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Abstract. Data reduction techniques are widely applied to deal with
computationally hard problems in real world applications. It has been
a long-standing challenge to formally express the efficiency and accu-
racy of these “pre-processing” procedures. The framework of parameter-
ized complexity turns out to be particularly suitable for a mathematical
analysis of pre-processing heuristics. A kernelization algorithm is a pre-
processing algorithm which simplifies the instances given as input in
polynomial time, and the extent of simplification desired is quantified
with the help of the additional parameter.
We give an overview of some of the early work in the area and also
survey newer techniques that have emerged in the design and analysis of
kernelization algorithms. We also outline the framework of Bodlaender et
al. [9] and Fortnow and Santhanam [38] for showing kernelization lower
bounds under reasonable assumptions from classical complexity theory,
and highlight some of the recent results that strengthen and generalize
this framework.

1 Introduction

Preprocessing (data reduction or kernelization) as a strategy of coping with hard
problems is universally used in almost every implementation. The history of pre-
processing, such as applying reduction rules to simplify truth functions, can be
traced back to the 1950’s [58]. A natural question in this regard is how to mea-
sure the quality of preprocessing rules proposed for a specific problem. For a long
time the mathematical analysis of polynomial time preprocessing algorithms was
neglected. A possible explanation for this phenomenon is that if we start with
an instance I of an NP-hard problem and can show that in polynomial time we
can replace this with an equivalent instance I ′ with |I ′| < |I| then that would
imply P=NP. This makes it difficult to design the right definitions of efficient
processing within classical complexity. The situation changed drastically with
advent of parameterized complexity [26]. Combining tools from parameterized
complexity and classical complexity it has become possible to derive upper and
lower bounds on the sizes of reduced instances, or so called kernels. The impor-
tance of preprocessing and the mathematical challenges it poses is beautifully
expressed in the following quote by Fellows [30]:



It has become clear, however, that far from being trivial and uninter-
esting, that pre-processing has unexpected practical power for real world
input distributions, and is mathematically a much deeper subject than
has generally been understood.

Historically, the study of kernelization is rooted in parameterized complexity
but it appeared soon that the challenges of kernelization tractability are deeply
linked to classical polynomial time tractability. In the classical computational
complexity originated from 1970s, we distinguish between tractable computa-
tional problems and intractable. This theory classifies problems according to
how much time or space is required by algorithms to solve these problems, as
a function of the size of the input. Tre tractability border is drawn at poly-
nomial time solvability - a problem which has a polynomial time algorithm is
considered tractable, while one that does not is considered intractable. However,
ignoring the structural information about the input and defining intractability
based only on input size can make some problems appear harder than they re-
ally are. Parameterized complexity attempts to address this issue by measuring
computational resources such as time and space in terms of input size and addi-
tional parameters. In parameterized complexity the central notion of efficiency
is “fixed parameter tractability”. The notion may be thought of as a generaliza-
tion of polynomial time to a multivariate setting. The running time of a fixed
parameter tractable algorithm is polynomial in the size of the input but can be
exponential in terms of parameters. A surprisingly large number of intractable
problems have been shown to exhibit fixed parameter tractable algorithms. A
kernelization algorithm is a polynomial time algorithm reducing instances of pa-
rameterized problems to equivalent instances whose size can be upper bounded
by a function of the parameter. Thus kernelization can be seen as a refinement
of the notion of the classical polynomial time tractability from a parameter-
ized perspective. The development of kernelization algorithms demonstrate the
importance of the second (and maybe even other) measures and indicate that
polynomial time computation is much more powerful than previously suggested.

Informally, in parameterized complexity each problem instance comes with
a parameter k. As a warm-up, let us consider a few examples of parameterized
problems. Our first example is about vertex cover. A set of vertices S in a graph
is a vertex cover if every edge of the graph contains at least one vertex from
S. In the parameterized vertex cover problem, we call it p-Vertex Cover the
parameter is an integer k and we ask whether the input graph has a vertex
cover of size at most k. We will use p− to emphasise that we are considering a
parameterized problem, rather than its classical counterpart. Another problem,
p-Longest Path asks whether a given graph contains a path of length at least
k. And finally, p-Dominating Set is to decide whether a given graph has a
dominating set of size k, that is, a set of vertices such that every vertex of the
input graph is either in this set or is adjacent to some vertex from the set.

The parameterized problem is said to admit a kernel if there is a polyno-
mial time algorithm (the degree of polynomial is independent of k), called a
kernelization algorithm, that reduces the input instance down to an instance

2



with size bounded by some function h(k) of k only, while preserving the answer.
If the function h(k) is polynomial in k, then we say that the problem admits a
polynomial kernel.

In our examples, p-Vertex Cover admits a polynomial kernel—there is a
polynomial time algorithm that for any instance (G, k) of the problem outputs
a new instance (G′, k′) such that G′ has at most 2k vertices and G has a vertex
cover at most k if and only if G′ has a vertex cover of size at most k′ [17]. The
second example, p-Longest Path, admits a kernel but the bounding function
h(k) is exponential. It is possible to show that up to some assumptions from
complexity theory, the problem does not admit a polynomial kernel [9], even if
the input graph G is required to be planar. Our last example, p-Dominating
Set admits no kernel unless FPT=W[2] yielding a collapse of several levels
in the parameterized complexity hierarchy [26]. However, on planar graph p-
Dominating Set admits a kernel of size h(k) = O(k), i.e. a linear kernel.

In this survey we discuss some of the classical and recent algorithmic tech-
niques for obtaining kernels, and discuss some of the recent developments in
deriving lower bounds on the sizes of the kernels. We do not try to give a com-
prehensive overview of all significant results in the area—doing this will require
at least a book. Our objective is simply to give a glimpse into the exciting world
of kernelization [27, 52, 6, 36, 12, 38, 9, 13, 22, 50, 11, 20]. We refer to the surveys
of Fellows [30] and Guo and Niedermeier [30, 41] for further reading on kernel-
ization algorithms. For a more detailed survey of kernelization lower bounds we
refer to survey of Misra et al. [55].

2 Basic Definitions

A parameterized problem is a language L ⊆ Σ∗×N, where Σ is a finite alphabet
and N is the set of non-negative integers. The second component is called the
parameter of the problem. The central notion in parameterized complexity is
that of fixed-parameter tractability, which means given an instance (x, k) of a
parameterized language L, deciding whether (x, k) ∈ L in time f(k) · p(|x|),
where f is an arbitrary function of k alone and p is a polynomial function.
Such an algorithm is called a fixed-parameter tractable algorithm and we call a
problem that admits an algorithm of this kind fixed-parameter tractable (FPT).

We now turn to the formal notion that captures the notion of simplification,
which is what most heuristics do when applied to a problem. A data reduction
rule for a parameterized language L is a function φ : Σ∗ × N → Σ∗ × N that
maps an instance (x, k) of L to an equivalent instance (x′, k′) of L such that

1. φ is computable in time polynomial in |x| and k;
2. |x′| ≤ |x|.

Two instances of L are equivalent if (x, k) ∈ L if and only if (x′, k′) ∈ L.
In general, a kernelization algorithm consists of a finite set of data reduction

rules such that by applying the rules to an instance (x, k) (in some specified
order) one obtains an instance (x′, k′) with the property that |x′| ≤ g(k) and k′ ≤
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g(k), for some function g only depending on k. Such a “reduced” instance is called
a problem kernel and g(k) is called the kernel size. Formally, this is defined as
follows.

Definition 1. [Kernelization, Kernel] [9] A kernelization algorithm for a pa-
rameterized problem Π ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N,
outputs, in time polynomial in (|x|+ k), a pair (x′, k′) ∈ Σ∗ × N such that: (a)
(x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some
computable function. The output instance x′ is called the kernel, and the func-
tion g is referred to as the size of the kernel. If g(k) = kO(1), then we say that
Π admits a polynomial kernel.

It is important to mention here that the early definitions of kernelization
required that k′ ≤ k. On an intuitive level this makes sense, as the parameter k
measures the complexity of the problem — thus the larger the k, the harder the
problem. This requirement was subsequently relaxed, notably in the contest of
lower bounds. An advantage of the more liberal notion of kernelization is that
it is robust with respect to polynomial transformations of the kernel. However,
it limits the connection with practical preprocessing. All the kernels obtained
in this paper respect the fact that the output parameter is at most the input
parameter, that is, k′ ≤ k.

The following lemma tells use that a parameterized problem Π is in FPT if
and only if there exists a computable function g such that Π admits a kernel of
size g(k).

Lemma 1 ([27]). If a parameterized problem Q is FPT via a computable func-
tion then it admits kernelization.

Proof. Suppose that there is an algorithm deciding if x ∈ Q in time f(k)|x|c
time for some computable function f and constant c. If |x| ≥ f(k), then we run
the decision algorithm on the instance in time f(k)|x|c ≤ |x|c+1. If the decision
algorithm outputs YES, the kernelization algorithm outputs a constant size YES
instance, and if the decision algorithm outputs NO, the kernelization algorithm
outputs a constant size NO instance. On the other hand, if |x| < f(k), then
the kernelization algorithm outputs x. This yields a kernel of size f(k) for the
problem. ut

However, kernels obtained by this theoretical result are usually of exponential
(or even worse) size, while problem-specific data reduction rules often achieve
quadratic (g(k) = O(k2)) or even linear-size (g(k) = O(k)) kernels. So a natural
question for any concrete FPT problem is whether it admits polynomial-time
kernelization to a problem kernel that is bounded by a polynomial function of
the parameter (g(k) = O(kO(1))).

Polynomial kernels form our basic notion of efficient kernelization. For a
comprehensive study of fixed-parameter tractability and kernelization, we refer
to the books [26, 34, 56] and the surveys [41, 55].
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Notations. We conclude this section with some graph-theoretic notations. We
follow the style of [24]. Let G = (V,E) be a graph. For a vertex v in G, we
write NG(v) to denote the set of v’s neighbors in G, and we write dG(v) to
denote the degree of v, that is, the number of v’s neighbors in G. If it is clear
from the context which graph is meant, we write N(v) and d(v), respectively,
for short. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. The
subgraph G′ is called an induced subgraph of G if E′ = {{u, v} ∈ E | u, v ∈ V ′},
in this case, G′ is also called the subgraph induced by V ′ and denoted with G[V ′].
A vertex v dominates a vertex u if u ∈ N(v).

3 Classical Techniques explained via Simple Examples

In this section we give several examples of techniques used to obtain kernels,
often polynomial kernels. Some of them are almost trivial and some of them
are more involved. We start with the parameterized version of Max-3-Sat.
Our other examples in this section include a polynomial kernel for p-Feedback
Arc Set in Tournaments (p-FAST), d-Hitting Set using the Sunflower
Lemma, kernels for p-Dual Vertex Coloring and p-Max-SAT using crown
decomposition and an exponential kernel for p-Edge Clique Cover.

3.1 Max-3-Sat

Let F be a given boolean CNF 3-SAT formula with n variables and m clauses.
In the optimization version of the problem the task is to find a truth assignment
satisfying the maximum number of clauses. The parameterized version of the
problem is the following.

p-Max-3-Sat
Instance: A 3-CNF formula F , and a non-negative integer k.

Parameter: k.
Problem: Decide whether F has a truth assignment satisfying

at least k clauses.

Let (F, k) be an instance of p-Max-3-Sat and let m be the number of clauses
in F and n the number of variables. It is well known that in any boolean CNF
formula, there is an assignment that satisfies at least half of the clauses (given
any assignment that does not satisfy half the clauses, its bitwise complement
will). So if the parameter k is less than m/2, then there is always an assignment
to the variables that satisfies at least k of the clauses. In this case, we reduce the
instance to the trivial instance with one clause and the parameter k = 1, which
is always a YES instance. Otherwise, m ≤ 2k. By deleting all variables that do
not occur in any clause we obtain that n ≤ 6k, implying that the input instance
is a kernel of polynomial size..
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3.2 Kernelization for FAST

In this section we discuss a kernel for p-FAST. A tournament is a directed graph
T such that for every pair of vertices v, u ∈ V (T ), either uv or vu is an arc of T .
A set of arcs A of T is called a feedback arc set, if every cycle of T contains an
arc from A. In other words, removal of A from T turns it into an acyclic graph.

p-FAST
Instance: A tournament T and a non-negative integer k.

Parameter: k.
Problem: Decide whether T has a feedback arc set of size at most k.

Lemma 2 ([25]). p-FAST admits a kernel with at most k2 + 2k vertices.

Proof. The following observation is useful. A graph is acyclic if and only if it is
possible to order its vertices in such a way such that for every arc uv, we have
u < v. Hence a set of arcs A is an inclusion minimal feedback arc set if and only
if A is an inclusion minimal set such that reversing directions of all arcs from A
results in an acyclic tournament.

In what follows by a triangle we mean a directed triangle. We give two simple
reduction rules.

Rule 1 If an arc e is contained in at least k + 1 triangles, then reverse e and
reduce k by 1.

Rule 2 If a vertex v is not contained in any triangle, then delete v from T .

Let us remark that after applying any of the two rules, the resulting graph is
again a tournament.

The first rule is sound because if we do not reverse e, we have to reverse at
least one arc from each of k + 1 triangles containing e. Thus e belongs to every
feedback arc set of size at most k.

For the correctness of the second rule. Let X be the set of heads of arcs
with tail in v and let Y be the sets of tails of arcs with head in v. Because T
is a tournament, X and Y is a partition of V (T ) \ {v}. Since v is not a part
of any triangle in T , we have that there is no arc from X to Y . Moreover, for
any feedback arc set A1 of tournament T [X] and any feedback arc set A2 of
tournament T [Y ], the set A1 ∪A2 is feedback arc set of T . Thus (T, k) is a YES
instance if and only if (T \ v, k) is.

Finally we show that any reduced YES instance T has at most k(k + 2)
vertices. Let A be a feedback arc set of T of size at most k. For every arc e ∈ A,
aside from the two endpoints of e, there are at most k vertices that are contained
in a triangle containing e, because otherwise the first rule would have applied.
Since every triangle in T contains an arc of A and every vertex of T is in a
triangle, we have that T has at most k(k + 2) vertices. ut
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3.3 p-d-Hitting Set

Our next example is a kernelization for the p-d-Hitting Set problem, estab-
lished in [1]. We follow the presentation in [34].

p-d-Hitting Set
Instance: A family F of sets over an universe U , each of

cardinality d and a positive integer k
Parameter: k

Problem: Decide whether there is a subset U ⊆ U of size at most k
such that U contains at least one element from each set in F .

The kernelization algorithm is based on the following widely used Sunflower
Lemma. We first define the terminology used in the statement of the lemma. A
sunflower with k petals and a core Y is a collection of sets S1, S2, . . . , Sk such
that Si ∩ Sj = Y for all i 6= j; the sets Si \ Y are petals and we require none
of them to be empty. Note that a family of pairwise disjoint sets is a sunflower
(with an empty core). We need the following classical result of Erdős and Rado
[29], see also [34].

Lemma 3 ([29, 34]). [Sunflower Lemma] Let F be a family of sets over an
universe U each of cardinality d. If |F | > d!(k−1)d then F contains a sunflower
with k petals and such a sunflower can be computed in time polynomial in the
size of F and U .

Now we are ready to prove the following theorem about kernelization for
p-d-Hitting Set

Theorem 1 ([34]). p-d-Hitting Set admits a kernel with O(kd ·d!) sets and
O(kd · d! · d) elements.

Proof. The crucial observation is that if F contains a sunflower S = {S1, · · · , Sk+1}
of cardinality k + 1 then every hitting set H of F of cardinality k must inter-
sect with the core Y of the sunflower S. Indeed, if H does not intersect C, it
should intersect each of the k + 1 disjoint petals Si \ C. Therefore if we let
F ′ = (F \ S) ∪ Y , then the instances (U ,F , k) and (U ,F ′, k) are equivalent.

Now we apply the Sunflower Lemma for all d′ ∈ {1, · · · , d} on collections of
sets with d′ elements by repeatedly replacing sunflowers of size at least k + 1
with their cores until the number of sets for any fixed d′ ∈ {1, · · · , d} is at most
O(kd

′
d′!). We also remove elements which do not belong to any set. Summing

over all d′, we obtain that the new family of sets F ′ contains O(kd · d!) sets.
Every set contains at most d elements, and thus the amount of elements in the
kernel is O(kd · d! · d). ut

3.4 Kernels via Crown Decomposition

Crown decomposition is a general kernelization technique that can be used to ob-
tain kernels for many problems. The technique is based on the classical matching
theorems of Kőnig and Hall [44, 49].
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Definition 2. A crown decomposition of a graph G = (V,E) is a partitioning
of V as C, H and R, where C and H are nonempty and the partition satisfies
the following properties.

1. C is an independent set.
2. There are no edges between vertices of C and R, i.e. H separates C and R;
3. Let E′ be the set of edges between vertices of C and H. Then E′ contains a

matching of size |H|.

Set C can be seen as a crown put on head H of the remaining part R of the Royal
body. Fig. 1 provides an example of a crown decomposition. Let us remark that
the fact that E′ contains a matching of size |H| implies that there is a matching of
H into C, i. e. a matching in the bipartite subgraph G′ = (C ∪H,E′) saturating
all the vertices of H.

R

H

C

Fig. 1. Example of a crown decomposition. Set C is an independent set, H separates
C and R, and H has a matching into C.

The following lemma, which establishes that crown decompositions can be
found in polynomial time, is the basis for kernelization algorithms using crown
decompositions.

Lemma 4 ([18]). [Crown Lemma] Let G be a graph without isolated vertices
and with at least 3k+1 vertices. There is a polynomial time algorithm that either

– Find a matching of size k + 1 in G; or
– Find a crown decomposition of G.

We demonstrate the application of crown decompositions on kernelization for
p-Dual Vertex Coloring and p-Max-SAT.

Dual of Coloring. In this section we show how Crown Lemma can be used to
obtain kernel for p-Dual Vertex Coloring. This problem concerns coloring
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of the vertex set of a graph. A k-coloring c of an undirected graph G = (V,E)
assigns a color to each vertex of the graph c : V → {1, 2, . . . , k} such that
adjacent vertices have different colours. The smallest k for which G has a k-
coloring is called the chromatic number of G, denoted by χ(G). It is well known
that deciding if χ(G) is at most 3 is an NP-complete problem. Thus from the
Parameterized Complexity perspective, the following parameterization is more
interesting.

p-Dual Vertex Coloring
Instance: A graph G = (V,E) and a non-negative integer k.

Parameter: k
Problem: Decide whether G has a (|V | − k)-coloring.

It is easier to apply Crown Decomposition to the complement of the input
graph. The complement of undirected graph G = (V,E) is denoted by G; its
vertex set is V and its edge set is E = {uv : uv /∈ E, u 6= v}. coloring an
n-vertex graph in (n − k) colours is equivalent to covering its complement by
(n− k) cliques.

Given a crown decomposition (C,H,R) of G, we apply the following Rule.

Crown Rule for Dual Vertex coloring: Construct a new instance of the prob-
lem (G′, k′) by removing H∪C from G and reducing k by |H|. In other words,
G′ = G[R] and k′ = k − |H|.

The Rule is sound by the following lemma.

Lemma 5 ([18]). Let (C,H,R) be a crown decomposition of G. Then (G =
(V,E), k) is a YES instance if and only if (G′ = (V ′, E′), k′) is a YES instance.

Proof. We want to show that G is (|V | − k)-colorable if and only if G′ = G[R]
is (|V ′| − k′)-colorable, where k′ = k − |H|.

Let c be a (|V | − k)-coloring of G. Because C is a clique, all vertices of C are
assigned to different colours by c. None of these colours can be used on vertices
of R because every vertex from R is adjacent to all vertices of C. Thus c uses
on G′ = G[R] at most

|V | − k − |C| = |V | − (|C|+ |H|)− (k − |H|) = |V ′| − k′

colors.
Now let c′ be a (|V ′| − k′)-coloring of G′. We take |C| new colors to color

vertices of C. Because there is a matching M of H into C in G, we can use the
same |C| colors that were used on C to color H. For every vertex u ∈ H, we
select a color of the vertex from C matched by M to u. To color G, we used at
most

|V ′| − k′ + |C| = |V | − (|C|+ |H|)− (k − |H|) + |C| = |V | − k

colors. This completes the proof. ut
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Theorem 2 ([18]). p-Dual Vertex Coloring has a kernel with at most
3k − 3 vertices.

Proof. For an input n-vertex graph G and a positive integer k, we take the
complement of G. If complement G contains an isolated vertex v, then in G this
vertex v is adjacent to all other vertices, and thus (G, k) is a YES instance if
and only if (G \ v, k − 1) is a YES instance.

Let us assume that G has no isolated vertices. We apply Crown Lemma on
G. If G has a matching M of size k, then G is (n − k)-colorable. Indeed, the
endpoints of every edge of M can be colored with the same color. If G has no
matching M of size k, then either n ≤ 3(k− 1), or G can be reduced by making
use of the Crown Rule for p-Dual Vertex Coloring. ut

Maximum Satisfiability. Our next example concerns Max-SAT. We are in-
terested in the following parameterized version of Max-SAT.

p-Max-SAT
Instance: A CNF formula F , and a non-negative integer k.

Parameter: k
Problem: Decide whether F has a truth assignment satisfying

at least k clauses.

Theorem 3 ([53]). p-Max-SAT admits a kernel with at most k variables and
2k clauses.

Proof. Let F be a CNF formula with n variables and m clauses. If we assign
values to the variables uniformly at random, linearity of expectation yields that
the expected number of satisfied clauses is at least m/2. Since there has to be
at least one assignment satisfying at least the expected number of clauses this
means that if m ≥ 2k then (F, k) is a YES instance. In what follows we show how
to give a kernel with n < k variables. Whenever possible we apply a cleaning
rule; if some variable does not occur in any clauses, remove the variable.

Let GF be the variable-clause incidence graph of F . That is, GF is a bipartite
graph with bipartition (X,Y ). The set X corresponds to the variables of F and
Y corresponds to the clauses. For a vertex x ∈ X we will refer to x as both
the vertex in GF and the corresponding variable in F . Similarly, for a vertex
c ∈ Y we will refer to c as both the vertex in GF and the corresponding clause
in F . In GF there is an edge between a variable x ∈ X and a clause c ∈ Y
if and only if either x, or its negation is in c. If there is a matching of X into
Y in GF , then there is a truth assignment satisfying at least |X| clauses. This
is true because we can set each variable in X in such a way that the clause
matched to it becomes satisfied. Thus at least |X| clauses are satisfied. Hence,
in this case if k ≤ |X| then (F, k) is a YES instance. We now show that if F
has at least k variables, then we can in polynomial time, either reduce F to an
equivalent smaller instance or find an assignment to the variables satisfying at
least k clauses.
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Suppose F has at least k variables. Using Hall’s Theorem and a polynomial
time algorithm computing maximum-size matching, we can in polynomial time
find either a matching of X into Y or an inclusion minimal set C ⊆ X such
that |N(C)| < |C|. If we found a matching we are done, as we can satisfy at
least |X| ≥ k clauses. So suppose we found a set C as described. Let H be
N(C) and R = V (GF ) \ (C ∪ H). Clearly, N(C) ⊆ H, N(R) ⊆ H and G[C]
is an independent set. Furthermore, for a vertex x ∈ C we have that there is
a matching of C \ x into H since |N(C ′)| ≥ |C ′| for every C ′ ⊆ C \ x. Since
|C| > |H|, we have that the matching from C \ x to H is in fact a matching of
H into C. Hence (C,H,R) is a crown decomposition of GF .

We prove that all clauses in H are satisfied in every truth assignment to the
variables satisfying the maximum number of clauses. Indeed, consider any truth
assignment t that does not satisfy all clauses in H. For every variable y in C\{x}
change the value of y such that the clause in H matched to y is satisfied. Let t′

be the new assignment obtained from t in this manner. Since N(C) ⊆ H and t′

satisfies all clauses in H, more clauses are satisfied by t′ than by t. Hence t can
not be an assignment satisfying the maximum number of clauses.

The argument above shows that (F, k) is a YES instance to p-Max-SAT if
and only if (F \ (C ∪H), k − |H|) is. This gives rise to a simple reduction rule:
remove (C ∪H) from F and decrease k by |H|. This completes the proof of the
theorem. ut

3.5 Clique Cover

Unfortunately, not all known problem kernels are shown to have polynomial size.
Here, we present the example of p-Edge Clique Cover, and the reduction
rules presented here lead to an exponential-size kernel. It has been a pressing
challenge for a long time to find out if this can be improved to a polynomial
sized kernel. In recent news, the answer to this question has been announced to
be in the negative, that is to say, the problem is unlikely to admit a polynomial
kernel under reasonable complexity-theoretic assumptions [20]. The problem is
the following.

p-Edge Clique Cover
Instance: A graph G = (V,E), and a non-negative integer k.

Parameter: k
Problem: Decide whether edges of G can be covered by at most k cliques.

We use N(v) to denote the neighborhood of vertex v in G, namely, N(v) :=
{u | uv ∈ E}. The closed neighborhood of vertex v, denoted by N [v], is N(v) ∪
{v}. We describe data reduction rules for a generalized version of p-Edge Clique
Cover, in which already some edges may be marked as “covered”. Then, the
question is to find a clique cover of size k that covers all uncovered edges. We
apply the following data reduction rules from [40]:

Rule 1 Remove isolated vertices and vertices that are only adjacent to covered
edges.
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Rule 2 If there is an edge uv whose endpoints have exactly the same closed
neighborhood, that is, N [u] = N [v], then mark all edges incident to u as
covered. To reconstruct a solution for the non-reduced instance, add u to
every clique containing v.

Theorem 4 ([40]). p-Edge Clique Cover admits a kernel with at most 2k

vertices.

Proof. Let G = (V,E) be a graph that has a clique cover C1, . . . , Ck and such
that none of two Rules can be applied to G. We claim that G has at most 2k ver-
tices. Targeting towards a contradiction, let us assume that G has more than 2k

vertices. We assign to each vertex v ∈ V a binary vector bv of length k where
bit i, 1 ≤ i ≤ k, is set to 1 if and only if v is contained in clique Ci. Since there are
only 2k possible vectors, there must be u 6= v ∈ V with bu = bv. If bu and bv are
zero vectors, the first rule applies; otherwise, u and v are contained in the same
cliques. This means that u and v are adjacent and share the same neighborhood,
and thus the second rule applies. Hence, if G has more than 2k vertices, at least
one of the reduction rules can be applied to it, which is a contradiction to the
initial assumption. ut

4 Recent Upper Bound Machinery

In this section we survey recent methods to obtain polynomial kernels. This in-
cludes reduction rules based on protrusions, probabilistic methods and matroids.

4.1 Protrusion Based Replacement

In this part we discuss kernelization for different classes of sparse graphs. An
important result in the area of kernelization is by Alber et al. [2]. They obtained
a linear sized kernel for the p-Dominating Set problem on planar graphs.
This work triggered an explosion of papers on kernelization, and in particular
on kernelization of problems on planar and different classes of sparse graphs.
Combining the ideas of Alber et al. with problem specific data reduction rules,
linear kernels were obtained for a variety of parameterized problems on planar
graphs including p-Connected Vertex Cover, p-Induced Matching and
p-Feedback Vertex Set. In 2009 Bodlaender et al. [7] obtained meta ker-
nelization algorithms that eliminated the need for the design of problem specific
reduction rules by providing an automated process that generates them. They
show that all problems that have a “distance property” and are expressible in
a certain kind of logic or “behave like a regular language” admit a polynomial
kernel on graphs of bounded genus. In what follows we give a short description
of these meta theorems.

Informal Description. The notion of “protrusions and finite integer index” is
central to recent meta kernelization theorems. In the context of problems on
graphs, there are three central ideas that form the undercurrent of all protrusion-
based reduction rules:
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– describing an equivalence that classifies all instances of a problem in an useful
manner,

– the ability to easily identify, given a problem, whether the said equivalence
has finite index,

– given an instance of a problem, finding large subgraphs that “can be re-
placed” with smaller subgraphs that are equivalent to the original.

One of the critical aspects of this development is coming up with the right
definition for describing the circumstances in which a subgraph may be replaced.
This is captured by the notion of a protrusion.

In general, an r-protrusion in a graph G is simply a subgraph H = (VH , EH)
such that the number of vertices in H that have neighbours in G \H is at most
r and the treewidth of H is at most r. The size of the protrusion is the number
of vertices in it, that is, |VH |. The vertices in H that have neighbours in G \H
comprise the boundary of H. Informally, H may be thought of as a part of the
graph that is separated from the “rest of the graph” by a small-sized separator,
and everything about H may be understood in terms of the graph induced by H
itself and the limited interaction it has with G \H via its boundary vertices. If
the size of the protrusion is large, we may want to replace it with another graph
X that is much smaller but whose behaviour with respect to G \H is identical
to H in the context of the problem that we are studying. Specifically, we would
like that the solution to the problem in question does not change after we have
made the replacement (or changes in a controlled manner that can be tracked
as we make these replacements). This motivates us to define an equivalence that
captures the essence of what we hope to do in terms the replacement. We would
like to declare H equivalent to X if the size of the solution of G and (G\H)∪∗X
is exactly the same, where ∪∗ is some notion of a replacement operation that
we have not defined precisely yet. Notice, however, that a natural notion of
replacement would leave the boundary vertices intact and perform a cut-and-
paste on the rest of H. This is precisely what the protrusion based reduction
rules do. Combined with some combinatorial properties of graphs this results in
polynomial and in most cases linear kernels for variety of problems.

Overview of Meta Kernelization Results. Given a graph G = (V,E), we define
Br
G(S) to be the set of all vertices of G whose distance from some vertex in S

is at most r. Let G be the family of planar graphs and let integer k > 0 be a
parameter. We say that a parameterized problem Π ⊆ G ×N is compact if there
exist an integer r such that for all (G = (V,E), k) ∈ Π, there is a set S ⊆ V
such that |S| ≤ r · k, Br

G(S) = V and k ≤ |V |r. Similarly, Π is quasi-compact
if there exists an integer r such that for every (G, k) ∈ Π, there is a set S ⊆ V
such that |S| ≤ r · k, tw(G \Br

G(S)) ≤ r and k ≤ |V |r where tw(G) denotes the
treewidth of G. Notice that if a problem is compact then it is also quasi-compact.
For ease of presentation the definitions of compact and quasi-compact are more
restrictive here than in the following paper [7].

The following theorem from [7] yields linear kernels for a variety of problems
on planar graphs. To this end they utilise the notion of finite integer index.
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This term first appeared in the work by Bodlaender and van Antwerpen-de
Fluiter [14] and is similar to the notion of finite state. We first define the notion
of t-boundaried graphs and the gluing operation. A t-boundaried graph is a graph
G = (V,E) with t distinguished vertices, uniquely labelled from 1 to t. The set
∂(G) of labelled vertices is called the boundary of G. The vertices in ∂(G) are
referred to as boundary vertices or terminals. Let G1 and G2 be two t-boundaried
graphs. By G1 ⊕ G2 we denote the t-boundaried graph obtained by taking the
disjoint union of G1 and G2 and identifying each vertex of ∂(G1) with the vertex
of ∂(G2) with the same label; that is, we glue them together on the boundaries.
In G1 ⊕ G2 there is an edge between two labelled vertices if there is an edge
between them in G1 or in G2. For a parameterized problem, Π on graphs in G
and two t-boundaried graphs G1 and G2, we say that G1 ≡Π G2 if there exists
a constant c such that for all t-boundaried graphs G3 and for all k we have
G1 ⊕ G3 ∈ G if and only if G2 ⊕ G3 ∈ G and (G1 ⊕ G3, k) ∈ Π if and only if
(G2 ⊕ G3, k + c) ∈ Π. Note that for every t, the relation ≡Π on t-boundaried
graphs is an equivalence relation. A problem Π has finite integer index (FII),
if and only if for every t, ≡Π is of finite index, that is, has a finite number of
equivalence classes. Compact problems that have FII include Dominating Set
and Connected Vertex Cover while Feedback Vertex Set has FII and
is quasi-compact but not compact. We are now in position to state the theorem.

Theorem 5. Let Π ⊆ G × N be quasi-compact and has FII. Then Π admits a
linear kernel.

Overview of the Methods. We give an outline of the main ideas used to prove
Theorem 5. For a problem Π and an instance (G = (V,E), k) the kernelization
algorithm repeatedly identifies a part of the graph to reduce and replaces this
part by smaller equivalent part. Since each such step decreases the number of
vertices in the graph the process stops after at most |V | iterations. In partic-
ular, the algorithm identifies a constant size separator S that cuts off a large
chunk of the graph of constant treewidth. This chunk is then considered as a
|S|-boundaried graph G′ = (V ′, E′) with boundary S. Let G∗ be the other side
of the separator, that is G′ ⊕ G∗ = G. Since Π has FII there exists a finite set
S of |S|-boundaried graphs such that S ⊆ G and for any |S|-boundaried graph
G1 there exists a G2 ∈ S such that G2 ≡Π G1. The definition of “large chunk”
is that G′ should be larger than the largest graph in S. Hence we can find a |S|-
boundaried graph G2 ∈ S and a constant c such that (G, k) = (G′ ⊕G∗, k) ∈ Π
if and only if (G2 ⊕G∗, k − c) ∈ Π. The reduction is just to change (G, k) into
(G2⊕G∗, k− c). Given G′ we can identify G2 in time linear in |V ′| by using the
fact that G′ has constant treewidth and that all graphs in S have constant size.

We now proceed to analyze the size of any reduced yes-instance of Π. We
show that if Π is compact (not quasi-compact), then the size of a reduced yes-
instance (G, k) must be at most O(k). Since (G = (V,E), k) ∈ Π and Π is
compact, there is an O(k) sized set S′ ⊆ V such that Br

G(S′) = V for some
constant r depending only on Π. One can show that if such a set S′ exists there
must exist another O(k) sized set S such that the connected components of
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G[V \S] can be grouped into O(k) chunks as described in the paragraph above.
If any of these chunks have more vertices than the largest graph in S we could
have performed the reduction. This implies that any reduced yes-instance has
size at most ck for some fixed constant c. Hence if a reduced instance is larger
than ck the kernelization algorithm returns NO.

Finally to prove Theorem 5 even when Π is quasi-compact, they show that
the set of reduced instances of a quasi-compact problem is in fact compact.
Observe that it is the set of reduced instances that becomes compact and not
Π itself. The main idea is that if G = (V,E) has a set S ⊆ V such that the
treewidth of G[V \ Br

G(S)] is constant and there exists a vertex v which is far
away from S, then we can find a large subgraph to reduce.

The parameterized versions of many basic optimization problems have fi-
nite integer index, including problems like Dominating Set, (Connected) r-
Dominating Set, (Connected) Vertex Cover, Feedback Vertex Set,
Edge Dominating Set, Independent Set, Min Leaf Spanning Tree, In-
duced Matching, Triangle Packing, Cycle Packing, Maximum Full-
Degree Spanning Tree, and many others [7, 21].

There are problems like Independent Dominating Set, Longest Path,
Longest Cycle, Maximum Cut, Minimum Covering by Cliques, Inde-
pendent Dominating Set, and Minimum Leaf Out-branching and various
edge packing problems which are known not to have FII [21]. It was shown in
[7] that compact problems expressible in an extension of Monadic Second Order
Logic, namely Counting Monadic Second Order Logic, have polynomial kernels
on planar graphs. This implies polynomial kernels for Independent Dominat-
ing Set, Minimum Leaf Out-branching, and some edge packing problems on
planar graphs. The results from [7] hold not only for planar graphs but for graphs
of bounded genus. It was shown in [37] that if instead of quasi-compactness, we
request another combinatorial property, bidimensionality with certain separabil-
ity properties, then an analogue of Theorem 5 can be obtained for much more
general graph classes, like graphs excluding some fixed (apex) graph as a minor.

Bodlaender et al. [7] were the first to use protrusion techniques (or rather
graph reduction techniques) to obtain kernels, but the idea of using graph re-
placement for algorithms has been around for long time. The idea of graph
replacement for algorithms dates back to Fellows and Langston [31]. Arnborg et
al. [6] essentially showed that effective protrusion reduction procedures exist for
many problems on graphs of bounded treewidth. Using this, Arnborg et al. [6]
obtained a linear time algorithm for MSO expressible problems on graphs of
bounded treewidth. Bodlaender and Fluiter [8, 14, 21] generalized these ideas in
several ways — in particular, they applied it to some optimization problems. It
is also important to mention the work of Bodlaender and Hagerup [10], who used
the concept of graph reduction to obtain parallel algorithms for MSO expressible
problems on bounded treewidth graphs.
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4.2 Algebraic and Probabilistic Methods

A r-CNF formula F = c1 ∧ · · · ∧ cm on variable set V (F ) is a boolean formula
where each clause has size exactly r and each clause is a disjunction of literals.
In the parameterized Max-r-SAT problem

p-Max-r-Sat
Instance: A r-CNF formula F , and a non-negative integer k.

Parameter: k
Problem: Decide whether F has a truth assignment satisfying

at least k clauses.

Observe that the expected number of clauses satisfied by a random truth
assignment that sets each variable of F to one or zero is equal to

µF = (1− 2−r)m

and thus there is always an assignment satisfying at least µF clauses. This implies
that at least m/2 clauses are always satisfied and hence this parameterization of
Max-r-SAT always has a polynomial kernel because of the following argument.
If k ≤ m/2 then the answer is yes else we have that m ≤ 2k and hence n ≤
2kr. Thus given a r-CNF formula F , the more meaningful question is whether
there exists a truth assignment for F satisfying at least µF + k clauses. We
call this version of the Max-r-SAT problem as p-AG-Max-r-SAT, that is,
problem where the parameterization is beyond the guaranteed lower bound on
the solution.

p-AG-Max-r-Sat
Instance: A r-CNF formula F , and a non-negative integer k.

Parameter: k
Problem: Decide whether F has a truth assignment satisfying

at least µF + k clauses.

The parameterized study of problems above a guaranteed lower bound was
initiated by Mahajan and Raman [54]. They showed that several above guarantee
versions of Max-Cut and Max-Sat are FPT and provided a number of open
problems around parameterizations beyond guaranteed lower and upper bounds.
In a breakthrough paper Gutin et al [42] developed a probabilistic approach to
problems parameterized above or below tight bounds. Alon et al. [3] combined
this approach with methods from algebraic combinatorics and Fourier analysis
to obtain FPT algorithm for parameterized Max-r-SAT beyond the guaran-
teed lower bound. Other significant results in this direction include quadratic
kernels for ternary permutation constraint satisfaction problems parameterized
above average and results around system of linear equations modulo 2 [19, 43].
In what follows we outline the method and an then illustrate the method using
an example.
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Informal Description of the Method. We give a brief description of the proba-
bilistic method with respect to a given problem Π parameterized above a tight
lower bound or below a tight upper bound. We first apply some reductions rules
to reduce Π to its special case Π′. Then we introduce a random variable X such
that the answer to Π is yes if and only if X takes, with positive probability, a
value greater or equal to the parameter k. Now using some probabilistic inequal-
ities on X, we derive upper bounds on the size of NO-instances of Π′ in terms of
a function of the parameter k. If the size of a given instance exceeds this bound,
then we know the answer is YES; otherwise, we produce a problem kernel.

Probabilistic Inequalities. A random variable is discrete if its distribution func-
tion has a finite or countable number of positive increases. A random variable X
is a symmetric if −X has the same distribution function as X. If X is discrete,
then X is symmetric if and only if Prob(X = a) = Prob(X = −a) for each real
a. Let X be a symmetric variable for which the first moment E(X) exists. Then
E(X) = E(−X) = −E(X) and, thus, E(X) = 0. The following is easy to prove
[42].

Lemma 6. If X is a symmetric random variable and E(X2) <∞, then

Prob( X ≥
√
E(X2) ) > 0.

Unfortunately, often X is not symmetric, but Lemma 7 provides an inequality
that can be used in many such cases. This lemma was proved by Alon et al. [4];
a weaker version was obtained by H̊astad and Venkatesh [45].

Lemma 7. Let X be a random variable and suppose that its first, second and
fourth moments satisfy E(X) = 0, E(X2) = σ2 > 0 and E(X4) ≤ bσ4, respec-
tively. Then Prob( X > σ

4
√
b

) ≥ 1
44/3b

.

Since it is often rather nontrivial to evaluate E(X4) in order to check whether
E(X4) ≤ bσ4 holds, one can sometimes use the following extension of Khinchin’s
Inequality by Bourgain [15].

Lemma 8. Let f = f(x1, . . . , xn) be a polynomial of degree r in n variables
x1, . . . , xn with domain {−1, 1}. Define a random variable X by choosing a vec-
tor (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn).
Then, for every p ≥ 2, there is a constant cp such that

(E(|X|p))1/p ≤ (cp)
r(E(X2))1/2.

In particular, c4 ≤ 23/2.

An Illustration. Consider the following problem: given a digraph D = (V,A)
and a positive integer k, does there exist an acyclic subdigraph of D with at
least k arcs? It is easy to prove that this parameterized problem has a linear
kernel. Observe that D always has an acyclic subdigraph with at least |A|/2 arcs.
Indeed, consider a bijection α : V → {1, . . . , |V |} and the following subdigraphs
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of D: (V, {xy ∈ A : α(x) < α(y) }) and (V, {xy ∈ A : α(x) > α(y) }). Both
subdigraphs are acyclic and at least one of them has at least |A|/2 arcs. Thus
the input D itself is a kernel with 2k arcs and at most 4k vertices. Thus a more
natural interesting parameterization is following: decide whether D = (V,A)
contains an acyclic subdigraph with at least |A|/2 + k arcs. We choose |A|/2 + k
because |A|/2 is a tight lower bound on the size of a largest acyclic subdigraph.
Indeed, the size of a largest acyclic subdigraph of a symmetric digraph D =
(V,A) is precisely |A|/2. A digraph D = (V,A) is symmetric if xy ∈ A implies
yx ∈ A. More precisely we study the following problem.

p-Linear Ordering Above Tight Lower Bound (LOALB)
Instance: A digraph D with each arc ij with integer positive

weight wij , and a positive integer k.
Parameter: k

Problem: Decide whether there is an acyclic subdigraph of D
of weight at least W/2 + k, where W =

∑
ij∈A wij .

Consider the following reduction rule:

Reduction Rule 1 Assume D has a directed 2-cycle iji; if wij = wji delete
the cycle, if wij > wji delete the arc ji and replace wij by wij − wji, and if
wji > wij delete the arc ij and replace wji by wji − wij.
It is easy to check that the answer to LOALB for a digraph D is yes if and
only if the answer to LOALB is yes for a digraph obtained from D using the
reduction rule as long as possible.

Let D = (V,A) be an oriented graph, let n = |V | and W =
∑
ij∈A wij .

Consider a random bijection: α : V → {1, . . . , n} and a random variable X(α) =
1
2

∑
ij∈A εij(α), where εij(α) = wij if α(i) < α(j) and εij(α) = −wij , otherwise.

It is easy to see that X(α) =
∑
{wij : ij ∈ A,α(i) < α(j) } −W/2. Thus, the

answer to LOALB is YES if and only if there is a bijection α : V → {1, . . . , n}
such that X(α) ≥ k. Since E(εij) = 0, we have E(X) = 0. Let W (2) =

∑
ij∈A w

2
ij .

Then one can prove the following:

Lemma 9 ([42]). E(X2) ≥W (2)/12.

Using Lemma 9 we prove the following main result of this section.

Theorem 6 ([42]). The problem LOALB admits a kernel with O(k2) arcs.

Proof. Let H be a digraph. We know that the answer to LOALB for H is YES
if and only if the answer to LOALB is YES for a digraph D obtained from H
using Reduction Rule 1 as long as possible. Observe that D is an oriented graph.
Let B be the set of bijections from V to {1, . . . , n}. Observe that f : B → B
such that f(α(v)) = |V | + 1 − α(v) for each α ∈ B is a bijection. Note that
X(f(α)) = −X(α) for each α ∈ B. Therefore, Prob(X = a) = Prob(X = −a)
for each real a and, thus, X is symmetric. Thus, by Lemmas 6 and 9, we have
Prob( X ≥

√
W (2)/12 ) > 0. Hence, if

√
W (2)/12 ≥ k, there is a bijection

α : V → {1, . . . , n} such that X(α) ≥ k and, thus, the answer to LOALB (for
both D and H) is YES. Otherwise, |A| ≤W (2) < 12 · k2. ut
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4.3 Randomized Kernels

A question whether the following problem has a polynomial kernel or not had
remained elusive for a few years until recently.

p-Odd Cycle Transversal
Instance: An undirected graph G = (V,E) and a positive integer k.

Parameter: k
Problem: Decide whether there exist a set S ⊆ V such that

G \ S does not contain odd cycles?

Using techniques from matroid theory it has been recently shown that this
problem admits a randomized polynomial kernel [52]. The main part of this
kernelization algorithm is to adapt the steps in the FPT algorithm for Odd
Cycle Transversal as “independent sets” of the matroid called “gammoid”.
This exploits the duality between max-flow and min-cut. Recently using another
technique from matroid theory a combinatorial kernel has been proposed [51].
This approach works for several other problems including Almost-2-SAT. Even
a short description on this algorithm is beyond the scope of this article. We refer
the interested readers to the following articles [52, 51].

5 Lower Bound Machinery

Lemma 1 implies that a problem has a kernel if and only if it is fixed parameter
tractable. However, we are interested in kernels that are as small as possible, and
a kernel obtained using Lemma 1 has size that equals the dependence on k in the
running time of the best known FPT algorithm for the problem. The question
is — can we do better? In particular, can we get polynomial sized kernels for
problems that admit FPT algorithms? The answer is that quite often we can, as
we saw in the previous section, but it turns out that there are a number of prob-
lems which are unlikely to have polynomial kernels. It is only very recently that
a methodology to rule out polynomial kernels has been developed [9, 38]. The
existence of polynomial kernels are ruled out, in this framework, by linking the
availability of a polynomial kernel to an unlikely collapse in classical complexity.
These developments deepen the connection between classical and parameterized
complexity.

In this section we survey the techniques that have been developed to show
kernelization lower bounds. To begin with, we consider the following problem.

p-Longest Path
Instance: An undirected graph G = (V,E) and a non-negative integer k.

Parameter: k
Problem: Does G have a path of length k?

It is well known that the p-Longest Path problem can be solved in time
O(cknO(1)) using the well known method of Color-Coding [5]. Is it feasible
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that it also admits a polynomial kernel? We argue that intuitively this should not
be possible. Consider a large set (G1, k), (G2, k), . . . , (Gt, k) of instances to the
p-Longest Path problem. If we make a new graph G by just taking the disjoint
union of the graphs G1, . . . , Gt we see that G contains a path of length k if and
only if Gi contains a path of length k for some i ≤ t. Suppose the p-Longest
Path problem had a polynomial kernel, and we ran the kernelization algorithm
on G. Then this algorithm would in polynomial time return a new instance
(G′ = (V ′, E′), k′) such that |V ′| = kO(1), a number potentially much smaller
than t. This means that in some sense, the kernelization algorithm considers the
instances (G1, k), (G2, k), . . . , (Gt, k) and in polynomial time figures out which of
the instances are the most likely to contain a path of length k. However, at least
intuitively, this seems almost as difficult as solving the instances themselves and
since the p-Longest Path problem is NP-complete, this seems unlikely. We
now formalize this intuition.

Definition 3. [Distillation [9]]

– An OR-distillation algorithm for a language L ⊆ Σ∗ is an algorithm that
receives as input a sequence x1, . . . , xt, with xi ∈ Σ∗ for each 1 ≤ i ≤ t, uses
time polynomial in

∑t
i=1 |xi|, and outputs y ∈ Σ∗ with (a) y ∈ L ⇐⇒ xi ∈

L for some 1 ≤ i ≤ t and (b) |y| is polynomial in maxi≤t |xi|. A language L
is OR-distillable if there is a OR-distillation algorithm for it.

– An AND-distillation algorithm for a language L ⊆ Σ∗ is an algorithm that
receives as input a sequence x1, . . . , xt, with xi ∈ Σ∗ for each 1 ≤ i ≤ t,
uses time polynomial in

∑t
i=1 |xi|, and outputs y ∈ Σ∗ with (a) y ∈ L ⇐⇒

xi ∈ L for all 1 ≤ i ≤ t and (b) |y| is polynomial in maxi≤t |xi|. A language
L is AND-distillable if there is an AND-distillation algorithm for it.

Observe that the notion of distillation is defined for unparameterized problems.
Bodlaender et al. [9] conjectured that no NP-complete language can have an
OR-distillation or an AND-distillation algorithm.

Conjecture 1. [OR-Distillation Conjecture [9]] No NP-complete language L is
OR-distillable.

Conjecture 2. [AND-Distillation Conjecture [9]] No NP-complete language L is
AND-distillable.

One should notice that if any NP-complete language is distillable, then so
are all of them. Fortnow and Santhanam [38] were able to connect the OR-
Distillation Conjecture to a well-known conjecture in classical complexity. In
particular they proved that if the OR-Distillation Conjecture fails, then coNP ⊆
NP/poly, implying that the polynomial time hierarchy [59] collapses to the third
level, a collapse that is deemed unlikely. Until very recently, establishing a similar
connection for the AND-Distillation Conjecture was one of the central open
problems of the area. It is now established that both conjectures hold up to
reasonable complexity-theoretic assumptions (see also Section 6.4).
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Theorem 7 ([38, 28]).

– If the OR-Distillation Conjecture fails, then coNP ⊆ NP/poly.
– If the AND-Distillation Conjecture fails, then coNP ⊆ NP/poly.

We are now ready to define the parameterized analogue of distillation algo-
rithms and connect this notion to the Conjectures 1 and 2.

Definition 4. [Composition [9]]

– A composition algorithm (also called OR-composition algorithm) for a pa-
rameterized problem Π ⊆ Σ∗ × N is an algorithm that receives as input a
sequence ((x1, k), . . . , (xt, k)), with (xi, k) ∈ Σ∗×N+ for each 1 ≤ i ≤ t, uses
time polynomial in

∑t
i=1 |xi| + k, and outputs (y, k′) ∈ Σ∗ × N+ with (a)

(y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π for some 1 ≤ i ≤ t and (b) k′ is polynomial in
k. A parameterized problem is compositional (or OR-compositional) if there
is a composition algorithm for it.

– An AND-composition algorithm for a parameterized problem Π ⊆ Σ∗ × N
is an algorithm that receives as input a sequence ((x1, k), . . . , (xt, k)), with
(xi, k) ∈ Σ∗×N+ for each 1 ≤ i ≤ t, uses time polynomial in

∑t
i=1 |xi|+ k,

and outputs (y, k′) ∈ Σ∗ × N+ with (a) (y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π
for all 1 ≤ i ≤ t and (b) k′ is polynomial in k. A parameterized problem is
AND-compositional if there is an AND-composition algorithm for it.

Composition and distillation algorithms are very similar. The main difference
between the two notions is that the restriction on output size for distillation
algorithms is replaced by a restriction on the parameter size for the instance
the composition algorithm outputs. We define the notion of the unparameterized
version of a parameterized problem L. The mapping of parameterized problems
to unparameterized problems is done by mapping (x, k) to the string x#1k,
where # /∈ Σ denotes the blank letter and 1 is an arbitrary letter in Σ. In this
way, the unparameterized version of a parameterized problem Π is the language
Π̃ = {x#1k | (x, k) ∈ Π}. The following theorem yields the desired connection
between the two notions.

Theorem 8 ([9, 28]). Let Π be a compositional parameterized problem whose

unparameterized version Π̃ is NP-complete. Then, if Π has a polynomial kernel
then coNP ⊆ NP/poly. Similarly, let Π be an AND-compositional parameter-

ized problem whose unparameterized version Π̃ is NP-complete. Then, if Π has
a polynomial kernel, coNP ⊆ NP/poly.

We can now formalize the discussion from the beginning of this section.

Theorem 9 ([9]). p-Longest Path does not admit a polynomial kernel unless
coNP ⊆ NP/poly.

Proof. The unparameterized version of p-Longest Path is known to be NP-
complete [39]. We now give a composition algorithm for the problem. Given
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a sequence (G1, k), . . . , (Gt, k) of instances we output (G, k) where G is the
disjoint union of G1, . . . , Gt. Clearly G contains a path of length k if and only if
Gi contains a path of length k for some i ≤ t. By Theorem 8 p-Longest Path
does not have a polynomial kernel unless coNP ⊆ NP/poly. ut

An identical proof can be used to show that the p-Longest Cycle prob-
lem does not admit a polynomial kernel unless coNP ⊆ NP/poly. For many
problems, it is easy to give AND-composition algorithms. For instance, the “dis-
joint union” trick yields AND-composition algorithms for the p-Treewidth,
p-Pathwidth and p-Cutwidth problems, among many others. Coupled with
Theorem 8 this implies that these problems do not admit polynomial kernels
unless coNP ⊆ NP/poly.

For some problems, obtaining a composition algorithm directly is a difficult
task. Instead, we can give a reduction from a problem that provably has no
polynomial kernel unless coNP ⊆ NP/poly to the problem in question such
that a polynomial kernel for the problem considered would give a kernel for the
problem we reduced from. We now define the notion of polynomial parameter
transformations.

Definition 5 ([13]). Let P and Q be parameterized problems. We say that P
is polynomial parameter reducible to Q, written P ≤ppt Q, if there exists a
polynomial time computable function f : Σ∗ ×N→ Σ∗ ×N and a polynomial p,
such that for all (x, k) ∈ Σ∗×N (a) (x, k) ∈ P if and only (x′, k′) = f(x, k) ∈ Q
and (b) k′ ≤ p(k). The function f is called polynomial parameter transformation.

Proposition 1 ([13]). Let P and Q be the parameterized problems and P̃ and
Q̃ be the unparameterized versions of P and Q respectively. Suppose that P̃ is
NP-complete and Q̃ is in NP. Furthermore if there is a polynomial parameter
transformation from P to Q, then if Q has a polynomial kernel then P also has
a polynomial kernel.

Proposition 1 shows how to use polynomial parameter transformations to show
kernelization lower bounds. A notion similar to polynomial parameter trans-
formation was independently used by Fernau et al. [33] albeit without being
explicitly defined. We now give an example of how Proposition 1 can be useful
for showing that a problem does not admit a polynomial kernel. In particular,
we show that the p-Path Packing problem does not admit a polynomial kernel
unless coNP ⊆ NP/poly. In this problem you are given a graph G together with
an integer k and asked whether there exists a collection of k mutually vertex-
disjoint paths of length k in G. This problem is known to be fixed parameter
tractable [5] and is easy to see that for this problem the “disjoint union” trick
discussed earlier does not directly apply. Thus we resort to polynomial parameter
transformations.

Theorem 10. p-Path Packing does not admit a polynomial kernel unless
coNP ⊆ NP/poly.
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Proof. We give a polynomial parameter transformation from the p-Longest
Path problem. Given an instance (G, k) to p-Longest Path we construct a
graph G′ from G by adding k − 1 vertex disjoint paths of length k. Now G
contains a path of length k if and only if G′ contains k paths of length k. This
concludes the proof. ut

6 Recent Developments in Lower Bounds

In this section, we provide a brief exposition of some of the more recent develop-
ments that have emerged in pursuing lower bounds, namely, cross-compositions,
the notion of co-nondeterminism in compositions, and the development that
linked the failure of the AND conjecture with an unexpected collapse in classical
complexity.

6.1 Cross Composition

Recall that an OR-composition algorithm works by composing multiple instances
of a parameterized problem Q into a single instance of Q̃ with a parameter value
bounded by a polynomial function of k, the common parameter of all input
instances. Further, we also had the constraint that the parameter of the output
instance may not depend on the size of the largest input instance, and also should
be independent of the number of instances that are input to the algorithm.

It turns out that a variation of the OR-composition algorithm, where the
requirements on the output instance are more “relaxed”, can still be used to
argue lower bounds. This variant was introduced in [11], and is called cross-
composition. The technique is akin to OR-composition to the extent that it is
meant to output the boolean OR of a number of instances. On the other hand, a
cross-composition is less restrictive than the standard OR-composition in various
ways:

– The source and target problem of the composition need no longer be the
same.

– The input to a cross-composition algorithm is a list of classical instances
instead of parameterized instances, the inputs do not have a parameter in
which the output parameter of the composition must be bounded; instead
we require that the size of the output parameter is polynomially bounded in
the size of the largest input instance.

– The output parameter may depend polynomially on the logarithm of the
number of input instances.

With cross-composition, it is sufficient to compose (via a boolean OR) any
classical NP-hard problem into an instance of the parameterized problem Q for
which we want to prove a lower-bound, and the parameter of the output instance
is permitted to depend on the number of input instances, and the size of the
largest instance as well.
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For establishing the technique of cross-composition, the notion of a polyno-
mial equivalence relation is introduced. Informally, an equivalence relation on
Σ∗ is a polynomial equivalence relation if it can be “identified” in polynomial
time and if the number of equivalence classes of any finite subset are polynomi-
ally many in the maximum element of the subset. The formal definition is the
following:

Definition 6 (Polynomial equivalence relation, [11]). An equivalence re-
lation R on Σ∗ is called a polynomial equivalence relation if the following two
conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x
and y belong to the same equivalence class in (|x|+ |y|)O(1) time.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into at most (maxx∈S |x|)O(1) classes.

We now turn to the definition of cross-composition:

Definition 7 ([11]). Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗ × N be a parame-
terized problem. We say that L cross-composes into Q if there is a polynomial
equivalence relation R and an algorithm which, given t strings x1, x2, . . . , xt be-
longing to the same equivalence class of R, computes an instance (x, k) ∈ Σ∗×N
in time polynomial in

∑t
i=1 |xi| such that:

1. (x, k) ∈ Q⇒ xi ∈ L for some 1 ≤ i ≤ t,
2. k is bounded by a polynomial in maxti=1 |xi|+ log t.

The existence of a cross-composition from a NP-complete problem into a
parameterized problem implies kernel lower bounds for the parameterized prob-
lem because a distillation for SAT can be inferred from the cross-composition
and the assumption of a polynomial kernel for the parameterized problem. Re-
call that the existence of a distillation for any NP-complete problem implies
that coNP ⊆ NP/poly, which completes the argument for the infeasibility
of polynomial kernels for problems that admit a cross-composition. Formally,
we would say that unless coNP ⊆ NP/poly, a problem that admits a cross-
composition does not have apolynomial kernel. We now turn to an overview of
the argument that leads to a distillation starting from a cross-composition and
a polynomial kernel.

Assume that we have a cross-composition from a NP-complete language L
to a parameterized language Q. Let m denote the size of the largest input to
the distillation algorithm. We describe informally how a cross-composition and
a polynomial kernel for Q can be used to devise a distillation algorithm for SAT.
For a more formal argument, the reader is referred to [11].

– First, duplicate instances are eliminated from the sequence of inputs to en-
sure that t ≤ (|Σ| + 1)m, or that log t ∈ O(m). All instances of SAT are
transformed into equivalent instances of L (this can be done since L is NP-
complete) — note that the sizes of the instances of L are also polynomial in
m.
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– We now pairwise compare instances using the polynomial-time equivalence
test ofR (whose existence is guaranteed by the definition of a cross-composition)
to partition the L-instances (y1, . . . , yt) into partite sets Y1, . . . , Yr such that
all instances from the same partite set are equivalent under R. The proper-
ties of a polynomial equivalence relation guarantee that r is polynomial in
m and that this partitioning step takes polynomial time in the total input
size.

– Subsequently, a cross-composition is applied to each group of instances in Yi.
In all the parameterized instances that are output by the cross-composition,
we have that the parameter is a polynomial function of m, since log t ∈ O(m).

– We now apply the kernelization algorithm to obtain polynomial kernels for
each instance of Q that is output by the cross-composition. Note that there
are polynomially many instances, and each instance after kernelization is
also polynomial in size.

– These instances can now be converted back to SAT instances, which can
be combined in a straightforward manner to a single instance reflecting the
Boolean OR of the original sequence of instances.

Having established what a cross-composition algorithm is, and why it implies
kernel lower bounds, we now state some applications of this technique. In [11],
the problems considered include p-Chromatic Number and p-Clique param-
eterized by vertex cover number and p-Feedback Vertex Set parameterized
by deletion distance to cluster graphs or co-cluster graphs.

In the case of p-Clique it was already known [9] that the problem does not
admit a polynomial kernel parameterized by the treewidth of the graph; since
the vertex cover number is at least as large as the treewidth, this is a stronger
result. For the unweighted p-Feedback Vertex Set problem, which admits a
polynomial kernel parameterized by the target size of the feedback set [16, 60],
it can be shown, using cross-composition, that there is no polynomial kernel for
the parameterization by deletion distance to cluster graphs or co-cluster graphs.

6.2 Finer Lower Bounds

In [23], the kernel lower bound established by Theorem 8 was generalized further
to provide for lower bounds based on different polynomial functions for the
kernel size. The OR of a language L is the language OR(L) that consists of all
tuples (x1, . . . , xt) for which there is an i ∈ {1, . . . , t} with xi ∈ L. Instance
x = (x1, . . . , xt) for OR(L) has two parameters: the length t of the tuple and the
maximum bitlength s = maxi |xi| of the individual instance for L. The following
lemma was established in [23] to prove conditional lower bounds on the kernel
sizes.

Lemma 10 ([23]). Let Π be a problem parameterized by k and let L be an NP-
hard problem. Assume that there is a polynomial-time mapping reduction f from
OR(L) to Π and a number d > 0 with the following property: given an instance
x = (x1, . . . , xt) for OR(L) in which each xi has size at most s, the reduction
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produces an instance f(x) for whose parameter k is at most t
1
d+o(1)·poly(s). Then

L does not have kernels of size O(kd−ε) for any ε > 0 unless coNP ⊆ NP/poly.

Bodlaender et al. [9] formulated this method without the dependency on t.
This suffices to prove polynomial kernel lower bounds since d can be chosen as
an arbitrarily large constant. It was observed in [23] that the proofs in [9, 38] can
be easily adapted to obtain the formulation above, and that it can be generalized
to an oracle communication setting. See [23, 22] for more details.

We describe an application of the lemma above to the problem of p-Vertex
Cover in graphs, where we have d = 2. Following the presentation in [22], we set
L to be the p-Multicolored Biclique problem, where the input is a bipartite
graph B on the vertex set U ∪ W , an integer k, and partitions of U and W
into k parts, namely (U1, . . . , Uk) and (W1, . . . ,Wk), respectively. We wish to
decide if B contains a biclique Kk,k that has one vertex from each Ui and Wi

for 1 ≤ i ≤ k. This is a problem on bipartite graphs and it is NP-complete [22].

Theorem 11 ([23, 22]). p-Vertex Cover does not have kernels of size O(k2−ε)
unless coNP ⊆ NP/poly.

Proof. We apply Lemma 10 where we set L to be p-Multicolored Biclique.
Given an instance (B1, . . . , Bt) for OR(L), we can assume that every instance
Bi has the same number k of groups in the partitions and every group in every
instance Bi has the same size n: by simple padding arguments. Furthermore, we
can assume that

√
t is an integer. In the following, we refer to the t instances of

p-Multicolored Biclique in the OR(L) instance as B(i,j) for 1 ≤ i; j ≤
√
t;

let U(i,j) and W(i,j) be the two bipartite classes of B(i,j) .

First, we modify each instance B(i,j) in such a way that U(i,j) and W(i,j)

become complete k-partite graphs: if two vertices U(i,j) or two vertices in W(i,j)

are in different groups, then we make them adjacent. It is clear that there is a
2k-clique in the new graph B′(i,j) if and only if there is a correctly partitioned

Kk,k in B(i,j). We construct a graph G by introducing 2
√
t sets (U1, . . . , U

√
t),

W 1, . . . ,W
√
t of kn vertices each. For every 1 ≤ i ≤ j ≤

√
t, we copy the graph

B′(i,j) to the vertex set U i ∪W j by mapping U(i,j) to U i and W(i,j) to W j . Note

that U(i,j) and W(i,j) induces the same complete k-partite graph in B′(i,j) for

every i and j, thus this copying can be done in such a way that G[U i] receives
the same set of edges when copying B′(i,j) for any j (and similarly for G[W j ]).

Therefore, G[U i ∪W j ] is isomorphic to B′(i,j) for every 1 ≤ i ≤ j ≤
√
t.

It can be verified that G has a 2k-clique if and only if at least one B′(i,j) has

a 2k-clique (and therefore at least one B(i,j) has a correctly partitioned Kk,k).

Let N = 2
√
tkn be the number of vertices in G. Note that N = t1/2 · poly(s),

where s is the maximum bitlength of the t instances in the OR(L) instance. The
graph G has a 2k-clique if and only if its complement G has a vertex cover of
size N − 2k. Thus OR(L) can be reduced to an instance of p-Vertex Cover
with parameter at most t1/2 · poly(s), as required. ut
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6.3 Co-Nondeterminism in Compositions

In [50], the notion of co-nondeterministic composition is introduced, and it
is shown that this concept excludes polynomial kernels, assuming coNP 6⊆
NP/poly. The technique was applied to show that the Ramsey(k) problem
does not admit a polynomial kernel. This is an interesting question posed by Rod
Downey — and it asks if the following combination of the well-known Clique
and Independent Set, known to be NP-complete and FPT, admits a polyno-
mial kernel.

Ramsey(k)
Instance: An undirected graph G and a non-negative integer k.

Parameter: k.
Problem: Does G contain an independent set or a clique of size k?

Unlike for p-Longest Path [9] (see also Section 5), the disjoint union of t
instances of Ramsey(k) does not work satisfactorily as a composition algorithm
(and neither would a join of the instances) as it would contain independent sets
of size ω(t). The intricate Packing Lemma due to Dell and van Melkebeek [23,
Lemma 1], although designed in a different context, does not seem to be applica-
ble either as it constructs an n-partite graph containing independent sets of size
n which cannot be bounded in O(log t) when t := t(n) is polynomially-bounded.
Generally, it appears to be unlikely that one could pack the instances in such a
way that solutions are confined to a part representing a single original instance.

In the context of establishing lower bounds for this problem, the notion of co-
nondeterminism in compositions was formulated. A “co-nondeterministic” com-
position is formally defined as follows:

Definition 8. Let Q ⊆ Σ∗ × N . A co-nondeterministic polynomial-time algo-
rithm C is a coNP composition for Q if there is a polynomial p such that on input
of t instances (x1, k), . . . , (xt, k) ∈ Σ∗×N the algorithm C takes time polynomial
in Σt

i=1|xi| and outputs on each computation path an instance (y, k′) ⊆ Σ∗ ×N
with k′ ≤ to(1)p(k) and such that the following holds:

– If at least one instance (xi, k) is a yes-instance then all computation paths
lead to the output of a yes-instance (y, k′).

– Otherwise, if all instances (xi, k) are no-instances, then at least one compu-
tation path leads to the output of a no-instance.

The main tool for establishing that the existence of a coNP composition for
a parameterized problem implies a polynomial kernel lower bound for it is a
lemma due to Dell and van Melkebeek [23].

It turns out that the combination of a co-nondeterministic composition and
a polynomial kernel for a parameterized problem (whose classical version is NP-
omplete) implies the existence of an an oracle communication protocol of a
suitable kind. This further implies that the corresponding classical problem is in
coNP/poly, and that finally leads us to the conclusion that NP ⊆ coNP/poly,
establishing the lower bound.
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6.4 The AND Conjecture

As we explained in Section 5, the failing of the AND conjecture did not have
any significant implications in classical complexity. If it did have a connection
analogous to the one that is enjoyed by the OR conjecture, then this would have
several implications in settling the status of the kernelization complexity of a
number of problems, to the extent that we make assumptions that are reasonable
in the context of classical complexity. For example, in [20], it is shown that p-
Edge Clique Cover has no polynomial kernel unless the AND conjecture
fails. A number of AND-based-compositions exist for graph layout problems
like p-Treewidth, p-Pathwidth, p-Cutwidth and other problems like p-
Independent Set, p-Dominating Set when parameterized by the treewidth
of the input graph. A more comprehensive discussion can be found in [9]. With
this new development, all these problems do not have polynomial kernels unless
NP ⊆ coNP/poly.

In a talk titled On the Hardness of Compressing an AND of SAT Instances,
Andrew Drucker revealed that efficient AND-compression would also imply that
NP ⊆ coNP/poly. To prove this result (and some extensions), any compression
scheme is interpreted as a communication channel so as to exploit a certain
bottleneck. This entails a new method to “disguise” information being fed into
a compressive mapping. At the time of this writing, this work is unpublished,
but the details that are available can be found in [28].

7 Conclusion and Discussion

In this section we mention several directions of possible development of kernel-
ization.

Parameterization Vs Parameterizations. In parameterized complexity there are
many reasonable possibilities to “parameterize a problem”. For an example for a
graph optimization problem a parameter could be the solution size, the structure
of the graph (like treewidth or pathwidth), distance of the graph from some
polynomially solvable subclasses (for an example deleting at most k vertices
makes the graph interval). Other parameters could be obtained by analyzing
the hardness proof, or analyzing the data or the dimension. We refer to the
survey of Niedermeier [57] for more detailed exposition on this. Bodlaender and
Jansen [47] parameterized p-Vertex Cover by the size of a feedback vertex
set. The reason for this parameterization of the p-Vertex Cover is interesting
because the minimum size of a feedback vertex is always at most the size of
the vertex cover number. It was shown in [47] that this parameterized problem
admits a cubic kernel. See [11, 12, 47, 48] for other studies of kernelization for
parameterizing one problem by the solution to the other problem. Parameterizng
a graph optimization problem with other graph optimization problem like vertex
cover number, max-leaf number have been studied before from the algorithmic
perspective [32] but so far there are very few results from the view point of
kernelization complexity.
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F-Deletion problem. Let F be a finite set of graphs. In an p-F-Deletion prob-
lem, we are given an n-vertex graph G and an integer k as input, and asked
whether at most k vertices can be deleted from G such that the resulting graph
does not contain a graph from F as a minor. We refer to such subset as F-hitting
set. The p-F-Deletion problem is a generalization of several fundamental
problems. For example, when F = {K2}, a complete graph on two vertices, this
is p-Vertex Cover. When F = {C3}, a cycle on three vertices, this is the
p-Feedback Vertex Set problem. It is known that p-Vertex Cover and
p-Feedback Vertex Set admit polynomial kernels [17, 60]. It was shown in
[36] that when F is a graph with two vertices connected by constant number of
parallel edges, then p-F-Deletion also admits a polynomial kernel. Recently,
it has been shown that p-F-Deletion admits a polynomial kernel whenever
F contains a planar graph [35]. This generalizes several results in the area in-
cluding for p-Vertex Cover, p-Feedback Vertex Set and p-Pathwidth
1-Deletion. Finally, an interesting direction for further research here is to in-
vestigate p-F-Deletion when none of the graphs in F is planar. The most
interesting case here is when F = {K5,K3,3} aka the Vertex Planarization
problem. Surprisingly, we are not aware even of a single case of p-F-Deletion
with F containing no planar graph admitting a polynomial kernel.

Kernelization Lower Bounds. It is known that p-Leaf Out-Branching admits
n independent kernels of size O(k3) [33]. It is not a kernel in the usual “many to
one” sense, but it is a kernel in the “one to many” sense. We can generalize the
notion of many to one kernels to Turing kernelization. In order to define this we
first define the notion of t-oracle.

Definition 9. A t-oracle for a parameterized problem Π is an oracle that takes
as input (I, k) with |I| ≤ t, k ≤ t and decides whether (I, k) ∈ Π in constant
time.

Definition 10. A parameterized problem Π is said to have g(k)-sized turing
kernel if there is an algorithm which given an input (I, k) together with a g(k)-
oracle for Π decides whether (I, k) ∈ Π in time polynomial in |I| and k. |x′|, k′ ≤
g(k).

Observe that both the well known notion of kernels and many to one kernels
are special cases of turing kernelization. In particular, many to one kernels are
equivalent to turing kernels where the kernelization algorithm is only allowed to
make one oracle call and must return the same answer as the oracle.

Problem 1. Is there a framework to rule out the possibility of having one to
many or Turing kernels similar to the framework developed in [9, 38]?

Problem 2. Which other problems admit a Turing kernelization like the quadratic
kernels for k-Leaf Out-Branching and k-Leaf Out-Tree? Does the prob-
lem of finding a path of length at most k admit a Turing kernel (even on planar
graphs)?
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Problem 3. Does there exist a problem for which we do not have a linear many-
to-one kernel, but does have linear kernels from the viewpoint of Turing kernel-
ization?

Recently, there has been an attempt to answer the first question in [46] by
organizing problems into complexity classes which are closed under polynomial
parameter transformations. It is shown that many of the problems which are
known not to have polynomial kernels unless CoNP ⊆ NP/poly are equivalent
with respect to Turing kernels. Specifically, either all of them have Turing kernels
or all of them do not. The problems belonging to this class include Connected
Vertex Cover and Min Ones Sat. Interestingly, Longest Path is not shown
to belong to this class, leaving some hope that the problem might have a Turing
kernel.

We conclude the survey with the following concrete open problem.

Problem 4. Does p-Directed Feedback Vertex Set admit a polynomial
kernel?
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