
On the complexity of computing treelength

Daniel Lokshtanov∗

Abstract

We resolve the computational complexity of determining the treelength
of a graph, thereby solving an open problem of Dourisboure and Gavoille,
who introduced this parameter, and asked to determine the complexity of
recognizing graphs of bounded treelength [6]. While recognizing graphs
with treelength 1 is easily seen as equivalent to recognizing chordal graphs,
which can be done in linear time, the computational complexity of recog-
nizing graphs with treelength 2 was unknown until this result. We show
that the problem of determining whether a given graph has treelength at
most k is NP-complete for every fixed k ≥ 2, and use this result to show
that treelength in weighted graphs is hard to approximate within a factor
smaller than 3

2
. Additionally, we show that treelength can be computed

in time O∗(1.7549n) by giving an exact exponential time algorithm for
the Chordal Sandwich problem and showing how this algorithm can be
used to compute the treelength of a graph.

1 Introduction

Treelength is a graph parameter proposed by Dourisboure and Gavoille [6] that
measures how close a graph is to being chordal. The treelength of G is defined
using tree decompositions of G. Graphs of treelength k are the graphs that have
a tree decomposition where the distance in G between any pair of nodes that
appear in the same bag of the tree decomposition is at most k. As chordal graphs
are exactly those graphs that have a tree decomposition where every bag is a
clique [16], [3], [11], we can see that treelength generalizes this characterization.

There are several reasons for why it is interesting to study this parame-
ter. For example, Dourisboure et. al. show that graphs with bounded tree-
length have sparse additive spanners [5]. Dourisboure also shows that graphs of
bounded treelength admit compact routing schemes [4]. One should also note
that many graph classes with unbounded treewidth have bounded treelength,
such as chordal, interval, split, AT-free, and permutation graphs [6].

In this paper, we show that recognizing graphs with treelength bounded by
a fixed constant k ≥ 2 is NP-complete. The problem of settling the complexity
of recognizing graphs of bounded treelength was first posed as an open problem

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Email:
daniel.lokshtanov@uib.no.

1

by Dourisboure and Gavoille, and remained open until this result [6]. Our result
is somewhat surprising, because by bounding the treelength of G we put heavy
restrictions on the distance matrix of G. Another indication that this problem
might be polynomial for fixed k was that the treelength of a graph is fairly easy
to approximate within a factor of 3 [6]. In comparison, the best known ap-
proximation algorithm for treewidth has an approximation factor of O(

√
log k)

[7]. As Bodlaender showed, recognizing graphs with treewidth bounded by a
constant can be done in linear time [1]. Since the above observation about
approximability might indicate that determining treelength is ”easier” than de-
termining treewidth, one could arrive at the conclusion that recognizing graphs
with treelength bounded by a constant should be polynomial. However, there
are also strong arguments against this intuition. For instance, graphs of bounded
treelength are just bounded diameter graphs that have been glued together in a
certain way. Thus, when trying to show that a graph indeed has small treelength
one would have to decompose the graph into components of small diameter and
show how these components are glued together to form the graph. As the class
of bounded diameter graphs is very rich, one would have a myriad of candidates
to be such components, making it hard to pick out the optimal ones. This intu-
ition is confirmed when we prove the hardness of recognizing graphs of bounded
treelength because the instances we reduce to all have bounded diameter.

In the next section we will give some notation and preliminary results. Next,
we present a proof that determining whether the treelength of a weighted graph
is less than or equal to k is NP-hard for every fixed k ≥ 2. Following this, we
reduce the problem of recognizing weighted graphs with treelength bounded by
k to the problem of recognizing unweighted graphs with the treelength bounded
by the same constant k, thereby completing the hardness proof. Finally we
also consider the complexity of approximating treelength, and propose a fast
exact algorithm to determine the parameter by solving the Chordal Sandwich
problem.

2 Notations, terminology and preliminaries

We employ O∗() notation for which suppresses polynomial factors. Formally
f(n) = O∗(g(n)) if there is a constant c such that f(n) = O(g(n)nc). For a
graph G = (V,E) let w : E → N be a weight function on the edges. The
length of a path with respect to a weight function w is the sum of the weights
of its edges. The distance dw(u, v) between two vertices is the length of the
shortest path with respect to w. Whenever no weight function is specified the
unit weight function w(e) = 1 for all e ∈ E is used. G to the power of k with
respect to the weight function w is Gk

w = (V, {uv : dw(u, v) ≤ k}). A weight
function w is metric if it satisfies a generalization of the triangle inequality, that
is, if w((u, v)) = dw(u, v) for every edge (u, v).

A tree decomposition of a graph G = (V,E) is a pair (S, T) consisting of a
set S = {Xi : i ∈ I} of bags and a tree T = (I, M) so that each bag Xi ∈ S is a
subset of V and the following conditions hold:

2

•
⋃

i∈I Xi = V

• For every edge (u, v) in E, there is a bag Xi in S so that u ∈ Xi and v ∈ Xi

• For every vertex v in V , the set {i ∈ I : v ∈ Xi} induces a connected
subtree of T

The length of a bag is the maximum distance in G between any pair of ver-
tices in the bag. The length of a tree-decomposition is the maximum length of
any bag. The treelength of G with weight function w is the minimum length of a
tree-decomposition of G, and is denoted by tlw(G). When no weight function is
given on E, then the treelength is denoted by tl(G). A shortest tree decompo-
sition is a tree decomposition having minimum length. We will always assume
that all weight functions are metric. This can be justified by the fact that if w
is not metric, we easily can make a new metric weight function w′ by letting
w′((u, v)) = dw(u, v) for every edge (u, v) and observe that tlw′(G) = tlw(G).

The neighbourhood of a vertex v is denoted N(v) and is the vertex set {u :
(u, v) ∈ E}. When S is a subset of V , G[S] = (S, E ∩ {(u, v) : u ∈ S, v ∈ S}) is
the subgraph induced by S. We will use G \ v to denote the graph G[V \ {v}].
G is complete if (u, v) is an edge of G for every pair {u, v} of distinct vertices
in G. A clique in G is a set S of vertices in G so that G[S] is complete.

For two graphs G = (V,E) and G′ = (V,E′), G ⊆ G′ means that E ⊆ E′.
For a graph class Π, G is a Π-graph if G ∈ Π. G′ is a Π-sandwich between G
and G′′ if G′ is a Π-graph and G ⊆ G′ ⊆ G′′ [12]. A graph class Π is hereditary
if every induced subgraph of a Π-graph is a Π-graph.

A graph is chordal if it contains no induced cycle of length at least 4. Thus
the class of chordal graphs is hereditary. A vertex v is simplicial if the neigh-
bourhood of v is a clique. A vertex v is universal if V = {v} ∪ N(v). An
ordering of the vertices of G into {v1, v2, . . . , vn} is a perfect elimination order-
ing if for every i, vi is simplicial in G[{vj : j ≥ i}]. A clique tree of G is a tree
decomposition of G such that every bag is a maximal clique of G (see e.g., [13]
for details).

Theorem 2.1 The following are equivalent:
• G is chordal.

• G has a clique tree. [16], [3], [11]

• G has a perfect elimination ordering. [10]

For more characterizations of chordal graphs and the history of this graph
class, refer to the survey by Heggernes [13]. Following Theorem 2.1 it is easy
to see that if v is simplicial then G is chordal if and only if G \ v is chordal.
Universal vertices share this property, as has been observed by several authors
before.

3

Observation 2.2 If v is universal in G then G is chordal if and only if G \ v
is chordal.

Proof. If G is chordal then G \ v is chordal because the class of chordal graphs
is hereditary. Now suppose G \ v is chordal. Consider a perfect elimination
ordering of G \ v appended by v. This is clearly a perfect elimination ordering
of G, hence G is chordal.

We now define the problem that we are going to show is NP-complete. In
the problem statement below, k is an integer greater than or equal to 2.

k-Treelength
Instance: A graph G
Question: Is tl(G) ≤ k?

Finally, we define the problem we will reduce from.

Chordal Sandwich [12]
Instance: Two graphs G1 and G2 with G1 ⊆ G2

Question: Is there a chordal sandwich between G1 and G2?

3 Weighted k-Treelength is NP-Complete

In this section we are going to show that determining whether the treelength of
a given weighted graph is at most k is NP-complete for every fixed k ≥ 2. In
the next section we will conclude the hardness proof for unweighted graphs by
showing how one from a weighted graph G in polynomial time can construct an
unweighted graph G′ with the property that tlw(G) ≤ k if and only if tl(G′) ≤ k.

Weighted k-Treelength
Instance: A graph G with weight function w
Question: Is tlw(G) ≤ k?

Observation 3.1 For a graph G = (V,E) and a weight function w, tlw(G) ≤ k
if and only if there exists a chordal sandwich G′ between G and Gk

w.

Proof. Suppose tlw(G) ≤ k. Consider a shortest tree decomposition (S, T) of
G, and construct the graph G′ = (V, {(u, v) : ∃i u ∈ Xi, v ∈ Xi}). G ⊆ G′ is
trivial, G′ ⊆ Gk

w holds because the length of the tree decomposition is at most
k, and G′ is chordal because (S, T) is a clique tree of G′. In the other direction,
let G′ be a chordal sandwich between G and Gk

w. Consider a clique tree (S, T)
of G′. This is a tree decomposition of G, and the length of this decomposition
is at most k, as u ∈ Xi and v ∈ Xi implies (u, v) ∈ E(G′) ⊆ E(Gk

w).

Corollary 3.2 For any graph G, tl(G) = 1 if and only if G is chordal.

4

From Observation 3.1, it follows that determining the treelength of a given
graph in fact is a special case of the Chordal Sandwich problem defined above.
In a study of sandwich problems [12], Golumbic et. al. point out that as
a consequence of the hardness of Triangulating Colored Graphs, the Chordal
Sandwich problem is NP-Complete. Thus, in order to prove that Weighted
k-Treelength is indeed hard, we only need to reduce the Chordal Sandwich
problem to a special case of itself, namely the one where G2 = G1

k
w for some

weight function w.
We will reduce in the following way. On input G1 = (V1, E1), G2 = (V1, E2)

with G1 ⊆ G2 to the Chordal Sandwich problem, let ED = E2 \ E1. Observe
that ED is the set of possible fill edges we can add to G1 in order to make it
chordal. We construct a new graph G by taking a copy of G1, adding a new
vertex cuv for every edge (u, v) in ED and making this vertex adjacent to all
other vertices of G. We denote the set of added vertices by C, as C is a clique of
universal vertices. The weight function is simple, w(cuv, u) = w(cuv, v) = bk/2c
for every cuv and w(e) = k for all other edges of G.

Lemma 3.3 Let G, G1 and G2 be as described above. Then tlw(G) ≤ k if and
only if there is a chordal sandwich G′ between G1 and G2.

Proof. Observe that any supergraph G′ of G on the same vertex set (G′ ⊇ G) is
chordal if and only if G′[V1] is chordal since every vertex in C is universal. Also,
notice that for every pair u,v of vertices in V1, dG(u, v) ≤ k if and only if (u, v)
is an edge of G2. Thus it follows that G2 = Gk

w[V1]. Hence, by Observation 3.1,
tlw(G) ≤ k if and only if there is a chordal sandwich G′ between G and Gk

w.
By the discussion above, this is true if and only if there is a chordal sandwich
between G[V1] = G1 and G2 = Gk

w[V1].

Corollary 3.4 Weighted k-Treelength is NP-complete for every k ≥ 2.

Proof. By Lemma 3.3 determining whether a given weighted graph G has
tlw(G) ≤ k is NP-hard for every k ≥ 2. By Observation 3.1 this problem is
polynomial time reducible to the Chordal Sandwich problem, thus it is in NP.

4 k-Treelength is NP-Complete

We will now show how one from a weighted graph G in polynomial time can con-
struct an unweighted graph G′′ with the property that tlw(G) ≤ k if and only if
tl(G′′) ≤ k. We do this in two steps. First we show how to construct a graph G′

and weight function w′ from G and w so that tlw(G) ≤ k if and only if tlw′(G′) ≤
k and w′(e) = 1 or w′(e) = k for every edge e in G′. In the second step we show
how G′′ can be constructed from G′ and w′. Both steps are done in an induc-
tive way. Obviously, if G has an edge of weight larger than k then tlw(G) > k.
We will therefore assume that w(e) ≤ k for all edges e. For an edge (u, v), let
G(u, v) = (V ∪{r, q}, (E \ (u, v))∪{(u, r),(r, v),(u, q),(q, v)}). That is, we build

5

G(u, v) from G by removing the edge (u, v), adding two new vertices r and q
and making both of them adjacent to u and v. Let wu,v,k be a weight function
of G(u, v) so that w(u,v,k)(e) = w(e) if e ∈ E(G)∩E(G(u, v)), w(u,v,k)((u, r)) =
w(u,v,k)((r, v)) = k, w(u,v,k)((u, q)) = w(u, v) − 1, and w(u,v,k)((q, v)) = 1. Ob-
serve that if w((u, v)) > 1 then w(u,v,k) is properly defined.

Lemma 4.1 Given a graph G, an edge (u, v), and a weight function w with
w((u, v)) > 1, there is a chordal sandwich between G and Gk

w if and only if
there is a chordal sandwich between G(u, v) and G(u, v)k

w(u,v,k)
.

Proof. Suppose there is a chordal sandwich Ĝ(u,v) between G(u, v) and G(u, v)k
w(u,v,k)

.
The set {r, u, q, v} induces a cycle in G and hence either (r, q) or (u, v) must
be in edge in E(Ĝ(u,v)). The distance between r and q in G(u, v) is k + 1
we conclude that (u, v) must be in E(Ĝ(u,v)). Thus Ĝ(u,v) \ {r, q}, where r
and q are the vertices that were added to G \ (u, v) to obtain G(u, v), is a
chordal sandwich between G and Gk

w. In the other direction, suppose there is
a chordal sandwich Ĝ between G and Gk

w. Then Ĝ′ = (V (Ĝ) ∪ {r, q}, E(Ĝ) ∪
{(u, r), (r, v), (u, q), (q, v)}) is a chordal sandwich between G(u, v) and G(u, v)k

w(u,v,k)

because both r and q are simplicial nodes in Ĝ′.

Now, the idea is that the graph G(u, v) with weight function w(u,v,k) is
somewhat closer to not having any edges with weight between 2 and k − 1.
With an appropriate choice of measure, it is easy to show that this is indeed the
case. The measure we will use will essentially be the sum of the weights of all
edges that have edge weights between 2 and k − 1. In the following discussion,
let Ww(G) =

∑
e∈E,w(e)<k(w(e) − 1). Observe that if 1 < w(u, v) < k then

Ww(u,v,k)(G(u, v)) = Ww(G) − 1, and that if Ww(G) = 0 then w(e) = 1 or
w(e) = k for every edge e ∈ E.

Lemma 4.2 For a graph G with weight function w, we can construct in poly-
nomial time a graph G′ with weight function w′ so that |V (G′)| = |V (G)| +
2Ww(G), and tlw(G) ≤ k if and only if tlw′(G′) ≤ k.

Proof. We prove by induction on Ww(G). If Ww(G) = 0 we know that w(e) = 1
or w(e) = k for every edge e. Now, suppose the statement of the lemma holds
for all graphs with Ww(G) < t for some t and consider a graph G with weight
function w so that Ww(G) = t > 0. Then, let (u, v) be an edge so that 1 <
w((u, v)) < k. By Lemma 4.1, tlw(G) ≤ k if and only if tlw(u,v,k)(G(u, v)) ≤ k.
Now, Ww(u,v,k)(G(u, v)) = Ww(G) − 1. Thus, by the induction assumption,
we can in polynomial time construct a graph G′ with weight function w′ that
satisfies tlw(G) ≤ k ⇐⇒ tlw(u,v,k)(G(u, v)) ≤ k ⇐⇒ tlw′(G′) ≤ k with
|V (G′)| = |V (G(u, v))| + 2Ww(u,v,k)(G(u, v)) = |V (G)| + 2 + 2(Ww(G) − 1) =
|V (G)|+ 2Ww(G).

The idea of the above proof is that we can use edges of weight 1 and k to
emulate the behaviour of edges with other weights. The method we now will
use to prove the hardness of unweighted treelength will be similar - we are going

6

to show that weight k edges can be emulated using only edges with weight 1.
In order to do this, we are going to use the following lemma by Dourisboure et.
al. concerning the treelength of cycles.

Lemma 4.3 [6] The treelength of a cycle on k vertices is dk
3 e.

For an edge (u, v) ∈ E, we construct the graph G[u, v, k] in the following
way: We replace the edge (u, v) by three paths on 2k − 1, 2k − 1 and k − 1
vertices respectively. Construct these paths Pa = {a1, a2, . . . , a2k−1}, Pb =
{b1, b2, . . . , b2k−1} and Pc = {c1, c2, . . . , ck−1} using new vertices. Take a copy
of G, remove the edge (u, v) and add edges from u to a1, b1 and c1, and from v
to a2k−1, b2k−1 and ck−1. For a weight function w of G, w[u,v,k] will be a weight
function of G[u, v, k] so that w[u,v,k](e) = w(e) if e ∈ E(G) and w[u,v,k] = 1
otherwise.

Lemma 4.4 Given G, weight function w and an edge (u, v) ∈ E with w(u, v) =
k, tlw(G) ≤ k if and only if tlw[u,v,k](G[u, v, k]) ≤ k.

Proof. Suppose there is a chordal sandwich Ĝ between G and Gk
w. We build Ĝ′

from G by taking a copy of Ĝ, adding three new paths Pa = {a1, a2, . . . , a2k−1},
Pb = {b1, b2, . . . , b2k−1} and Pc = {c1, c2, . . . , ck−1} and the edge sets {(u, ai) :
i ≤ k}, {(u, bi) : i ≤ k}, {(u, ci) : i ≤ bk

2 c}, {(v, ai) : i ≥ k}, {(v, bi) : i ≥
k}, {(v, ci) : i ≥ bk

2 c}. We see that Ĝ′ is chordal because {a1, a2 . . . ak−1,
a2k−1, a2k−2, . . . ak, b1, b2 . . . bk−1, b2k−1, b2k−2, . . . bk, c1, c2, . . . cb k

2 c−1, ck−1,

ck−2, . . . cb k
2 c
} followed by a perfect elimination ordering of Ĝ is a perfect elim-

ination ordering of Ĝ′. Also, Ĝ′ ⊆ G[u, v, k]kw[u,v,k]
. Thus Ĝ′ is a chordal

sandwich between G[u, v, k] and G[u, v, k]kw[u,v,k]
. In the other direction, let

Ĝ[u,v] be a chordal sandwich between G[u, v, k] and G[u, v, k]kw[u,v,k]
. It is suf-

ficient to show that (u, v) ∈ E(Ĝ[u,v]) because then Ĝ[u,v][V (G)] is a chordal
sandwich between G and Gk

w. Consider the set Vs = {u, v} ∪ V (Pa) ∪ V (Pb),
and let C be the subgraph of G[u, v, k] induced by Vs. Now, observe that
E(G[u, v, k]kw[u,v,k]

[S]) = E(Ck)∪{(u, v)}. Suppose for contradiction that (u, v)

is not an edge of Ĝ[u,v]. Then we know that Ĝ[u,v][Vs] is a chordal sandwich be-
tween C and Ck implying that tl(C) ≤ k. This contradicts Lemma 4.3 because
C is a cycle on 4k vertices.

Lemma 4.4 gives us a way to emulate edges of weight k using only edges of
weight 1. For a graph G with weight function w, let Ww[G] = |{e ∈ E(G) :
w(e) = k}|. Notice that if w((u, v)) = k then Ww[G] = Ww[u,v,k] [G[u, v, k]] + 1.

Lemma 4.5 For every graph G with weight function w satisfying w(e) = 1
or w(e) = k for every edge, we can construct in polynomial time a graph G′

with Ww[G](5k − 3) + |V (G)| vertices and satisfying tlw(G) ≤ k if and only if
tl(G′) ≤ k.

7

Proof. We use induction on Ww[G]. If Ww[G] = 0 the lemma follows imme-
diately. Now, assume the result holds for Ww[G] < t for some t > 0. Con-
sider a graph G with weight function w so that Ww[G] = t. By Lemma 4.4
tlw(G) ≤ k if and only if tlw[u,v,k](G[u, v, k]) ≤ k. By the inductive hypothesis
we can construct in polynomial time a graph G′ with Ww[u,v,k] [G[u, v, k]](5k −
3) + |V (G[u, v, k])| + 5k − 3 = Ww[G](5k − 3) + |V (G)| vertices and satisfying
tl(G′) ≤ k ⇐⇒ tlw[u,v,k](G[u, v, k]) ≤ k ⇐⇒ tlw(G) ≤ k.

Corollary 4.6 For a graph G and weight function w, we can in polynomial
time construct a graph G′′ so that tlw(G) ≤ k if and only if tl(G′′) ≤ k.

Proof. By Lemma 4.2 we can in polynomial time construct a graph G′ with
weight function w′ so that tlw′(G′) ≤ k ⇐⇒ tlw(G) ≤ k and so that w′(e) = 1
or w′(e) = k for every edge e in E(G′). By Lemma 4.5 we can from such a G′

and w′ construct in polynomial time a G′′ so that tl(G′′) ≤ k ⇐⇒ tlw′(G′) ≤
k ⇐⇒ tlw(G) ≤ k.

Theorem 4.7 Determining whether tl(G) ≤ k for a given graph G is NP-
complete for every fixed k ≥ 2.

Proof. By Corollary 4.6, k-Treelength is NP-hard. As it is a special case of
Weighted k-Treelength it is also NP-complete.

5 Treelength is hard to approximate

Having established that treelength is hard to compute, it is natural to ask how
well this parameter can be approximated. We say that a polynomial time algo-
rithm that computes a tree-decomposition of G is a c-approximation algorithm
for treelength if there is an integer k so that on any input graph G, the length
l of the tree-decomposition returned by the algorithm satisfies the inequality
l ≤ c ·tl(G)+k. Dourisboure and Gavoille have already given a 3-approximation
algorithm for treelength [6], and have conjectured that the parameter is approx-
imable within a factor 2. In this section we show that as a consequence of the
results in the above section, treelength in weighted graphs can not be approxi-
mated within a factor c < 3

2 unless P = NP . For the treelength of unweighted
graphs we give a weaker inapproximability result, and conjecture that there is
no c-approximation algorithm for treelength with c < 3

2 unless P = NP .

Lemma 5.1 If P 6= NP then, for any c < 3
2 , there is no polynomial time

algorithm that on an input graph G returns a tree-decomposition of G with
length l ≤ c · tl(G).

Proof. Suppose there is such an algorithm ALG. We give a polynomial time
algorithm for 2-treelength, thereby showing that P = NP . On input G, run
ALG on G, and let l be the length of the tree-decomposition of G returned by

8

ALG. Answer “tl(G) ≤ 2” if l < 3 and “tl(G) > 2” otherwise. We now need to
show that tl(G) ≤ 2 if and only if l < 3. Assume l < 3. Then tl(G) ≤ l ≤ 2
as l is an integer. In the other direction, assume tl(G) ≤ 2. In this case
l ≤ c · tl(G) < 3.

Unfortunately, Lemma 5.1 is not sufficient to prove that it is hard to approx-
imate treelength within a factor c < 3

2 . The reason for this is that an algorithm
that guarantees that l ≤ 4

3 tl(G) + 1 can not be used to recognize graphs with
treelength at most 2 in the above manner. However, we can show that there
can be no c-approximation algorithms for the treelength of weighted graphs by
using the weights on the edges to “scale up” the gap between 2 and 3.

Theorem 5.2 If P 6= NP then there is no polynomial time c-approximation
algorithm for weighted treelength for any c < 3

2 .

Proof. The proof is similar to the one for Lemma 5.1. Suppose there is a
polynomial time c-approximation algorithm ALG for weighted treelength of G,
with c < 3

2 . Let k be a non-negative integer so that on any graph G with weight
function w, ALG computes a tree-decomposition of G with length l < c·tl(G)+k.
Now, choose t to be the smallest positive integer so that (3

2 − c) · t ≥ k + 1.
Let w be a weight function on the edges of G so that for every edge (u, v),
w((u, v)) = t. Observe that tlw(G) = tl(G) · t. Run ALG on input (G, w)
and let l be the length with respect to w of the tree-decomposition returned
by ALG. Answer “tl(G) ≤ 2” if l < 3t and “tl(G) > 2” otherwise. We now
need to show that tl(G) ≤ 2 if and only if l < 3t. Assume l < 3t. Now,
tl(G) · t = tlw(G) ≤ l < 3t. Dividing both sides by t yields tl(G) < 3 implying
tl(G) ≤ 2 as tl(G) is an integer. In the other direction, assume tl(G) ≤ 2. In
this case l ≤ c · tlw(G) +k = c · tl(G) · t+k = 3

2 · tl(G) · t− (3
2 − c) · tl(G) · t+k ≤

3t− (k + 1) + k < 3t. This implies that the described algorithm is a polynomial
time algorithm for 2-Treelength implying P = NP .

In fact, it does not seem that treelength should be significantly harder
to compute on weighted than unweighted graphs. The hardness proof for k-
Treelength is a reduction directly from weighted k-Treelength. Also, the exact
algorithm given in the next section works as well for computing the treelength
in weighted as in unweighted graphs. We feel that together with Lemma 5.1 and
Theorem 5.2 this is strong evidence to suggest that unless P = NP , treelength
is inapproximable within a factor c < 3

2 , also in unweighted graphs.

6 An exact algorithm for the Chordal Sandwich
problem

In this section we give an exact algorithm that solves the Chordal Sandwich
problem. The running time of this algorithm is O∗(1.7549n). In fact, the
algorithm can be obtained by a quite simple modification of an exact algorithm
to compute treewidth and minimum fill in given by Fomin et. al [8], together

9

with the tighter bound for the number of potential maximal cliques given by
Fomin and Villanger [9]. Together with Observation 3.1 this gives a O∗(1.7549n)
algorithm to compute the treelength of a graph. The algorithm applies dynamic
programming using a list of the input graph’s minimal separators and potential
maximal cliques.

In order to state and prove the results in this section, we need to introduce
some notation and terminology. Given two vertices u and v of G, a minimal
u-v-separator is an inclusion minimal set S ⊆ V so that u and v belong to
distinct components of G \ S. A minimal separator is a vertex set S that is a
minimal u-v-separator for some vertices u and v. We call a chordal supergraph
H of G for a minimal triangulation of G if the only chordal sandwich between G
and H is H itself. If C ⊆ V is a maximal clique in some minimal triangulation
of G, we say that C is a potential maximal clique of G. The set of all minimal
separators of G is denoted by ∆(G) and the set of all potential maximal cliques
is denoted by Π(G). By CG(S) we will denote the family of the vertex sets of the
connected components of G\S. Thus, if the connected components of G\S are
G[C1] and G[C2], CG(S) = {C1, C2}. A block is a pair (S, C) where S ∈ ∆(G)
and C ∈ CG(S). A block is called full if S = N(C). For a block (S, C) the
realization of that block is denoted by R(S, C) and is the graph obtained from
G[S ∪ C] by making S into a clique.

The following two results are crucial for our proofs.

Lemma 6.1 [14] Let S be a minimal separator of G. For every Ci ∈ CG(S),
let Hi be a minimal triangulation of R(S, Ci). Then the graph H with V (H) =
V (G) and E(H) =

⋃
Ci∈C(S) E(Hi) is a minimal triangulation of G. Conversely,

let H be a minimal triangulation of G and let S be a minimal separator of H.
Then, for every Ci ∈ CG(S), H[S ∪ Ci] is a minimal triangulation of R(S, Ci).

Theorem 6.2 [2] Let H be a minimal triangulation of G and let Ω be a maximal
clique of H. Then for each block (N(Ci), Ci)) with Ci ∈ CH(Ω), H[N(Ci), Ci]
is a minimal triangulation of R(N(Ci), Ci). Conversely, let Ω be a potential
maximal clique of G. For each block (N(Ci), Ci)) with Ci ∈ CG(Ω) let Hi be a
minimal triangulation of R(N(Ci), Ci). Let H be a graph with V (H) = V (G)
and E(H) = {(u, v) : {u, v} ⊆ Ω} ∪

⋃
Ci∈CG(Ω) E(Hi). Then H is a minimal

triangulation of G.

We are now in position to prove the correctness of Algorithm FCS.

Theorem 6.3 Algorithm FCS returns TRUE if and only if there is a chordal
sandwich between G1 and G2.

Proof. If G1 is a clique correctness follows trivially. In the rest of the proof
we will assume that G1 is not a clique. For a full block (C, S) of G1 define
Cs(R(C, S)) to be TRUE if there is a chordal sandwich between R(C, S) and
G2[C∪S] and FALSE otherwise. Notice that there is a chordal sandwich between
G1 and G2 if and only if there is a chordal sandwich between G1 and G2 that

10

Algorithm: Find Chordal Sandwich – FCS (G1, G2)
Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2) so that

G1 ⊆ G2, together with a list Π1 of all potential maximal
cliques of G1 that induce cliques in G2.

Output: TRUE if there is a chordal sandwich between G1 and G2,
FALSE otherwise.

∆1 := {S ∈ ∆(G1) : There is an Ω ∈ Π1 so that S1 ⊂ Ω};
F1 := the set of all full blocks (S, C) so that S ∈ ∆1, sorted by
|S ∪ C|;
Cs(R(S, C)) := FALSE for every pair of vertex sets S and C;
foreach full block (S, C) in F1 taken in ascending order do

foreach potential maximal clique Ω ∈ Π1 so that S ⊂ Ω ⊆ S ∪ C
do

ok := TRUE;
foreach full block (Si, Ci) where Ci ∈ CG1(Ω) and Si = N(Ci)
do

if Cs(R(Si, Ci)) = FALSE then
ok := FALSE;

Cs(R(S, C)) := Cs(R(S, C)) ∨ ok;

if G1 is a clique then
RETURN TRUE;

else
RETURN

∨
S∈∆1

∧
C∈CG(S) Cs(R(S, C));

11

is a minimal triangulation of G1. It follows directly from this and Lemma 6.1
that there is a chordal sandwich between G1 and G2 if and only if G1 has
a minimal separator S so that for every full block (S, C) there is a chordal
sandwich between R(S, C) and G2[S, C]. We give a recurrence relation for
Cs(R(C, S)), and the correctness of algorithm FCS follows directly from this
recurrence relation. We wish to show that Cs(R(C, S)) = TRUE if and only if
there is a potential maximal clique Ω ∈ Π1 so that S ⊂ Ω ⊆ S ∪ C and so that
for every full block (Si, Ci) with Ci ∈ C(Ω) and Si = N(Ci), Cs(R(Ci, Si)) =
TRUE. We prove each direction of the statement above by induction on |S∪C|.
If |S ∪C| = 0 the statement clearly is true. Suppose now that the statement is
true whenever |S ∪ C| < k for some k > 0 and consider a full block of size k.

Suppose there is a chordal sandwich between R(C, S) and G2[C ∪S]. Then,
there is a chordal sandwich G′ between R(C, S) and G2[C∪S] that is a minimal
triangulation of R(C, S). Let Ω be a maximal clique of G′ that contains S. Thus,
Ω is a potential maximal clique of R(C, S). It follows directly from Theorem
6.2 that every potential maximal clique of a realization of a full block of G1 is
a potential maximal clique of G1, thus we know that Ω is a potential maximal
clique of G1. As G′ ⊆ G2, Ω induces a clique in G2 so Ω is a potential maximal
clique in Π1 satisfying S ⊂ Ω ⊆ S ∪ C. Let (Si, Ci) be a full block of G1

with Ci ∈ CG1(Ω) if one such exists, if not, the statement follows directly. Now
G′[Si ∪Ci] is clearly a chordal sandwich between R(Si, Ci) and G2[Si ∪Ci] and
Cs(R(Si, Ci)) = TRUE by the induction hypothesis.

In the other direction, suppose there is a potential maximal clique Ω ∈ Π1

so that S ⊂ Ω ⊆ S ∪ C and so that for every full block (Si, Ci) with Ci ∈
CG1(Ω) and Si = N(Ci), Cs(R(C, S)) = TRUE. By the induction hypothesis,
there is a chordal sandwich G′i between R(Si, Ci) and G2[Si ∪Ci] for every full
block (Si, Ci) with Ci ∈ CG1(Ω) and Si = N(Ci). Observe that for any i 6= j
(Si∪Ci)∩ (Sj ∪Cj) ⊆ Ω. Thus we can build a graph G′ so that G′[Ω] is a clique
and G′[Si ∪ Ci] = G′i. Clearly, G′ is chordal supergraph of R(S, C). As Ω ∈ Π1

we know that G2[Ω] is a clique, and that G′i is a subgraph of G2[Si ∪Ci]. Thus
G′ is a chordal sandwich between R(S, C) and G2[S ∪ C].

Theorem 6.4 Algorithm FCS terminates in O∗(|Π1|) time.

Proof. Computing ∆1 from Π1 can be done in O∗(|Π1|) time by looping over
each potential maximal clique Ω ∈ Π1 and inserting N(C) into ∆1 unless already
present for every connected component C of G\Ω. F1 can be computed similarly
and then sorted in O∗(|Π1|) time. While building ∆1 and F1 we can store a
pointer from every full block (S, C) ∈ F to all potential maximal cliques Ω ∈ Π1

satisfying S ⊂ Ω ⊆ S ∪ C. Using these pointers, in each iteration of the second
foreach loop we can find the next potential maximal clique Ω to consider in
constant time. Furthermore, it is easy to see that each iteration of the second
foreach loop runs in polynomial time. Thus, the total running time is bounded
by O∗(

∑
(S,C)∈F1

|{Ω ∈ Π1 : S ⊂ Ω ⊆ S ∪ C}|) = O∗(
∑

Ω∈Π1
|{(S, C) ∈ F1 :

S ⊂ Ω ⊆ S ∪ C}|). But as |{(S, C) ∈ F1 : S ⊂ Ω ⊆ S ∪ C}| ≤ n for

12

every potential maximal clique Ω, it follows that the algorithm runs in time
O∗(

∑
Ω∈Π1

|{(S, C) ∈ F1 : S ⊂ Ω ⊆ S ∪ C}|) = O∗(|Π1|).

Theorem 6.5 [9] Π(G) can be listed in O∗(1.7549n) time. Thus |Π(G)| =
O∗(1.7549n).

Corollary 6.6 There is an algorithm that solves the Chordal Sandwich problem
in time O∗(1.7549n).

Proof. Compute Π(G). By Theorem 6.5 this can be done in O∗(1.7549n) time.
Now, for every Ω ∈ Π(G) we can test in O(n2) time whether it is a clique in
G2. If it is, insert Ω into Π1. We can now call algorithm FCS on G1, G2 and
Π1, and return the same answer as algorithm FCS. By Theorem 6.4 algorithm
FCS terminates in time O∗(|Π1|) = O∗(1.7549n) completing the proof.

Corollary 6.7 There is an algorithm that solves the Chordal Sandwich problem
in time O∗(2tw(G2)) where tw(G2) is the treewidth of G2.

Proof. For any tree-decomposition of G2, every clique of G2 is contained in
some bag in this tree-decomposition [13]. Thus, G2 has at most O∗(2tw(G2))
cliques. We can list all cliques of a graph with a polynomial delay [15]. For
every clique Ω in G2 we can test whether it is a potential maximal clique of G1

in polynomial time [2]. If it is, we insert Ω into Π1. Thus |Π1| = O∗(2tw(G2)).
Finally, call algorithm FCS on G1, G2 and Π1, and return the same answer as
algorithm FCS. By Theorem 6.4 algorithm FCS terminates in time O∗(|Π1|) =
O∗(2tw(G2)) completing the proof.

Corollary 6.8 There is an algorithm for Weighted k-Treelength that runs in
time O∗(1.7549n).

Proof. By Observation 3.1 tlw(G) ≤ k if and only if there is a chordal sandwich
between G and Gk

w. By Corollary 6.6 we can check this in time O∗(1.7549n).

7 Conclusion

We have proved that it is NP-complete to recognize graphs with treelength
bounded by a constant k ≥ 2. In addition we have proved that unless P = NP
there can be no approximation algorithm for the treelength of weighted graphs
with approximation factor better than 3

2 and we believe that a similar result
holds for unweighted graphs as well. Finally we gave a O∗(1.7549n) algorithm
to solve the Chordal Sandwich problem and showed how it can be used to
determine the treelength of a graph within the same time bound. Dourisboure
and Gavoille provide two 3-approximation algorithms for treelength in [6], and
propose a heuristic that they conjecture is a 2-approximation algorithm. It
would be interesting to see whether the gap between the upper and lower bounds
for approximability of treelength can be closed.

13

References

[1] H.L. Bodlaender. A linear time algorithm for finding tree-decompositions
of small treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

[2] V. Bouchitte and I. Todinca. Treewidth and minimum fill-in: Grouping the
minimal separators. SIAM Journal on Computing, 31(1):212–232, 2001.

[3] P. Buneman. A characterization of rigid circuit graphs. Discrete Mathe-
matics, 9:205–212, 1974.

[4] Y. Dourisboure. Compact routing schemes for bounded tree-length graphs
and for k-chordal graphs. Proceedings DISC 2004, Lecture Notes in Com-
puter Science, 3274:365–378, 2004.

[5] Yon Dourisboure, Feodor F. Dragan, Cyril Gavoille, and Chenyu Yan.
Spanners for bounded tree-length graphs. Theor. Comput. Sci., 383(1),
2007.

[6] Yon Dourisboure and Cyril Gavoille. Tree-decompositions with bags of
small diameter. Discrete Mathematics, 307(16):2008–2029, 2007.

[7] U. Feige, M.T. Hajiaghayi, and J.R. Lee. Improved approximation algo-
rithms for minimum-weight vertex separators. In 37th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 563–572. ACM Press, May
2005.

[8] Fedor V. Fomin, Dieter Kratsch, Ioan Todinca, and Yngve Villanger. Exact
algorithms for treewidth and minimum fill-in. SIAM J. Comput., 38(3),
2008.

[9] Fedor V. Fomin and Yngve Villanger. Treewidth computation and extremal
combinatorics. In ICALP (1), pages 210–221, 2008.

[10] D.R. Fulkerson and O.A Gross. Incidence matrices and interval graphs.
Pacific Journal of Mathematics, 15:835–855, 1965.

[11] F. Gavril. The intersection graphs of subtrees in trees are exactly the
chordal graps. Journal of Combinatorial Theory B, 16:47–56, 1974.

[12] M.C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. J.
Algorithms, 19(3):449–473, 1995.

[13] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Math-
ematics, 306(3):297–317, 2006.

[14] T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in
of asteroidal triple-free graphs. pages 309–335, 1997.

[15] K. Makino and T. Uno. New algorithms for enumerating all maximal
cliques. pages 260–272, 2004.

[16] J. Walter. Representation of rigid cycle graphs. PhD thesis, 1972.

14

