponds
to a proper 3-coloring of one of the groups. Connect two vertices if they
are not conflicting. That is, if the union of the colorings corresponding to
these vertices corresponds to a valid coloring of the graph induced on the
vertices of these two groups, then connect the two vertices. A k-clique of H
corresponds to a proper 3-coloring of G. A 3-coloring of G can be found in
time f(k)nk/s(k) ≤ n(3n/k)k/s(k) = n3n/s(f

−1(n)) = 2o(n). This completes the
proof.

Since a graph G has a clique of size k if and only the complement of G
has an independent set of size k. Thus, as a simple corollary to the result of
Clique, we get that Independent Set does not have any f(k)no(k) time
algorithm unless ETH fails.

A colored version of clique problem, called Multicolored Clique has
been proven to be very useful in showing hardness results in Parameterized
Complexity. An input to Multicolored Clique consists of a graph G
and a proper coloring of vertices with {1, . . . , k} and the objective is to
check whether there exists a k-sized clique containing a vertex from each
color class. A simple reduction from Independent Set shows the following
theorem.

Theorem 5.2. Assuming ETH, there is no f(k)no(k) time algorithm for
Multicolored Clique.

Proof. We reduce from the Independent Set problem. Given an instance
(G, k) to Independent Set we construct a new graph G′ = (V ′, E ′) as
follows. For each vertex v ∈ V we make k copies of v in V ′ with the i’th copy
being colored with the i’th color. For every pair u,v ∈ V such that uv /∈ E we

18

add edges between all copies of u and all copies of v with different colors. It is
easy to see that G has an independent set of size k if and only if G′ contains
a clique of size k. Furthermore, running a f(k)no(k) time algorithm on G′

would take time f(k)(nk)o(k) = f ′(k)no(k). This concludes the proof.

One should notice that the reduction produces instances to Multicol-
ored Clique with a quite specific structure. In particular, all color classes
have the same size and the number of edges between every pair of color
classes is the same. It is often helpful to exploit this fact when reducing
from Multicolored Clique to a specific problem. We now give an ex-
ample of a slightly more involved reduction that will show a lower bound on
Dominating Set.

Theorem 5.3. Assuming ETH, there is no f(k)no(k) time algorithm for
Dominating Set.

Proof. We reduce from the Multicolored Clique problem. Given an
instance (G, k) to Multicolored Clique we construct a new graph G′.
For every i ≤ k let Vi be the set of vertices in G colored i and for every pair
of distinct integers i, j ≤ k let Ei,j be the set of edges in G[Vi ∪ Vj]. We
start making G′ by taking a copy of Vi for every i ≤ k and making this copy
into a clique. Now, for every i ≤ k we add a set Si of k + 1 vertices and
make them adjacent to all vertices of Vi. Finally, for every pair of distinct
integers i, j ≤ k we consider the edges in Ei,j.For every pair of vertices u ∈ Vi
and v ∈ Vj such that uv /∈ Ei,j we add a vertex xuv and make it adjacent
to all vertices in Vi \ {u} and all vertices in Vj \ {v}. This concludes the
construction. We argue that G contains a k-clique if and only if G′ has a
dominating set of size at most k.

If G contains a k-clique C then C is a dominating set of G′. In the other
direction, suppose G′ has a dominating set S of size at most k. If for some
i, S ∩ Vi = ∅ then Si ⊆ S, contradicting that S has size at most k. Hence
for every i ≤ k, S ∩ Vi 6= ∅ and thus S contains exactly one vertex vi from
Vi for each i, and S contains no other vertices. Finally, we argue that S is
a clique in G. Suppose that vivj /∈ Ei,j. Then there is a vertex x in V (G′)
with neighbourhood Vi \ {u} and Vj \ {v}. This x is not in S and has no
neighbours in S contradicting that S is a dominating set of G′.

The above reduction together with Theorem 5.2 imply the result.

The proof in Theorem 5.3 could be viewed as a fpt reduction from In-
dependent Set to Dominating Set. The first fpt reduction from Inde-
pendent Set to Dominating Set is due to Fellows and it first appeared
in [23]. The reduction presented here is somewhat simpler than the original
proof and is due to Lokshtanov [43].

19

W[1]-hardness proofs are typically done by a parameterized reductions
from Clique. It is easy to observe that a parameterized reduction itself
gives strong lower bounds under ETH for the target problem, with the exact
form of the lower bound depending on the way the reduction changes the
parameter. In the case of the reduction to Dominating Set above, the
parameter changes only linearly (actually, does not change at all) and there-
fore we obtain the same lower bound f(k)no(k) for this problem as well. If
the reduction increases the parameter more than linearly, then we get only
weaker lower bounds. For an example, Marx [47] showed the following.

Proposition 5.4 ([47]). Given a graph G and a positive integer k, it is
possible to construct a unit disk graph G′ in polynomial time such that G has
a clique of size k if and only if G′ has a dominating set of size O(k2).

Observe that Proposition 5.4 gives a W[1]-hardness proof for Dominat-
ing Set on unit disk graphs, starting from Clique. The reduction squares
the parameter k and this together with Theorem 5.1 gives the following the-
orem.

Theorem 5.5 ([47]). Assuming ETH, there is no f(k)no(
√
k) time algorithm

for Dominating Set on unit disk graphs.

As Dominating Set on unit disk graphs can be solved in time nO(
√
k)

[1], Theorem 5.5 is tight.
Closest Substring (a generalization of Closest String) is an ex-

treme example where reductions increase the parameter exponentially or even
double exponentially, and therefore we obtain very weak lower bounds. This
problem is defined as follows:

Closest Substring
Input: Strings s1, . . . , st over an alphabet Σ, integers L and

d
Parameter: d, t
Question: Is there a string s of length L such that si has a

substring s′i of length L with d(s, si) ≤ d? for every
1 ≤ i ≤ t?

Let us restrict our attention to the case where the alphabet is of constant
size, say binary. Marx [48] gave a reduction from Clique to Closest Sub-
string where d = 2O(k) and t = 22O(k) in the constructed instance (k is the
size of the clique we are looking for in the original instance). Therefore, we
get weak lower bounds with only o(log d) and o(log log k) in the exponent.
Interestingly, these lower bounds are actually tight, as there are algorithms
matching these bounds.

20

Theorem 5.6 ([48]). Closest Substring over an alphabet of constant
size can be solved in time f(d)nO(log d) or in f(d, k)nO(log log k). Furthermore,
assuming ETH, there are no algorithms for the problem with running time
f(k, d)no(log d) of f(k, d)no(log log k).

As we have seen, it is very important to control the increase of the pa-
rameter in the reductions if our aim is to obtain strong lower bounds. Many
of the more involved reductions from Clique use edge selection gadgets (see
e.g., [26, 28, 47]). As a clique of size k has Θ(k2) edges, this means that
the reduction typically increases the parameter to Θ(k2) at least and we can
conclude that there is no f(k)no(

√
k) time algorithm for the target problem

(unless ETH fails). If we want to obtain stronger bounds on the exponent,
then we have to avoid the quadratic blow up of the parameter and do the
reduction from a different problem. Many of the reductions from Clique
can be turned into a reduction from Subgraph Isomorphism (Given two
graphs G = (V,E) and H, decide if G is a subgraph of H). In a reduction
from Subgraph Isomorphism, we need |E| edge selection gadgets, which
usually implies that the new parameter is Θ(|E|), leading to an improved
lower bounds compared to those coming from the reduction from Clique.
Thus the following lower bound on Subgraph Isomorphism, parameter-
ized by the number of edges in G, could be a new source of lower bounds for
various problems.

Theorem 5.7 ([49]). If Subgraph Isomorphism can be solved in time
f(k)no(k/ log k), where f is an arbitrary function and k = |E| is the number of
edges of the smaller graph G, then ETH fails.

We remark that it is an interesting open question if the factor log k in the
exponent can be removed, making this result tight.

While the results in Theorems 5.1, 5.3 are asymptotically tight, they do
not tell us the exact form of the exponent, that is, we do not know what
the smallest c is such that the problems can be solved in time nck. However,
assuming SETH, stronger bounds of this form can be obtained. Specifically,
Pǎtraşcu and Williams [51] obtained the following bound for Dominating
Set under SETH.

Theorem 5.8 ([51]). Assuming SETH, there is no O(nk−ε) time algorithm
for Dominating Set for any ε > 0.

Theorem 5.8 is almost tight as it is known that for k ≥ 7, Dominat-
ing Set can be solved in time nk+o(1) [51]. Interestingly, Pǎtraşcu and
Williams [51] do not believe SETH holds and state Theorem 5.8 as a route
to obtain faster satisfiability algorithms through better algorithms for Dom-
inating Set.

21

6 Parameterization by Treewidth
The notion of treewidth has emerged as a popular structural graph parameter,
defined independently in a number of contexts. It is convenient to think of
treewidth as a measure of the “tree-likeness” of a graph, so that the smaller
the treewidth of a graph, the more tree-like properties it has. Just as a
number of NP-complete problems are polynomial time solvable on trees, a
number of problems can be solved efficiently on graphs of small treewidth.
Often, the strategies that work for trees can be generalized smoothly to
work over tree decompositions instead. Very few natural problems are W[1]-
hard under this parameter, and the literature is rich with algorithms and
algorithmic techniques that exploit the small treewidth of input instances
(see e.g., [7, 6, 40]). Formally, treewidth is defined as follows:

Definition 6.1. A tree decomposition of a graph G = (V,E) is a pair (T =
(VT , ET),X = {Xt : Xt ⊆ V }t∈TT) such that

1. ∪t∈V (T)Xt = V ,

2. for every edge (x, y) ∈ E there is a t ∈ VT such that {x, y} ⊆ Xt, and

3. for every vertex v ∈ V the subgraph of T induced by the set {t | v ∈ Xt}
is connected.

The width of a tree decomposition is
(
maxt∈V (T) |Xt|

)
−1 and the treewidth

of G, denoted by tw(G), is the minimum width over all tree decompositions
of G.

It is well known that several graph problems parameterized by the treewidth
of the input graph are FPT. See Table 1 for the time complexity of some
known algorithms for problems parameterized by the treewidth of the input
graph. Most of the algorithms on graphs of bounded treewidth are based on
simple dynamic programming on the tree decomposition, although for some
problems a recently discovered technique called fast subset convolution [54, 4]
needs to be used to obtain the running time shown in Table 1.

An obvious question is how fast these algorithms can be. We can easily
rule out the existence of 2o(t) algorithm for many of these problems assuming
ETH. Recall that, Theorem 3.3 shows that assuming ETH, the Indepen-
dent Set problem parameterized by the number of vertices in the input
graph does not admit a 2o(n) algorithm. Since the treewidth of a graph is
clearly at most the number of vertices, it is in fact a “stronger” parameter,
and thus the lower bound carries over. Thus, we trivially have that Indepen-
dent Set does not admit a subexponential algorithm when parameterized
by treewidth. Along the similar lines we can show the following theorem.

22

Problem Name f(t) in the best known algorithms
Vertex Cover 2t

Dominating Set 3t

Odd Cycle Transversal 3t

Partition Into Triangles 2t

Max Cut 2t

Chromatic Number 2O(t log t)

Disjoint Paths 2O(t log t)

Cycle Packing 2O(t log t)

Table 1: The table gives the f(t) bound in the running time of various
problems parameterized by the treewidth of the input graph.

Theorem 6.2. Assuming ETH, Independent Set, Dominating Set and
Odd Cycle Transversal parameterized by the treewidth of the input
graph do not admit an algorithm with running time 2o(t)nO(1). Here, n is
the number of vertices in the input graph to these problems.

For the problems Chromatic Number, Cycle Packing, and Dis-
joint Paths, the natural dynamic programming approach gives 2O(t log t)nO(1)

time algorithms. As these problems can be solved in time 2O(n) on n-vertex
graphs, the easy arguments of Theorem 6.2 cannot be used to show the
optimality of the 2O(t log t)nO(1) time algorithms. However, as reviewed in
Section 4, Lokshtanov et al. [45] developed a machinery for obtaining lower
bounds of the form 2o(k log k)nO(1) for parameterized problems and we can
apply this machinery in the case of parameterization by treewidth as well.

Theorem 6.3 ([45, 19]). Assuming ETH, Chromatic Number, Cycle
Packing, Disjoint Paths parameterized by the treewidth of the input graph
do not admit an algorithm with running time 2o(t log t)nO(1). Here, n is the
number of vertices in the input graph to these problems.

The lower bounds obtained by Theorem 6.2 are quite weak: they tell
us that f(t) cannot be improved to 2o(t), but they do not tell us whether
the numbers 2 and 3 appearing as the base of exponentials in Table 1 can
be improved. Just as we saw for Exact Algorithms, ETH seems to be too
weak an assumption to show a lower bound that concerns the base of the
exponent. Assuming the SETH, however, much tighter bounds can be shown.
In [44] it is established that any non-trivial improvement over the best known
algorithms for a variety of basic problems on graphs of bounded treewidth
would yield a faster algorithm for SAT.

23

Theorem 6.4 ([44]). If there exists an ε > 0 such that

• Independent Set can be solved in (2− ε)tw(G)nO(1) time, or
• Dominating Set can be solved in (3− ε)tw(G)nO(1) time, or
• Max Cut can be solved in (2− ε)tw(G)nO(1) time, or
• Odd Cycle Transversal can be solved in (3− ε)tw(G)nO(1) time, or
• there is a q ≥ 3 such that q-Coloring can be solved in (q−ε)tw(G)nO(1))

time, or
• Partition Into Triangles can be solved in (2− ε)tw(G)nO(1) time,

then SETH fails.

Thus, assuming SETH, the known algorithms for the mentioned prob-
lems on graphs of bounded treewidth are essentially the best possible. To
show these results, polynomial time many-one reductions are devised, and
these transform n-variable boolean formulas φ to instances of the problems
in question, while carefully controlling the treewidth of the graphs that the
reductions output. A typical reduction creates n gadgets corresponding to
the n variables; each gadget has a small constant number of vertices. In
most cases, this implies that the treewidth can be bounded by O(n). How-
ever, to prove a lower bound of the form O((2− ε)tw(G)nO(1)), we need that
the treewidth of the constructed graph is (1 + o(1))n. Thus we can afford
to increase the treewidth by at most one per variable. For lower bounds
above O((2− ε)tw(G)nO(1)), we need even more economical constructions. To
understand the difficulty, consider the Dominating Set problem, here we
want to say that if Dominating Set admits an algorithm with running time
O((3−ε)tw(G)nO(1)) = O(2log(3−ε)tw(G)nO(1)) for some ε > 0, then we can solve
SAT on input formulas with n-variables in time O((2− δ)n) for some δ > 0.
Therefore by naïvely equating the exponents in the previous sentence we get
that we need to construct an instance for Dominating Set whose treewidth
is essentially n

log 3
. In other words, each variable should increase treewidth by

less than one. The main challenge in these reductions is to squeeze out as
many combinatorial possibilities per increase of treewidth as possible.

While most natural graph problems are fixed parameter tractable when
parameterized by the treewidth of the input graph, there are a few problems
for which the best algorithms are stuck at O(nO(t)) time, where t is the
treewidth of the input graph. Under ETH one can show that the algorithms
for several of these problems cannot be improved to f(t)no(t). Just as for
the problems that are FPT parameterized by treewidth, the lower bounds
are obtained by reductions that carefully control the treewidth of the graphs
they output. We give one such reduction as an illustration.

24

List Coloring
Instance: A graph G = (V,E) of treewidth at most t,

and for each vertex v ∈ V , a list L(v) of permitted colors.
Parameter : t.

Problem: Is there a proper vertex coloring c with c(v) ∈ L(v)
for each v?

We show that the List Coloring problem on graphs of treewidth t
cannot have an algorithm with running time f(t)no(t). This means that
tre treewidth parameterization of List Coloring is much harder than the
closely related Chromatic Number, which has a 2O(t log t)n time algorithm.

Theorem 6.5 ([26]). Assuming ETH, List Coloring on graphs of treewidth
t cannot be solved in time f(t)no(t).

Proof. We give a reduction from Multicolored Clique to List Color-
ing where the treewidth of the graph produced by the reduction is bounded
by k, the size of the clique in the Multicolored Clique instance. This
together with Theorem 5.2 implies the result.

Given an instance G of the Multicolored Clique problem, we con-
struct an instance G′ of List Coloring that admits a proper choice of color
from each list if and only if the source instance G contains a k-clique. The
colors on the lists of vertices in G′ have a one to one correspondence with
the vertices of G. For simplicity of arguments we do not distinguish between
a vertex v of G and the color v which appears in the list assigned to some of
the vertices of G′.

Recall that every vertex v in G is given a color from 1 to k as a part of the
input for the Multicolored Clique instance. Let Vi be the set of vertices
in G with color i. The vertices of G′ on the other hand do not get colors
assigned a priori - however a solution to the constructed List Coloring
instance is a coloring of the vertices of G′. The instance G′ is constructed as
follows.

1. There are k vertices v[i] in G′, i = 1, . . . , k, one for each color class of
G, and the list assigned to v[i] consists of the colors corresponding to
the vertices in G of color i. That is, Lv[i] = {Vi}.

2. For i 6= j, there is a degree two vertex in G′ adjacent to v[i] and v[j]
for each pair x, y of nonadjacent vertices in G, where x has color i and
y has color j. This vertex is labeled vi,j[x, y] and has {x, y} as its list.

This completes the construction.

25

The treewidth of G′ is bounded by k since (a) removing the k vertices
v[i], 1 ≤ i ≤ k, from G′ yields an edgeless graph, (b) edgeless graphs have
treewidth 0 and (c) removing a single vertex from a graph decreases treewidth
by at most one. If G has a multicolored clique K then we can easily list color
G′. Let K = {c1, c2, . . . ck} where ci ∈ Vi. Color v[i] with ci, namely the
vertex in K from Vi. It is easy to see that every degree 2 vertex in G′ has at
least one color free in its list, as the pair of colors in the list correspond to
non-adjacent vertices in G. For the other direction, suppose that G′ can be
properly colored such that each vertex is assigned a color from its list. Let
K = {c1, . . . , ck} be the set of vertices in G that correspond to the colors
assigned to the v[i]’s in this coloring of G′, such that v[i] is colored with ci.
We prove that K is a clique, and to do this it is sufficient to show that ci
and cj are adjacent for every i 6= j. However ci and cj can’t be non-adjacent
because then there would be a degree 2 vertex adjacent to v[i] and v[j] which
only can be colored with ci or cj, but can’t be colored with either. This
completes the proof of the theorem.

The reason why List Coloring is hard is that when doing dynamic
programming over the tree decomposition, then (as Theorem 6.5 suggests)
the number of possible colorings that we have to keep track of is nΩ(t). More
generally, we encounter a similar difficulty when solving constraint satis-
faction problems over a large domain. Constraint satisfaction is a general
framework that includes many standard algorithmic problems such as sat-
isfiability, graph coloring, database queries, etc. A constraint satisfaction
problem (CSP) consists of a set V of variables, a domain D, and a set C of
constraints, where each constraint is a relation on a subset of the variables.
The task is to assign a value from D to each variable in such a way that ev-
ery constraint is satisfied. For example, 3-SAT can be interpreted as a CSP
instance where the domain is {0, 1} and the constraints in C correspond to
the clauses (thus the arity of each constraint is 3). Another example is vertex
coloring or list coloring, which can be interpreted as a CSP instance where
the variables correspond to the vertices, the domain corresponds to the set
of colors, and there is a binary disequality constraint corresponding to each
edge. The primal graph (or Gaifman graph) of a CSP instance is defined to
be a graph on the variables of the instance such that there is an edge between
two variables if and only if they appear together in some constraint. If the
treewidth of the primal graph is t, then CSP can be solved in time nO(t).
Since List Coloring can be interpreted as a CSP problem, Theorem 6.5
immediately implies that we cannot improve the exponent to o(t).

Theorem 6.6. Assuming ETH, CSP cannot be solved in time f(t)no(t),
where t is the treewidth of the primal graph.

26

This result seems to suggest that there is no faster way of solving CSP
than using the algorithm based on tree decompositions. However, this result
does not rule out the possibility that there is a class of graphs (say, planar
graphs, bounded degree graphs, expanders, etc.) such that an no(t) algorithm
is possible if the primal graphs is in this class. We would like to have a lower
bound that says something about each particular class of graphs. To make
this formal, for a class G of graphs, let CSP(G) be the class of all CSP
instances where the primal graph of the instance is in G. In [49], Marx
showed a lower bound on CSP(G) for every fixed class G.

Theorem 6.7 ([49]). If there is a recursively enumerable class G of graphs
with unbounded treewidth and a function f such that binary CSP(G) can
be solved in time f(G)|I|o(tw(G)/ log tw(G)) for instances I with primal graph
G ∈ G, then ETH fails.

Binary CSP(G) is the special case of CSP(G) where every constraint is
binary, that is, it involves two variables. Note that adding this restriction
makes the statement of Theorem 6.7 stronger.

Other structural parameters. If we restrict ourselves to paths rather
than trees in the definition of tree decompositions, then this corresponds to
path decomposition and the minimum width over all path decompositions of
G is called pathwidth of G, denoted by pw(G). Clearly, pw(G) ≥ tw(G) and
actually pathwidth can be unbounded even for trees. Therefore, it is some-
what surprising that the reductions in the proof of Theorem 6.4 constrain
not only the treewidth of the constructed graphs but also the pathwidth. It
follows that all the lower bounds mentioned in Theorem 6.4 also hold for
problems on graphs of bounded pathwidth.

There are also other kinds of graph decomposition and corresponding
width measures, like cliquewidth and rankwidth, that can be much smaller
than treewidth. Several algorithms for NP-hard problems parameterized by
these width measures have been obtained [17]. For various basic problems like
Max Cut and Edge Dominating Set that are W[1]-hard parameterized
by cliquewidth, lower bounds of form nO(w), where w is the cliquewidth of
the input graph, was obtained in [28]. Broersma et al. [8] gave lower bounds
for some problems that are FPT parameterized by cliquewidth.

7 Conclusion
In this article we surveyed algorithmic lower bound results that have been
obtained in the field of exact exponential time algorithms and parameterized

27

complexity using ETH and SETH. For a wide range of problems, these lower
bounds give useful information about what kind of algorithms are possible,
in many cases even showing the optimality of the current best algorithms.
However, all these results have to be taken with caution: there is no universal
consensus about accepting ETH and especially SETH (compared to say, ac-
cepting P 6= NP or FPT 6= W[1]). However, if one is reluctant to accept these
hypotheses, the lower bounds following from them still carry a very useful
message. These lower bounds say that going beyond these barriers implies
an improved algorithm not only for this specific problem at hand but also for
satisfiability. Therefore, the tight lower bounds discussed in this paper can
be interpreted as saying that instead of trying to improve the current best
algorithm, one’s effort is better spent at trying to improve satisfiability algo-
rithms directly. In particular, we cannot expect that some problem-specific
idea related to the concrete problem can help, as we eventually need ideas
that improve satisfiability.

We did not touch all the lower bound results obtained under the assump-
tion of ETH and SETH. For an example, assuming ETH, it is possible to
prove lower bound on the form of running time of (efficient) polynomial time
approximation schemes ((E)PTAS) for several problems. We refer to [47]
for further details. We conclude the survey with several intriguing questions
which remain open.

1. Could we relate ETH and SETH to some other known complexity the-
ory assumptions?

2. Could we use SETH to obtain lower bound on the base of the exponent
of problems parameterized by the solution size?

3. Could we use ETH to show that running time of the form 2O(k2) · nO(1)

is best possible for some natural parameterized problem?

4. Could we use SETH to obtain a lower bound of form cn for some fixed
constant c for problems like Dominating Set and Independent Set
when parameterized by the number of vertices of the input graph?

5. Could we use SETH to show that the Chormatic Number of a graph
on n vertices cannot be solved in time (2− ε)n for any fixed ε > 0?

Acknowledgements.

We thank Fedor V. Fomin, Martin Grohe and Ryan Williams for some in-
valuable suggestions.

28

References
[1] J. Alber and J. Fiala, Geometric separation and exact solutions for the pa-

rameterized independent set problem on disk graphs, J. Algorithms, 52 (2004),
pp. 134–151.

[2] N. Alon, D. Lokshtanov, and S. Saurabh, Fast fast, in ICALP (1), 2009,
pp. 49–58.

[3] R. Bellman, Dynamic programming treatment of the travelling salesman
problem, J. ACM, 9 (1962), pp. 61–63.

[4] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets
möbius: fast subset convolution, in STOC, 2007, pp. 67–74.

[5] A. Björklund, T. Husfeldt, and M. Koivisto, Set partitioning via
inclusion-exclusion, SIAM J. Comput., 39 (2009), pp. 546–563.

[6] H. L. Bodlaender, A tourist guide through treewidth, Acta Cybernet., 11
(1993), pp. 1–21.

[7] H. L. Bodlaender and A. M. C. A. Koster, Combinatorial optimization
on graphs of bounded treewidth, Comput. J., 51 (2008), pp. 255–269.

[8] H. Broersma, P. A. Golovach, and V. Patel, Tight complexity bounds
for fpt subgraph problems parameterized by clique-width. Accepted to IPEC
2011.

[9] L. Cai and D. W. Juedes, On the existence of subexponential parameterized
algorithms, J. Comput. Syst. Sci., 67 (2003), pp. 789–807.

[10] C. Calabro, R. Impagliazzo, and R. Paturi, A duality between clause
width and clause density for sat, in IEEE Conference on Computational Com-
plexity, 2006, pp. 252–260.

[11] , The complexity of satisfiability of small depth circuits, in IWPEC, 2009,
pp. 75–85.

[12] J. Chen, B. Chor, M. Fellows, X. Huang, D. W. Juedes, I. A. Kanj,
and G. Xia, Tight lower bounds for certain parameterized np-hard problems,
Inf. Comput., 201 (2005), pp. 216–231.

[13] J. Chen, X. Huang, I. A. Kanj, and G. Xia, On the computational hard-
ness based on linear fpt-reductions, J. Comb. Optim., 11 (2006), pp. 231–247.

[14] , Strong computational lower bounds via parameterized complexity, J.
Comput. Syst. Sci., 72 (2006), pp. 1346–1367.

[15] J. Chen, I. A. Kanj, and G. Xia, Improved parameterized upper bounds
for vertex cover, in MFCS, 2006, pp. 238–249.

[16] Z.-Z. Chen, B. Ma, and L. Wang, A three-string approach to the closest
string problem. Accepted to COCOON 2010.

29

[17] B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable
optimization problems on graphs of bounded clique-width, Theory Comput.
Syst., 33 (2000), pp. 125–150.

[18] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof,
Y. Okamoto, R. Paturi, S. Saurabh, and M. Wahlström, On problems
as hard as cnfsat. July 2011.

[19] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van
Rooij, and J. O. Wojtaszczyk, Solving connectivity problems parameter-
ized by treewidth in single exponential time, To appear in FOCS, abs/1103.0534
(2011).

[20] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos,
Subexponential parameterized algorithms on graphs of bounded-genus and H-
minor-free graphs, Journal of the ACM, 52 (2005), pp. 866–893.

[21] E. D. Demaine and M. Hajiaghayi, Fast algorithms for hard graph prob-
lems: Bidimensionality, minors, and local treewidth, in Proceedings of the 12th
International Symposium on Graph Drawing (GD 2004), vol. 3383 of Lecture
Notes in Computer Science, Harlem, New York, September 29–October 2 2004,
pp. 517–533.

[22] , Bidimensionality: new connections between fpt algorithms and ptass, in
SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, Philadelphia, PA, USA, 2005, Society for Industrial and
Applied Mathematics, pp. 590–601.

[23] R. G. Downey and M. R. Fellows, Fixed-parameter tractability and com-
pleteness I: Basic results, SIAM J. Comput., 24 (1995), pp. 873–921.

[24] R. G. Downey and M. R. Fellows, Parameterized Complexity, Mono-
graphs in Computer Science, Springer, New York, 1999.

[25] M. R. Fellows, F. V. Fomin, D. Lokshtanov, E. Losievskaja, F. A.
Rosamond, and S. Saurabh, Distortion is fixed parameter tractable, in
ICALP (1), 2009, pp. 463–474.

[26] M. R. Fellows, F. V. Fomin, D. Lokshtanov, F. A. Rosamond,
S. Saurabh, S. Szeider, and C. Thomassen, On the complexity of
some colorful problems parameterized by treewidth, Inf. Comput., 209 (2011),
pp. 143–153.

[27] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, Berlin,
2006.

[28] F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh, Algo-
rithmic lower bounds for problems parameterized with clique-width, in SODA
’10: Proceedings of the twenty first annual ACM-SIAM symposium on Dis-
crete algorithms, 2010, pp. 493–502.

30

[29] F. V. Fomin, F. Grandoni, and D. Kratsch, A measure & conquer ap-
proach for the analysis of exact algorithms, J. ACM, 56 (2009).

[30] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms, Springer,
2010.

[31] M. Frick and M. Grohe, The complexity of first-order and monadic second-
order logic revisited, Ann. Pure Appl. Logic, 130 (2004), pp. 3–31.

[32] M. R. Garey, D. S. Johnson, and R. E. Tarjan, The planar hamiltonian
circuit problem is np-complete, SIAM J. Comput., 5 (1976), pp. 704–714.

[33] J. Gramm, R. Niedermeier, and P. Rossmanith, Fixed-parameter algo-
rithms for closest string and related problems, Algorithmica, 37 (2003), pp. 25–
42.

[34] M. Held and R. M. Karp, A dynamic programming approach to sequencing
problems, 10 (1962), pp. 196–210.

[35] T. Hertli, 3-sat faster and simpler - unique-sat bounds for ppsz hold in gen-
eral, To appear in FOCS, abs/1103.2165 (2011).

[36] E. A. Hirsch, New worst-case upper bounds for sat, J. Autom. Reasoning,
24 (2000), pp. 397–420.

[37] R. Impagliazzo and R. Paturi, On the complexity of k-sat, J. Comput.
Syst. Sci., 62 (2001), pp. 367–375.

[38] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly
exponential complexity?, Journal of Computer and System Sciences, 63 (2001),
pp. 512–530.

[39] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly
exponential complexity?, J. Comput. System Sci., 63 (2001), pp. 512–530.

[40] T. Kloks, Treewidth, Computations and Approximations, vol. 842 of Lecture
Notes in Computer Science, Springer, 1994.

[41] J. Kneis, A. Langer, and P. Rossmanith, A fine-grained analysis of a
simple independent set algorithm, in FSTTCS, vol. 4 of LIPIcs, 2009, pp. 287–
298.

[42] E. L. Lawler, A note on the complexity of the chromatic number problem,
Inf. Process. Lett., 5 (1976), pp. 66–67.

[43] D. Lokshtanov, New Methods in Parameterized Algorithms and Complex-
ity., PhD thesis, University of Bergen, 2009.

[44] D. Lokshtanov, D. Marx, and S. Saurabh, Known algorithms on graphs
on bounded treewidth are probably optimal, in SODA ’11: Proceedings of the
twenty second annual ACM-SIAM symposium on Discrete algorithms, 2011,
pp. 777–789.

31

[45] , Slightly superexponential parameterized problems, in SODA ’11: Pro-
ceedings of the twenty second annual ACM-SIAM symposium on Discrete
algorithms, 2011, pp. 760–776.

[46] B. Ma and X. Sun, More efficient algorithms for closest string and substring
problems, SIAM J. Comput., 39 (2009), pp. 1432–1443.

[47] D. Marx, On the optimality of planar and geometric approximation schemes,
in FOCS, IEEE Computer Society, 2007, pp. 338–348.

[48] D. Marx, Closest substring problems with small distances, SIAM Journal on
Computing, 38 (2008), pp. 1382–1410.

[49] D. Marx, Can you beat treewidth?, Theory of Computing, 6 (2010), pp. 85–
112.

[50] R. Niedermeier, Invitation to fixed-parameter algorithms, vol. 31 of Oxford
Lecture Series in Mathematics and its Applications, Oxford University Press,
Oxford, 2006.

[51] M. Patrascu and R. Williams, On the possibility of faster sat algorithms,
in SODA ’10: Proceedings of the twenty first annual ACM-SIAM symposium
on Discrete algorithms, 2010, pp. 1065–1075.

[52] J. M. Robson, Algorithms for maximum independent sets, J. Algorithms, 7
(1986), pp. 425–440.

[53] M. Sipser, Introduction to the theory of computation, PWS Publishing Com-
pany, 1997.

[54] J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith, Dynamic
programming on tree decompositions using generalised fast subset convolution,
in ESA, 2009, pp. 566–577.

[55] J. M. M. van Rooij, J. Nederlof, and T. C. van Dijk, Inclu-
sion/exclusion meets measure and conquer, in ESA, vol. 5757 of Lecture Notes
in Computer Science, 2009, pp. 554–565.

[56] L. Wang and B. Zhu, Efficient algorithms for the closest string and distin-
guishing string selection problems, in FAW, 2009, pp. 261–270.

[57] M. Xiao, Algorithms for multiterminal cuts, in CSR, 2008, pp. 314–325.

32

	Introduction
	Complexity Theory Assumptions
	Lower Bounds for Exact Algorithms
	Lower Bounds for FPT Algorithms
	W[1]-Hard problems
	Parameterization by Treewidth
	Conclusion

