
TREE DELETION SET HAS A POLYNOMIAL KERNEL
(BUT NO OPTO(1) APPROXIMATION)∗

ARCHONTIA C. GIANNOPOULOU† , DANIEL LOKSHTANOV‡ , SAKET SAURABH§, AND

ONDŘEJ SUCHÝ¶

Key words. Tree Deletion Set, Feedback Vertex Set, Kernelization, Linear Equations

AMS subject classifications. F.2.2, G.2.2

Abstract. In the Tree Deletion Set problem the input is a graph G together with an integer k.
The objective is to determine whether there exists a set S of at most k vertices such that G \ S is a
tree. The problem is NP-complete and even NP-hard to approximate within any factor of OPTc for
any constant c. In this paper we give an O(k5) size kernel for the Tree Deletion Set problem. An
appealing feature of our kernelization algorithm is a new reduction rule, based on systems of linear
equations, that we use to handle the instances on which Tree Deletion Set is hard to approximate.

1. Introduction. In the Tree Deletion Set problem we are given as input
an undirected graph G and integer k, and the task is to determine whether there
exists a set S ⊆ V (G) of size at most k such that G \ S is a tree, that is, a connected
acyclic graph. This problem was first mentioned by Yannakakis [27] and is related to
the classical Feedback Vertex Set problem. Here input is a graph G and integer
k and the goal is to decide whether there exists a set S on at most k vertices such
that G \ S is acyclic. The only difference between the two problems is that in Tree
Deletion Set G \ S is required to be connected, while in Feedback Vertex Set
it is not. Both problems are known to be NP-complete [9, 27].

Despite the apparent similarity between the two problems their computational
complexities differ quite dramatically. In particular, Feedback Vertex Set admits
a 2-approximation algorithm, while Tree Deletion Set is known to not admit any
approximation algorithm with ratio O(n1−ǫ) for any ǫ > 0, unless P = NP [1, 27]. With
respect to parameterized algorithms, the two problems exhibit more similar behavior.
Indeed, some of the techniques that yield fixed parameter tractable algorithms for
Feedback Vertex Set [4, 5] can be adapted to also work for Tree Deletion
Set [23].

It is also interesting to compare the behavior of the two problems with respect to
polynomial time preprocessing procedures. Specifically, we consider the two problems
in the realm of kernelization. We say that a parameterized graph problem admits a
kernel of size f(k) if there exists a polynomial time algorithm, called a kernelization

∗A PRELIMINARY VERSION OF THIS PAPER HAS APPEARED IN THE PROCEEDINGS
OF FSTTCS 2014 [10].

†Institute of Informatics, University of Warsaw, Warsaw, Poland.
Email: archontia.giannopoulou@gmail.com. The research of this author leading to these re-
sults has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959.

‡Department of Informatics, University of Bergen, Norway. Email: daniello@ii.uib.no. The re-
search of this author was supported by the Bergen Research Foundation and the University of Bergen
through project “BeHard”.

§The Institute of Mathematical Sciences, Chennai, India. Email: saket@imsc.res.in. The research
of this author was supported by the European Research Council through Starting Grant 306992
Parameterized Approximation.

¶Department of Theoretical Computer Science, Faculty of Information Technology, Czech Tech-
nical University in Prague, Czech Republic. Email: ondrej.suchy@fit.cvut.cz. The research of this
author was partially supported by the grant 14-13017P of the Czech Science Foundation.

1

mailto:archontia.giannopoulou@gmail.com
mailto:daniello@ii.uib.no
mailto:saket@imsc.res.in
mailto:ondrej.suchy@fit.cvut.cz

algorithm, that given as input an instance (G, k) to the problem outputs an equivalent
instance (G′, k′) with k′ ≤ f(k) and |V (G′)| + |E(G′)| ≤ f(k). If the function f is
a polynomial, we say that the problem admits a polynomial kernel. We refer to
the surveys [11, 20, 16] for an introduction to kernelization. For the Feedback
Vertex Set problem, Burrage et al. [3] gave a kernel of size O(k11). Subsequently,
Bodlaender [2] gave an improved kernel of size O(k3) and finally Thomassé [24] gave a
kernel of size O(k2). On the other hand the existence of a polynomial kernel for Tree
Deletion Set was open until this work. It seems difficult to directly adapt any of
the known kernelization algorithms for Feedback Vertex Set to Tree Deletion
Set. Indeed, Raman et al. [23] conjectured that Tree Deletion Set does not admit
a polynomial kernel.

The main reason to conjecture that Tree Deletion Set does not admit a poly-
nomial kernel stems from an apparent relation between kernelization and approxima-
tion algorithms (cf. [21, page 15]). Most problems that admit a polynomial kernel, also
have approximation algorithms with approximation ratio polynomial in OPT (cf. [15,
page 2]). Here OPT is the value of the optimum solution to the input instance. In fact
many kernelization algorithms are already approximation algorithms with approxima-
tion ratio polynomial in OPT. This relation between approximation and kernelization
led to a conjecture [22, 7] that Vertex Cover does not admit a kernel with (2− ǫ)k
vertices for ǫ > 0, as this probably would yield a (2−ǫ)-approximation for the problem
thus violating the Unique Games Conjecture [14].

It is easy to show that an approximation algorithm for Tree Deletion Set
with ratio OPTO(1) would yield an approximation algorithm for the problem with
ratio O(n1−ǫ) thereby proving P = NP. In particular, suppose Tree Deletion Set
had an OPTc algorithm for some constant c. Since the algorithm will never output a
set of size more than n, the approximation ratio of the algorithm is upper bounded

by min(OPTc, n
OPT) ≤ n1− 1

c+1 . This rules out approximation algorithms for Tree

Deletion Set with ratio OPTO(1), and makes it very tempting to conjecture that
Tree Deletion Set does not admit a polynomial kernel.

In this paper we show that Tree Deletion Set admits a kernel of size O(k5).
To the best of our knowledge this is among the few examples of problems that do
admit a polynomial kernel, but do not admit any approximation algorithm with ratio
OPTO(1) under plausible complexity assumptions. The only other example we are
aware of is the problem Min Ones 1-in-3 Sat which is a special case of the CSP
studied by Kratsch and Wahlström [17].

Our Methods. The starting point of our kernel are known reduction rules for
Feedback Vertex Set adapted to our setting. We also adapt the strategy to model
some “pendant parts” of the graph by weight on vertices during the kernelization
process to simplify the structure of the graph. By applying these graph theoretical
reduction rules we can show that there is a polynomial time algorithm that given an
instance (G, k) of Tree Deletion Set outputs an equivalent instance (G′, k′) and
a partition of V (G′) into sets B, T , and I such that

1. |B| = O(k2),
2. |T | = O(k4),
3. I is an independent set, and
4. for every v ∈ I, NG′(v) ⊆ B, and NG′(v) is a double clique.

Here a “double clique” means that for every pair x, y of vertices in NG′(v), there are
two edges between them. Thus we will allow G′ to be a multigraph, and consider a

2

double edge between two vertices as a cycle. In order to obtain a polynomial kernel
for Tree Deletion Set it is sufficient to reduce the set I to size polynomial in k.

For every vertex v ∈ I and tree deletion set S we know that |NG′(v) \ S| ≤ 1,
since otherwise G′ \ S would contain a double edge. Further, if v /∈ S then v has to
be connected to the rest of G′ \ S and hence |NG′(v) \ S| = 1, implying that v is a
leaf in G′ \ S. Therefore G′ \ (S ∪ I) must be a tree. We can now reformulate the
problem as follows.

For each vertex u in G′ \ I we have a variable xu which is set to 0 if u ∈ S and
xu = 1 if u /∈ S. For each vertex v ∈ I we have a linear equation

∑
u∈N(v) xu = 1.

The task is to determine whether it is possible to set the variables to 0 or 1 such that
(a) the subgraph of G′ induced by the vertices with variables set to 1 is a tree and
(b) the number of variables set to 0 plus the number of unsatisfied linear equations is
at most k.

At this point it looks difficult to reduce I by graph theoretic means, as perform-
ing operations on these vertices correspond to making changes in a system of linear
equations. In order to reduce I we prove that there exists an algorithm that given a
set S of linear equations on n variables and an integer k in time O(|S|nω−1k) outputs
a set S ′ ⊆ S of at most (n + 1)(k + 1) linear equations such that any assignment
of the variables that violates at most k linear equations of S ′ satisfies all the linear
equations of S \ S ′. To reduce I we simply apply this result and keep only the ver-
tices of I that correspond to linear equations in S ′. We believe that our reduction
rule for linear equations will find more applications in the future and, while not as
involved, adds a little to the toolbox of algebraic reduction rules for kernelization (see,
for example, [6, 18, 19, 25]).

2. Basic Notions. For every positive integer n we denote [n] = {1, 2, . . . , n},
and for every set S we denote by

(
S

2

)
the 2-subsets of S. N denotes the set of positive

integers, and R denotes the real numbers.

For a graph G = (V,E), we use V (G) to denote its vertex set V and E(G) to
denote its edge set E. If S ⊆ V (G) we denote by G\S the graph obtained from G after
removing the vertices of S. In the case where S = {u}, we abuse notation and write
G\u instead of G\ {u}. For S ⊆ V (G), the neighborhood of S in G, NG(S), is the set
{u ∈ V (G) \ S | ∃v ∈ S : {u, v} ∈ E(G)}. Again, in the case where S = {v} we abuse
notation and write NG(v) instead of NG({v}). The degree of vertex v denoted deg(v)
is the number of edges incident to it, loops being counted twice. A graph is connected
if there is a path between any pair of its vertices. A connected component in a graphG
is a set of verticesH such that G[H] is connected andH is maximal with this property.
We use C(G) to denote the set of the connected components of G. Given a graph G
and a set S ⊆ V (G), we say that S is a feedback vertex set of G if the graph G \ S
does not contain any cycles. In the case where G \ S is also connected we call S tree
deletion set of G. Moreover, given a set S ⊆ V (G), we say that S is a double clique
of G if every pair of vertices in S is joined by a double edge.

Given two vectors x and y we denote by dH(x, y) the Hamming distance of x
and y, that is, dH(x, y) is equal to the number of positions where the vectors differ.
For every k ∈ N we denote by 0k the k-component vector (0, 0, . . . , 0). When k is
implied from the context we abuse notation and denote 0k as 0.

For a rooted tree T and vertex set M in V (T) the least common ancestor-closure
(LCA-closure) LCA-closure(M) is obtained by the following process. Initially,
set M ′ = M . Then, as long as there are vertices x and y in M ′ whose least common

3

ancestor w is not in M ′, add w to M ′. Finally, output M ′ as the LCA-closure of M .

Lemma 2.1 (Fomin et al. [8]). Let T be a tree and M ⊆ V (T). If M ′ =
LCA-closure(M) then |M ′| ≤ 2|M | and for every connected component C of T \M ′,
|NT (C)| ≤ 2.

3. A polynomial kernel for Tree Deletion Set. In this section we prove a
polynomial size kernel for a weighted variant of the Tree Deletion Set problem.
More precisely the problem we will study is the following.

Weighted Tree Deletion Set (wTDS)
Instance: A graph G, a function w : V (G) → N, and a non-negative

integer k.
Parameter: k.
Question: Does there exist a set S ⊆ V (G) such that

∑
v∈S w(v) ≤ k and

G \ S is a tree?

3.1. Known Reduction Rules for wTDS. In this subsection we state some
already known reduction rules for wTDS that are going to be needed during our
proofs.

Reduction Rule 1 (Raman et al. [23]). If the input graph is disconnected, then
delete all vertices in connected components of weight less than (

∑
v∈V w(v)) − k and

decrease k by the weight of the deleted vertices.

Observation 1 (Raman et al. [23]). If
(∑

v∈V w(v)
)
> 2k, then after the exhaus-

tive application of Reduction Rule 1 the graph has at most one connected component.

Reduction Rule 2 (Raman et al. [23]). If v is of degree 1 and u is its only
neighbor, then delete v and increase the weight of u by the weight of v.

Reduction Rule 3 (Raman et al. [23]). If v0, v1, . . . , vl, vl+1 is a path in the
input graph, such that l ≥ 3 and deg(vi) = 2 for every i ∈ [l], then replace the vertices
v1, . . . , vl by two vertices u1 and u2 with edges {v0, u1}, {u1, u2}, and {u2, vl+1} and

with w(u1) = min{w(vi) | i ∈ [l]} and w(u2) =
(∑l

i=1 w(vi)
)
− w(u1).

Given a vertex x of G, an x-flower of order k is a set of k cycles pairwise inter-
secting exactly in x. If G has an x-flower of order k + 1, then x should be in every
tree deletion set of weight at most k as otherwise we would need at least k+1 vertices
to hit all cycles passing through x. Thus the following reduction rule is safe, that is,
the instance obtained after the application of the reduction rule is equivalent to the
original instance.

Reduction Rule 4. Let (G,w, k) be an instance of wTDS. If G has an x-flower
of order at least k+1, then remove x and decrease the parameter k by the weight of x.
The resulting instance is (G \ {x}, w|V (G)\{x}, k − w(x)).

The following theorem allows us to apply Reduction Rule 4 exhaustively in poly-
nomial time. A version of the theorem appears also in [2], but the version given in [24]
is significantly more powerful.

Theorem 3.1 (Thomassé [24]). Let G be a multigraph and x be a vertex of G
without a self loop. Then in polynomial time we can find an x-flower of order k + 1
or, if such an x-flower does not exist, a set of vertices Z ⊆ V (G)\ {x} of size at most
2k intersecting every cycle containing x.

Reduction Rule 5. Let (G,w, k) be an instance of wTDS. If v is a vertex such
that w(v) > k + 1, then let w(v) = k + 1.

An instance (G,w, k) of wTDS is called semi-reduced if none of the Reduction
Rules 1–5 can be applied. By Observation 1 such an instance is either connected or

4

the total weight of all vertices is at most 2k and hence we have a kernel. Therefore,
for the rest of the paper we assume that the instance is connected.

Lemma 3.2. If (G,w, k) is an instance of wTDS reduced with respect to Reduc-
tion Rule 5, then there is an equivalent instance (G′, k) of Tree Deletion Set such
that |V (G′)| ≤ (k + 1)|V (G)| and |E(G′)| ≤ |E(G)|+ |V (G′)|.

Proof. The graph G′ is obtained by introducing, for each v ∈ V (G), w(v) − 1
vertices pending to v. The equivalence of the instances follows from Reduction Rule 2.
The number of vertices follows from the fact that Reduction Rule 5 does not apply
and, thus, w(v) ≤ k + 1 for every v. Finally, the number of edges follows from the
construction.

Theorem 3.3 (Bafna et al. [1]). There is an O(min{|E(G)| log |V (G)|, |V (G)|2})
time algorithm that given a graph G that admits a feedback vertex set of size at most k
outputs a feedback vertex set of G of size at most 2k.

3.2. A structural decomposition. In this subsection we decompose an in-
stance (G,w, k) of wTDS to an equivalent instance (G′, w′, k′) where V (G′) is parti-
tioned into three sets B, T , and I, such that the size of B and T is polynomial in k
and I is an independent set. Notice then that in order to obtain a polynomial kernel
for wTDS what remains is to bound the size of the independent set I. This will be
done in the next section. In this subsection we obtain the following result.

Lemma 3.4. There is a polynomial time algorithm that given a semi-reduced
instance (G,w, k) of wTDS either correctly decides that (G,w, k) is a no-instance or
outputs an equivalent instance (G′, w′, k′) and a partition of V (G′) into sets B, T ,
and I such that
(i) |B| ≤ 8k2 + 2k,
(ii) T induces a forest and |T | ≤ 240k4 + 272k3 + 65k2 − 19k − 7,
(iii) I is an independent set, and
(iv) for every v ∈ I, NG′(v) ⊆ B, |NG′(v)| ≤ 2k + 1, and NG′(v) is a double clique.

For an example of the structure of the graph G′ obtained from Lemma 3.4, see
Figure 1.

v

N(v)

I

B

T

N(H)

H

Fig. 1. The vertex set of the graph G′ is partitioned into a set B, a set T where every connected
component H of T is a tree, and a set I. The set I induces an independent set and for every vertex
v ∈ I, NG′ (v) ⊆ B and NG′ (v) induces a double clique.

We split the proof of this lemma into several auxiliary lemmata. We start by

5

identifying the set B (See also Figure 2).

G \B

H

.F ̂Q

Fig. 2. The vertex set of the graph G is partitioned into a set B = F ∪ Q̂, and the connected
components of G \B.

Lemma 3.5. There is a polynomial time algorithm that given a semi-reduced
instance (G,w, k) of wTDS either correctly decides that (G,w, k) is a no-instance or

finds two sets F and Q̂ such that, denoting B = F ∪ Q̂, the following holds.
(i) F is a feedback vertex set of G.

(ii) Each connected component of G \B has at most 2 neighbors in Q̂.
(iii) For every H ∈ C(G \ B) and y ∈ B, |NG(y) ∩ H | ≤ 1, that is, every vertex y

of F and every vertex y of Q̂ have at most one neighbor in every connected
component H of G \B.

(iv) |B| ≤ 8k2 + 2k.

Proof. First notice that every tree deletion set of G of weight at most k is also
a feedback vertex set of G of size at most k in the underlying non-weighted graph.
Thus, by applying Theorem 3.3 we may find in polynomial time a feedback vertex
set F of G. If |F | > 2k, then output NO. Otherwise, |F | ≤ 2k.

As the instance (G,w, k) is semi-reduced, Reduction Rule 4 is not applicable,
and G does not contain an x-flower of order k + 1 for any x ∈ F . Therefore, from
Theorem 3.1, we get that for every x ∈ F we can find in polynomial time a set
Qx ⊆ V (G) \ {x} intersecting every cycle that goes through x in G and such that
|Qx| ≤ 2k. Let Q =

⋃
x∈F Qx.

Let C(G \ F) = {H1, H2, . . . , Hl} and note that, as F is a feedback vertex set
of G, each G[Hi] is a tree. From now on, without loss of generality we will assume
that each G[Hi], i ∈ [l], is rooted at some vertex vi ∈ Hi.

Let Qi = Hi ∩ Q, i ∈ [l]. In other words, Qi denotes the set of vertices of Hi

that are also vertices of Q, i ∈ [l]. Let also Q̂i = LCA-closure(Qi), that is, let Q̂i

denote the least common ancestor-closure of the set Qi in the tree G[Hi]. Finally, let

Q̂ =
⋃

i∈[l] Q̂i and note that Q̂ ∩ F = ∅.

Let us now prove that F and Q̂ have the claimed properties. First of all, F is a
feedback vertex set by construction, proving (i). Second, since for each x in F we have

|Qx| ≤ 2k, we have |Q| ≤ 4k2, and from Lemma 2.1 we get that |Q̂| = |
⋃

i∈[l] Q̂i| =∑
i∈[l] |Q̂i| ≤ 2

∑
i∈l |Qi| ≤ 2|Q| ≤ 8k2. Together with |F | ≤ 2k this proves (iv).

Third, from the construction of Q̂ and from Lemma 2.1 we get the property (ii).
Let us now prove (iii). Let y ∈ B and H ∈ C(G \B) and assume to the contrary

6

that |NG(y) ∩H | ≥ 2. Then, as G[H] is connected, the graph G[H ∪ {y}] contains a
cycle that goes through y. If y ∈ F , we get a contradiction to the facts that G[H∪{y}]
is a subgraph of G \Qy and the set Qy intersects every cycle that goes through y. If

y ∈ Q̂, we get a contradiction, since G[H ∪ {y}] is a subgraph of G \ F (recall that

Q̂ ∩ F = ∅) and G \ F is acyclic.
The next lemma shows that if B is as in the previous lemma, then the size of

connected components in the rest of the graph is bounded.
Lemma 3.6. If (G,w, k) and B are as in Lemma 3.5 and H is a connected

component of G \B, then |H | ≤ 12k + 7.
Proof. Let H be a connected component of G \ B. First recall that, from

Lemma 3.5 every vertex of B has at most 1 neighbor in H and H has at most 2
neighbors in Q̂. This implies that there are at most |F | + 2 ≤ 2k + 2 vertices in H
that have a neighbor in G \H , and in particular in B. We call this set of vertices N .
Let H1 be the set of vertices of degree 1 in G[H], that is, the leaves of G[H]. From Re-
duction Rule 2 it follows that for every v ∈ H1, degG(v) ≥ 2 and thus, asH ∈ C(G\B),
v has at least one neighbor in B. Therefore, H1 ⊆ N and |H1| ≤ 2k + 2.

Let now H3 be the set of vertices of degree at least 3 in G[H]. For H3 it is easy
to see that, by standard combinatorial arguments on trees, |H3| ≤ |H1| − 1 ≤ 2k+ 1.

Finally, let P be the set N ∪H3 and E be the set of paths in G[H] with endpoints
in P . Again, as |P | ≤ 4k+3, it holds that |E| ≤ 4k+2. Observe that by construction
of E all the inner vertices of the paths in E have degree exactly 2. Therefore, from
Reduction Rule 3 we get that every path in E contains at most 2 vertices. This implies
that |H \P | ≤ 8k+4. To conclude, as |H | = |H \P |+ |P |, we get that |H | ≤ 12k+7.

Let x, y be two vertices of B. We say that the pair {x, y} is in P≤k+1 if there
are at most k + 1 connected components H of G \B with {x, y} ⊆ NG(H) and that
{x, y} is in P≥k+2 otherwise. Now we add to G a double edge between every pair

in P≥k+2 to obtain the graph Ĝ. The next lemma shows that the resulting instance
is equivalent to the original one.

Lemma 3.7. The instance (Ĝ, w, k), where Ĝ is as defined above, is equivalent
to (G,w, k).

Proof. Let {x, y} ∈ P≥k+2. Notice that each connected component H of G \ B
with {x, y} ⊆ NG(H) provides a separate path between x and y. Observe then that if
neither x nor y belong to a tree deletion set D of G we need at least k+1 vertices to
hit all the cycles, since otherwise there are at least two components H1, H2 ∈ C(G\B)
with {x, y} ⊆ (NG(H1)∩NG(H2)) and (H1∪H2)∩D = ∅ and thus the graph induced
by H1 ∪H2 ∪ {y, y′} contains a cycle. This implies that (G,w, k) is a yes-instance if
and only if at least one of the vertices x and y is contained in every tree deletion set
of G of weight k.

The following lemma shows that there are only few connected components of G\B

having a neighborhood that is not a double clique in Ĝ.
Lemma 3.8. If (G,w, k) and B are as in Lemma 3.5 and Ĝ as defined above,

then there is a set CT ⊆ C(G \B) such that
(i) |CT | ≤ 20k3 + 11k2 − k − 1,

(ii) for every H in C(G \ B) \ CT , we have NG(H) is a double clique in Ĝ and

|NG(H) ∩ Q̂| ≤ 1.
Proof. For x, y ∈ B we denote S(x, y) = {H ∈ C(G\B) | {x, y} ⊆ NG(H)}. Let us

set CT =
⋃

{x,y}∈P≤k+1 S(x, y). Let us now assume that there isH in C(G\B)\CT , and

two vertices x and y in NG(H) that are not joined by a double edge. By construction

7

of the graph Ĝ, this implies that {x, y} ∈ P≤k+1. But this implies that H is in CT ,

a contradiction. Furthermore, for every x, y ∈ Q̂ we have |S(x, y)| ≤ 1 as otherwise
we would have a cycle in G \ F and F is a feedback vertex set. Thus, if two vertices

x, y ∈ Q̂ belong to NG(H) then, since |S(x, y)| ≤ 1, {x, y} is in P≤k+1 and, therefore,
H is in |CT |. Hence CT satisfies (ii). It remains to prove (i).

Let us first mention that it is easy to see that CT is of polynomial size. Indeed,
we have |CT | = |

⋃
{x,y}∈P≤k+1 S(x, y)| ≤ |B|2(k+ 1) = O(k5). For the purpose of the

more precise size bound let us distinguish three subsets of CT :

T FF =
⋃

{x,y}⊆F∧{x,y}∈P≤k+1
S(x, y)

T Q̂Q̂ =
⋃

{x,y}⊆Q̂∧{x,y}∈P≤k+1
S(x, y)

T FQ̂ =

(⋃
x∈F∧y∈Q̂∧{x,y}∈P≤k+1

S(x, y)

)
\ T Q̂Q̂

Obviously, CT ⊆ (T FF ∪T Q̂Q̂ ∪T FQ̂). Hence, to bound the size of CT it is enough to

bound the sizes of T FF , T Q̂Q̂, and T FQ̂. Note that for every {x, y} ∈ P≤k+1 we have

|S(x, y)| ≤ k + 1. It follows that |T FF | ≤
(
|F |
2

)
(k + 1) ≤

(
2k
2

)
(k + 1) = 2k3 + k2 − k.

Next we claim that |T Q̂Q̂| ≤ |Q̂| − 1 ≤ 8k2 − 1. For every x, y ∈ Q̂ we have
|S(x, y)| ≤ 1 as otherwise we would have a cycle in G \ F and F is a feedback vertex

set. Let AQ be the graph with vertex set Q̂ where two vertices in Q̂ are connected by

an edge if and only if they are the neighbors of a component H ∈ T Q̂Q̂. Hence, the

number of edges of AQ equals |T Q̂Q̂|. We now work towards showing that AQ is a
forest. Indeed, assume to the contrary that there exists a cycle in AQ. Then it is easy

to see that we may find a cycle in the graph Ĥ induced by the components in T Q̂Q̂

which correspond to the edges of the cycle in AQ and their neighborhood in Q̂. Recall

that Q̂ ∩ F = ∅ and therefore Ĥ is a subgraph of G \ F . This contradicts the fact
that F is a feedback vertex set of G. Hence, AQ is a forest and the claim follows.

For the upper bound on T FQ̂, for every x ∈ F we partition the set Q̂ into two
sets R≤1

x and R≥2
x in the following way.

R≤1
x = {y ∈ Q̂ | there is at most 1 component H ∈ T FQ̂ such that {x, y} ⊆ NG(H)}

R≥2
x = {y ∈ Q̂ | {x, y} ∈ P≤k+1 and there exist at least two distinct components

H1, H2 ∈ T FQ̂ such that {x, y} ⊆ NG(H1) ∩NG(H2)}.

Observe that |T FQ̂| ≤
∑

x∈F

(
|R≤1

x |+ |R≥2
x |(k + 1)

)
and for every x ∈ F , it trivially

holds that |R≤1
x | ≤ |Q̂| ≤ 8k2.

Moreover, we claim that for every x ∈ F , |R≥2
x | ≤ k. Indeed, assume to the

contrary that |R≥2
x | ≥ k + 1 for some x ∈ F . Then there exist k + 1 vertices yi ∈ Q̂,

i ∈ [k+ 1], such that for every i there exist two connected components Hi
1 and Hi

2 in

T FQ̂ ⊆ C(G \B) \ T Q̂Q̂ such that {x, y} ⊆ NG(H
i
1) ∩NG(H

i
2). This implies that the

graph induced by the vertex x, the vertices yi, i ∈ [k + 1], and the components Hi
1

and Hi
2, i ∈ [k + 1], contains an x-flower of order k + 1 (notice that, as none of the

graphs belong to T Q̂Q̂, they are pairwise disjoint). This is a contradiction to the fact
that G is semi-reduced. Therefore, for every x ∈ F we have |R≥2

x | ≤ k.

8

Alltogether, we have

|T FQ̂| ≤
∑

x∈F

(
8k2 + k(k + 1)

)
≤ 18k3 + 2k2

and

|CT | ≤ |T FF |+ |T Q̂Q̂|+ |T FQ̂|

≤ (2k3 + k2 − k) + (8k2 − 1) + (18k3 + 2k2)

= 20k3 + 11k2 − k − 1

proving (i).
Let us denote T =

⋃
H∈CT

H . Note that by the properties of the set CT we have

C(Ĝ \ (B ∪ T)) = C(G \B) \ CT . Further, by Lemma 3.6 we have |T | ≤ |CT |(12k+ 7)
and, hence, by Lemma 3.8,

|T | ≤ (20k3 + 11k2 − k − 1)(12k + 7) = 240k4 + 272k3 + 65k2 − 19k − 7.

We now prove that the components of C(G \ B) that are not in CT behave as
single vertices with respect to tree deletion sets.

Lemma 3.9. If there exists a tree deletion set S of Ĝ of weight at most k then
there exists a tree deletion set Ŝ of Ĝ of weight at most k such that for every connected
component H ∈ C(Ĝ \ (B ∪ T)), either H ⊆ Ŝ or H ∩ Ŝ = ∅.

Proof. Recall that for every H ∈ C(Ĝ \ B) \ CT it holds that N
Ĝ
(H) is a double

clique by Lemma 3.8 (ii). Therefore, either N
Ĝ
(H) ⊆ S or there exists a unique vertex

of N
Ĝ
(H) that does not belong to S. Notice that in the case where N

Ĝ
(H) ⊆ S, as

N
Ĝ
(H) is a separator of Ĝ, it trivially follows that either H ⊆ S or V (Ĝ)\H ⊆ S and

we can assume that S ∩H = ∅ as G[H] is a tree. Let us now assume that there exists
a unique vertex w of N

Ĝ
(H) that does not belong to S and that H ∩S 6= ∅. As, from

Lemma 3.5 (iii) every vertex of N
Ĝ
(H) has exactly one neighbor in H it follows that

the graph Ĝ[H ∪ {w}] does not contain a cycle. Moreover, w is a cut vertex of Ĝ \ S

and therefore the graph Ĝ[(V (Ĝ) \ S) ∪ H ∪ {w}] is a tree. Thus in the case where
H ∩ S 6= ∅ we can remove the vertices of H from S without introducing any cycles to
the graph Ĝ[(V (Ĝ) \ S) ∪H ∪ {w}]. Therefore S \H ⊆ S is also a tree deletion set

of Ĝ and this concludes the proof.
Now, let G′ be the graph obtained from Ĝ after contracting every connected

component H of Ĝ\ (B∪T) into a single vertex vH and setting w′(vH) =
∑

v∈H w(v)
and w′(v) = w(v) for every v ∈ (B∪T). We also define I to be the set V (G′)\(B∪T).
We now prove that such a contraction does not affect the instance.

Lemma 3.10. If Ĝ, G′, and w′ are as defined above, then the instances (Ĝ, w, k)
and (G′, w′, k) are equivalent.

Proof. Notice that if (G′, w′, k) is a yes-instance then (Ĝ, w, k) is also a yes-
instance; for every vertex v in the tree deletion set of weight at most k of G′ we
consider the vertex v in the tree deletion set of Ĝ whenever v ∈ B∪T and the vertices
of the connected component that was contracted to v whenever v ∈ I.

Let now Ŝ be a tree deletion set of Ĝ of weight at most k. From Lemma 3.9 we
may assume that for every connected component H of Ĝ \ (B ∪ T) either H ⊆ Ŝ of

H ∩ Ŝ = ∅. Then it is straightforward to see that the vertex set S consisting of the
vertices (B∪T)∩Ŝ and the vertices of I that correspond to the connected components

9

of Ĝ \ (B ∪ T) whose vertices belong to Ŝ is a tree deletion set of G′ of weight equal

to the weight of Ŝ.
Lemma 3.4 now follows directly from Lemmata 3.5–3.10.
Remark 1. Notice that for every pair of vertices in P≥k+2 at least one of them

has to be contained in a tree deletion set. Clearly, some of the common neighbors
of the pair remain untouched and recall that in the final graph we would like those
neighbors to be connected. It might then be tempting to say that among a pair of
vertices in P≥k+2 a solution must remove exactly one of them. This, however, is
not the case as their remaining neighbors might be connected to the rest of the graph
through other vertices of B. Hence it might be the case that both vertices of the pair
are removed.

3.3. Results on Linear Equations. Here we prove some results on linear equa-
tions that are crucial for our kernel. Our purpose is to assign a linear equation to
each one of the vertices in I and then use these results to reduce the size of I. In
particular, let I = {vi | i ∈ [|I|]} and B = {uj | j ∈ [|B|]}. We assign an F-variable xj

to uj, j ∈ [|B|], and a linear equation li over F to vi, i ∈ [|I|], where li is the equation∑
j∈[|B|] αijxj − 1 = 0 and αij = 1 if uj ∈ NG(vi) and 0 otherwise. The next lemmas

will later on indicate which vertices of I we may safely remove from the instance.
Lemma 3.11. Let F be a field. For every matrix M ∈ F

m×n and positive integer k,
there exists a submatrix M ′ ∈ Fm′×n of M , where m′ ≤ n(k + 1), such that for
every x ∈ Fn with dH(M ′ · xT ,0m′

) ≤ k, dH(M · xT ,0m) = dH(M ′ · xT ,0m′

).
Furthermore, the matrix M ′ can be computed in time O(m · nω−1k), where ω is the
matrix multiplication exponent (ω < 2.373 [26]), assuming that the field operations
take a constant time.

Proof. In order to identify M ′ we identify j0+1 ≤ k+1 (non-empty) submatrices
B0, B1, . . . , Bj0 of M , each having at most n rows, in the following way: First, let B0

be a minimal submatrix of M whose rows span all the rows of M , that is, let B0

be a base of the vector space generated by the rows of M , and let also M0 be the
submatrix obtained from M after removing the rows of B0. We identify the rest of
the matrices inductively as follows: For every i ∈ [k], if Mi−1 is not the empty matrix
we let Bi be a minimal submatrix of Mi−1 whose rows span all the rows of Mi−1 and
finally we let Mi be the matrix occurring from Mi−1 after removing the rows of Bi.

We now define the submatrix M ′ of M . Let j0 ≤ k be the greatest integer for
which Mj0−1 is not the empty matrix. Let M ′ be the matrix consisting of the union
of the rows of the (non-empty) matrices B0 and Bi, i ∈ [j0]. As the rank of the
matrices M , Mi, i ∈ [j0], is upper bounded by n, the matrices B0, Bi, i ∈ [j0], have
at most n rows each, and therefore M ′ has at most n(j0+1) ≤ n(k+1) rows. Observe
that if j0 < k then the union of the rows of the non-empty matrices B0, Bi, i ∈ [j0],
contains all the rows of M and thus we may assume that M ′ = M and the lemma
trivially holds. Hence, it remains to prove the lemma for the case where j0 = k, and
therefore M ′ consists of the union of the matrices B0, Bi, i ∈ [k]. As it always holds
that dH(M · xT ,0) ≥ dH(M ′ · xT ,0) it is enough to prove that for every x ∈ Fn

for which dH(M ′ · xT ,0) ≤ k, dH(M · xT ,0) ≤ dH(M ′ · xT ,0). Thus, it is enough
to prove that for every row r of the matrix M ′′ obtained from M after removing
the rows of M ′, it holds that dH(r · xT ,0) = 0. Towards this goal let x ∈ Fn be a
vector such that dH(M ′ ·xT ,0) ≤ k. From the Pigeonhole Principle there exists an i0
such that dH(Bi0 · xT ,0) = 0, that is, if r1, r2, . . . , r|Bi0

| are the rows of Bi0 then

rj · xT = 0, for every j ∈ [|Bi0 |]. Recall however that the row r of M ′′ is spanned by
the rows r1, r2, . . . , r|Bi0

| of Bi0 . Therefore, there exist λj ∈ F, j ∈ [|Bi0 |], such that

10

r =
∑

j∈[|Bi0
|] λjrj . It follows that r · xT =

∑
j∈[|Bi0

|] λj(rj · xT) = 0 and therefore

dH(r · xT ,0) = 0. This implies that dH(M · xT ,0) ≤ dH(M ′ · xT ,0). Finally, for
a rectangular matrix of size d × s, d ≤ s, Ibarra et al. [12] give an algorithm that
computes a maximal independent set of rows (a row basis) in O(dω−1s) time. By
running this algorithm k + 1 times we can find the matrix M ′ in O(mnω−1k) time
and this completes the proof of the lemma.

Lemma 3.12. Let F be a field. There exists an algorithm that given a set S of
linear equations over F on n variables and an integer k outputs a set S ′ ⊆ S of at
most (n+1)(k+1) linear equations over F such that any assignment of the variables
that violates at most k linear equations of S ′ satisfies all the linear equations of S \S ′.
Moreover, the running time of the algorithm is O(|S|nω−1k), assuming that the field
operations take a constant time.

Proof. Let x1, x2, . . . , xn denote the n variables and αij denote the coefficient
of xj in the i-th linear equation of S, i ∈ [|S|], j ∈ [n]. Let also αi(n+1) denote the
constant term of the i-th linear equation of S. In other words, the i-th equation of S
is denoted as αi1x1 +αi2x2 + · · ·+αinxn +αi(n+1) = 0. Finally, let M be the matrix
where the j-element of the i-th row is αij , i ∈ [|S|], j ∈ [n + 1]. From Lemma 3.11,
it follows that for every positive integer k there exists a submatrix M ′ of M with at
most (n+ 1)(k + 1) rows and n + 1 columns such that for every x ∈ Fn+1 for which
dH(M ′ ·xT ,0) ≤ k, dH(M ·xT ,0) = dH(M ′ ·xT ,0) and M ′ can be computed in time
O(|S|nω−1k). Let S ′ be the set of linear equations that correspond to the rows of M ′.
Let then xi = βi, βi ∈ F, i ∈ [n], be an assignment that does not satisfy at most k of
the equations of S ′. This implies that dH(M ′·z,0) ≤ k, where z = (β1, β2, . . . , βn, 1)

T .
Again, from Lemma 3.11, we get that dH(M · z,0) = dH(M ′ · z,0). Thus, the above
assignment satisfies all the linear equations of S \ S ′.

The requirement of constant time operations in field F in the above two lemmata
might seem restrictive with respect to the standard field of reals (or rationals). This
is necessary due to use of the algorithm of Ibarra et al. [12], which given a rectangular
matrix of size d× s, d ≤ s, computes a maximal independent set of rows in O(dω−1s)
time. While this is not needed for our results, for reals we can replace the algorithm
of Ibarra et al. by the following slower, yet still polynomial time procedure.

Start with an empty set B′ of rows and taking the rows of the input matrix one
by one, add them to the set B′ if they are linearly independent of the rows currently
in the set B′. Obviously, this way we obtain a maximal idenpendent set of rows. To
check the linear independence of row r from a set B′ formed by rows r1, . . . , r|B′|, one

has to decide, whether there are λ1, . . . , λ|B′| ∈ R such that
∑|B′|

i=1 λiri = r. However,
this can be formulated as an instance of linear programming, namely whether there
is λ such that B′TλT = r, i.e.,

(
B′T

−B′T

)
λT ≤

(
r
−r

)
.

Here B′T is a matrix having columns rT1 , r
T
2 , · · · , r

T
|B′|. Since the feasibility of linear

programming can be determined in polynomial time in the number of variables and
length of the description [13], this gives polynomial time variants of the above lem-
mata for the field of reals. We would further like to remark here that the reason we
choose to work over a finite field instead of, for example, the rationals is for purely
technical reasons as it permits us to avoid potentially running into numbers that need
exponentially many bits to represent.

11

3.4. The Main Theorem. In this subsection by combining the structural de-
composition of Subsection 3.2 and Lemma 3.12 from Subsection 3.3 we obtain a kernel
for wTDS of size O(k4).

Theorem 3.13. wTDS admits a kernel with O(k4) vertices and edges and
encoding-size O(k4 log k) bits.

Proof. Let (G,w, k) be an instance of wTDS. Without loss of generality we may
assume that it is semi-reduced, G is connected, and that, from Lemma 3.4, V (G) can
be partitioned into three sets B, T , and I satisfying the conditions of Lemma 3.4.
Note that, as G is connected, every vertex of I has at least one neighbor in B. We
construct an instance (G′, w′, k) of wTDS in the following way. Let p be a prime
number such that |B| < p < 2|B|. Such a prime number exists by a Bertrand’s
postulate (proved by Chebyshev in 1850). Let F = GF(p), that is, the Galois field
of order p. It takes at most O(|B|2) = O(k4) time to find p and the multiplicative
inverses in F.

Let I = {vi | i ∈ [|I|]} and B = {uj | j ∈ [|B|]}. We assign an F-variable xj

to uj , j ∈ [|B|], and a linear equation li over F to vi, i ∈ [|I|], where li is the
equation

∑
j∈[|B|] αijxj − 1 = 0 and αij = 1 if uj ∈ NG(vi) and 0 otherwise. Let

L = {li | i ∈ [|I|]} and L′ be the subset of L obtained from Lemma 3.12. Let also
I ′ = {vp ∈ I | lp ∈ L′} and G′ = G[B ∪ T ∪ I ′]. Finally, let w′ = w|B∪T∪I′ . We now
prove that (G′, w′, k) is equivalent to (G,w, k).

We first prove that if (G,w, k) is a yes-instance then so is (G′, w′, k). Let S be
a tree deletion set of G of weight at most k. Then G \ S is a tree and, as for every
vertex v ∈ I \S, NG(v) is a double clique, v has degree exactly 1 in G \S. Therefore,
the graph obtained from G \ S after removing (I \ I ′) is still a tree. This implies
that S \ (I \ I ′) is a tree deletion set of G′ of weight at most k and (G′, w′, k) is a
yes-instance.

Let now (G′, w′, k) be a yes-instance and S be a tree deletion set of G′ of weight
at most k. We claim that there exist at most k vertices in I ′ whose neighborhood lies
entirely in S. Indeed, assume to the contrary that there exist at least k + 1 vertices
of I ′ whose neighborhood lies entirely in S. Let J be the set of those vertices. Notice
that for every vertex v ∈ I ′, if NG′(v) ⊆ S, then either v ∈ S or I ′ \ {v} ⊆ S. Notice
that if J ⊆ S, then S has weight at least k + 1, a contradiction. Therefore, there
exists a vertex u ∈ J that is not contained in S. Then I ′ \ {u} ⊆ S. Moreover, recall
that u has at least one neighbor z in B and from the hypothesis z is contained in S.
Therefore (I ′ \ {u}) ∪ {z} ⊆ S. As |I ′| ≥ |J | = k + 1, it follows that |I ′ \ {u}| ≥ k.
Furthermore, recall that B ∩ I ′ = ∅. Thus, |S| ≥ k + 1, a contradiction to the fact
that S has weight at most k. Therefore, there exist at most k vertices of I ′ whose
neighborhood is contained entirely in S. For every j ∈ [|B|], let xj = βj, where βj = 0
if uj ∈ S and 1 otherwise. Then there exist at most k linear equations in L′ which are
not satisfied by the above assignment. However, from the choice of L′ all the linear
equations in L \ L′ are satisfied and therefore, for every vertex u in I \ I ′ we have
|NG(u) \ S| ≡ 1 (mod p). Since p > |B| this implies that u has exactly one neighbor
in G \ S. Thus G \ S is a tree and hence, S is a tree deletion set of G as well.

Notice that V (G′) = B ∪ T ∪ I ′, where |I ′| ≤ 8k3 + 10k2 + 3k + 1 (Lemma 3.12)
and therefore |V (G′)| = O(k4). It is also easy to see that |E(G′)| = O(k4). Indeed,
notice first that as the set I ′ is an independent set there are no edges between its
vertices. Moreover, from Lemma 3.4 there are no edges between the vertices of the
set I ′ and the set T . Observe that, from the construction of I and subsequently of I ′,
Lemma 3.4 implies that every vertex of I ′ has at most 2k + 2 neighbors in B. As

12

|I ′| ≤ 8k3 + 10k2 + 3k + 1 there exist O(k4) edges between the vertices of I ′ and the
vertices of B. Notice that from (ii) of Lemma 3.4, T induces a forest and thus there
exist at most O(k4) edges between its vertices. Moreover, from (i) of Lemma 3.4,
again there exist O(k4) edges between the vertices of B. It remains to show that
there exist O(k4) edges with one endpoint in B and one endpoint in T . Recall first

that every connected component has at most 2 neighbors in Q̂. Therefore, there exist
at most 2k + 2 edges between every connected component of CT and B. Moreover,
from Lemma 3.8 we obtain that CT contains O(k3) connected components. Therefore,
there exist O(k4) edges with one endpoint in B and one endpoint in T . Thus, wTDS
has a kernel of O(k4) vertices and edges. Finally, from Reduction Rule 5, the weight
of every vertex is upper bounded by k+1 and thus, it can be encoded using log(k+1)
bits resulting to a kernel of wTDS with O(k4 log k) bits.

From Lemma 3.2 we immediately get the following.

Corollary 3.14. Tree Deletion Set has a kernel with O(k5) vertices and
edges.

4. Conclusions. As mentioned in the Introduction, Tree Deletion Set is not
expected to admit an approximation algorithm with ratio OPTO(1) and as a result
it had been tempting to argue that it also does not admit a polynomial kernel. The
reason for this, it that for many FPT graph problems that admit a polynomial kernel
it is easy to also obtain an approximation algorithm for them as the reduction rules
designed for their kernels are also approximation-preserving. However, even though
most of our reduction rules for Tree Deletion Set are also approximation-preserving,
this is not the case for the last reduction that takes place on Theorem 3.13 and is
based on Lemma 3.12, as it disregards an arbitrary number of connected components
of the graph whose vertices should be included in an approximate solution. Thus,
Lemma 3.12, and the transformation of part of our instance to a system of linear
equations is what drives us away from an approximation algorithm for Tree Dele-
tion Set yet allows us to derive a polynomial kernel for it.

Acknowledgements. We would like to thank the anonymous referees of this
and of previous versions whose comments improved the overall presentation of our
result.

REFERENCES

[1] Vineet Bafna, Piotr Berman, and Toshihiro Fujito, A 2-approximation algorithm for the
undirected feedback vertex set problem, SIAM J. Discrete Math., 12 (1999), pp. 289–297.

[2] Hans L. Bodlaender and Thomas C. van Dijk, A cubic kernel for feedback vertex set and
loop cutset, Theory Comput. Syst., 46 (2010), pp. 566–597.

[3] Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston,
Shev Mac, and Frances A. Rosamond, The undirected feedback vertex set problem has
a poly(k) kernel, in Parameterized and Exact Computation - IWPEC, vol. 4169 of LNCS,
2006, pp. 192–202.

[4] Yixin Cao, Jianer Chen, and Yang Liu, On feedback vertex set: New measure and new
structures, Algorithmica, 73 (2015), pp. 63–86.

[5] Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger, Improved
algorithms for feedback vertex set problems, J. Comput. Syst. Sci., 74 (2008), pp. 1188–
1198.

[6] R. Crowston, M. Fellows, G. Gutin, M. Jones, E.J. Kim, F. Rosamond, I.Z. Ruzsa,
S. Thomass, and A. Yeo, Satisfying more than half of a system of linear equations over
GF(2): A multivariate approach, Journal of Computer and System Sciences, 80 (2014),
pp. 687–696.

13

[7] Rodney G. Downey and Michael R. Fellows, Fundamentals of Parameterized Complexity,
Texts in Computer Science, Springer, 2013.

[8] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh, Planar
F-deletion: Approximation, kernelization and optimal FPT algorithms, in Foundations of
Computer Science - FOCS 2012, 2012, pp. 470–479.

[9] Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[10] Archontia C. Giannopoulou, Daniel Lokshtanov, Saket Saurabh, and Ondrej Suchý,
Tree deletion set has a polynomial kernel (but no optˆo(1) approximation), in 34th In-
ternational Conference on Foundation of Software Technology and Theoretical Computer
Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India, 2014, pp. 85–96.

[11] Jiong Guo and Rolf Niedermeier, Invitation to data reduction and problem kernelization,
SIGACT News, 38 (2007), pp. 31–45.

[12] Oscar H. Ibarra, Shlomo Moran, and Roger Hui, A generalization of the fast LUP matrix
decomposition algorithm and applications, J. Algorithms, 3 (1982), pp. 45–56.

[13] L.G. Khachiyan, Polynomial algorithms in linear programming, USSR Computational Math-
ematics and Mathematical Physics, 20 (1980), pp. 53–72.

[14] Subhash Khot and Oded Regev, Vertex cover might be hard to approximate to within 2− ε,
J. Comput. Syst. Sci., 74 (2008), pp. 335–349.

[15] Stefan Kratsch, Polynomial kernelizations for MIN F+Π and MAX NP, Algorithmica, 63
(2012), pp. 532–550.

[16] Stefan Kratsch, Recent developments in kernelization: A survey, Bulletin of the EATCS,
113 (2014).

[17] Stefan Kratsch and Magnus Wahlström, Preprocessing of Min Ones problems: A di-
chotomy, in Automata, Languages and Programming, 37th International Colloquium,
ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I, vol. 6198 of Lec-
ture Notes in Computer Science, Springer, 2010, pp. 653–665.

[18] Stefan Kratsch and Magnus Wahlström, Representative sets and irrelevant vertices: New
tools for kernelization, in Foundations of Computer Science - FOCS 2012, 2012, pp. 450–
459.

[19] Stefan Kratsch and Magnus Wahlström, Compression via matroids: A randomized poly-
nomial kernel for odd cycle transversal, ACM Trans. Algorithms, 10 (2014), pp. 20:1–20:15.

[20] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh, Kernelization - preprocessing
with a guarantee, in The Multivariate Algorithmic Revolution and Beyond, vol. 7370 of
LNCS, 2012, pp. 129–161.

[21] Dániel Marx, Parameterized complexity and approximation algorithms, The Computer Jour-
nal, 51 (2008), pp. 60–78.

[22] Rolf Niedermeier, Invitation to Fixed Parameter Algorithms (Oxford Lecture Series in Math-
ematics and Its Applications), Oxford University Press, USA, March 2006.

[23] Venkatesh Raman, Saket Saurabh, and Ondřej Suchý, An FPT algorithm for tree deletion
set, Journal of Graph Algorithms and Applications, 17 (2013), pp. 615–628.

[24] Stéphan Thomassé, A 4k2 kernel for feedback vertex set, ACM Transactions on Algorithms,
6 (2010).

[25] Magnus Wahlström, Abusing the Tutte matrix: An algebraic instance compression for the
K-set-cycle problem, in Symposium on Theoretical Aspects of Computer Science - STACS
2013, vol. 20 of LIPIcs, 2013, pp. 341–352.

[26] Virginia Vassilevska Williams, Multiplying matrices faster than Coppersmith-Winograd, in
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, May 19 - 22, 2012, ACM, 2012, pp. 887–898.

[27] Mihalis Yannakakis, The effect of a connectivity requirement on the complexity of maximum
subgraph problems, J. ACM, 26 (1979), pp. 618–630.

14

