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Abstract

We study the computational complexity of the graph modification problems Threshold Editing
and Chain Editing, adding and deleting as few edges as possible to transform the input into a
threshold (or chain) graph. In this article, we show that both problems are NP-hard, resolving a
conjecture by Natanzon, Shamir, and Sharan (Discrete Applied Mathematics, 113(1):109–128, 2001).
On the positive side, we show the problem admits a quadratic vertex kernel. Furthermore, we give a

subexponential time parameterized algorithm solving Threshold Editing in 2O(
√
k log k) + poly(n)

time, making it one of relatively few natural problems in this complexity class on general graphs.
These results are of broader interest to the field of social network analysis, where recent work of
Brandes (ISAAC, 2014) posits that the minimum edit distance to a threshold graph gives a good
measure of consistency for node centralities. Finally, we show that all our positive results extend
to the related problem of Chain Editing, as well as the completion and deletion variants of both
problems.

1 Introduction

In this paper we study the computational complexity of two edge modification problems, namely editing to
threshold graphs and editing to chain graphs. Graph modification problems ask whether a given graph G
can be transformed to have a certain property using a small number of edits (such as deleting/adding
vertices or edges), and have been the subject of significant previous work [29, 7, 8, 9, 25].

In the Threshold Editing problem, we are given as input an n-vertex graph G = (V,E) and a
non-negative integer k. The objective is to find a set F of at most k pairs of vertices such that G minus
any edges in F plus all non-edges in F is a threshold graph. A graph is a threshold graph if it can be
constructed from the empty graph by repeatedly adding either an isolated vertex or a universal vertex [3].

Threshold Editing
Input: A graph G and a non-negative integer k
Question: Is there a set F ⊆ [V ]2 of size at most k such that G4F is a threshold graph.

The computational complexity of Threshold Editing has repeatedly been stated as open, starting
from Natanzon et al. [27], and then more recently by Burzyn et al. [4], and again very recently by Liu,
Wang, Guo and Chen [21]. We resolve this by showing that the problem is indeed NP-hard.

Theorem 1. Threshold Editing is NP-complete, even on split graphs.

Graph editing problems are well-motivated by problems arising in the applied sciences, where we often
have a predicted model from domain knowledge, but observed data fails to fit this model exactly. In this
setting, edge modification corresponds to correcting false positives (and/or false negatives) to obtain data
that is consistent with the model. Threshold Editing has specifically been of recent interest in the
social sciences, where Brandes et al. are using distance to threshold graphs in work on axiomatization of
centrality measures [2, 28]. More generally, editing to threshold graphs and their close relatives chain
graphs arises in the study of sparse matrix multiplications [31]. Chain graphs are the bipartite analogue
of threshold graphs (see Definition 2.6), and here we also establish hardness of Chain Editing.
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(a) C4 (b) P4 (c) 2K2

Figure 1: Threshold graphs are {C4, P4, 2K2}-free. Chain graphs are bipartite graphs that are 2K2-free.

Theorem 2. Chain Editing is NP-complete, even on bipartite graphs.

Our final complexity result is for Chordal Editing — a problem whose NP-hardness is well-known
and widely used. This result also follows from our techniques, and as the authors were unable to find a
proof in the literature, we include this argument for the sake of completeness.

Having settled the complexity of these problems, we turn to studying ways of dealing with their
intractability. Cai’s theorem [5] shows that Threshold Editing and Chain Editing are fixed parameter
tractable, i.e., solvable in f(k) · poly(n) time where k is the edit distance from the desired model (graph

class); However, the lower bounds we prove when showing NP-hardness are on the order of 2o(
√
k) under

ETH, and thus leave a gap. We show that it is in fact the lower bound which is tight (up to logarithmic
factors in the exponent) by giving a subexponential time algorithm for both problems.

Theorem 3. Threshold Editing and Chain Editing admit 2O(
√
k log k) + poly(n) subexponential

time algorithms.

Since our results also hold for the completion and deletion variants of both problems (when F is
restricted to be a set of non-edges or edges, respectively), this also answers a question of Liu et al. [22] by
giving a subexponential time algorithm for Chain Edge Deletion.

A crucial first step in our algorithms is to preprocess the instance, reducing to a kernel of size
polynomial in the parameter. We give quadratic kernels for all three variants (of both Threshold
Editing and Chain Editing).

Theorem 4. Threshold Editing, Threshold Completion, and Threshold Deletion admit
polynomial kernels with O(k2) vertices.

This answers (affirmatively) a recent question of Liu, Wang and Guo [20]—whether the previously
known kernel, which has O(k3) vertices, for Threshold Completion (equivalently Threshold
Deletion) can be improved.

2 Preliminaries

Graphs. We will consider only undirected simple finite graphs. For a graph G, let V (G) and E(G)
denote the vertex set and the edge set of G, respectively. For a vertex v ∈ V (G), by NG(v) we denote
the open neighborhood of v, i.e. NG(v) = {u ∈ V (G) | uv ∈ E(G)}. The closed neighborhood of v,
denoted by NG[v], is defined as NG(v)∪ {v}. These notions are extended to subsets of vertices as follows:
NG[X] =

⋃
v∈X NG[v] and NG(X) = NG[X]\X. We omit the subscript whenever G is clear from context.

When U ⊆ V (G) is a subset of vertices of G, we write G[U ] to denote the induced subgraph of G, i.e.,
the graph G′ = (U,EU ) where EU is E(G) restricted to U . The degree of a vertex v ∈ V (G), denoted
degG(v), is the number of vertices it is adjacent to, i.e., degG(v) = |NG(v)|. We denote by ∆(G) the
maximum degree in the graph, i.e., ∆(G) = maxv∈V (G) deg(v). For a set A, we write

(
A
2

)
to denote the

set of unordered pairs of elements of A; thus E(G) ⊆
(
V (G)

2

)
. By G we denote the complement of graph G,

i.e., V (G) = V (G) and E(G) = [V (G)]2 \ E(G).
For two sets A and B we define the symmetric difference of A and B, denoted A4B as the set

(A \B) ∪ (B \A). For a graph G = (V,E) and F ⊆ [V ]2 we define G4F as the graph (V,E4F ).
For a graph G and a vertex v we define the true twin class of v, denoted ttc(v) as the set ttc(v) =

{u ∈ V (G) | N [u] = N [v]}. Similarly, we define the false twin class of v, denoted ftc(v) as the set
ftc(v) = {u ∈ V (G) | N(u) = N(v)}. Observe that either ttc(v) = {v} or ftc(v) = {v}. From this we
define the twin class of v, denoted tc(v) as ttc(v) if |ttc(v)| > |ftc(v)| and ftc(v) otherwise.
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Figure 2: A threshold partition—the left hand side is the clique and the right hand side is an independent
set, each bag contains a twin class. All bags are non-empty, otherwise two twin classes on the opposite
side would collapse into one, except possibly the two extremal bags.

Split and threshold graphs. A split graph is a graph G = (V,E) whose vertex set can be partitioned
into two sets C and I such that G[C] is a complete graph and G[I] is edgeless, i.e., C is a clique and I an
independent set [3]. For a split graph G we say that a partition (C, I) of V (G) forms a split partition
of G if G[C] induces a clique and G[I] an independent set. A split partition (C, I) is called a complete
split partition if for every vertex v ∈ I, N(v) = C. If G admits a complete split partition, we say that G
is a complete split graph.

We now give two useful characterizations of threshold graphs:

Proposition 2.1 ([23]). A graph G is a threshold graph if and only if G has a split partition (C, I)
such that the neighborhoods of the vertices in I are nested, i.e., for every pair of vertices v and u, either
N(v) ⊆ N [u] or N(u) ⊆ N [v].

Proposition 2.2 ([3]). A graph G is a threshold graph if and only if G does not have a C4, P4 nor
a 2K2 as an induced subgraph. Thus, the threshold graphs are exactly the {C4, P4, 2K2}-free graphs (see
Figure 1).

Definition 2.3 (Threshold partition, lev(v)). We say that (C, I) = (〈C1, . . . , Ct〉, 〈I1, . . . , It〉) forms a
threshold partition of G if the following holds (see Figure 2 for an illustration):

• (C, I) is a split partition of G, where C =
⋃
i≤t Ci and I =

⋃
i≤t Ii,

• Ci and Ii are twin classes in G for every i

• N [Cj ] ⊂ N [Ci] and N(Ii) ⊂ N(Ij) for every i < j.

• Finally, we demand that for every i ≤ t, (Ci, I≥i) form a complete split partition of the graph
induced by Ci ∪ I≥i.

We furthermore define, for every vertex v in G, lev(v) as the number i such that v ∈ Ci ∪ Ii and we
denote each level Li = Ci ∪ Ii.

In a threshold decomposition we will refer to Ci for every i as a clique fragment and Ii as a independent
fragment. Furthermore, we will refer to a vertex in ∪C as a clique vertex and a vertex in ∪I as an
independent vertex.

Proposition 2.4 (Threshold decomposition). A graph G is a threshold graph if and only if G admits a
threshold partition.
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Proof. Suppose that G is a threshold graph and therefore admits a nested ordering of the neighborhoods
of vertices of each side [19]. We show that partitioning the graph into partitions depending only on their
degree yields the levels of a threshold partition. The clique side is naturally defined as the maximal set of
highest degree vertices that form a clique. Suppose now for contradiction that this did not constitute a
threshold partition. By definitions, every level consists of twin classes, and also, for two twin classes Ii
and Ij , since their neighborhoods are nested in the threshold graph, their neighborhoods are nested in
the threshold partition as well. So what is left to verify is that (Ci, I≥i) is a complete split partition of
G[Ci ∪ I≥i]. But that follows directly from the assumption that G admitted a nested ordering and Ci is a
true twin class.

For the reverse direction, suppose G admits a threshold partition (C, I). Consider any four connected
vertices a, b, c, d. We will show that they can not form any of the induced obstructions (see Figure 1).
For the 2K2 and C4, it is easy to see that at most two of the vertices can be in the clique part of the
decomposition—and they must be adjacent since it is a clique—and hence there must be an edge in the
independent set part of the decomposition, which contradicts the assumption that C, I was a threshold
partition. So suppose now that a, b, c, d forms a P4. Again with the same reasoning as above, the middle
edge b, c must be contained in the clique part, hence a and d must be in the independent set part. But
since the neighborhoods of a and d should be nested, they cannot have a private neighbor each, hence
either ac or bd must be an edge, which contradicts the assumption that a, b, c, d induced a P4. This
concludes the proof.

Lemma 2.5. For every instance (G, k) of Threshold Editing or Threshold Completion it holds
that there exists an optimal solution F such that for every pair of vertices u, v ∈ V (G), if NG(u) ⊆ NG[v]
then NG4F (u) ⊆ NG4F [v].

Proof. Let us define, for any editing set F and two vertices u and v, the set

Fv↔u = {e | e′ ∈ F and e is e′ with u and v switched}.

Suppose F is an optimal solution for which the above statement does not hold. Then NG(u) ⊆ NG[v] and
NG4F (v) ⊆ NG4F [u] (see Proposition 2.1). But then it is easy to see that we can flip edges in an ordering
such that at some point, say after flipping F 0, u and v are twins in this intermediate graph G4F 0. Let
F 1 = F \ F 0. It is clear that for G′ = G4(F 0 ∪ F 1

v↔u), NG′(u) ⊆ NG′ [v]. Since |F | ≥ |F 0 ∪ F 1
v↔u|, the

claim holds.

Chain graphs. Chain graphs are the bipartite graphs whose neighborhoods of the vertices on one
of the sides form an inclusion chain. It follows that the neighborhoods on the opposite side form an
inclusion chain as well. If this is the case, we say that the neighborhoods are nested. The relation to
threshold graphs is obvious, see Figure 3 for a comparison. The problem of completing edges to obtain a
chain graph was introduced by Golumbic [16] and later studied by Yannakakis [31], Feder, Mannila and
Terzi [12] and finally by Fomin and Villanger [14] who showed that Chain Completion when given a
bipartite graph whose bipartition must be respected is solvable in subexponential time.

Definition 2.6 (Chain graph). A bipartite graph G = (A,B,E) is a chain graph if there is an ordering
of the vertices of A, a1, a2, . . . , a|A| such that N(a1) ⊆ N(a2) ⊆ · · · ⊆ N(a|A|).

From the following proposition, it follows that chain graphs are characterized by a finite set of forbidden
induced subgraphs and hence are subject to Cai’s theorem [5].

Proposition 2.7 ([3]). Let G be a graph. The following are equivalent:

• G is a chain graph.

• G is bipartite and 2K2-free.

• G is {2K2, C3, C5}-free.

• G can be constructed from a threshold graph by removing all the edges in the clique partition.

Since they have the same structure as threshold graphs, it is natural to talk about a chain decomposition,
(A,B) of a bipartite graph G with bipartition (A,B). We say that (A,B) is a chain decomposition for a
chain graph G if and only if (A,B) is a threshold decomposition for the corresponding threshold graph G′

where A is made into a clique.
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(a) A chain graph (b) A threshold graph

Figure 3: Illustration of the similarities between chain and threshold graphs. Note that the nodes drawn
can be replaced by twin classes of any size, even empty. However, if on one side of a level there is an
empty class, the other two levels on the opposite side will collapse to a twin class. See Proposition 2.4.

Parameterized complexity. The running time of an algorithm in classical complexity analysis is
described as a function of the length of the input. To refine the analysis of computationally hard
problems, especially NP-hard problems, parameterized complexity introduced the notion of an extra
“parameter”—an additional part of a problem instance used to measure the problem complexity when the
parameter is taken into consideration. To simplify the notation, here we consider inputs to problems to be
of the form (G, k)—a pair consisting of a graph G and a nonnegative integer k. We will say that a problem
is fixed parameter tractable whenever there is an algorithm solving the problem in time f(k) · poly(|G|),
where f is any function, and poly : N→ N any polynomial function. In the case when f(k) = 2o(k) we
say that the algorithm is a subexponential parameterized algorithm. When a problem Π ⊆ G × N is
fixed-parameter tractable, where G is the class of all graphs, we say that Π belongs to the complexity
class FPT. For a more rigorous introduction to parameterized complexity we refer to the book of Flum
and Grohe [13].

Given a parameterized problem Π, we say two instances (G, k) and (G′, k′) are equivalent if (G, k) ∈ Π
if and only if (G′, k′) ∈ Π. A kernelization algorithm (or kernel) is a polynomial-time algorithm for a
parameterized problem Π that takes as input a problem instance (G, k) and returns an equivalent instance
(G′, k′), where both |G′| and k′ are bounded by f(k) for some function f . We then say that f is the size
of the kernel. When k′ ≤ k, we say that the kernel is a proper kernel. Specifically, a proper polynomial
kernelization algorithm for Π is a polynomial time algorithm which takes as input an instance (G, k) and
returns an equivalent instance (G′, k′) with k′ ≤ k and |G′| ≤ p(k) for some polynomial function p.

Definition 2.8 (Laminar set system, [11]). A set system F ⊆ 2U over a ground set U is called laminar
if for every X1 and X2 in F with x1 ∈ X1 \X2 and x2 ∈ X2 \X1, there is no Y ∈ F with {x1, x2} ⊆ Y .

An equivalent way of looking at a laminar set system F is that every two sets X1 and X2 in F are
either disjoint or nested, that is, for every X1, X2 ∈ F either X1 ∩X2 = ∅, or X1 ⊆ X2 or X2 ⊆ X1.

Lemma 2.9 ([11]). Let F be a laminar set system over a finite ground set U . Then the cardinality of F
is at most |U |+ 1.

3 Hardness

In this section we show that Threshold Editing is NP-complete. Recalling (see Figure 3) that chain
graphs are bipartite graphs with structure very similar to that of threshold graphs, it should not be
surprising that we obtain as a corollary that Chain Editing is NP-complete as well.

We will also conclude the section by giving a proof for the fact that Chordal Editing is NP-complete;
Although this has been known for a long time (Natanzon [26], Natanzon et al. [27], Sharan [30]), the
authors were unable to find a proof in the literature for the NP-completeness of Chordal Editing and
therefore include the observation. The problem was recently shown to be FPT by Cao and Marx [6],
however we would like to point out that the more general problem studied there is indeed well-known to
be NP-complete as it is a generalized version of Chordal Vertex Deletion.
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vxa vxb vx⊥ vx> vxc vxd vya vyb vy⊥ vy> vyc vyd vza vzb vz⊥ vz> vzc vzd

vc1

c1 = x ∨ y

vc2

c2 = x ∨ z

Figure 4: The connections of a clause and a variable. All the vertices on the top (the variable vertices)
belong to the clique, while the vertices on the bottom (the clause vertices) belong to the independent set.
The vertices in the left part of the clique has higher degree than the vertices of the right part of the clique,
whereas all the clause vertices (in the independent set) will all have the same degree, namely 3 · |Vϕ|.

3.1 NP-completeness of Threshold Editing

Recall that a boolean formula ϕ is in 3-CNF-SAT if it is in conjunctive normal form and each clause has at
most three variables. Our hardness reduction is from the problem 3Sat, where we are given a 3-CNF-SAT
formula ϕ and asked to decide whether ϕ admits a satisfying assignment. We will denote by Cϕ the set of
clauses, and by Vϕ the set of variables in a given 3-CNF-SAT formula ϕ. An assignment for a formula ϕ
is a function α : Vϕ → {true, false}. Furthermore, we assume we have some natural lexicographical
ordering <lex of the clauses c1, . . . , c|Cϕ| and the same for the variables v1, . . . , v|Vϕ|, hence we may write,
for some variables x and y, that x <lex y. To immediately get an impression of the reduction we aim for,
the construction is depicted in Figure 4.

3.1.1 Construction

Recall that we want to form a graph Gϕ and pick an integer kϕ so that (Gϕ, kϕ) is a yes-instance of
Threshold Editing if and only if ϕ is satisfiable. We will design Gϕ to be a split graph, so that
the split partition is forced to be maintained in any threshold graph within distance kϕ of Gϕ, where
kϕ = |Cϕ| · (3|Vϕ| − 1).

Given ϕ, we first create a clique of size 6|Vϕ|; To each variable x ∈ Vϕ, we associate six vertices of
this clique, and order them in the following manner

vxa , v
x
b , v

x
⊥, v

x
>, v

x
c , v

x
d .

We will throughout the reduction refer to this ordering as πϕ: πϕ is a partial order which has

vxa <πϕ
vxb <πϕ

vx>, v
x
⊥ <πϕ

vxc <πϕ
vxd ,

and for every two vertex vx? and vy? with x <lex y, we have vx? <πϕ
vy? . Observe that we do not specify

which comes first of vx> and vx⊥—this is the choice that will result in the assignment α for ϕ.
We enforce this ordering by adding O(k2ϕ) vertices in the independent set; Enforcing that v1 comes

before v2 in the ordering is done by adding kϕ + 1 vertices in the independent set incident to all the
vertices coming before v1, including v1. Since swapping the position of v1 and v2 would demand at
least kϕ + 1 edge modifications and kϕ is the intended budget, in any yes instance, v1 ends up before v2
in the ordering of the clique.

We proceed adding the clause gadgets; For every clause c ∈ Cϕ, we add one vertex vc to the independent
set. Hence, the size of the independent set is O(|Cϕ|+ k2ϕ). For a variable x occurring in c, we add an
edge between vc and vx⊥ if it occurs negatively, and between vc and vx> otherwise. In addition, we make vc
incident to vxb and vxd .

For a variable z which does not occur in a clause c, we make vc adjacent to vzb , vzc , and vzd. To complete
the reduction, we add 4(kϕ + 1) isolated vertices; kϕ + 1 vertices to the left in the independent set, kϕ + 1
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3|V| − 1

3|V|

3|V|+ 1

Satisfying literals

Figure 5: The cost with which we charge a clause vertex depends on the cut-off point; The x-axis denotes
the point in the lexicographic ordering which separates the vertices adjacent to the clause vertex from
the vertices not adjacent to the clause vertex.

vertices to the right in the independent set, and kϕ + 1 to the left and kϕ + 1 to the right in the clique.
This ensures that no vertex will move from the clique to the independent set partition, and vice versa.

3.1.2 Properties of the Constructed Instance

Before proving the Theorem 1, and specifically Lemma 3.4, we may observe the following, which may
serve as an intuition for the idea of the reduction. When we consider a fixed permutation of the variable
gadget vertices (the clique side), the only thing we need to determine for a clause vertex vc, is the
cut-off point : the point in πϕ at which the vertex vc will no longer have any neighbors. Observing that
no vertex vxi swaps places with any other vxj for i, j ∈ {a, b, c, d}, and that no vx? changes with vy? for
x, y ∈ Vϕ, consider a fixed permutation of the variable vertices. We charge the clause vertices with the
edits incident to the clause vertex. Since the budget is kϕ = |C| · (3|Vϕ| − 1), and every clause needs at
least 3|Vϕ| − 1, to obtain a solution (upcoming Lemma 3.2) we need to charge every clause vertex with
exactly 3|Vϕ| − 1 edits. Figure 5 illustrates the charged cost of a clause vertex.

Observation 3.1. The graph Gϕ resulting from the above procedure is a split graph and when kϕ =
|C|·(3|Vϕ|−1), if H is a threshold graph within distance kϕ of Gϕ, H must have the same clique-maximizing
split partition as Gϕ.

Lemma 3.2. Let (Gϕ, kϕ) be a yes instance to Threshold Editing constructed from a 3-CNF-SAT
formula ϕ with |F | ≤ kϕ a solution. For any clause vertex vc, at least 3|Vϕ| − 1 edges in F are incident
to vc.

Proof. By the properties of πϕ, we know that the only vertices we may change the order of are those
corresponding to v?> and v?⊥. Pick any index in πϕ for which we know that vc is adjacent to all vertices on
the left hand side and non-adjacent to all vertices on the right hand side. Let Lc be the set of variables
whose vertices are completely adjacent to vc and Rc the corresponding set completely non-adjacent to vc.
By construction, vc has exactly three neighbors in each variable and thus these variable gadgets contribute
3(|Lc|+ |Rc|) to the budget. If Lc ∪Rc = Vϕ, we are done, as vc needs at least 3|Vϕ| edits here.

Suppose therefore that there is a variable x whose vertex vxa is adjacent to vc and vxd is non-adjacent
to vc. But then we have already deleted the existing edge vcv

x
d and added the non-existing edge vcv

x
a .

This immediately gives a lower bound on 3(|Vϕ| − 1) + 2 = 3|Vϕ| − 1 edits.

3.1.3 Proof of Correctness

Lemma 3.3. If there is an editing set F of size at most kϕ for an instance (Gϕ, kϕ) constructed from a
3-CNF-SAT formula ϕ, and |F (vc)| = 3|Vϕ| − 1, then the <lex-highest vertex connected to vc corresponds
to a variable satisfying the clause c.

Proof. From the proof of Lemma 3.2, we observed that for a clause c to be within budget, we must choose
a cut-off point within a variable gadget, meaning that there is a variable x for which vc is adjacent to vxa
and non-adjacent to vxd .
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vxa vxb vx⊥ vx> vxc vxd vya vyb vy⊥vy> vyc vyd vza vzb vz⊥ vz> vzc vzd

vc1

c1 = x ∨ y

Figure 6: The edited version when y satisfies c1. We have added three edges to the gadget x and deleted
three edges to the gadget z, and added the edge to vya and deleted the edge to vyd , that is, we have edited
exactly 3 · 2 + 2 = 3(|V| − 1) + 2 = 3|V| − 1 edges incident to c1. Notice that if vy⊥ was coming before vy>,
we would have to choose a different variable to satisfy c1.

We now distinguish two cases, (i) x is a variable occurring (w.l.o.g. positively) in c and (ii) x does
not occur in c. For (i), vc was adjacent to vxb , vx>, and vxd . By assumption, we add the edge to vxa and
delete the edge to vxd . But then we have already spent the entire budget, hence the only way this is a
legal editing, vx> must come before vx⊥, and hence satisfies vc. See Figure 6.

For (ii) we have that vc was adjacent to vxb , vxc , and vxd . Here we, again by assumption, add the edge
to vxa and delete the edge to vxd . This alone costs two edits, so we are done. But observe that these two
edits alone are not enough, hence if we want to achieve the goal of 3|Vϕ|− 1 edited edges, the cut-off index
must be inside a variable gadget corresponding to a variable occurring in c, i.e. (i) must be the case.

Lemma 3.4. A 3-CNF-SAT formula ϕ is satisfiable if and only if (Gϕ, kϕ) is a yes instance to Thresh-
old Editing.

Proof of Lemma 3.4. For the forwards direction, let ϕ be a satisfiable 3-CNF-SAT formula where α : Vϕ →
{true, false} is any satisfying assignment, and (Gϕ, kϕ) the Threshold Editing instance as described
above.

Now, let α : Vϕ → {true, false} be a satisfying assignment, and (Gϕ, kϕ) the Threshold Editing
instance as described above, and let π be any permutation of the vertices of the clique side with the
following properties

• for every x <lex y ∈ Vϕ, we have vx? <π v
y
? ,

• for every x ∈ Vϕ, we have vxa <π v
x
b <π v

x
> < vxc <π v

x
d and vxa <π v

x
b <π v

x
⊥ < vxc <π v

x
d , and

finally

• for every x ∈ Vϕ, we have vx⊥ <π v
x
> if and only if α(x) = false.

We now show how to construct the threshold graph Hπ
ϕ from the constructed graph Gϕ by editing

exactly kϕ = |C| · (3|Vϕ| − 1) edges. For a clause c, let x be any variable satisfying c. If x appears
positively, add every non-existing edge from vc to every vertex v ≤π vx> and delete all the rest. If x
appears negated, use vx⊥ instead. We break the remainder of the proof in the forward direction into two
claims:

Claim 3.5. Hπ
ϕ is a threshold graph.

Proof of Claim 3.5. Let Gϕ and π be given, both adhering to the above construction. Since Gϕ was a
split graph, π a total ordering of the elements in the independent set part and every vertex of the clique
part of Hπ

ϕ sees a prefix of the vertices of the independent set, their neighborhoods are naturally nested.
Hence Hπ

ϕ is a threshold graph by Proposition 2.1.
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Claim 3.6.
∣∣E(Gϕ)4E(Hπ

ϕ)
∣∣ = kϕ.

Proof of Claim 3.6. Since we did not edit any of the edges within the clique part nor the independent set
part, we only need to count the number of edits going between a clause vertex and the variable vertices.
Let c be any clause and x the lexicographically smallest variable satisfying c. Suppose furthermore,
without loss of generality, that x appears positively in c and has thus α(x) = true. We now show that
|F (vc)| = 3|Vϕ| − 1, and since c was arbitrary, this concludes the proof of the claim. Since vc is adjacent
to exactly three vertices per variable, and non-adjacent to exactly three vertices per variable, we added all
the edges to the vertices appearing before x and removed all the edges to the vertices appearing after x.
This cost exactly 3(|Vϕ| − 1) = 3|Vϕ| − 3, hence we have two edges left in our budget for c. Moreover, the
edge vcv

x
a was added and the edge vcv

x
d was deleted. Now, c is adjacent to every vertex to the before, and

including, x, and non-adjacent to all the vertices after x. The budget used was 3(|Vϕ| − 1) + 2 = 3|Vϕ| − 1.
Hence, the total number of edges edited to obtain Hπ

ϕ is
∑
c∈C 3|Vϕ| − 1 = |C| · (3|Vϕ| − 1) = kϕ.

This shows that if ϕ is satisfiable, then (Gϕ, kϕ) is a yes-instance of Threshold Editing.

In the reverse direction, let (Gϕ, kϕ) be a constructed instance from a given 3-CNF-SAT formula ϕ
and let F be a minimal editing set such that Gϕ4F is a threshold graph and |F | ≤ kϕ. We aim to
construct a satisfying assignment α : Vϕ → {true, false} from Gϕ4F . By Observation 3.1, H = Gϕ4F
has the same split partition as Gϕ. By construction, we have enforced the ordering, πϕ, of each of the
vertices corresponding to the variables. Thus, we know exactly how H looks, with the exception of the
internal ordering of each literal and its negation. Construct the assignment α as described above, i.e.,
α(x) = false if and only if vx⊥ <π v

x
>.

By Lemmata 3.2 and 3.3, it follows directly that α is a satisfying assignment for ϕ which concludes
the proof of the main lemma.

The above lemma shows that there is a polynomial time many-one (Karp) reduction from 3Sat to
Threshold Editing so we may wrap up the main theorem of this section. Lemma 3.4 implies Theorem 1,
that Threshold Editing is NP-complete, even on split graphs.

For the sake of the next section, devoted to the proof of Theorem 2, we define the following annotated
version of editing to threshold graphs. In this problem, we are given a split graph and we are asked to
edit the graph to a threshold graph while respecting the split partition.

Split Threshold Editing
Input: A split graph G = (V,E) with split partition (C, I), and an integer k.
Question: Is there an editing set F ⊆ C × I of size at most k such that G4F is a threshold graph?

Corollary 3.7. Split Threshold Editing is NP-complete.

Proof. Split Threshold Editing is clearly in NP and that the problem is NP-complete follows
immediately from combining Lemma 3.4 with Observation 3.1.

Corollary 3.8. Assuming ETH, neither Threshold Editing nor Split Threshold Editing are

solvable in 2o(
√
k) · poly(n) time.

3.2 NP-hardness of Chain Editing and Chordal Editing

3.2.1 Chain Graphs: Proof of Theorem 2

A bipartite graph G = (A,B,E) is a chain graph if the neighborhoods of A are nested (which necessarily
implies the neighborhoods of B are nested as well). Recalling Proposition 2.7, chain graphs are closely
related to threshold graphs; Given a bipartite graph G = (A,B,E), if one replaces A (or B) by a clique,
the resulting graph is a threshold graph if and only if G was a chain graph.

It immediately follows from the above exposition that the following problem is NP-complete. This
problem has also been referred to as Chain Editing in the literature (for instance in the work by
Guo [17]).
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Bipartite Chain Editing
Input: A bipartite graph G = (A,B,E) and an integer k
Question: Does there exist a set F ⊆ A×B of size at most k such that G4F is a chain graph?

Observe that we in this problem are given a bipartite graph together with a bipartition, and we are
asked to respect the bipartition in the editing set.

Corollary 3.9. The problem Bipartite Chain Editing is NP-complete.

Proof. We reduce from Split Threshold Editing. Recall that to this problem, we are given a split
graph G = (V,E) with split partition (C, I), and an integer k, and asked whether there is an editing set
F ⊆ C × I of size at most k such that G4F is a threshold graph. Since a chain graph is a threshold
graph with the edges in the clique partition removed (Proposition 2.7), it follows that G4F with all the
edges in the clique partition removed is a chain graph.

Let (G, k) be the input to Split Threshold Editing and let (C, I) be the split partition. Remove
all the edges in C to obtain a bipartite graph G′ = (A,B,E′). Now it follows directly from Proposition 2.7
that (G, k) is a yes instance to Split Threshold Editing if and only if (G′, k) is a yes instance to
Bipartite Chain Editing.

Chain Editing
Input: A graph G = (V,E) and a non-negative integer k
Question: Is there a set F of size at most k such that G4F is a chain graph?

We now aim to prove Theorem 2, that Chain Editing is NP-complete.

Proof of Theorem 2. Reduction from Bipartite Chain Editing. Let G = (A,B,E) be a bipartite graph
and consider the input instance (G, k) to Bipartite Chain Editing. We now show that adding 2(k+ 1)
new edges to G to obtain a graph G′ = (V,E′), gives us that (G′, k) is a yes instance for Chain Editing
if and only if (G, k) is a yes instance for Bipartite Chain Editing.

Let G = (A,B,E) be a bipartite graph and k a positive integer. Add k + 1 new vertices a1, · · · ak+1

to A and make them universal to B, and add k+ 1 new vertices b1, · · · bk+1 to B and make them universal
to A. Call the resulting graph G′ = (V,E′).

The following claim follows immediately from the construction.

Claim 3.10. If G′4F is a chain graph with |F | ≤ k, then G′4F has bipartition (A∪{a1, . . . , ak+1}, B∪
{b1, . . . , bk+1}).

It follows that for any input instance (G, k) to Bipartite Chain Editing, the instance (G′, k) as
constructed above is a yes instance for Chain Editing if and only if (G, k) is a yes instance for Bipartite
Chain Editing.

Corollary 3.11. Assuming ETH, there is no algorithm solving neither Chain Editing nor Bipartite

Chain Editing in time 2o(
√
k) · poly(n).

Proof. In both these cases we reduced from Split Threshold Editing without changing the parameter k.
Hence this follows immediately from the above exposition and from Corollary 3.8.

3.2.2 Chordal Graphs

We will now combine our previous result on Chain Editing with the following observation of Yannakakis to
prove Theorem 5. Yannakakis showed [31], while proving the NP-completeness of Chordal Completion
(more often known as Minimum Fill-In [14]), that a bipartite graph can be transformed into a chain
graph by adding at most k edges if and only if the cobipartite graph formed by completing the two sides
can be transformed into a chordal graph by adding at most k edges.

Theorem 5. Chordal Editing is NP-hard.
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To prove the theorem, we will first give an intermediate problem that makes the proof simpler. Let
G = (A,B,E) be a cobipartite graph. Define the problem Cobipartite Chordal Editing to be the
problem which on input (G, k) asks if we can edit at most k edges between A and B, i.e., does there exist
an editing set F ⊆ A×B of size at most k, such that G4F is a chordal graph. That is, Cobipartite
Chordal Editing asks for the bipartition A,B to be respected.

Cobipartite Chordal Editing
Input: A cobipartite graph G = (A,B,E) and an integer k
Question: Does there exist a set F ⊆ A×B of size at most k such that G4F is a chordal graph?

We will use the following observation to prove the above theorem:

Lemma 3.12. If G = (A,B,E) is a bipartite graph, and G′ = (A,B,E′) is the cobipartite graph
constructed from G by completing A and B, then F is an optimal edge editing set for Bipartite Chain
Editing on input (G, k) if and only if F is an optimal edge editing set for Cobipartite Chordal
Editing on input (G′, k).

Proof. Let F be an optimal editing set for Bipartite Chain Editing on input (G, k) and suppose that
G′4F has an induced cycle of length at least four. Since G′ is cobipartite, it has a cycle of length exactly
four. Let a1b1b2a2a1 be this cycle. But then it is clear that a1b1, a2b2 forms an induced 2K2 in G4F ,
contradicting the assumption that F was an editing set.

For the reverse direction, suppose F is an optimal edge editing set for Cobipartite Chordal
Editing on input (G′, k) only editing edges between A and B. Suppose for the sake of a contradiction
that G4F was not a chain graph. Since F only goes between A and B, G4F is bipartite and hence by
the assumption must have an induced 2K2. This obstruction must be on the form a1b1, a2b2, but then
a1b1b2a2a1 is an induced C4 in G′4F which is a contradiction to the assumption that G′4F was chordal.
Hence G4F is a chain graph.

Corollary 3.13. Cobipartite Chordal Editing is NP-complete.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Let (G = (A,B,E), k) be a cobipartite graph as input to Cobipartite Chordal
Editing. Our reduction is as follows. Create G′ = (A′ ∪B′, E′) as follows:

• A′ = A ∪ {a1, a2, . . . , ak+1},

• B′ = B ∪ {b1, b2, . . . , bk+1},

• E′ = E ∪
⋃
i≤k+1,b∈B′{aib} ∪

⋃
i,j≤k+1{aiaj , bibj}

Finally, we create G′′ as follows. For every edge aiaj create k + 1 new vertices adjacent to only ai and aj .
Do the same thing for every edge bibj . This forces none of the edges in A′ to be removed and none of the
edges in B′ to be removed.

Claim 3.14. The instance of Chordal Editing (G′′, k) is equivalent to the instance (G, k) to Cobi-
partite Chordal Editing.

Proof of claim. The proof of the above claim is straight-forward. If we delete an edge within A (resp. B),
we create at least k + 1 cycles of length 4, each of which uses at least one edge to delete, hence in any yes
instance, we do not edit edges within A (resp. B). Furthermore, any chordal graph remains chordal when
adding a simplicial vertex, which is exactly what the k + 1 new vertices are.

From the claim it follows that (G′′, k) is a yes instance to Chordal Editing if and only if (G, k) is a yes
instance to Cobipartite Chordal Editing. The theorem follows immediately from Corollary 3.13.

Corollary 3.15. Assuming ETH, there is no algorithm solving Chordal Editing in time 2o(
√
k)·poly(n).
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4 Kernels for Modifications into Threshold and Chain Graphs

First we give kernels with quadratically many vertices for the following three problems: Threshold
Completion, Threshold Deletion, and Threshold Editing, answering a recent question of Liu,
Wang and Guo [20]. Then we continue by providing kernels with quadratically many vertices for Chain
Completion, Chain Deletion, and Chain Editing. Our kernelization algorithms uses techniques
similar to the previous result that Trivially Perfect Editing admits a polynomial kernel [11].
Observe that the class of threshold graphs is closed under taking complements. It follows that for every
instance (G, k) of Threshold Completion, (Ḡ, k) is an equivalent instance of Threshold Deletion
(and vice versa). Almost the same trick applies to Chain Deletion. Due to this, we restrict our attention
to the completion and editing variants for the remainder of the section. Motivated by the characterization
of threshold graphs in Propositions 2.2 and 2.7, we define obstructions (also see Figure 1).

Definition 4.1 (H, Obstruction). A graph H is a threshold obstruction if it is isomorphic to a member
of the set {C4, P4, 2K2} and a chain obstruction if it is isomorphic to a member of the set {C3, 2K2, C5}.
If it is clear from the context, we will often use the term obstruction for both threshold and chain
obstructions and denote the set of obstructions by H. Furthermore, if an obstruction H is an induced
subgraph of a graph G we call H an obstruction in G.

Definition 4.2 (Realizing). For a graph G and a set of vertices X ⊆ V (G) we say that a vertex
v ∈ V (G) \X is realizing Y ⊆ X if NX(v) = Y . Furthermore, we say that a set Y ⊆ X is being realized
if there is a vertex v ∈ V (G) \X such that v is realizing Y .

Before proceeding, we observe that our kernelization algorithms does not modify any edges, and only
changes the budget in the case that we discover that we have a no-instance (in which case we return (H, 0),
where H is an obstruction in G). The only modification of the instance is to delete vertices, hence the
kernelized instance is an induced subgraph of the original graph. Since the parameter is never increased,
we obtain proper kernels.

4.1 Modifications into Threshold Graphs

We now focus on modifications to threshold graphs and obtaining kernels for these operations.

4.1.1 Outline of the Kernelization Algorithm

The kernelization algorithm consists of a twin reduction rule and an irrelevant vertex rule. The twin
reduction rule is based on the observation that any obstruction containing vertices from a large enough
twin class will have to be handled by edges not incident to the twin class. From this observation, we may
conclude that for any twin class, we may keep only a certain amount without affecting the solutions.

A key concept of the irrelevant vertex rule is what will be referred to as a threshold-modulator. A
threshold-modulator is a set of vertices X in G of linear size in k, such that for every obstruction H in G
one can add and remove edges in [X]2 to turn H into a non-obstruction. First, we prove that we can
in polynomial time either obtain such a set X or conclude correctly that the instance is a no-instance.
The observation that G−X is a threshold graph will be exploited heavily and we now fix a threshold
decomposition (C, I) of G−X. We then prove that the idea of Proposition 2.1 can be extended to vertices
in G−X when considering their neighborhoods in G. In other words, the neighborhoods of the vertices
in G−X are nested also when considering G. This immediately yields that the number of subsets of X
that are being realized is bounded linearly in the size of X and hence also in k.

We now either conclude that the graph is small or we identify a sequence of levels in the threshold
decomposition containing many vertices, such that all the clique vertices and all the independent set
vertices in the sequence have identical neighborhoods in X, respectively. The crux is that in the middle
of such a sequence there will be a vertex that is replaceable by other vertices in every obstruction and
hence is irrelevant. Such a sequence is obtained by discarding all levels in the decomposition that are
extremal with respect to a subset Y of X, meaning that there either are no levels above or underneath
that contain vertices realizing Y . One can prove that in this process, only a quadratic number of vertices
are discarded and from this we obtain a kernel.
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4.1.2 The Twin Reduction Rule

First, we introduce the twin reduction rule as described above. For the remainder of the section we will
assume this rule to be applied exhaustively and hence we can assume all twin classes to be small.

Rule 1 (Twin reduction rule). Let (G, k) be an instance of Threshold Completion or Threshold
Editing and v a vertex in G such that | tc(v)| > 2k + 2. We then reduce the instance to (G− v, k).

Lemma 4.3. Let G be a graph and v a vertex in G such that | tc(v)| > 2k + 2. Then for every k we
have that (G, k) is a yes-instance of Threshold Completion (or Threshold Editing) if and only if
(G− v, k) is a yes-instance of Threshold Completion (resp. Threshold Editing).

Proof. For readability we only consider Threshold Completion, however the exact same proof works
for Threshold Editing. Let G′ = G − v. It trivially holds that if (G, k) is a yes-instance, then
also (G′, k) is a yes-instance. This is due to the fact that removing a vertex never will create new
obstructions.

Now, let (G′, k) be a yes-instance and assume for a contradiction that (G, k) is a no-instance. Let F
be an optimal solution of (G′, k) and W an obstruction in (G4F, k). Since W is not an obstruction in G′

it follows immediately that v is in W . Furthermore, since |F | ≤ k it follows that there are two vertices
a, b ∈ tc(v) \ {v} that F is not incident to. Also, one can observe that no obstruction contains more than
two vertices from a twin class and hence we can assume without loss of generality that b is not in W . It
follows that NG4F (v) ∩ (W − v) = NG(v) ∩ (W − v) = NG(b) ∩ (W − v) = NG′(b) ∩ (W − v) and hence
the graph induced on V (W )4{b, v} is an obstruction in G′4F , contradicting that F is a solution.

4.1.3 The Modulator

To obtain an O(k2) kernel we aim at an irrelevant vertex rule. However, this requires some tools. The
first one is the concept of a threshold-modulator, as defined below.

Definition 4.4 (Threshold modulator). Let G be a graph and X ⊆ V (G) a set of vertices. We say
that X is a threshold-modulator of G if for every obstruction W in G it holds that there is a set of edges F
in [X]2 such that W4F is not an obstruction.

Less formally, a set X is a threshold-modulator of a graph G if for every obstruction W in G you
can edit edges between vertices in X to turn W into a non-obstruction. Our kernelization algorithm will
heavily depend on finding a small threshold-modulator X and the fact that G−X is a threshold graph.

Lemma 4.5. There is a polynomial time algorithm that given a graph G and an integer k either

• outputs a threshold-modulator X of G such that |X| ≤ 4k or

• correctly concludes that (G, k) is a no-instance of both Threshold Completion and Threshold
Editing.

Proof. Let X1 be the empty set and W = {W1, . . . ,Wt} the set of all obstructions in G. We execute
the following procedure for every Wi in W: If Wi4F is an obstruction for every F ⊆ [Xi ∩ V (Wi)]

2 we
let Xi+1 = Xi ∪ V (Wi), otherwise we let Xi+1 = Xi. After we have considered all obstructions we let
X = Xt+1. If |X| > 4k we conclude that (G, k) is a no-instance, otherwise we output X.

Since all obstructions are finite the algorithm described clearly runs in polynomial time. We now
argue that X is a threshold-modulator of G. If Wi was added to Xi+1, we let F be all the non-edges
of W . Since W4F is isomorphic to K4 it follows immediately that W4F is not an obstruction. If Wi

was not added to Xi+1, let F the set found in [Xi ∩ V (Wi)]
2 such that Wi4F is not an obstruction.

Observe that F ⊆ [X]2 and hence X is a threshold-modulator.
It remains to prove that if |X| > 4k then (G, k) is a no-instance of Threshold Editing. Observe

that it will follow immediately that (G, k) is a no-instance of Threshold Completion. Since every
obstruction consists of four vertices there was at least k + 1 obstructions added during the procedure.
Assume without loss of generality that W1, . . . ,Wk+1 was added. Observe that by construction, a solution
must contain an edge in [Xi+1 −Xi]

2 for every i ∈ [k + 1] and hence contains at least k + 1 edges.
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X

Figure 7: Some of the intersections of an obstruction with a threshold-modulator X that will not occur
by definition. More specifically the ones necessary for the proof of the kernel.

4.1.4 Obtaining Structure

We now exploit the threshold-modulator and its interaction with the remaining graph to obtain structure.
First, we prove that the neighborhoods of the vertices outside of X are nested and that the number of
realized sets in X are bounded linearly in k.

Lemma 4.6. Let G be a graph and X a threshold-modulator. For every pair of vertices u and v in G−X
it holds that either N(u) ⊂ N [v] or N(v) ⊂ N [u].

Proof. Assume otherwise for a contradiction and let u′ be a vertex in N(u) \ N [v] and v′ a vertex in
N(v) \N [u]. Let W = G[{u, v, u′, v′}] and observe that uu′ and vv′ are edges in W and uv′ and vu′ are
non-edges in W by definition. Hence, no matter if some of the edges uv and u′v′ are present or not, W is
an obstruction in G (see Figure 7 for an illustration). Since u′v′ is the only pair in W possibly with both
elements in X this contradicts X being a threshold-modulator.

Lemma 4.7. Let G be a graph and X a corresponding threshold-modulator, then

|{NX(v) for v ∈ V (G) \X}| ≤ |X|+ 1.

Or in other words, there are at most |X|+ 1 sets of X that are being realized.

Proof. Let u and v be two vertices in G−X. It follows directly from Lemma 4.6 that either NX(v) ⊆ NX(u)
or NX(v) ⊇ NX(u). The result follows immediately.

With the definition of the modulator and the basic properties above, we are now ready to extract
more vertices from the instance, aiming at many consecutive levels that have the same neighborhood in X
for the clique, and independent set vertices, respectively. This will lead up to our irrelevant vertex rule.

Let G be a graph, X a threshold-modulator and (C, I) a threshold partition of G −X. Letting P
denote either C or I, we say that a subset Y ⊆ X has its upper extreme in Pi if Pi realizes Y and for
every j > i it holds that Pj does not realize Y . Similarly, a subset Y ⊆ X has its lower extreme in Pi
if Pi realizes Y and for every j < i it holds that Pj does not realize Y . We say that Y ⊆ X is extremal
in Pi if Y has its upper or lower extreme in Y . Observe that every Y ⊆ X is extremal in at most two
clique fragments and two independent set fragments.

We continue having P denote either C or I.

Lemma 4.8. Let G be a graph, X a threshold-modulator and (C, I) a threshold partition of G−X. For
every Y ⊆ X it holds that if Y has its lower extreme in P` and upper extreme in Pu, then for every vertex
v ∈ Pi with i ∈ [`+ 1, u− 1] it holds that NX(v) = Y .

Proof. Let Y be a subset of X with C` and Cu being its lower and upper extremes in the clique respectively.
By definition there is a vertex u ∈ C` and a vertex w ∈ Cu such that NX(u) = NX(w) = Y . Let i be
an integer in [`+ 1, u− 1] and a vertex v ∈ Ci. By the definition of a threshold partition it holds that
NG−X(w) ⊂ NG−X(v) ⊂ NG−X(u). It follows from Lemma 4.6 that N(w) ⊂ N [v] and that N(v) ⊂ N [u].
Hence,

Y = NX(w) ⊆ NX(v) ⊆ NX(u) = Y

and we conclude that NX(v) = Y . Since i and v was arbitrary, the proof is complete.
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Definition 4.9 (Important, Outlying, and Regular). We say that Pi in the partition is important if
there is a Y ⊆ X such that Y has its extreme in Pi. Furthermore, a level Li is important if Ci or Ii is
important. Let f be the smallest number such that | ∪i≤f Ci| ≥ 2k + 2 and r the largest number such
that | ∪i≥r Ii| ≥ 2k + 2. A level Li is outlying if i ≤ f or i ≥ r. All other levels of the decomposition are
regular and a vertex is regular, outlying or important depending on the type of the level it is contained in.

Lemma 4.10. Let G be a graph and X a threshold-modulator of G of size at most 4k. Then every
threshold partition of G−X has at most 16k + 4 important levels.

Proof. The result follows immediately from the definition of important levels and Lemma 4.7.

Lemma 4.11. Let G be a graph, X a threshold-modulator of G and (C, I) a threshold partition of G−X,
then for every set Y ⊆ X there are at most two important clique fragments (independent fragments)
realizing Y .

Proof. We first prove the statement for clique fragments. Let Y be a subset of X and i < j < k three
integers. Assume for a contradiction that Ci, Cj and Ck are important clique fragments all realizing Y .
By definition there are vertices u ∈ Ci, v ∈ Cj and w ∈ Ck such that NX(u) = NX(v) = NX(w) = Y .
Furthermore, there is a vertex v′ ∈ Cj such that NX(v′) 6= Y since Cj is important and Y does not have an
extreme in Cj . By the definition of threshold partitions, we have that NG−X(w) ⊂ NG−X(v′) ⊂ NG−X(u).
Lemma 4.6 immediately implies that N(w) ⊂ N [v′] and N(v′) ⊂ N [u] and since {u, v′, w} ⊆ ∪C it holds
that N [u] ⊆ N [v′] ⊆ N [w]. Since NX(v′) 6= Y , we have NX(w) ⊂ NX(v′) ⊂ NX(u), which contradicts
the definition of w and u since NX(u) = NX(w). By a symmetric argument, the statement also holds for
independent fragments.

Lemma 4.12. Let G be a graph, X a threshold-modulator of G of size at most 4k and (C, I) a threshold
partition of G−X. Then there are at most 64k2 + 80k + 16 important vertices in G−X.

Proof. Let Y be the set of all vertices contained in a important clique or independent fragment and let Z
be the set of all important vertices. Observe that Y ⊆ Z and that every Ci or Ii contained in Z \ Y is a
twin class in G by definition. By Lemma 4.10 there are at most 16k + 4 important levels and since the
twin-rule has been applied exhaustively it holds that |Z \ Y | ≤ (16k + 4)(2k + 2) = 32k2 + 40k + 8.

Let A be a subset of X and B the vertices in Y such that their neighborhood in X is exactly A. Let D
be a Ci or Ii contained in Y and observe that D ∩ B is a twin class in G and hence |D ∩ B| ≤ 2k + 2.
And hence it follows from Lemma 4.11 that |B| ≤ 8k + 8. Furthermore, we know from Lemma 4.7 that
there are at most 4k + 1 realized in X and hence |Y | ≤ (8k + 8)(4k + 1) = 32k2 + 40k + 8. It follows
immediately that |Z| ≤ 64k2 + 80k + 16, completing the proof.

Lemma 4.13. Let G be a graph, X a threshold-modulator of G of size at most 4k and (C, I) a threshold
partition of G−X. Then there are at most 80k2 + 112k + 32 important and outlying vertices in total in
G−X.

Proof. By Lemma 4.12 it follows that there are at most 64k2 + 80k + 16 vertices that are important and
possibly outlying. It follows from Lemma 4.8 that if a level is not important its vertices are covered by at
most two twin classes in G and hence the level contains at most 4k + 4 vertices. By definition there are
at most 4k + 4 outlying levels and hence at most (4k + 4)(4k + 4) = 16k2 + 32k + 16 vertices which are
outlying, but not important. The result follows immediately.

Lemma 4.14. Let G be a graph, X a threshold-modulator of G, v a regular vertex in some threshold
partition (C, I) of G − X, C = ∪C and I = ∪I. Then for every F ⊆ [V (G)]2 such that G4F is a
threshold graph, |F | ≤ k and every split partition (CF , IF ) of G4F we have:

• v ∈ C if and only if v ∈ CF and

• v ∈ I if and only if v ∈ IF .

Proof. Observe that the two statements are equivalent and that it is sufficient to prove the forward
direction of both statements. First, we prove that v ∈ C implies that v ∈ CF . Let Y be the set of outlying
vertices in I ∩NG(v) and recall that |Y | > 2k + 1 by definition. Observe that at most 2k vertices in Y
are incident to F and hence there are two vertices u, u′ in Y that are untouched by F . Clearly, u and u′
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are not adjacent in G4F and hence we can assume without loss of generality that u is in IF . Since u
is untouched by F , v is adjacent to u by the definition of outlying vertices and hence v is not in IF . A
symmetric argument gives that v ∈ I implies that v ∈ IF and hence our argument is complete.

4.1.5 The Irrelevant Vertex Rule

We have now obtained the structure necessary to give our irrelevant vertex rule. But before stating the
rule, we need to define these consecutive levels with similar neighborhood and what it means for a vertex
to be in the middle of such a collection of levels.

Definition 4.15 (Large strips, central vertices). Let G be a graph, X a threshold-modulator and (C, I)
a threshold partition of G−X. A strip is a maximal set of consecutive levels which are all regular and
we say that a strip is large if it contains at least 16k + 13 vertices. For a strip S = ([Ca, Ia], . . . , [Cb, Ib])
a vertex v ∈ Ci is central if a ≤ i ≤ b and | ∪j∈[a,i−1] Cj | ≥ 2k + 2 and | ∪j∈[i+1,b] Cj | ≥ 2k + 2. Similarly
we say that a vertex v ∈ Ii is central if a ≤ i ≤ b and | ∪j∈[a,i−1] Ij | ≥ 2k + 2 and | ∪j∈[i+1,b] Ij | ≥ 2k + 2.
Furthermore, we say that a vertex v is central in G if there exists a threshold-modulator X of size at
most 4k and a threshold decomposition of G−X such that v is central in a large strip.

Lemma 4.16. If a strip is large it has a central vertex.

Proof. Let S = ([Ca, Ia], . . . , [Cb, Ib]) be a large strip. First, we consider the case when | ∪i∈[a,b] Ci| ≥
| ∪i∈[a,b] Ii|. Observe that | ∪i∈[a,b] Ci| ≥ 8k+ 7. Let i be the smallest number such that | ∪j∈[a,i−1] Cj | ≥
2k + 2. It follows immediately from |Ci−1| ≤ 2k + 2 that | ∪j∈[a,i−1] Cj | ≤ 4k + 3. Furthermore, since
|Ci| ≤ 2k + 2 it follows that | ∪j∈[i+1,b] Cj | ≥ 8k + 7− (2k + 2 + 4k + 3) = 2k + 2. And hence any vertex
in Ci is central. A symmetric argument for the case | ∪i∈[a,b] Ci| < | ∪i∈[a,b] Ii| completes the proof.

Rule 2 (Irrelevant vertex rule). If (G, k) be an instance of Threshold Completion or Threshold
Editing and v is a central vertex in G, reduce to (G− v, k).

Lemma 4.17. Let (G, k) be an instance, X a threshold-modulator and v a central vertex in G. Then
(G, k) is a yes-instance of Threshold Editing (Threshold Completion) if and only if (G− v, k) is
a yes-instance.

Proof. For readability we only consider Threshold Editing, however the exact same proof works for
Threshold Completion. For the forwards direction, for any vertex v, if (G, k) is a yes-instance, then
(G− v, k) is also a yes-instance. This holds since threshold graphs are hereditary.

For the reverse direction, let (G− v, k) be a yes-instance and assume for a contradiction that (G, k) is
a no-instance. Let F be a solution of (G−v, k) satisfying Lemma 2.5, and let G′ = G4F . By assumption,
(G, k) is a no-instance, so specifically, G′ is not a threshold graph. Let W be an obstruction in G′. Clearly
v ∈W since otherwise there is an obstruction in (G− v)4F , so consider Z = V (W )− v. For convenience
we will use N ′ to denote neighborhoods in G′ and specifically for any set Y ⊆ V (G′), N ′Y (v) = NG′(v)∩Y .
Furthermore, let (C, I) be a threshold decomposition of G − X such that there is a large strip S for
which v is central. We will now consider the case when v is in the clique of G−X. Since |F | ≤ k and S
is a large strip it follows immediately that there are two clique vertices w and w′ in S in higher levels
than v that is not incident to F . Observe that {w,w′, v} forms a triangle and that W contains no such
subgraph. Hence, we can assume without loss of generality that w /∈ V (W ). Similarly, we obtain a clique
vertex u in a lower level than v in S such that u /∈W .

Observe that G′[Z ∪ {u}] is not an obstruction and hence NZ(u) = N ′Z(u) 6= N ′Z(v) = NZ(v). Since u
and v are clique vertices from the same strip it is true that NX(v) = NX(u) and hence there is an
independent vertex a in Z such that lev(u) ≤ lev(a) < lev(v) (see Definition 2.3). In other words u
is adjacent to a while v and w are not. By a symmetric argument we obtain a vertex b such that
lev(v) ≤ lev(b) < lev(w), meaning that both u and v are adjacent to b while w is not. Let y be last vertex
of Z, meaning that {v, y, a, b} = V (W ). Observe that a and b are regular vertices and hence it follows
from Lemma 4.14 that for every threshold partition of G′ it holds that {a, b} are independent vertices.

Recall that u, v, w, a, b are all regular and hence they are in the same partitions in G′ as in G−X
by Lemma 4.14. Furthermore, since W is an obstruction and a is neither adjacent to v nor b in G′ it
holds that y and a are adjacent in G′. It follows that y is a clique vertex in G′ and hence it is adjacent
to both u and w in G′. Since u and w are not incident to F by definition, they are adjacent to y also
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Figure 8: The vertex v was a center vertex in a strip and W = {v, a, b, y} was assumed to be an
obstruction.

in G. Since u, v, w are regular and from the same strip it follows that v is adjacent to y in both G and
G′. Observe that the only possible adjacency not yet decided in W is the one between b and y. However,
for W to be an obstruction it should not be present. Hence y is adjacent to a but not to b in G′. By
definition NG(a) ⊆ NG(b), however by the last observation this is not true in G′. This contradicts that F
satisfies Lemma 2.5. A symmetric argument gives a contradiction for the case when v is an independent
vertex and hence the proof is complete.

The above lemma shows the soundness of the irrelevant vertex rule, Rule 2, and we may therefor
apply it exhaustively. The following theorem wraps up the goal of this section.

Theorem 6. The following three problems admit kernels with at most 336k2 + 388k + 92 vertices:
Threshold Deletion, Threshold Completion and Threshold Editing.

Proof. Assume that Rules 1 and 2 have been applied exhaustively. If this process does not produce a
threshold-modulator, we can safely output a trivial no-instance by Lemma 4.5. Hence, we can assume
that we have a threshold-modulator X of size at most 4k and that the reduction rules cannot be applied.
By Lemma 4.13 we know that there are at most 80k2 + 112k + 32 vertices in G−X that are not regular.
Furthermore, every regular vertex is contained in a strip and by Lemma 4.10 there are at most 16k + 5
such strips. Since the reduction rules cannot be applied, no strip is large, and hence they contain at most
16k+ 12 vertices each. Since every vertex in G is either in X, or considered regular, outlying or important
this gives us 4k + 80k2 + 112k + 32 + (16k + 5)(16k + 12) = 336k2 + 388k + 92 vertices in total.

4.2 Adapting the Kernel to Modification to Chain Graphs

In this section we provide kernels with quadratically many vertices for Chain Deletion, Chain
Completion and Chain Editing. Due to the fundamental similarities between modification to chain
and threshold graphs we omit the full proof and instead highlight the differences between the two proofs.
Observe that the only proofs for the threshold kernels that explicitly applies the obstructions are those of
Lemmata 4.5, 4.6 and 4.17 and hence these will receive most of our attention.

The twin reduction rule goes through immediately and hence our first obstacle is the modulator.
Luckily, this is a minor one. Recall from Definition 4.1 that the obstructions now are H = {2K2, C3, C5};
We thus get a chain-modulator X of size 5k, as the largest obstruction contains five vertices. Besides this
detail, the proof goes through exactly as it is.
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X

Figure 9: Some of the intersections of an obstruction with a chain-modulator X that by definition will
not occur. Dashed edges represent edges that could or could not be there. These are the intersections
necessary for the proof of the kernel.

4.2.1 An Additional Step

Before we continue with the remainder of the proof we need an additional step. Namely to discard all
vertices that are isolated in G−X. We will prove that by doing this we discard at most O(k2) vertices.
Now, if the irrelevant vertex rule concludes that the graph is small, then the graph is small also when we
reintroduce the discarded vertices. And if we find an irrelevant vertex, we remove it and reintroduce the
discarded vertices before we once again apply our reduction rules. Due to the locality of our arguments,
this is a valid approach.

Lemma 4.18. For a graph G and a corresponding chain-modulator X there are at most 10k2 + 12k + 2
isolated vertices in G−X.

Proof. Let I be the set of isolated vertices in G−X. We will prove that F = {NX(v) | v ∈ I} is laminar
(see Definition 2.8) and hence by Lemma 2.9 it holds that |F| ≤ |X|+ 1 ≤ 5k + 1. It follows immediately,
due to the twin reduction rule, that there are at most (5k + 1)(2k + 2) = 10k2 + 12k + 2 independent
vertices in G−X.

Assume for a contradiction that there are vertices u, v and w in I such that there exists u′ ∈
NX(u) \ NX(v) and v′ ∈ NX(v) \ NX(u) with {u′, v′} ⊆ NX(w). These vertices intersect with the
modulator as a variant of the forbidden H5 in Figure 9 and hence we get a contradiction.

4.2.2 Nested Neighborhoods

From now on we will assume in all of our arguments that there are no isolated vertices in G−X. The
next difference is with respect to Lemma 4.6, which is just not true anymore. The lemma provided us
with the nested structure of the neighborhoods in the modulator and was crucial for most of the proofs.
As harmful as this appears to be at first, it turns out that we can prove a weaker version that is sufficient
for our needs.

Lemma 4.19 (New, weaker version of Lemma 4.6). Let G be a graph and X a chain-modulator. For
every pair of vertices u and v in the same bipartition of G − X it holds that either N(u) ⊆ N(v) or
N(v) ⊆ N(u).

Proof. Let u and v be two vertices from the same bipartition of G−X. By the definition of chain graphs
we can assume that NG−X(u) ⊆ NG−X(v). Assume for a contradiction that the lemma is not true. Then
there is a vertex u′ ∈ NX(u) \ NX(v) and a vertex v′ in NX(v) \ NX(u). By definition, u and v are
not adjacent. Since there are no isolated vertices in G−X there is a vertex a ∈ NG−X(u) ⊆ NG−X(v).
Observe that if a is adjacent to either u′ or v′ we get a C3 that only has one vertex in X, which is a
contradiction (see H1 in Figure 9). However, if a is not adjacent to both u′ and v′ then {u, v, u′, v′, a}
forms the same interaction with the modulator as H4 in Figure 9 and hence our proof is complete.

One can observe that Lemma 4.19 is a sufficiently strong replacement for Lemma 4.6 since all proofs
are applying the lemma to vertices from only one partition of G−X. The only exception is the proof of
Lemma 4.7, but by applying Lemma 4.19 on one partition at the time we obtain the following bound
instead:

|{NX(v) for v ∈ V (G) \X}| ≤ 2|X|+ 2.
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4.2.3 An Irrelevant Vertex Rule

It only remains to prove that the irrelevant vertex rule can still be applied with this new set of obstructions.
Although the strategy is the same, the details are different and hence we provide the proof in full detail.

Lemma 4.20. Let (G, k) be an instance, X a threshold-modulator and v a central vertex in G. Then (G, k)
is a yes-instance of Chain Editing (Chain Completion) if and only if (G− v, k) is a yes-instance.

Proof. For readability we only consider Chain Editing, however the exact same proof works for Chain
Completion. For the forwards direction, for any vertex v, if (G, k) is a yes-instance, then (G− v, k) is
also a yes-instance. This holds since chain graphs are hereditary.

For the reverse direction, let (G− v, k) be a yes-instance and assume for a contradiction that (G, k) is
a no-instance. Let F be a solution of (G−v, k) satisfying Lemma 2.5, and let G′ = G4F . By assumption,
(G, k) is a no-instance, so specifically, G′ is not a chain graph. Let W be an obstruction in G′. Clearly
v ∈W , since otherwise there is an obstruction in (G− v)4F . Let Z = V (W )− v. For convenience we
will use N ′ to denote neighborhoods in G′ and specifically for any set Y ⊆ V (G′), N ′Y (v) = NG′(v) ∩ Y .
Furthermore, let (A,B) be a chain decomposition of G−X such that there is a large strip S for which v
is central. Let A = ∪A and B = ∪B. We will now consider the case when v is in A. Since |F | ≤ k and S
is a large strip it follows immediately that there are two vertices w and w′ in A∩S in higher levels than v
that is not incident to F . Observe that {w,w′, v} forms an independent set of size three and that W
contains no such subgraph. Hence, we can assume without loss of generality that w /∈ V (W ). Similarly,
we obtain a vertex u in A at a lower level than v in S such that u /∈W .

Observe that G′[Z ∪ {u}] is not an obstruction and hence NZ(u) = N ′Z(u) 6= N ′Z(v) = NZ(v). Since u
and v are vertices in A from the same strip it is true that NX(v) = NX(u) and hence there is a vertex a
in Z ∩ B such that lev(u) ≤ lev(a) < lev(v). In other words u is adjacent to a, while v and w are not.
By a symmetric argument we obtain a vertex b such that lev(v) ≤ lev(b) < lev(w), meaning that both u
and v are adjacent to b while w is not. We now fix a chain decomposition (A′,B′) and let A′ = ∪A′
and B′ = ∪B′. Observe that a and b are regular vertices and hence it follows from the chain version
of Lemma 4.14 that {a, b} is in B′. This yields immediately that W is not a C3 (since a and b are not
adjacent) and hence we are left the cases of W being a 2K2 or a C5.

We now consider the case when W is isomorphic to a 2K2. Let y be the last vertex of Z, meaning that
{v, y, a, b} = V (W ). Observe that since W is a 2K2 it holds that y is adjacent to a, but not to b. However,
in G it holds that N(a) ⊆ N(b) and hence F is not satisfying Lemma 2.5, which is a contradiction.

Hence we are left with the case that W is isomorphic to a C5. Let y, x be the last vertices of Z.
Observe that all vertices in W should be of degree two and hence a is adjacent to both x and y. Recall
that a is in B′ and observe that u is in A′ by the same reasoning. Due to their adjacency to a, also x
and y is in A′. It follows immediately that u, x and y form an independent set in (G− v)4F . Since u
and v are not touched by F and in the same strip it follows that v, x and y form an independent set in G′.
We observe that by this W can not be isomorphic to a C5. The argument for the case when v ∈ B is
symmetrical and hence the proof is complete.

We immediately obtain our kernelization results for modifications into chain graphs by the same wrap
up as for threshold graphs.

Theorem 7. The following three problems admit kernels with at most O(k2) vertices: Chain Deletion,
Chain Completion and Chain Editing.

5 Subexponential Time Algorithms

5.1 Threshold Editing in Subexponential Time

In this section we give a subexponential time algorithm for Threshold Editing. We also show that
we can modify the algorithm to work with Chain Editing. Combined with the results of Fomin and
Villanger [14] and Drange et al. [10], we now have complete information on the subexponentiality of edge
modification to threshold and chain graphs. In this section we aim to prove the following theorem:

Theorem 8. Threshold Editing admits a 2O(
√
k log k) + poly(n) subexponential time algorithm.
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The additive poly(n) factor comes from the kernelization procedure of Section 4. The remainder of
the algorithm operates on the kernel, and thus has running time that only depends on k.

We will throughout refer to a solution F . In this case, we are assuming a given input instance (G, k),
and then F is a set of at most k edges such that G4F is a threshold graph. In the next section, Section 5.2,
we will assume G4F to be a chain graph. Furthermore, after Section 5.1.1, we will be working with the
problem Split Threshold Editing, so we assume F ⊆ C × I when (C, I) is the split partition of G.

Definition 5.1 (Potential split partition). Given a graph G and an integer k (called the budget), for C
and I a partitioning of V (G) we call (C, I) a potential split partition of G provided that(

|C|
2

)
− E(C) + E(I) ≤ k.

That is, the cost of making G into a split graph with the prescribed partitioning does not exceed the
budget.

A brief explanation of the algorithm for Theorem 8. The algorithm consists of four parts, the
first of which is the kernelization algorithm described in Section 4. This gives in polynomial time an
equivalent instance (G, k) with the guarantee that |V (G)| = O(k2). We may observe that this is a proper
kernel, i.e., the reduced instance’s parameter is bounded by the original parameter. This allows us to use
time subexponential in the kernelized parameter.

The second step in the algorithm selects a potential split partitioning of G. We show that the
number of such partitionings is bounded subexponentially in k, and that we can enumerate them all in
subexponential time. This step actually also immediately implies that editing1, completing and deleting
to split graphs can be solved in subexponential time, however all of this was known [18, 15]. The main
part of this step is Lemma 5.3. For the remainder of the algorithm, we may thus assume that the input
instance is a split graph, and that the split partition needs to be preserved, that is, we focus on solving
Split Threshold Editing.

The third and fourth steps of the algorithm consists of repeatedly finding special kind of separators
and solving structured parts individually; Step three consists of locating so-called cheap vertices (see
Definition 5.6 for a formal explanation). These are vertices, v, whose neighborhood is almost correct, in
the sense that there is an optimal solution in which v is incident to only O(

√
k) edges. The dichotomy of

cheap and expensive vertices gives us some tools for decomposing the graph. Specific configurations of
cheap vertices allow us to extract three parts, one part is a highly structured part, the second part is a
provably small part which me may brute force, and the last part we solve recursively. All of which is

done in subexponential time 2O(
√
k log k).

Henceforth we will have in mind a “target graph” H = G4F with threshold partitioning (C, I). We
refer to the set of edges F as the solution, and assume |F | ≤ k.

5.1.1 Getting the Partition

As explained above, a crucial part of the algorithm is to enumerate all sets of size at most O(
√
k). The

following lemma shows that this is indeed doable and we will use the result of this lemma throughout
this section without necessarily referring to it.

Lemma 5.2. For every c ∈ N there is an algorithm that, given an input instance (G, k) with |V (G)| =
kO(1) enumerates all vertex subsets of size c

√
k in time 2O(

√
k log k).

Proof. Given an input graph G = (V,E), with |V | = n = kO(1) and a natural number k we can simply
output the family of sets X ⊆ 2V of size at most c

√
k, which takes time∑

κ≤c
√
k

(
n

κ

)
≤ c
√
k

(
n

c
√
k

)
≤ c
√
k · nc

√
k = 2O(

√
k logn) = 2O(

√
k log k),

where the first inequality follows since
(
n
i

)
is increasing for i from 1 to c

√
k.

1Indeed, editing to split graphs is solvable in linear time [18].
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The second step of the subexponential time algorithm was as described above to compute the potential
split partitionings of the input instance. Since we are given a general graph, we do not know immediately
which vertices will go to the clique partition and which will go to the independent set partition. However,
we now show that there is at most subexponentially many potential split partitionings. That is, there are
subexponentially many partitionings of the vertex set into (C, I) such that it is possible to edit the input
graph to a threshold graph with the given partitioning not exceeding the prescribed budget.

The next lemma will be crucial in our algorithm, as our algorithm presupposes a fixed split partition.
Using this result, we may in subexponential time compute every possible split partition within range, and
run our algorithm for completion to threshold graphs on each of these split graphs.

Lemma 5.3 (Few split partitions). There is an algorithm that given a graph G and an integer k with
|V (G)| = kO(1), can generate a set P of split partitions of V (G) such that for every split graph H such
that |E(H)4E(G)| ≤ k and every split partition (C, I) of H it holds that (C, I) is an element of P.

Furthermore, the algorithm terminates in 2O(
√
k log k) time.

Proof. Let G = (V,E) be a graph and k a natural number. The first thing we do is to guess the size sc
of the clique and let C be a set of sc vertices of highest degrees, and si = n− s, and let I = V (G) \ C.
In the case that min{sc, si} ≤ 6

√
k we can simply enumerate every partitioning by Lemma 5.2, so we

assume from now on that min{sc, si} > 6
√
k.

Claim 5.4. In any split graph H with |E(H)4E(G)| ≤ k, where H has split partition C ′, I ′ with
|C ′| = sc, |C4C ′| ≤ 2

√
k and |I4I ′| ≤ 2

√
k.

Proof. Suppose that 2
√
k vertices C ′ move from C to I and that 2

√
k vertices I ′ move from I to C.

Let σc =
∑
v∈C′ deg(v) and σi =

∑
v∈I′ deg(v). First, since the vertices are ordered by degree, σi ≤ σc.

Second, since in the final solution, C ′ is in the independent set, σc ≤ sc2
√
k + k (we might delete up to k

vertices from C ′) and using the same reasoning, σi ≥ (sc − 2
√
k) +

(
2
√
k

2

)
− k = sc2

√
k − 3k −

√
k (we

might add up to k vertices to I ′).
However, since sc ≥ 6

√
k, we have

sc · 2
√
k − 3k −

√
k ≤ σi ≤ σc ≤ sc · 2

√
k + k, and thus

9k −
√
k ≤ σi ≤ σc ≤ 13k,

yielding that σc ≥ 9k −
√
k. However, we can only lower the total degree of C ′ by 2k, which means that

even if we spend the entire budget on deleting from C ′,
∑
v∈C′ degH(v) ≥ 6k which means that there is a

vertex in C ′ with degree higher than the size of the clique (a contradiction).

Observe that since sc and si are fixed, if we move ` vertices from C to I, we have to move ` vertices
from I to C. Hence, if the claim holds, we can simply enumerate every set of 4

√
k vertices and take the

sets with equally many on each side and swap their partition. Adding each such partition to P gives the
set in question.

We would like to remark that this lemma also gives a simpler algorithm for Split Completion
(equivalently Split Deletion). Ghosh et al. [15] showed that Split Completion can be solved in

time 2O(
√
k log k) · poly(n) using the framework of Alon, Lokshtanov and Saurabh [1]. However, the

following observation immediately yields a very simple combinatorial argument for the existence of such
an algorithm. Together with the polynomial kernel by Guo [17], the following result is immediate from
the above lemma.

Corollary 5.5. The problem Split Completion is solvable in time 2O(
√
k log k) + poly(n).

Proof. The algorithm is as follows. On input (G, k) we compute, using Lemma 5.3, every potential
split partitioning (C, I) at most k edges away from G. Then we in linear time check that I is indeed
independent and that C lacks at most k edges from being complete.
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5.1.2 Cheap or Expensive?

We will from now on assume that all our input graphs G = (V,E) are split graphs provided with a split
partition (C, I), and that we are to solve Split Threshold Editing, that is, we have to respect the
split partitioning. We are allowed to do this with subexponential time overhead, as per the previous
section and specifically Lemma 5.3. In addition, we assume that |V (G)| = O(k2).

Given an instance (G, k) and a solution F , we define the editing number of a vertex v, denoted enFG(v),
to be the number of edges in F incident to a vertex v. When G and F are clear from the context, we will
simply write en(v). A vertex v will be referred to as cheap if en(v) ≤ 2

√
k and expensive otherwise. We

will call a set of vertices U ⊆ V small provided that |U | ≤ 2
√
k and large otherwise.

Definition 5.6. Given an instance (G, k) with solution F , we call a vertex v cheap if en(v) ≤ 2
√
k.

The following observation will be used extensively.

Observation 5.7. If U ⊆ V (G) is a large set, then there exists a cheap vertex in U , or contrapositively:
if a set U ⊆ V (G) has only expensive vertices, then U is small. Specifically it follows that in any yes
instance (G, k) where F is a solution, there are at most 2

√
k expensive vertices.

This gives the following win-win situation: If a set X is small, then we can “guess” it, which means
that we can in subexponential time enumerate all candidates, and otherwise, we can guess a cheap vertex
inside the set and its “correct” neighborhood. In particular, since the set of expensive vertices is small,
we can guess it in the beginning. For the remainder of the proof we will assume that the graph G is
a labeled graph, where some vertices are labeled as cheap and others as expensive. There will never
be more than 2

√
k vertices labeled expensive, however a vertex labeled expensive might very well not

be expensive in G and vice versa. The idea is that we guess the expensive vertices at the start of the
algorithm and then bring this information along when we recurse on subgraphs.

5.1.3 Splitting Pairs and Unbreakable Segments

Definition 5.8 (Splitting pair). Let G be a graph, k an integer, F a solution of (G, k) and (C, I) a
threshold decomposition of G4F . We then say that the vertices u ∈ Ia and v ∈ Cb is a splitting pair if

• a < b,

• u and v are cheap,

• ∪a<i<bLi consists of only expensive vertices. Recall from Definition 2.3 that Li = Ci ∪ Ii.

Definition 5.9 (Unbreakable). Let G be a graph, k an integer, F a solution of (G, k) and (C, I) a
threshold decomposition of G4F . We then say that a sequence of levels (Ca, Ia), (Ca+1, Ia+1), . . . , (Cb, Ib)
is an unbreakable segment if there is no splitting pair in the vertex set ∪i∈[a,b](Ci ∪ Ii).

Furthermore, we say that an instance (G, k) is unbreakable if there exists an optimal solution F and a
threshold decomposition (C, I) of G4F such that the entire decomposition is an unbreakable segment.
We also say that such a decomposition is a witness of G being unbreakable.

Definition 5.10. Let G be a graph and (C, I) a threshold decomposition of G4F for some solution F .
Then we say that i is a transfer level if

• for every j > i it holds that Cj contains no cheap vertices and

• for every j < i it holds that Ij contains no cheap vertices.

Lemma 5.11. Let (G, k) be a yes instance of Split Threshold Editing with solution F such that G
is unbreakable and (C, I) a witness. Then there is a transfer level in (C, I).

Proof. Suppose for a contradiction that the lemma is false. Let a be maximal such that Ca contains a
cheap vertex and b minimum such that Ib contains a cheap vertex. Since i = a clearly satisfies the first
condition, it must be the case that b < a. Increment b as long as b+ 1 < a and there is a cheap vertex
in ∪i∈(b,a)Ii. Then decrement a as long as b+ 1 < a and there is a cheap vertex in ∪i∈(b,a)Ci. Let u be
a cheap vertex in Ca and v a cheap vertex in Cb. It follows from the procedure that they both exist.
Observe that u, v is indeed a splitting pair, which is a contradiction to G being unbreakable and (C, I)
being a witness.
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Lemma 5.12. Let (G, k) be an instance of Split Threshold Editing such that G is unbreakable and
(C, I) a witness of this. Then the number of levels in (C, I) is at most 2

√
k + 1.

Proof. Let i be the transfer level in (C, I). It is guaranteed to exist by Lemma 5.11. Observe that for
every j > i it holds that Ci consists of expensive vertices and for every j < i it holds that Ii consists of
expensive vertices. It follows immediately that every level besides i contains at least one expensive vertex.
As there are at most 2

√
k such vertices the result follows immediately.

Lemma 5.13. Let (G, k) be an instance of Split Threshold Editing such that G is unbreakable,
(C, I) is a witness of this and F a corresponding solution. If X is the set of cheap vertices in G then
(G4F )[X] forms a complete split graph.

Proof. Let t be the transfer level of the decomposition, u a cheap vertex in Ci and v a cheap vertex in Ij
for some i and j. By the definition of t it holds that i ≤ t ≤ j. It follows immediately that u and v are
adjacent in G4F and the proof is complete.

We will now describe the algorithm unbreakAlg. It takes as input an instance (G, (C, I), k) of Split
Threshold Editing, with the assumption that G is unbreakable and has split partition (C, I), and
returns either an optimal solution F for (G, k) where |F | ≤ k or correctly concludes that (G, k) is a
no-instance. Assume that (G, k) is a yes-instance. Then there exists an optimal solution F and a threshold
decomposition (C, I) of G4F that is a witness of G being unbreakable. First, we guess the number of
levels ` in the decomposition, and by Lemma 5.12, we have that ` ∈ [0, 2

√
k + 1] and the transfer level

t ∈ [0, `]. Then we guess where the at most 2
√
k vertices that are expensive in G are positioned in (C, I).

Observe that from this information we can obtain all edges between expensive vertices in F . Finally, we
put every cheap vertex in the level that minimizes the cost of fixing its adjacencies into the expensive
vertices while respecting that t is the transfer level. From this information we can obtain all adjacencies
between cheap and expensive vertices in F . Since the cheap vertices induces a complete split graph, we
reconstructed F and hence we return it.

Lemma 5.14. Given an instance (G, k) of Split Threshold Editing with G being unbreakable,
unbreakAlg either gives an optimal solution or correctly concludes that (G, k) is a no-instance in time

2O(
√
k log k).

Proof. Since the algorithm goes through every possible value for ` and t (according to Lemmata 5.11
and 5.12), and every possible placement of the expensive vertices, the only thing remaining to ensure
is that the cheap vertices are placed correctly. However, since the cheap vertices form a complete split
graph (according to Lemma 5.13), the only cost associated with a cheap vertex is the number of expensive
vertices in the opposite side it is adjacent to. However, their placement is fixed, so we simply greedily
minimize the cost of the vertex by putting it in a level that minimizes the number of necessary edits.

If we get a solution from the above procedure, this solution is optimal. On the other hand, if in every
branch of the algorithm we are forced to edit more than k edges, then either (G, k) is a no-instance, or G
is not unbreakable. Since the assumption of the algorithm is that G is unbreakable, we conclude that the
algorithm is correct.

5.1.4 Divide and Conquer

We now explain the main algorithm. The algorithm takes as input a graph G, together with a split
partition (C, I) and a budget k. In addition, it takes a vertex set S which the algorithm is supposed
to find an optimal solution for. The algorithm is recursive and either finds a splitting pair, in which it
recurses on a subset of S, and if there is no splitting pair, then G[S] is unbreakable, and thus it simply
runs unbreakAlg on S. To avoid unnecessary recomputations, it uses memoization to solve already
computed inputs.

The algorithm solveAlg(G, (C, I), k, S) returns an optimal solution for the instance (G[S], k), re-
specting the given split partition (C, I) in the following manner:

(1) Run unbreakAlg(G[S], (C ∩ S, I ∩ S), k).
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C I

U

X

R

Figure 10: The partitioning of the vertex sets according to solveAlg. The square bags are the bags
containing the splitting pair, U is an unbreakable segment and the bags of X contains exclusively expensive
vertices. The edges drawn indicates the neighborhoods of the splitting pair across the partitions.

(2) For every pair of cheap vertices u ∈ I and v ∈ C, together with their correct neighborhoods Nu
and Nv, and every pair of subsets CX ⊆ C and IX ⊆ I of expensive vertices we do the following: Let
X = IX ∪ CX , RC = Nu, UI = Nv ∩ I, RI = I \ (X ∪ UI) and UC = S \ (X ∪RC ∪ UI ∪RI). Now,
U = UI ∪ UC is the unbreakable segment, X is the set of expensive vertices between the splitting
pair, and R = RI ∪RC is the remaining vertices. We now

(a) Run unbreakAlg(G[U ], (C ∩ U, I ∩ U), k) yielding a solution FU ,

(b) solve G[X] optimally by brute force since it has size at most 2
√
k, giving a solution FX , and

(c) recursively call solveAlg(G, (C, I), k, R) to solve the instance corresponding to the remaining
vertices yielding FR.

Finally we return F , the union of FU , FX , and FR together with all edges from C ∩R and I ∩ (X ∪U),
and all edges from C ∩X to I ∩ U .

In (1) we consider the option that there are no splitting pairs in G. In (2) (see Figure 10) we guess
the uppermost splitting pair in the partition and the neighborhood of these two vertices. Then we guess
all of the expensive vertices that live in between the two levels of the splitting pair. Observe that these
expensive vertices together with the splitting pair partition the levels into three consecutive sequences.
The upper one, U is an unbreakable segment, the middle, X are the expensive vertices and the lower
one, R is simply the remaining graph. When we apply unbreakAlg on the upper part, brute force the
middle one and recurse with solveAlg on the lower part, we get individual optimal solutions for each
three, finally we may merge the solutions and add all the remaining edges (see end of (2)).

Lemma 5.15. Given a split graph G = (V,E) with split partition (C, I), solveAlg either returns an
optimal solution for Split Threshold Editing on input (G, (C, I), k, V ), or correctly concludes that
(G, k) is a no-instance.

Proof. If (G, k) with split partition (C, I) is a yes instance of Split Threshold Editing there is a
solution F with threshold decomposition (C, I) and a sequence of pairs (u1, v1), (u2, v2), . . . , (ut, vt) such
that u1, v1 is the splitting pair highest in (C, I), and u2, v2 in the highest splitting pair in the graph
induced by the vertices in and below the level of v1, etc. Since we in a state (G, (C, I), k, S) try every
possible pair of such cheap vertices and every possible neighborhood and set of expensive vertices, we
exhaust all possibilities for any threshold editing of S of at most k edges. Hence, if there is a solution, an
optimal solution is returned.

Thus, if ever an F is constructed of size |F | > k, we can safely conclude that there is no editing set
F ? ⊆ C × I of size at most k such that G4F ? is a threshold graph.

Lemma 5.16. Given a split graph G = (V,E) with split partition (C, I) and an integer k with |V (G)| =
O(k2), the algorithm solveAlg terminates in time 2O(

√
k log k) on input (G, (C, I), k, V ).
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Proof. By charging a set S for which solveAlg is called with input (G, (C, I), k, S) every operation except

the recursive call, we need to (i) show that there are at most 2O(
√
k log k) many sets S ⊆ V for which

solveAlg is called, and (ii) that the work done inside one such call is at most 2O(
√
k log k).

For Case (i), we simply note that when solveAlg is called with a set S, the sets R on which we

recurse are uniquely defined by u, v,Nu, Nv, X, and there are at most O(k4) · 2O(
√
k log k)3 = 2O(

√
k log k)

such configurations, so at most 2O(
√
k log k) sets are charged. Case (ii) follows from the fact that we guess

two vertices, u and v and three sets, Nu, Nv and X. For each choice we run unbreakAlg, which runs in

time 2O(
√
k log k) by Lemma 5.14, and the brute force solution takes time 2O(

√
k log(

√
k)). The recursive

call is charged to a smaller set, and merging the solutions into the final solution we return, F , takes
polynomial time.

The two cases show that we charge at most 2O(
√
k log k) sets with 2O(

√
k log k) work, and hence solveAlg

completes after 2O(
√
k log k) steps.

To conclude we observe that Theorem 8 follows directly from the above exposition. Given an input
(G, k) to Threshold Editing, from the previous section we can in polynomial time obtain an equivalent

instance with at most O(k2) vertices. Furthermore, by Lemma 5.3 we may in time 2O(
√
k log k) time

assume we are solving the problem Split Threshold Editing. Finally, by Lemmata 5.15 and 5.16, the
theorem follows.

5.2 Editing to Chain Graphs

We finally describe which steps are needed to change the algorithm above into an algorithm correctly
solving Chain Editing in subexponential time.

The main difference between Chain Editing and Threshold Editing is that it is far from clear
that the number of bipartitions is subexponential, that is, is there a bipartite equivalent of the bound
of the potential split partitions as in Lemma 5.3? If we were able to enumerate all such “potential
bipartitions” in subexponential time, we could simply run a very similar algorithm to the one above on
the problem Bipartite Chain Editing, where we are asked to respect the bipartition (see Section 3.2.1
for the definition of this problem).

It turns out that we indeed are able to enumerate all such potential bipartitions within the allowed
time:

Lemma 5.17. There is an algorithm which, given an instance (G, k) for Chain Editing, enumerates( |V |
O(
√
k)

)
= 2O(

√
k log |V |) bipartite graphs H = (A,B,E′) with |E4E′| ≤ k such that if (G, k) is a yes

instance, then one output (H, k) will be a yes instance for Bipartite Chain Editing, and furthermore
is any yes instance (H, k) is output, then (G, k) is a yes instance. This also holds for the deletion and
completion versions.

Proof. We first mention that it is trivial to change the below proof into the proofs for the deletion and
completion versions; One simply disallow one of the operations. So we will prove only the editing version.
Furthermore, it is clear to see that if any output instance (H, k) is a yes instance for Bipartite Chain
Editing, then (G, k) was a yes instance for Chain Editing.

Consider any solution H = (A,B,E′) for an input instance (G, k). If either min{|A|, |B|} ≤ 5
√
k,

then we can simply guess every such in subexponential time. Hence, we assume that both sides of H
are large. But this means, by Observation 5.7, that both A and B have cheap vertices. Let vA be a
cheap vertex as low as possible in A and vB be a cheap vertex as high as possible in B. It immediately
follows from the same observation that the set of vertices below vA, AX is a set of expensive vertices, and
the same for the vertices above vB , BX . Since vA and vB , we know that we can in subexponential time
correctly guess their neighborhoods in H and we can similarly guess AX and BX .

Now, since we know vA, vB, NH(vA) and NH(vB), as well as AX and BX , the only vertices we do
now know where to place, are the vertices in A which are in the levels above lev(vB), call them AY , and
the vertices in b which are in the levels below lev(vA). However, we know which set this is, that is, we
know Z = AY ∪BY . Define now AM = A \ (AY ∪AX ∪{vA}) and similarly BM = B \ (BY ∪BX ∪{vB}).
These are the vertices living in the middle of A and B, respectively.
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We now know that the vertices of Z should form an independent set. This follows from the fact that
AM and BM are both non-empty. Hence, the vertices of AY are in higher levels than all of BY , and since
there are no edges going from a vertex in A to a vertex lower in B, and each of A and B are independent
sets, Z must be an independent set.

The following is the crucial last step. We can in subexponential time guess the partitioning of levels
of both AX and of BX , since they are both of sizes at most 2

√
k. When knowing these levels, we can

greedily insert each vertex in Z into either A and B by pointwise minimizing the cost; A vertex z ∈ Z
can safely be places in the level of A or B which minimizes the cost of making it adjacent to only the
vertices of BX above its level, or by making it adjacent to only the vertices below its level in AX .

Given the above lemma, we may work on the more restricted problem, Bipartite Chain Editing.
The rest of the algorithm actually goes through without any noticeable changes:

Theorem 9. Chain Editing is solvable in time 2O(
√
k log k) + poly(n).

Proof. On input (G, k) we first run the kernelization algorithm from Section 4.2, and then we enumerate
every potential bipartition according to Lemma 5.17. Now, for each bipartition (A,B) we make A into a
clique, and run the Split Threshold Editing algorithm from Section 5.1 (see also Proposition 2.7).

Now, (G, k) is a yes instance if and only if there is a bipartition (A,B) such that when making A into
a clique, the resulting instance is a yes instance for Split Threshold Editing.

Corollary 5.18. Chain Deletion and Chain Completion are solvable in time 2O(
√
k log k) + poly(n).

6 Conclusion

In this paper we showed that the problems of editing edges to obtain a threshold graph and editing edges
to obtain a chain graph are NP-complete. The latter solves a conjecture in the positive from Natanzon et
al. [27] and both results answer open questions from Sharan [30], Burzyn et al. [4], and Mancini [24].

On the positive side, we show that both Threshold Editing and Chain Editing admit quadratic
kernels, i.e., given a graph (G, k), we can in polynomial time find an equivalent instance (G′, k) where
|V (G′)| = O(k2), and furthermore, G′ is an induced subgraph of G. We also show that these results hold
for the deletion and completion variants as well, and these results answer open questions by Liu et al. in
a recent survey on kernelization complexity of graph modification problems [20].

Finally we show that both problems admit subexponential algorithms of time complexity 2O(
√
k log k) +

poly(n). This answers a recent open question by Liu et al. [22].

In addition, we give a proof for the NP-hardness of Chordal Editing which has been announced
several places but which the authors have been unable to find. However, our NP-completeness proof for
Chordal Editing suffers a quadratic blow-up from 3Sat, i.e., k = Θ(|ϕ|2), so we cannot get better than

2o(
√
k) · poly(n) lower bounds from this technique. The current best algorithm for Chordal Editing2

runs in time 2O(k log k) · poly(n) [6], and so this leaves a big gap. It would be interesting to see if we can
achieve tighter lower bounds, e.g., 2o(k) · poly(n) time lower bounds for Chordal Editing assuming
ETH together with a 2O(k) · poly(n) time algorithm.
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