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Abstract
The optimization version of the Unique Label Cover problem is at the heart of the Unique
Games Conjecture which has played an important role in the proof of several tight inapproxim-
ability results. In recent years, this problem has been also studied extensively from the point
of view of parameterized complexity. Chitnis et al. [FOCS 2012] proved that this problem is
fixed-parameter tractable (FPT) and Wahlström [SODA 2014] gave an FPT algorithm with an
improved parameter dependence. Subsequently, Iwata, Wahlström and Yoshida [2014] proved
that the edge version of Unique Label Cover can be solved in linear FPT-time. That is, there
is an FPT algorithm whose dependence on the input-size is linear. However, the existence of such
an algorithm for the node version of the problem remained open. In this paper, we resolve this
question by presenting the first linear-time FPT algorithm for Node Unique Label Cover.
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1 Introduction

In the Unique Label Cover problem we are given an undirected graph G, where each
edge uv = e ∈ E(G) is associated with a permutation φe,u of a constant size alphabet Σ.
The goal is to construct a labeling Ψ : V (G) \ X → Σ maximizing the number of edge
constraints, that is, edges for which (Ψ(u),Ψ(v)) ∈ φuv,u holds. For some ε > 0 and given
Unique Label Cover instance L, Unique Label Cover(ε) is the decision problem of
distinguishing between the following two cases: (a) there is a labeling Ψ under which at
least (1 − ε)|E(G)| edges are satisfied; and (b) for every labeling Ψ at most ε|E(G)| edges
are satisfied. This problem is at the heart of famous Unique Games Conjecture (UGC)
of Khot [31]. Essentially, UGC says that for any ε > 0, there is a constant M such that
it is NP-hard to decide Unique Label Cover(ε) on instances with label set of size M .
The Unique Label Cover(ε) problem over the years has become a canonical problem to
obtain tight inapproximability results. We refer the reader to a survey of Khot [32] for more
detailed discussion on UGC.

In recent times Unique Label Cover has also attracted a lot of attention in the realm
of parameterized complexity. In particular two parameterizations, namely, Edge Unique
Label Cover and Node Unique Label Cover have been extensively studied. These
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problems are, not only, interesting combinatorial problems on its own but they also generalize
several well-studied problems in the realm of parameterized complexity. The objective of
this paper is to study the following problem.

Node Unique Label Cover Parameter: |Σ| + k

Input: Graph G, finite alphabet Σ, integer k and for every edge e = (u, v) ∈ E(G),
permutations φe,u and φe,v of Σ such that φe,u = φ−1

e,v and a function τ : V → 2Σ.
Question: Is there a set X ⊆ V (G) and a function Ψ : V (G) \ X → Σ such that for
any v ∈ V (G) \ X, for any (u, v) ∈ E(G − X), we have (Ψ(u),Ψ(v)) ∈ φuv,u where
Ψ′(v) ∈ τ(v) for every v ∈ V (G)?

We remark that the standard formulation of this problem excludes the function τ . How-
ever, this formulation is a clear generalization of the standard formulation (simply set
τ(v) = Σ for every vertex v) and the way we describe our algorithm makes it notation-
ally convenient to deal with this statement. To make the presentation simpler, we assume
that Σ = [|Σ|] = {1, . . . , |Σ|}.

The parameterized complexity of the Node Unique Label Cover problem was first
studied by Chitnis et al. [6] who proved it is FPT by giving an algorithm running in time
2O(k2·log |Σ|)n4 logn. They complemented this result by proving that an FPT algorithm for
this problem parameterized only by k is unlikely to exist. Subsequently, Wahlström [48]
(see also [28]) improved the parameter dependence by giving an algorithm running in time
O(|Σ|2knO(1)). The edge version of this problem was proved to be solvable in FPT-linear
time by Iwata et al. [28] who gave an algorithm running in time O(|Σ|2k(m+n)). However,
their approach does not apply to the much more general node version of the problem and they
asked whether there is an FPT algorithm for the node version with a linear time dependence
on the input size. In this paper, we answer this question in the affirmative by giving a linear
time FPT algorithm for this problem 1. Note that we have stated the problem in a slightly
more general form than is usually seen in literature. However, this modification does not
affect the solvability of the problem in linear FPT time. We now state our theorem formally.

I Theorem 1.1. There is a 2O(k·|Σ| log |Σ|)(m+n) algorithm solving Node Unique Label
Cover, where m and n are the number of edges and vertices respectively in the input graph.

Not only does our result answer the open question of Iwata et al. [28], when the label set
Σ is of constant-size for some fixed constant, our algorithm also achieves optimal asymptotic
dependence on the budget k under the Exponential Time Hypothesis [25].

By its very nature, the Node Unique Label Cover problem is a problem about break-
ing various types of dependencies between vertices. Since these dependencies are propagated
along edges, it is reasonable to view the problem as breaking these dependencies by hitting
appropriate sets of paths in the graph. Chitnis et al. [6] used this idea to argue that highly
connected pairs of vertices will always remain dependent on each other and hence one can
recursively solve the problem by first designing an algorithm for graphs that are ‘nearly’
highly connected and then use this algorithm as a base case in a divide and conquer type
approach. However, the polynomial dependence of their algorithm is O(n4 logn) where n
is the number of vertices in the input. Subsequently, Wahlstrom [48] improved the para-
meter dependence by using a branching algorithm based on the solution to a specific linear

1 Iwata et al. [29] have recently posted a preprint giving an alternate linear time algorithm for this
problem which matches the parameter dependence of the algorithm in [48] and [28]. As a consequence,
we consider it pertinent to point out the preprint of the current submission [37].
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program. However, since this algorithm requires solving linear programs, the dependence
on the input is far from linear. Iwata et al. [28] showed that for several special kinds of
LP-relaxations, including those involved in the solution of the edge version of Unique La-
bel Cover, the corresponding linear program can be solved in linear-time using flow-based
techniques and hence they were able to obtain the first linear-time FPT algorithm for the
edge version of Unique Label Cover. However, their approach fails when it comes to the
node version of this problem.
Our Techniques. In this paper, we view the Node Unique Label Cover problem as
a problem of hitting paths between certain pairs of vertices in an appropriately designed
auxiliary graph H whose size is greater than that of the input graph G by a factor depending
only on the parameter. The high level road map for the solution follows those in the
algorithms developed for solving graph separation problems via important separators in [38,
4], the LP-guided branching in [17, 9, 34, 26], the Valued CSP-based algorithms in [48, 28],
the skew-symmetric branching algorithm for 2-SAT Deletion in [42] and most recently,
the branching algorithm for the edge version of Group Feedback Vertex Set [41]. We
show that for any prescribed labeling on the vertices of G, it is possible to select (in linear
time) a constant-size set of vertices of G such that after guessing the intersection of this set
with a hypothetical solution, if we augment the labeling by branching over all permitted
labelings of the remaining vertices in this set then we reduce a pre-determined measure
of the input which depends only on the parameter. By repeatedly doing this, we obtain
a branching algorithm for this problem where each step requires linear time.. The main
technical content of the paper is in proving that:

there exists a constant-size vertex set and an appropriate measure for the instance such
that the measure ‘improves’ in each step of the branching and
such a vertex set can be computed in linear time.

Related work on improving dependence on input size in FPT algorithms. Our
algorithm for Node Unique Label Cover belongs to a large body of work where the main
goal is to design linear time algorithms for NP-hard problems for a fixed value of k. That
is, to design an algorithm with running time f(k) · O(|I|), where |I| denotes the size of the
input instance. This area of research predates even parameterized complexity. The genesis
of parameterized complexity is in the theory of graph minors, developed by Robertson and
Seymour [45, 46, 47]. Some of the important algorithmic consequences of this theory include
O(n3) algorithms for Disjoint Paths and F-Deletion for every fixed values of k. These
results led to a whole new area of designing algorithms for NP-hard problems with as small
dependence on the input size as possible; resulting in algorithms with improved dependence
on the input size for Treewidth [1, 2], FPT approximation for Treewidth [3, 44] Planar
F-Deletion [1, 2, 11, 13, 12], and Crossing Number [14, 15, 22], to name a few.

The advent of parameterized complexity started to shift the focus away from the running
time dependence on input size to the dependence on the parameter. That is, the goal
became designing parameterized algorithms with running time upper bounded by f(k)nO(1),
where the function f grows as slowly as possible. Over the last two decades researchers
have tried to optimize one of these objectives, but rarely both at the same time. More
recently, efforts have been made towards obtaining linear (or polynomial) time parameterized
algorithms that compromise as little as possible on the dependence of the running time on
the parameter k. The gold standard for these results are algorithms with linear dependence
on input size as well as provably optimal (under ETH) dependence on the parameter. New
results in this direction include parameterized algorithms for problems such as Odd Cycle
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Transversal [27, 42], Subgraph Isomorphism [10], Planarization [30, 18], Subset
Feedback Vertex Set [36] as well as a single-exponential and linear time parameterized
constant factor approximation algorithm for Treewidth [3]. Other recent results include
parameterized algorithms with improved dependence on input size for a host of problems [16,
19, 20, 21, 23, 24].
Related work on graph separation in FPT algorithms. Marx [38] was the first to
consider cut problems in the context of parameterized complexity. He observed that the
Multiway Cut problem can be shown to be FPT by a simple application of graph minors,
(see [38, Section 3]) and then went on to give an algorithm for the same problem with a
running time of O(4k3

nO(1)). The notion of important separators which was introduced
in this paper has been instrumental in settling the parameterized complexity of numerous
graph-separation problems including Directed Feedback vertex Set [5], Almost 2
SAT [43], Multicut [40], the directed versions of Multiway Cut [8], Subset Feedback
Vertex Set [7], Multicut restricted to acyclic digraphs [33] as well as parity based
generalizations of Multiway Cut [35].

2 Preliminaries

We fix a label set Σ and assume that all instances of Node Unique Label Cover we deal
with are over this label set. When we refer to a set X being a solution for a given instance
of Node Unique Label Cover, we implicitly assume that X is a set of minimum size.
We denote the set of functions {φe,u}e∈E(G),u∈e simply as φ (without any subscript).

Before we proceed to describe our algorithm for Node Unique Label Cover, we make
a few remarks regarding the representation of the input. We assume that the input graph
is given in the form of an adjacency list and for every edge e = (u, v) the permutations φe,v
and φe,u are included in the two nodes of the adjacency list corresponding to the edge e.
This is achieved by representing the permutations as |Σ|-length arrays over the elements in
[|Σ|]. It is straightforward to check that given the input to Label Cover in this form, the
decision version of the problem can be solved in time O(|Σ|O(1)(m + n)). We assume that
the input to Node Unique Label Cover is also given in the same manner.

3 Setting up the tools

3.1 Defining the auxiliary graph
I Definition 1. Let (G, k, φ, τ) be an instance of Node Unique Label Cover and let
Ψ : V → Σ. We say that Ψ is a feasible labeling for this instance if for all (u, v) ∈ E(G),
(Ψ(u),Ψ(v)) ∈ φuv,u. For τ : V → 2Σ, we say that Ψ is consistent with τ if for every
v ∈ V (G), Ψ(v) ∈ τ(v).

For an instance I = (G, k, φ, τ) of Node Unique Label Cover, we define an associated
auxiliary graph HI as follows. The vertex set of HI is V (G)×Σ. For notational convenience,
we denote the vertex (v, i) by vi. The vertex vi is meant to represent the (eventual) labeling
of v by the label i. The edge set of HI is defined as follows. For every edge e = (u, v) and
for every i ∈ Σ, we have an edge (ui, vφe,u(i)). That is, we add an edge between ui and uj
where j is the image of i under the permutation φe,u.

We now prove certain structural lemmas regarding this auxiliary graph which will be
used in the design as well as analysis of our algorithm. For ease of description, we will treat
instances of Label Cover as instances of Node Unique Label Cover. To be precise, we
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represent an instance (G,φ) of Label Cover as the trivially equivalent instance (G, 0, φ, τ0)
of Node Unique Label Cover where, τ0(v) = Σ for every v ∈ V (G). The first observation
follows from the definition of HI and the fact that since G is a simple graph, for every edge
e ∈ E(G), the set of edges in HI that correspond to this edge form a matching.

I Observation 3.1. Let I = (G, 0, φ, τ) be an instance of Node Unique Label Cover.
Then, for every v ∈ V (G), for every distinct i, j ∈ Σ, vi and vj have no common neighbors
in HI .

I Observation 3.2. Let I = (G, 0, φ, τ) be a Yes instance of Node Unique Label Cover
and let Ψ be a feasible labeling for this instance. Let v ∈ V (G) and i = Ψ(v). Then, for
any vertex u ∈ V (G) and j ∈ Σ, if uj is in the same connected component as vi in HI then
Ψ(u) = j.

Proof. The proof is by induction on the length of a shortest path in HI between vi and uj .
In the base case, suppose that vi and uj are adjacent. Then, by the definition of HI , it must
be the case that (u, v) is an edge in G and furthermore, j = φuv,u(i). Since Ψ, is feasible, it
follows that Ψ(u) = j. We now move to the induction step and suppose that P is a shortest
path in HI from vi to uj , where the length of P is at least 2. Let w ∈ V (G) and r ∈ Σ such
that (wr, uj) is the last edge encountered when traversing P from vi to uj . Then, by the
induction hypothesis, we can conclude that Ψ(w) = r. Furthermore, by the definition of HI ,
it must be the case that (w, u) is an edge in G and j = φwu,w(r). Therefore, the feasibility
of Ψ implies that Ψ(u) = j. This completes the proof of the observation. J

The above observation describes the ‘dependency’ between pairs of vertices which are in
the same connected component of G. Moving forward, we will characterize the dependencies
between vertices when subjected to additional constraints. Before we do so, we need the
following definitions.

I Definition 2. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover. For
v ∈ V (G), we use [v] to denote the set {v1, . . . , v|Σ|}. For a subset S ⊆ V (G), we use [S]
to denote the set

⋃
v∈S [v]. Similarly, for e = (u, v) ∈ E(G), we use [e] to denote the set

{(ui, vj)}i∈Σ,j=φe,u(i) of edges and for a subset X ⊆ E(G), we use [X] to denote the set⋃
e∈X [e]. For the sake of convenience, we also reuse the same notation in the following way.

For v ∈ V (G) and α ∈ Σ, we also use [vα] to denote the set {v1, . . . , v|Σ|}. This definition
extends in a natural way to sets of vertices and edges of the auxiliary graph HI . Finally, for
a set S ⊆ V (HI) ∪ E(HI), we denote by S−1 the set {s|s ∈ V (G) ∪ E(G) : [s] ∩ S 6= ∅}.

I Definition 3. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover. We say
that a set Z ⊆ V (HI)∪E(HI) is regular if |Z ∩ [v]| ≤ 1 for any v ∈ V (G) and |Z ∩ [e]| ≤ 1
for any e ∈ V (G) and irregular otherwise. That is, regular sets contain at most 1 copy of
any vertex and edge of G.

Now that we have defined the notion of regularity of sets, we prove the following lemma
which shows that the auxiliary graph displays a certain symmetry with respect to regular
paths. This will allow us to transfer arguments which involve a regular path between vertices
vi and uj to one between vertices vi1 and uj1 where i 6= i1 and j 6= j1.

I Lemma 3.1. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover. Let
P be a regular path in HI from vi to uj. Let V (P ) denote the set of vertices of G in P and
let U denote the set [V (P )]. Then, there are vertex disjoint paths P1, . . . , P|Σ| in HI and a
partition of U into sets U1, . . . , U|Σ| such that for each r ∈ [|Σ|], V (Pr) = Ur and Pr is a
path from vi1 to ui2 for some i1, i2 ∈ Σ.
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Proof. The proof is by induction on the length of P . In the base case, suppose that P
is a single edge which corresponds to the edge e ∈ E(G). That is, P = (vi, uj) ∈ E(HI)
and U = [{v, u}]. For each r ∈ Σ, we define Pr to be the edge (vr, uφe,v(r)) and Ur to be
the set {vr, uφe,v(r)}. Observe that the statement of the lemma holds with respect to these
sets. We now move to the induction step, where P has length at least 2. Let s ∈ Σ and
w ∈ V (G) such that (ws, uj) is the last edge of P encountered when traversing P from vi
to uj . We now apply the induction hypothesis on the subpath of P from vi to ws and the
above argument for the base case on the subpath of P from ws to uj which is precisely the
edge (ws, uj). Let the first subpath be Q and the second subpath J .

Let Q1, . . . , Q|Σ| be the paths and UQ1 , . . . , U
Q
|Σ| be the partition of [V (Q)] given by

the induction hypothesis. Similarly, let J1, . . . , J|Σ| be the paths and UJ1 , . . . , U
J
|Σ| be the

partition of [V (J)] given by our arguments for the base case. Since these are partitions
and [V (Q)] and [V (J)] intersect in precisely the set [w], we may assume without loss of
generality that for every r ∈ Σ, the sets UQr and UJr contain the vertex wr. For each r ∈ Σ,
we now define Ur to be UQr ∪UJr and Pr to be the concatenated path Qr⊕Jr. Since Qr is a
path with wr as one endpoint and Jr is a path (indeed an edge) with wr as an endpoint for
each r ∈ Σ, the path Pr is well-defined. Further, since the sets UQ1 , . . . , U

Q
|Σ| partition the

set [V (Q)] and UJ1 , . . . , UJ|Σ| partition [V (J)], we conclude that U1, . . . , U|Σ| indeed partition
[V (P )] and for each r, V (Pr) = Ur. This completes the proof of the lemma. J

In the next lemma, we describe additional structural properties of the auxiliary graph.
In particular, we establish the relation between various copies of the same vertex set. In-
tuitively, the following lemma says that for every connected and regular set of vertices Z,
simply observing the set N [Z] can allow one to make certain useful assertions about the set
of vertices in the neighborhood of the set Z ′ = [Z] \ Z.

I Lemma 3.2. Let Z ⊆ V (HI) be a connected regular set of vertices and let Y = N(Z).
Further, suppose that N [Z] is regular. Let Z ′ = [Z] \ Z and Y ′ = [Y ] \ Y . Then, Y ′ ⊆
N(Z ′) ⊆ [Y ]. Furthermore, for every connected component C in HI [Z ′], N(C)∩ [v] 6= ∅ for
every v ∈ V (G) for which there is a j ∈ Σ such that vj ∈ Y .

Proof. We begin by arguing that Y ′ ⊆ N(Z ′). That is, for every vertex a ∈ Y ′, there is a
vertex b ∈ Z ′ such that (a, b) ∈ E(HI). Consider a vertex a = xi ∈ Y ′ where x ∈ V (G) and
i ∈ Σ. By the definition of Y ′, there is a j ∈ Σ such that i 6= j and xj ∈ Y . Since Y = N(Z),
it must be the case that there is a y ∈ V (G) and r ∈ Σ such that (yr, xj) ∈ E(HI) and
yr ∈ Z. Now, by the definition of Z ′, we know that for every s ∈ Σ\{r}, the vertex ys ∈ Z ′.
Furthermore, the presence of the edge (yr, xj) ∈ E(HI) implies the presence of an edge
(xi, y`) ∈ E(HI) for some ` ∈ Σ. From Observation 3.1, we infer that ` 6= r. Since we have
already argued that y` ∈ Z ′, we conclude that xi ∈ N(Z ′).

We now argue that N(Z ′) ⊆ [Y ]. For this, we need to show that for every a ∈ Z ′ and
b /∈ Z ′ such that (a, b) ∈ E(HI), it must be the case that b ∈ [Y ]. Consider a vertex xi ∈ Z ′
where x ∈ V (G) and i ∈ Σ and a vertex yr /∈ Z ′ for some y ∈ V (G) and r ∈ Σ such that
(xi, yr) ∈ E(HI). By the definition of Z ′, there is a j ∈ Σ such that i 6= j and xj ∈ Z. Now,
due to the edge (xi, yr), we have the existence of the edge (xj , ys) ∈ E(HI) for some s ∈ Σ.
Due to Observation 3.1, we know that s 6= r since yr is already neighbor to xi. Therefore,
if ys ∈ Z, then yr would be in Z ′, a contradiction. This allows us to infer that ys /∈ Z,
implying that ys ∈ N(Z) = Y . But this means that yr ∈ [Y ], completing the proof of this
statement as well.

Finally, we address the last statement of the lemma. That is, the neighborhood of each
connected component induced by the set Z ′ contains at least one copy of every vertex of Y .
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For this, we require the following claim.
I Claim 1. For any vertex t ∈ V (G) and label α ∈ Σ, if there is a component C of HI [Z ′]
containing tα, then there is a label β ∈ Σ such that tβ ∈ Z and furthermore, for every
p ∈ V (G) and γ ∈ Σ, if pγ ∈ Z then there is a δ ∈ Σ such that pδ is in C.

Proof. It follows from the definition of Z ′ that if tα is in Z ′, then there must be a label
β 6= α such that tβ ∈ Z. Now, suppose that pγ ∈ Z. Since Z is connected, there is a path
from tβ to pγ contained within Z. We prove the statement of the claim by induction on the
length of a shortest path between these 2 vertices which is contained within Z.

Let P be such a shortest path and in the base case, suppose that P is an edge. That
is, (tβ , pγ) ∈ E(HI). Then, the definition of HI implies the existence of a δ such that
(tα, pδ) ∈ E(HI). Furthermore, by Observation 3.1, we know that δ 6= γ. Since C is a
connected component of Z ′ and both tα and pδ are in Z ′, we conclude that pδ is in C.
We now perform the induction step where P is a path of length at least 2, assuming our
statement holds for all paths of length at most |P | − 1.

Let w ∈ V (G) and r ∈ Σ such that the last edge on this path when traversing from tβ to
pγ is the edge (wr, pγ). Then, by the induction hypothesis, there is an ` ∈ Σ such that w`
is in C. Now, invoking the same argument as above, we infer the existence of a δ ∈ Σ such
that pδ is also in C, completing the proof of the claim. J

We now complete the proof of the final statement of the lemma. Consider a connected
component C of the graph HI [Z ′] and consider the set N(C). Suppose that for some
v ∈ V (G) and j ∈ Σ, vj ∈ Y . Consider a vertex tα in C where t ∈ V (G) and α ∈ Σ. Then,
by the above claim, there is a β ∈ Σ such that tβ ∈ Z. Since Y = N(Z), we infer the
existence of a pγ in Z which is adjacent to vj in HI . Invoking the above claim again, we
infer the existence of a δ ∈ Σ such that pδ is in C. However, by the definition of HI , the
presence of the edge (vj , pγ) implies the presence of an edge (vi, pδ) for some i ∈ Σ. Observe
that vi cannot be in Z ′. This is because if vi ∈ Z ′, then N [Z] is not regular, a contradiction
to the premise of the lemma. Therefore, it must be the case that vi ∈ N(C), implying that
N(C) ∩ [v] 6= ∅. This completes the proof of the lemma. J

Using the observations and structural lemmas proved so far, we will now give a forbidden-
structure characterization of Yes instances of Node Unique Label Cover.

I Lemma 3.3. Let I = (G, 0, φ, τ) be a Yes instance of Node Unique Label Cover
where G is connected. Let v ∈ V (G) and i ∈ Σ. Then, there is a feasible labeling Ψ such
that Ψ(v) = i if and only if there is no j ∈ Σ such that vi and vj are in the same connected
component of HI .

Proof. Consider the forward direction of the lemma. That is, the claim that if there is a
feasible labeling Ψ such that Ψ(v) = i then, there is no j such that vi and vj are in the
same connected component of HI . The contra-positive of this statement is the following. If
there is a j ∈ Σ such that vi and vj are in the same connected component of HI then there
is no feasible labeling Ψ such that Ψ(v) = i. By applying the statement of Observation 3.2
on the vertices vi and vj , we conclude that the forward direction holds.

We now argue the converse direction. That is, if there is no j ∈ Σ such that vi and vj are
connected in HI , then there is a feasible labeling Ψ such that Ψ(v) = i. Observe that since
G is connected, for every vertex u ∈ V (G), there is at least one vertex of [u] in the same
component as vi in HI , call it C. We now consider 2 cases. In the first case, |[u] ∩ C| = 1
for every u ∈ V (G). In the second case, there is a vertex u ∈ V (G) such that |[u] ∩ C| > 1.
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Case 1: We define the labeling Ψ on V (G) as follows. For every u ∈ V (G), let Ψ(u) = r if
and only if ur ∈ C. Clearly, Ψ is well-defined. We claim that Ψ is in fact a feasible labeling
with Ψ(v) = i. It is clear from the definition of Ψ that Ψ(v) = i. Hence it only remains
to prove that Ψ is feasible. Suppose that Ψ is not feasible and let e = (p, q) ∈ E(G)
such that Ψ(p) = α and Ψ(q) = β do not match. That is, β 6= φe,p(α). By the definition
of Ψ, pα and qβ are both in C. Furthermore, by the definition of HI , (pα, qβ) /∈ E(HI)
and there is a γ 6= β such that (pα, qγ) ∈ E(HI). However, this implies that qβ , qγ ∈ C,
a contradiction to our assumption that |C ∩ [q]| = 1. Therefore, we conclude that Ψ is
indeed a feasible labeling setting Ψ(v) = i, completing the argument for this case.

Case 2: In this case, there is a u ∈ V (G) such that |[u]∩C| > 1. Let α, β ∈ Σ be such that
uα, uβ ∈ C. Consider a path P from vi to uα. Let P1 be a regular subpath of P with
endpoints vi and wγ where |[w] ∩C| > 1 and we choose δ ∈ Σ such that wδ ∈ C. If P is
already regular then P1 = P , w = u, γ = α and δ = β. However, if P is not regular, then
choose wγ to be the vertex on P closest to vi such that |[w]∩C| > 1 and wδ to be another
vertex in [w] which lies on P . Since by the premise of the statement, for no j ∈ Σ is the
vertex vj ∈ C, the path P contains at least 1 edge. Now, we apply Lemma 3.1 on the
regular path P1 and obtain regular paths P ′1, . . . , P ′|Σ| with each path having as one of
its endpoints a unique vertex from [v] and the other endpoint a unique vertex from [w].
Since one of these paths is P1 itself, we assume without loss of generality that P ′1 = P1,
which is a path from vi to wγ and P ′2 is a path from vj to wδ for some j ∈ Σ where
j 6= i. Since wγ and wδ are in C, we infer that vi and vj are also in C, contradicting the
premise.

This completes the argument for the second case as well and hence the proof of the
converse direction of the lemma. J

In the next lemma, we extend the statement of the previous lemma to include a de-
scription of Yes instances where k = 0 and the given graph has a feasible labeling that is
consistent with a given function τ .

I Lemma 3.4. Let I = (G, 0, φ, τ) be an instance of Node Unique Label Cover. Then,
I is a Yes instance if and only if for every vertex v ∈ V (G), there is an i ∈ Σ such that
there is no path in HI from vi to vj for any j 6= i. Moreover, if there is a feasible labeling
Ψ for G consistent with τ such that Ψ(v) = i then there is no vertex u ∈ V (G) and label
j ∈ Σ \ τ(u) such that there is a path in HI from vi to uj.

Proof. Suppose that I is a Yes instance and let Ψ be a feasible labeling of G. Let v ∈ V (G)
and let i = Ψ(v). Then, Observation 3.2 implies that HI contains no vi-vj path for any
j 6= i.

Conversely, suppose that for every vertex v ∈ V (G), there is a iv ∈ Σ such that there
is no path in HI from viv to vj for any Σ 3 j 6= iv. For each connected component C of
G, we pick an arbitrary vertex w and apply Lemma 3.3 to conclude that there is a feasible
labeling ΨC for this component which sets ΨC(w) = iw. Finally the labeling Ψ defined as
the union of the labelings {ΨC}C∈Comp(G) is a feasible labeling for G, completing the proof
of the first statement of the lemma.

Now, suppose that Ψ is a feasible labeling of G consistent with τ and Ψ(v) = i. Suppose
that vi is in the same component as uj where u ∈ V (G) and j ∈ Σ\τ(u). Then, Observation
3.2 implies that Ψ(u) = j /∈ τ(u), a contradiction to our assumption that Ψ is consistent
with τ . This completes the proof of the lemma. J
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So far, we have studied the structure of Yes instances of this problem when the budget
k = 0. The next lemma is a direct consequence of Lemma 3.4 and allows us to characterize
Yes instances of the problem for values of k greater than 0.

I Lemma 3.5. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover. Then,
I is a Yes instance if and only if there is a set S ⊆ V (G) of at most k vertices such that for
every v ∈ V (G) \ S, there is an iv ∈ Σ such that [S] intersects all paths from viv to vj for
every Σ 3 j 6= iv in the graph HI . Moreover if there is a feasible labeling for G−S consistent
with τ that labels v with the label i ∈ τ(v) then for every u ∈ V (G) and j ∈ Σ \ τ(u), [S]
intersects all vi-uj paths.

Using the above lemma, we will interpret the Node Unique Label Cover problem
as a parameterized cut-problem and use separator machinery to design a linear-time FPT
algorithm for this problem.

3.2 Defining the associated cut-problem
We begin by recalling standard definitions of separators in undirected graphs.

I Definition 4. Let G be a graph and X and Y be disjoint vertex sets. A set S disjoint
from X ∪ Y is said to be an X-Y separator if there is no X-Y path in the graph G − S.
We denote the vertices in the components of G − S which intersect X by R(X,S) and we
denote by R[X,S] the set R(X,S) ∪ S. We say that an X-Y separator S1 covers an X-Y
separator S2 if R(X,S1) ⊇ R(X,S2).

I Definition 5. Let I be an instance of Node Unique Label Cover and let X and Y

be disjoint vertex sets of HI . We say that a minimal X-Y separator S is good if the set
R[X,S] is regular and bad otherwise.

Note that if S is a minimal X-Y separator then N(R(X,S)) = S. We are now ready to
prove the Persistence Lemma which plays a major role in the design of the algorithm. In
essence this lemma says that if we are guaranteed the existence of a solution whose deletion
leaves a graph with a feasible labeling Ψ and if we are given a vertex v excluded from the
deletion set which has a single label α in its allowed label set, then we can define a set T
such that the solution under consideration must separate vα from T . Furthermore, if we
find a good minimum vα-T separator S, then we can correctly fix the labels of all vertices
which have exactly one copy in R(vα, S). It will be shown later that once we fix the labels
of these vertices, the subsequent exhaustive branching steps will decrease a pre-determined
measure of the input instance.

I Lemma 3.6. [Persistence Lemma] Let I = (G, k, φ, τ) be a Yes instance of Node
Unique Label Cover. Let X ⊆ V (G) be a minimal set of size at most k such that G−X
has a feasible labeling and let Ψ be a feasible labeling for G−X consistent with τ . Let v be
a vertex not in X with |τ(v)| = 1 and let α ∈ Σ be such that α = Ψ(v) and τ(v) = {α}. Let
T denote the set

⋃
u∈V (G)

⋃
γ∈Σ\τ(u) uγ .

[X] is a vα-T separator in HI .
Let S be a good vα-T minimum separator in HI and let Z = R(vα, S). Then, there is a
solution for the given instance disjoint from Z−1.

Proof. The first statement follows from lemma 3.5. We now prove the second statement.
We begin by observing that T contains the set [v] \ {vα}. This is simply because τ(v) is a
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singleton and only contains the label α. As a result, we know that the set [X] must intersect
all vα-vβ paths for α 6= β. Let X1 denote the set X∩Z−1. If X1 is empty then we are already
done. Therefore, X1 6= ∅. Let S′ denote the subset of S \ [X] which is not reachable from
vα in the graph HI − [X] via paths whose internal vertices lie in Z. We now have 2 cases
depending on S′ being empty or non-empty. We will argue that the first case cannot occur
since it contradicts the minimality of X. In the second case we use very similar arguments
but show that we can modify X to get an alternate solution X ′ which is disjoint from the
set Z.

Case 1: S′ is empty. That is, every vertex in S \ [X] is reachable from vα in HI − [X] via
paths whose internal vertices lie in Z. Let u ∈ X1 and let b ∈ Σ such that ub ∈ Z. Since
Z is regular, Z ∩ [u] must in fact be equal to {ub}. We now claim that X ′ = X \ {u} is
also a set such that G−X ′ has a feasible labeling, contradicting the minimality of X.
Suppose that this is not the case. That is, G − X ′ does not have a feasible labeling.
Since every connected component of G−X ′ which does not contain u is also a connected
component of G−X, all such components do have a feasible labeling. Indeed any feasible
labeling of G−X restricted to the vertices in these components is a feasible labeling for
these components. Therefore, there is a single component in G−X ′ which does not have
a feasible labeling – the component containing u.
By Lemma 3.3, if there is no b′ ∈ Σ\{b} such that the connected component of HI− [X ′]
containing ub also contains ub′ , then there is a feasible labeling of the component ofG−X ′
which contains u, a contradiction. Therefore, there is a b′ ∈ Σ \ {b} such that there is
a ub-ub′ path in HI − [X ′]. If this path contains vertices of [u] other than ub and ub′ ,
then we pick the vertex of [u] \ {ub} which is closest to ub on this path and call it ub′ .
Therefore, the path P from ub to ub′ is internally disjoint from [u]. We now have the
following claim regarding P .

I Claim 2. The path P is internally regular.

Proof. Suppose that the path P contains a pair of internal vertices from the set [l] for
some vertex l ∈ V (G) \ {u}. Let these vertices be l1 and l2. We consider the following 2
cases. In the first case, both l1 and l2 are disjoint from Z and in the second, exactly one
of them, say l1 is contained in Z. Since Z is regular, these are the only 2 possible cases.
We begin with the first case. That is, both l1 and l2 are disjoint from Z. Since ub ∈ Z
and P contains ub and l1, l2, it must be the case that P intersects S \ [X] in a vertex, call
it a. However, by assumption, there is a path from vα to a in the graph HI − [X]. Since
the internal vertices of P are disjoint from [X], we obtain a walk (and hence a connected
component) in HI − [X] that contains vα, l1 and l2, contradicting our premise that there
is a feasible labeling of G−X which labels v with α.
In the second case, since l1 ∈ Z and l2 /∈ Z, the subpath of P between l1 and l2 must
intersect S \ [X] at a vertex, call it a. Since P is internally disjoint from [u], we conclude
that the subpath of P between l1 and l2 is disjoint from [X] and hence present inHI−[X].
However, we assumed that a is reachable from vα in HI− [X], implying that vα can reach
both l1 and l2 in HI − [X], contradicting the existence of a feasible labeling of G − X
(Observation 3.2) which labels v with α. Hence, we conclude that P is regular and this
completes the proof of the claim. J

We now return to the proof of the first case. Since ub ∈ Z and ub′ /∈ Z (as N [Z] is
regular), P must intersect N(Z) which is the same as S, in S \ [X]. Furthermore, P
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Figure 1 Illustrations of the paths used in the arguments in Case 1. Note that contrary to the
illustration, some of these paths may intersect.

must intersect N(C) where C is the connected component of Z ′ = [Z]\Z containing the
vertex ub′ . We now have the following 2 subcases based on the intersection of P with
the(not necessarily non-empty) set S ∩N(C). In both subcases we will demonstrate the
presence of a vα-vβ path in HI − [X] for some β ∈ Σ \ {α}.

Case 1.1: P contains a vertex in S ∩ N(C). Let w` be a vertex in S ∩ N(C) which
appears in P . We let P1 denote the subpath of P from ub to w` and P2 denote the
subpath of P from w` to ub′ (see Figure 1). Furthermore, since P is internally regular,
P1 and P2 are regular. We apply Lemma 3.1 to the regular path P2 to get a path P ′2
with ub as one endpoint and wh as the other endpoint, where wh 6= w`. Now, since
W` ∈ N [Z] and N [Z] is regular by our assumption, it must be the case that wh /∈ Z.
Therefore the path P ′2 must intersect S at a vertex other than w`. Let xr be such a
vertex, where x ∈ V (G) and r ∈ Σ. However, in the case we are in, we know that xr
(which is contained in S \ [X]) is reachable from vα in HI − [X] by a path Q whose
internal vertices lie in Z. We let the subpath of P ′2 from xr to wh be denoted by J .
Furthermore, the case we are in guarantees that w` is reachable from vα in HI − [X]
via a path L whose internal vertices lie in Z. Since L lies completely in N [Z], it is
regular and we may apply Lemma 3.1 on this path to obtain a path L′ with wh s
one endpoint and vβ as the other endpoint for some β ∈ Σ. Since we have already
argued that wh 6= w`, it follows that β 6= α. Therefore, we get a concatenated walk
Q+ J +L′ which is a walk that is present in the graph HI − [X] and contains vα and
vβ , contradicting the premise of the lemma that there is a feasible labeling for G−X
setting v to α. This completes the argument for this subcase.

Case 1.2: P does not contain a vertex in S ∩ N(C). Let xr be the last vertex of S
which is encountered when traversing P from ub to ub′ and let w` be the last vertex
of N(C) encountered in the same traversal. Observe that since the previous subcase
does not hold, it must be the case that xr occurs before w` in this traversal. We let
J denote the subpath of P between xr and w`. Now, Lemma 3.2 implies that there
is a h ∈ Σ \ {`} such that wh ∈ S. This is because N(C) ⊆ [S]. Now, the case we
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are in guarantees the presence of paths L and Q from vα to wh and xr respectively
such that L and Q both lie strictly inside N [Z] and hence are regular. Now, we apply
Lemma 3.1 on the regular path J to get a path J ′ with wh as one endpoint and xr1

as the other for some r1 ∈ Σ. Since we have already argued that wh 6= w`, it must be
the case that r1 6= r. Now, we apply Lemma 3.1 on the regular path Q to get a path
Q′ with xr1 as one endpoint and vβ as the other for some β ∈ Σ. Since we have shown
that r1 6= r, we infer that β 6= α. Now, the concatenated walk L+J ′+Q′ implies the
presence of a vα-vβ path in HI − [X], a contradiction to the premise of the lemma.
This completes the argument for this subcase.

Thus we have concluded that G−X ′ has a feasible labeling, contradicting the minimality
of X. This completes the argument for the first case and we now move on to the second
case.

Case 2: S′ is non-empty. Let Q be a set of |S|-many vα-S paths contained entirely in N [Z]
which are vertex disjoint except for the vertex vα. Since S is a minimum vα-T separator,
such a set of paths exists. Recall that X1 denotes the set X ∩ Z−1. We let X̂1 denote
the set [X]∩Z. That is, those copies of X1 present in Z. Due to the presence of the set
of paths Q and the fact that v is disjoint from X, it must be the case that X̂1 contains
at least one vertex in each path in Q that connects v and S′. Furthermore, since S
is a good separator, we conclude that |X1| = |(X̂1)−1| ≥ |(S′)−1|. We now claim that
X ′ = (X \X1)∪ (S′)−1 is also a solution for the given instance. That is, |X ′| ≤ |X| and
G−X ′ has a feasible labeling. By definition, |X ′| ≤ |X| holds. Therefore, it remains to
prove that G−X ′ has a feasible labeling.
Again, it must be the case that any connected component of G − X ′ which does not
have a feasible labeling must intersect the set X1. Any other component of G − X ′ is
contained in a component of G −X and already has a feasible labeling by the premise
of the lemma.
By Lemma 3.3, there must be a vertex u1 ∈ X1 and distinct labels b, b′ ∈ Σ such that
u1
b ∈ Z and there is a u1

b − u1
b′ path P in HI − [X ′]. We now consider the intersection

of P with the set [X1] and let pγ1 and qγ2 be vertices on P such that pγ1 , qγ2 ∈ [Z], the
subpath of P from pγ1 to qγ2 is internally disjoint from [X1] and pγ1 ∈ Z and qγ2 /∈ Z.
We first argue that such a pair of vertices exist.
We begin by setting pγ1 = u1

b and qγ2 = u1
b′ . If the path P is already internally disjoint

from [X1] then we are done. Otherwise, let u2
c be the vertex of [X1] closest to pγ1 along

the subpath between pγ1 and qγ2 . Now, if u2
c is not in Z then we are done by setting

qγ2 = u2
c . Otherwise, we continue by setting pγ1 = u2

c . Since this process must terminate,
we conclude that the vertices pγ1 and qγ2 with the requisite properties must exist.
For ease of notation we will now refer to the path between pγ1 and qγ2 as P . Note that
by definition, P is internally disjoint from [X1]. We now have a claim identical to that
in the previous case.

I Claim 3. The path P is internally regular.

Proof. The proof of this claim is identical to the previous case and only uses the fact that
one endpoint of P is inside Z, the other outside N [Z] and that P is internally disjoint
from [X1]. Using these properties, one can argue that if P is not internally regular, then
vα is in the same component as a pair of vertices in [l] in the graph HI − [X], for some
l ∈ V (G), contradicting the premise of the lemma. J
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Figure 2 Illustrations of the paths used in the arguments in Case 2. Note that contrary to the
illustration, some of these paths may intersect.

We now complete the proof of this case. Since pγ1 ∈ Z and qγ2 ∈ [Z] \ Z, P must
intersect N(Z) in (S \ [X])\S′. Furthermore, P must also intersect N(C) where C is the
connected component of HI [Z ′] containing qγ2 , where Z ′ = [Z] \ Z. We again consider
2 subcases based on the intersection of the path P with the (not necessarily non-empty)
set N(C) ∩ S.

Case 2.1: P contains a vertex in S ∩ N(C). Let w` be a vertex in S ∩ N(C) which
appears in P . We let P1 denote the subpath of P from pγ1 to w` and P2 denote
the subpath of P from w` to qγ2 (see Figure 2). Since P is internally regular, P1
and P2 are regular. Furthermore, since qγ2 /∈ Z, there is a γ3 ∈ Σ \ {γ2} such that
qγ3 ∈ Z. We now apply Lemma 3.1 on the regular path P2 to get a path P ′2 with
qγ3 as one endpoint and wh as the other, where h 6= ` since γ2 6= γ3. Furthermore,
since w` ∈ N [Z] and N [Z] is regular, it must be the case that wh /∈ Z. Therefore the
path P ′2 must intersect N(Z) at a vertex xr. Let J be the subpath of P ′2 from xr to
wh. Now, since xr ∈ (S \ [X]) \ S′, we know that there is a vα-xr path in HI − [X]
which lies entirely in N [Z]. Let Q be such a path. Similarly, we know that there
is a vα-w` path L in HI − [X] which also lies entirely in N [Z] and hence is regular.
We now apply Lemma 3.1 on L to get a path L′ with wh as one endpoint and vβ
as the other endpoint for some β ∈ Σ. Since we have already argued that wh 6= w`,
we conclude that β 6= α. However, the concatenated walk Q + J + L′ is present in
HI − [X], implying a vα-vβ path in HI − [X], a contradiction to the premise of the
lemma. We now address the second subcase under the assumption that this subcase
does not occur.

Case 2.2: P does not contain a vertex in S ∩ N(C). Let xr be the last vertex of S
which is encountered when traversing P from pγ1 to qγ2 and let w` be the last vertex
of N(C) encountered in the same traversal. Since the previous subcase is assumed to
not hold, xr must occur before w` in this traversal. We let J denote the subpath of
P between xr and w`. Lemma 3.2 implies the existence of a label h ∈ Σ \ {`} such
that wh ∈ S. This follows from the fact that N(C) ⊆ [S]. Also, since w` occurs in
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P , wh is not contained in S′ or [X]. The same holds for xr Therefore, the case we
are in guarantees the presence of paths L and Q from vα to wh and xr respectively,
where L and Q are contained within the set N [Z] and hence they must be regular
and amenable to applications of Lemma 3.1. We begin by applying Lemma 3.1 on
the regular path J to get a path J ′ with wh as one endpoint and xr1 as the other
for some r1 ∈ Σ. However, since h 6= `, we conclude that r1 6= r. Therefore, we now
apply Lemma 3.1 on the path Q to obtain a path Q′ with xr1 as one endpoint with
the other endpoint being vβ for some β ∈ Σ. Again, since r1 6= r, we conclude that
β 6= α. Now, observe that the concatenated walk L+J ′+Q′ implies the presence of a
vα-vβ path in HI − [X], a contradiction to the premise of the lemma. This completes
the argument for this subcase as well and consequentially that for Case 2.

We have thus proved that Case 1 cannot occur at all and in Case 2, there is an exchange
argument which constructs an alternate solution X ′ which is disjoint from Z. This completes
the proof of the lemma. J

The main consequence of the above lemma is that at any point in the run of our algorithm
solving an instance I = (G, k, φ, τ), if there is a vertex v whose label is ‘fixed’, i.e. τ(v) =
{α} for some α ∈ Σ and there is a good vα-T separator S where T is defined as in the
premise of the above lemma, then we can correctly ‘fix’ the labelings of all vertices in the
set (R(vα, S))−1. That is, we can define a new function τ ′ as follows. For every u ∈ V (G)
and γ ∈ Σ, we set τ ′(u) = {γ} if uγ ∈ R(v, α) and τ ′(u) = τ(u) otherwise. Lemma 3.6
implies that the given graph has a deletion set of size at most k which leaves a graph with
a feasible labeling consistent with τ if and only if the graph has deletion set of size at most
k which leaves a graph with a feasible labeling consistent with τ ′.

3.3 Computing good separators
I Definition 6. Let G be a graph and X and Y be disjoint vertex sets and S a minimum
X-Y separator. We say that S is a minimum X-Y separator closest to X if there is no
S′ which is a minimum X-Y separator such that R(X,S′) ⊂ R(X,S). We say that S is a
minimum X-Y separator closest to Y if there is no S′ which is a minimum X-Y separator
such that R(X,S′) ⊃ R(X,S). We let λ(X,Y ) denote the size of a minimum X-Y separator.

I Lemma 3.7 ([38]). Let G be a graph and X and Y be disjoint vertex sets. There is a
unique minimum X-Y separator closest to X and a unique minimum X-Y separator closest
to Y .

We need the following lemma from [39].

I Lemma 3.8 ([39]). Let X,Y be two disjoint vertex sets in a graph G such that the
minimum size of an X-Y separator is ` > 0. Then, there is a collection J = {J1, . . . , Jq}
of vertex sets where X ⊆ Ji ⊆ V (G) \ Y such that

1. J1 ⊂ J2 ⊂ · · · ⊂ Jq,
2. Ji is reachable from X in G[Ji],
3. |N(Ji)| = ` for every 1 ≤ i ≤ q and
4. every X-Y separator of size ` is fully contained in

⋃q
i=1N(Ji).

Furthermore, there is an algorithm that, given G,X, Y and an integer `′, runs in time
O(`′(|V (G)|+ |E(G)|)) and either correctly concludes that there is no X-Y separator of size
at most `′ or produces the sets J1, J2 \J1, . . . , Jq \Jq−1 corresponding to the aforementioned
collection J .
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We will state some simple consequences of the above lemma in a form that will be easier
to invoke during our arguments.

I Lemma 3.9. Let X,Y be two disjoint vertex sets in a graph G such that the minimum
size of an X-Y separator is ` > 0. Let J = {J1, . . . , Jq} be the collection defined in the
statement of Lemma 3.8. Then,

1. N(J1) is the minimum X-Y separator closest to X and N(Jq) is the minimum X-Y
separator closest to Y .

2. ∀v ∈ J1, the size of a smallest minimal X-Y separator which contains v is at least `+ 1.
3. for any 1 ≤ i ≤ q − 1, for any vertex v ∈ Ji+1 \ N [Ji], the size of any minimal X-Y

separator which contains v is at least `+ 1.

Proof. For the first statement, if S = N(J1) is not the minimum X-Y separator closest
to X, then there is a minimum X-Y separator S′ such that R(X,S′) ⊂ R(X,S). Since
R(X,S) = J1, it must be the case that S′ ∩ J1 6= ∅. However, by Lemma 3.8, we know that
every minimum X-Y separator is contained in

⋃q
i=1N(Ji) and since J1 ⊂ J2 ⊂ . . . Jq, every

minimum X-Y separator is disjoint from J1, a contradiction. Similarly, we can argue that
N(Jq) is the unique minimum X-Y separator closest to Y .

The argument for the second statement is identical. For the last statement, we argue
that

⋃q
j=1N(Jj) is disjoint from Ji+1 \N [Ji] for any 1 ≤ i ≤ q− 1. Suppose that this is not

the case and there is an index 1 ≤ i ≤ q − 1 and a vertex u such that u is present in both
sets

⋃q
j=1N(Jj) and Ji+1 \N [Ji]. Since u /∈ N [Ji], u /∈ N [Jr] for any r ≤ i. Further, since

Jr ⊇ Ji+1 for every r > i, u is present in Jr for every r > i and hence not in N(Jr) for any
r > i. This contradicts our assumption and completes the proof of the lemma. J

I Lemma 3.10. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover, v
be a vertex in G and let α ∈ Σ. Let Tαv denote the set [v] \ {vα} and T ⊇ Tαv be a set not
containing vα. There is an algorithm that, given I, v, α, and T runs in time O(|Σ|·k(m+n))
and either

correctly concludes that there is no vα-T separator of size at most |Σ| · k or
returns a pair of minimum vα-T separators S1 and S2 such that S2 covers S1, S1 is
good, S2 is bad and for any vertex u ∈ R(vα, S2) \R[vα, S1], the size of a minimal vα-T
separator containing u is at least |S1|+ 1 or
returns a good minimum vα-T separator S such that no other minimum vα-T separator
covers S or
correctly concludes that there is no good vα-T minimum separator.

Proof. We begin by executing the algorithm of Lemma 3.8 with G = HI , X = {vα}, Y = T

and `′ = |Σ| · k. If this algorithm concluded that there is no vα-T separator of size at most
|Σ| ·k, then we return the same. Otherwise, it must be the case that this subroutine returned
a family of sets J = {J1, . . . , Jq} with |N(Ji)| ≤ |Σ| · k for each i ∈ [q].

We examine the sets in J in time O(|Σ| · (m + n)) and compute the least i such that
N [Ji] is irregular. Suppose i = 1. Since every minimum vα-T separator covers the minimum
vα-T separator closest to vα (which is precisely N(J1) by Lemma 3.9), there is no good
minimum vα-T separator at all.

On the other hand, if i > 1, then we set S1 = N(Ji−1) and S2 = N(Ji). It follows from
Lemma 3.9 that these sets satisfy the required properties.

Finally, if N [Ji] is regular for every i ∈ [q], then we set S = N(Jq). It already follows
from Lemma 3.9 that no other minimum vα-T separator covers N(Jq). This completes the
proof of the lemma. J
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I Lemma 3.11. Let I = (G, k, φ, τ) be an instance of Node Unique Label Cover, v be
a vertex in G, α ∈ Σ, T ⊇ [v] \ {vα} be a set not containing vα and let ` > 0 be the size
of a minimum vα-T separator in HI . Let S1 and S2 be a pair of minimum vα-T separators
such that S1 is good, S2 is bad, and and for any vertex y ∈ R(vα, S2) \R[vα, S1], the size of
a minimal vα-T separator containing y is at least `+ 1. Let u ∈ V (G) and γ1, γ2 ∈ Σ such
that uγ1 , uγ2 ∈ R[vα, S2]. Then,

1. R[vα, S2] contains a pair of paths P1 and P2 such that for each i ∈ {1, 2}, the path Pi is
a vα-uγi path and both paths are internally vertex disjoint from S2 and contain at most
one vertex of S1.

2. Given I, vα, S1 and S2, there is an algorithm that, in time O(|Σ| · k(m+ n)), computes
a pair of paths with the above properties.

3. For i ∈ {1, 2}, any minimum vα-T ∪{uγi
} separator disjoint from V (Pi)∩ (S1 ∪S2) and

R(vα, S1) has size at least `+ 1, where ` is the size of a minimum vα-T separator.

Proof. We begin with the first statement. Since for each i ∈ {1, 2}, uγi
is in R[vα, S2], there

is clearly a vα-uγi
path which is internally vertex disjoint from S2. Let Qi be a such a path

containing minimum possible vertices of S1. If Qi intersects S1 at most once then we are
done. Otherwise Qi intersects S1 at least twice in vertices xir1

and yir2
with xir1

the vertex
closer to vα. Since S1 is a minimum vα-T separator, we have the existence of a vα-yir2

path
which is internally disjoint from S1. Therefore, we can use this path and the subpath of Qi
from yir2

to uγi
to obtain a walk from vα to uγi

, which contains fewer vertices of S1 than
Qi, a contradiction to the choice of Qi. This completes the proof of the first statement.

For the second statement, observe that if uγi
∈ R[vα, S1] then such a path can be found

by a simple BFS from vα. On the other hand, if uγi
∈ R[vα, S2] \R[vα, S1] then we can find

the path Pi by computing an arbitrary path from uγi
to a vertex xr ∈ S1 such that this

path is internally vertex disjoint from S1 and S2. We then compute a path from vα to xr
which is internally vertex disjoint from S1. Since this can be achieved by 2 applications of
a standard Breadth First Search, the claimed bound on the running time holds.

For the final statement, observe that any vα-T ∪ {uγi} separator disjoint from V (Pi) ∩
(S1 ∪ S2) must contain a vertex in R(vα, S1) or R(vα, S2) \R[vα, S1]. By the premise of the
lemma, any such separator must have size at least ` + 1. This completes the proof of the
lemma. J

We are now ready to prove Theorem 1.1 by describing our algorithm for Node Unique
Label Cover. Before doing so, we make the following important remark regarding the way
we use the algorithms described in this subsection. In the description of our main algorithm,
there will be points where we make a choice to not delete certain vertices. That is, we will
choose to exclude them from the solution being computed. At such points, we say that we
make these vertices undeletable.

All the above algorithms also work when given an undeletable set of vertices in the graph
and the minimum separators we are looking for are the minimum among those separators
disjoint from the undeletable set of vertices. Regarding the running time of these algorithms,
there will be a multiplicative factor of |Σ| · k which arises due to potentially blowing up the
size of the graph by a factor of |Σ|·k by making (|Σ|·k)+1 copies of every undeletable vertex.



Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh 17

4 The Linear time algorithm for Node Unique Label Cover

4.1 Description of the algorithm.
Before we describe our algorithm, we state certain assumptions we make regarding the input.
We assume that at any point, we are dealing with a connected graph G. Furthermore, we
assume that instances of Node Unique Label Cover are given in the form of a tuple
– (G, k, φ, τ, w∗, V∞) where the element w∗ denotes either a vertex from V (G) or it is
undefined. If w∗ denotes a vertex then, |τ(w∗)| = 1 and we will attempt to solve the problem
on the tuple (G, k, φ, τ, w∗, V∞) under the assumption that w∗ is not in the solution (which
is required to be disjoint from V∞). Furthermore the definition of the problem allows us to
assume that if there is a feasible labeling for this instance (after deleting a solution) then
there is one consistent with τ . Since τ(w∗) is singleton, any feasible labeling consistent with
τ must set w∗ to the unique label in τ(w∗).

We first check if G already has a feasible labeling (not necessarily one consistent with τ).
If so, then we are done. If not and k = 0 then we return No. If any connected component ofG
has a feasible labeling then we remove this component. Otherwise, we check if w∗ is defined.
If w∗ is undefined, then we pick an arbitrary deletable vertex v ∈ V (G). That is v /∈ V∞.
We then recursively solve the problem on the instances Iq0 , . . . , Iqr

where {q1, . . . , qr} = τ(v)
and for each qi where i ≥ 1, the instance Iqi

is defined to be (G, k, φ, τv=qi
, w∗, V∞1 ) with

τv=qi
defined as the function obtained from τ by restricting the image of v to the singleton

set {qi}, w∗ defined as w∗ = v and V∞1 defined as V∞1 = V∞ ∪ {v}. The instance Iq0 is
defined as (G− {v}, k − 1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to the
graph G−{v}. This will be the only branching rule which has a branching factor depending
on the parameter (in this case the size of the label set Σ) and we call this rule, B0.

We now describe the steps executed by the algorithm in the case when w∗ is defined.
Suppose that w∗ = v, τ(v) = α. Recall that by our assumption regarding well-formed inputs,
if w∗ is defined then τ(w∗) must be a singleton set. We set T =

⋃
u∈V (G)

⋃
γ∈Σ\τ(u) uγ .

Intuitively, T is the set of all vertices uγ such that if there is a feasible labeling of G (after
deleting the solution) which sets v to α then it cannot be consistent with τ unless the solution
hits all paths in HI (where I is the given instance) between vα and uγ . We remark that
since T depends only on the input instance I, we use T (I) to denote the set T corresponding
to any input instance I. Once we set T as described we first check if there is a vα-T path
in HI . If not, then the algorithm deletes the component of G containing v and recurses by
setting w∗ to be undefined. The correctness of this operation is argued as follows. Observe
that T contains all vertices of [v]\{vα} and excludes vα. Therefore, Lemma 3.3 implies that
the component of G containing v already has a feasible labeling and hence can be removed.

Otherwise if there is a vα-T path in HI , then we execute the algorithm of Lemma 3.10
with this definition of v, α and T and undeletable set [V∞]. Observe that T contains all
vertices of [v] \ {vα} but excludes vα. This is because τ(v) = {α}. The next steps of our
algorithm depend on the output of this subroutine. For each of the four possible outputs,
we describe an exhaustive branching.

Case 1: The subroutine returns that there is no vα-T separator of size at most |Σ| ·k which
is disjoint from [V∞]. In this case, our algorithm returns No. The correctness of this
step follows from Lemma 3.6.

Case 2: The subroutine returns a good vα-T separator S which is smallest among all vα-T
separators disjoint from [V∞] such that no other vα-T separator disjoint from [V∞] and
having the same size as S, covers S. In this case, we do the following. For each vertex
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uγ in the set R(vα, S) where u ∈ V (G) and γ ∈ Σ, we set τ(u) = {γ} and add u to V∞.
That is, we set V∞ = V∞ ∪ (R(vα, S))−1. Note that prior to this operation, γ ∈ τ(u)
since otherwise uγ would belong to T . We then pick an arbitrary vertex xδ ∈ S and
recursively solve the problem on 2 instances I1 and I2 defined as follows. The instance
I1 is defined to be (G− {x}, k − 1, φ′, τ ′, V∞) where φ′ and τ ′ are restrictions of φ and
τ to G− {x}. The instance I2 is defined to be (G, k, φ, τ ′, V∞1 ) where V∞1 = V∞ ∪ {x}
and τ ′ is defined to be the same as τ on all vertices but x and τ ′(x) = {δ}. We call this
branching rule, B1. The exhaustiveness of this branching step follows from the fact that
once the vertices in (R(vα, S)−1) are made undeletable, unless the vertex x is deleted,
Observation 3.2 forces any feasible labeling that labels v with α to label x with δ.

Case 3: The subroutine correctly concludes that there is no good vα-T separator which is
also smallest among all vα-T separators disjoint from [V∞]. In this case, we compute
S, the minimum vα-T separator that is disjoint from V∞ and closest to vα. Since S
is not good, R[vα, S] contains a pair of vertices uγ1 and uγ2 for some u ∈ V (G) and
γ1, γ2 ∈ Σ. Furthermore, since S is a vα-T separator, it must be the case that uγ1

and uγ2 are not in T . This implies that {γ1, γ2} ⊆ τ(u). We now recursively solve
the problem on 3 instances I0, I1, I2 defined as follows. The instance I0 is defined
as (G − {u}, k − 1, φ′, τ ′, w∗, V∞), where φ′ and τ ′ are defined as the restrictions of φ
and τ to the graph G − {u}. The instance I1 is defined as (G, k, φ, τ ′, w∗, V∞1 ) where
V∞1 = V∞ ∪ {u} and τ ′ is defined to be the same as τ on all vertices but u and
τ ′(u) = τ(u) \ {γ1}. Similarly, the instance I2 is defined as (G, k, φ, τ ′, w∗, V∞1 ) where
V∞1 = V∞ ∪ {u} and τ ′ is defined to be the same as τ on all vertices but u and
τ ′(u) = τ(u) \ {γ2}. We call this branching rule B2.
The exhaustiveness of this branching follows from the fact that if u is not deleted (the
first branch) then any feasible labeling of G−X for a hypothetical solution X must label
u with at most one label out of γ1 and γ2. Therefore, if I is a Yes instance then for at
least one of the 2 instances I1 or I2, there is a feasible labeling of G−X consistent with
the corresponding τ ′.

Case 4: Finally, we address the case when the subroutine returns a pair of minimum (among
those disjoint from [V∞]) vα-T separators S1 and S2 such that S2 covers S1, S1 is good,
S2 is bad and there is no minimum (among those disjoint from V∞) vα-T separator
which covers S1 and is covered by S2. In this case, R[vα, S2] contains a pair of vertices
uγ , uδ for some vertex u ∈ V (G) and γ, δ ∈ Σ.
We execute the algorithm of Lemma 3.11 to compute in time O(|Σ| · k(m+ n)), a vα-uγ
path P1 and a vα- uδ path P2 such that both paths are internally vertex disjoint from
S2 and contain at most one vertex of S1 each. Let x1, x2 ∈ V (G) and β1, β2 ∈ Σ be such
that x1

β1
and x2

β2
are the vertices of S1 in P1 and P2 respectively. Note that P1 or P2 may

be disjoint from S1. If Pi (i ∈ {1, 2}) is disjoint from S1 then we let xiβi
be undefined.

We now recurse on the following (at most) 5 instances I1, . . . , I5 defined as follows.

I1 = (G − x1, k − 1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to
G− {x1}.
I2 = (G − x2, k − 1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to
G− {x2}.
I3 = (G−u, k−1, φ′, τ ′, w∗, V∞) where φ′ and τ ′ are restrictions of φ and τ to G−{u}.
I4 = (G, k, φ, τ ′, w∗, V∞1 ) where V∞1 = V∞ ∪ (R(vα, S1))−1 ∪ {x1} and τ ′ is the same
as τ on all vertices of G except u and τ ′(u) = τ(u) \ {γ}.



Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh 19

I5 = (G, k, φ, τ ′, w∗, V∞1 ) where V∞1 = V∞ ∪ (R(vα, S1))−1 ∪ {x2} and τ ′ is the same
as τ on all vertices of G except u and τ ′(u) = τ(u) \ {δ}.

This branching rule is called B3. We argue the exhaustiveness of the branching as follows.
The first three branches cover the case when the solution intersects the set {x1, x2, u}.
Suppose that a hypothetical solution, say X, is disjoint from {x1, x2, u}. By Lemma 3.6,
we may assume that X is disjoint from R(vα, S1). Since any feasible labeling of G−X
sets u to at most one of {γ1, γ2}, branching into 2 cases by excluding γ1 from τ(u) in the
first case and excluding γ2 from τ(u) in the second case gives us an exhaustive branching.

This completes the description of the algorithm. The correctness follows from the ex-
haustiveness of the branchings. We will now prove the running time bound stated in the
theorem.

Analysis of running time. It follows from the description of the algorithm and the bounds
already proved on the running time of each subroutine, that each step can be performed in
time O((Σ + k)O(1)(m + n)). Therefore, we only focus on bounding the number of nodes
in the search tree resulting from this branching algorithm. In order to analyse this number,
we introduce the following measure for the instance I = (G, k, φ, τ, w∗, V∞) corresponding
to any node of the search tree. We define µ(I) = (Σ + 1)k − λ(I) where

λ(I) =
{
λ(w∗, T (I)) if w∗ is defined
0 otherwise

Note that λ(w∗, T (I)) denotes the size of the smallest w∗-T (I) separator in HI among
those disjoint from [V∞]. Furthermore, observe that µ(I) ≤ (|Σ| + 1) · k for any instance
on which the algorithm can potentially branch. We now argue that this measure strictly
decreases in each branch of every branching rule and since the number of branches in any
branching rule is bounded by max {|Σ|+ 1, 5} (Rules B0 and B3), the time bound claimed
in the statement of Theorem 1.1 follows.

Rule B0: Let I be the instance on which this branching rule is executed and let I ′ be an
instance resulting from an application of this rule. Since B0 is applicable on I, it must be
the case that w∗ is undefined in I and hence λ(I) = 0. If k drops in I ′, then it follows from
the definition of the measure that µ(I ′) < µ(I). On the other hand, suppose that in I ′, w∗
is defined to be vα for some α ∈ Σ. Since the component of G containing v does not have a
feasible labeling and in particular no feasible labeling that sets v to α, there is at least one
path in HI (and hence in HI′) from vα to [v] \ {vα}. As a result, there is at least one path
in HI′ from w∗ to T (I ′), implying that λ(I ′) > 0, which in turn implies that µ(I ′) < µ(I).

Rule B1: Observe that λ(I1) ≥ λ(I)− |Σ|. Since the budget k drops by 1 for I1, it follows
that µ(I1) < µ(I). Furthermore, it follows from Lemma 3.10 that λ(I2) > λ(I), implying
that µ(I2) < µ(I).

Rule B2: Since the budget k drops by 1 for I0 and λ(I0) ≥ λ(I) − |Σ|, it follows that
µ(I0) < µ(I). Furthermore, it follows from Lemma 3.10 that λ(I1), λ(I2) > λ(I), implying
that µ(I1), µ(I2) < µ(I).

Rule B3: The budget k drops by 1 for the instances I1, I2, I3 and for each i ∈ {1, 2, 3},
it holds that λ(Ii) ≥ λ(I) − |Σ|. Hence, µ(Ii) < µ(I) for each i ∈ {1, 2, 3}. For the
instances I4 and I5, it follows from Lemma 3.10 that λ(I4), λ(I5) > λ(I), implying that
µ(I4), µ(I5) < µ(I).
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5 Conclusions

We have presented the first linear-time FPT algorithm for the Node Unique Label Cover
problem. The parameter-dependence in the running time of this algorithm is 2O(k|Σ|·log |Σ|).
As a result, this algorithm improves upon that of Chitnis et al. [6] (which has parameter-
dependence 2O(k2·log |Σ|)) with respect to the dependence on both the parameter as well as
input-size when |Σ| ≤ k. However, the best known parameter-dependence is 4k log |Σ| which
was obtained by Wahslström [48], albeit at a significantly higher dependence on the input-
size. We leave open the question of finding the optimal dependence on the parameter while
preserving linear dependence on the input-size.
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